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1. Introduction

The study of neutral dynamic systems that describe oscillatory processes is currently one of the
recognized areas of modern nonlinear dynamics. Analysis of the connectivity of systems based on
their time series is one of the current areas of modern science. The classical approach for this purpose
is the Granger causality method [1]. The main idea of this method is to build a predictive model
and if data from the first time series helps to more accurately predict the behavior of the second,
then the first system is considered to influence the second. For a review of various variants of the
Granger causality method and similar measures, see [2]. Hilger [3] proposed the timescale hypothesis
to connect, broaden and summarize ideas from discrete math, quantum analytics, and persistent math
to self-assured timescale analytics. Bohner and Peterson’s books on timescale, or measure chain [4,5],
summarize and compile a lot of timescale mathematics. The applied hypothesis of dynamic conditions
associated with the study of oscillatory miracles in creativity, normal behavior, and sociologies includes
the hypothesis of movements as a key component. An essential component of the connected hypothesis
of energetic conditions associated with the inquiry of oscillatory wonders in innovation, normal science
and social science is the notion of oscillations, see [6–8]. In recent years, the evolution of different
energy situations over timescales has attracted a lot of interest.

Let t ∈ It0 = [t0,+∞) ∩ T. We explore the dynamic equation of the type(
q (t)

(
ϕ∆3

(t)
)ν)∆

+ Φ (t, uν (υ (t))) = 0, (1.1)

where
ϕ (t) = u (t) + p (t) u (τ (t)) ,

and ν ≥ 1 is the ratio of two odd positive integers. The Eq (1.1) will be studied under the following
assumptions:

(C1) The function Φ ∈ C (R,R) and there exists r ∈ C1 (
It0 , [0,+∞)

)
, such that

Φ (t, u)
u

≥ r (t) ,∀t ∈ It0 and u ∈ R − {0} .

(C2) τ, υ ∈ C1
rd

(
It0 ,It0

)
, p ∈ C1 (

It0 , [0,+∞)
)

such that

τ (t) ≤ t ≤ υ (t) , τ∆ (t) > 0, p∆ (t) ≤ 0, for all t ∈ It0 ,

and
lim

t→+∞
τ (t) = lim

t→+∞
υ (t) = ∞.

By the solution of (1.1) , we mean a nontrivial real-valued function

ϕ ∈ C4
(
ITϕ ,R

)
, Tϕ ∈ Is0 .

Note that solutions which disappear in a neighborhood of infinity will be excluded from our
consideration. A solution ϕ of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is non-oscillatory. Equation (1.1) is called oscillatory if all
its solutions are oscillatory. We are interested in this type of research because there has recently
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been an increasing interest in obtaining suitable conditions for the oscillation and non-oscillation of
combinations of various energy conditions on timescales. See, for example, the references [9–11].

J. Džurina et al. [9] studied oscillation for the second-order noncanonical delay differential
equations (

r (t) (y
′

(t))γ
)′

+ q (t) yγ (τ (y)) = 0, t ∈ It0 ,

under the condition ∫ ∞

t0
r−1/γ (t) dt < ∞.

There have been any recent occurrences on the oscillatory of (1.1). The purpose of this research is
to offer a few ambiguous criteria for this condition. Zhang et al. [10] studied a class of second-order
nonlinear delay dynamic equations of neutral theory that was investigated by[

r (t)
(
ϕ∆ (t)

)ν]∆

+ q (t) Φ (u (δ (t))) = 0, t ∈ It0 ,

where ν ≥ 1 is a ratio of odd integers and ϕ (t) = u (t) − p (t) u (τ (t)).
Grace et al. [11] studied oscillation of fourth-order delay differential equations(

r3(r2(r1y
′

)
′

)
)′

(t) + q (t) y (τ (y)) = 0, t ∈ It0 ,

under the assumption ∫ ∞

t0
r−1

i (t) dt < ∞, for i ∈ {1, 2, 3} .

Some of the most common examples of calculus on timescales are differential calculus, difference
calculus, and quantum calculus. Timescale dynamical equations have enormous potential for
applications such as population dynamics. It can model insect populations that persist during a season,
die in winter while their eggs are incubating or dormant, and then hatch in a new season, giving rise to
a nonoverlapping population. There are applications of dynamical equations on timescales in quantum
mechanics, electrical engineering, neural networks, heat transfer, and combinatorics. Notice that the
model of problem (1.1) is more general than all the problems considered before. For example, if we
consider problem (1), T = R, and Φ (t, u (t)) = q (t) u (t), we obtain the problem which is considered by
a recent article by J. Džurina et al. in [9]; it discusses several possible applications.

2. Main results

In this section, we establish some criteria that guarantee that u of (1.1) oscillates on It0 . Before
stating the main results, we begin with the following lemma.

Lemma 2.1. [12] Assume that u is an eventually positive solution of (1.1). Then, there are only the
following three possible scenarios for It1 , where t1 ∈ It0 is sufficiently large:

(1) ϕ∆3 (t) ≥ 0, ϕ∆2 (t) ≤ 0, ϕ∆ (t) ≥ 0,
(2) ϕ∆3 (t) ≤ 0, ϕ∆2 (t) ≥ 0, ϕ∆ (t) ≥ 0,
(3) ϕ∆3 (t) ≤ 0, ϕ∆2 (t) ≥ 0, ϕ∆ (t) ≤ 0.
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Here,

η+ (t) = max {η (t) , 0} , Λη (t) =
ησ (t)
η (t)

, ν̃ =
1
ν
,

π0 (t) =

∫ ∞

t
q−ν̃ (s) , πi (t) =

∫ ∞

t
πi−1 (s) ∆s, for i ∈ {1, 2} ,

ξ (t) =
1

1 + p (υ (t))

∫ ∞

t
q−ν̃ (v)

(∫ ∞

v
r (u) ∆u

)̃ν
∆v,

β (t) =
q−ν̃ (t)

1 + p (υ (t))

(∫ +∞

t
r (s) ∆s

)̃ν
, P (t) = r (t)

(
1 − p (υ (t))

π2 (υ (τ (t)))
π2 (υ (t))

)ν
,

φ (t) = P (t) +
π1 (t)

πσ2 (t) πν2 (t)
−

νπ1 (t)
π2 (t) πν2 (σ (t))

.

Theorem 2.1. Assume that there exist three functions ζ1, ζ2, γ ∈ C
1
rd

(
It0 , (0,∞)

)
such that

∫ ∞

t1
ζσ1 (t) ξ (t) − Λ (t − t1)

(
ζ

∆

1 (t)
)2

4ζσ1 (t)
∆t = ∞, (2.1)

∫ ∞

t1
γσ (t) β (t) −

Λh2 (t, t1)
(
γ∆ (t)

)2

4 (t − t1) γσ (t)
∆t = ∞, (2.2)

and ∫ ∞

t1
ζσ2 (t) φ (t) −

ψν+1 (t) ην (t)
(ν + 1)ν+1 ∆t = ∞, (2.3)

where

ψ (t) = ζ∆
2+ (t) + (1 + ν) ζσ2 (t)

π1 (t)
πσ2 (t)

, η (t) =
Λπ2 (t)

ζσ2 (t) π1 (t)
.

Then every solution u of (1.1) is oscillatory.

Proof. Suppose, on the contrary, that u is a positive solution of (1.1) on [t0,+∞). Then, there exists
t1 ∈ It0 , such that u (τ (t)) > 0, u (υ (t)) > 0, and u (t) > 0, for all t ≥ t. Assume that ϕ fulfills (2.1) in
the claims of Lemma 2.1. Let

Ξ (t) = ζ1 (t)
ϕ∆ (t)
ϕ (t)

, for all t ∈ It1 .

Then, Ξ (t) > 0, for t ∈ It1 and

Ξ∆ (t) =
ζ∆

1 (t)
ζ1 (t)

Ξ (t) + ζσ1 (t)
ϕ∆2 (t)
ϕ (t)

− ζσ1 (t)

(
ϕ∆ (t)

)2

ϕσ (t)ϕ (t)
. (2.4)

Since τ ∈ C1 (
It0 ,It0

)
, then u ◦ τ ∈ C1 (

It0 ,It0
)
, and we have

(u ◦ τ)∆ (t) = τ∆ (t) u∆ (τ (t)) , for all t ∈ It1 .
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Then
ϕ∆ (t) = u∆ (t) + pσ (t) τ∆ (t) u∆ (τ (t)) + p∆ (t) u (τ (t)) ≥ 0, ∀t ∈ It1 .

Since p∆ (t) ≤ 0 and τ∆ (t) ≥ 0, for all t ∈ It1 , then

u∆ (τ (t)) u∆ (t) ≥ 0, for all t ≥ It1 .

Since τ is a bijective function, we obtain

u∆ (t) ≥ 0, for all t ≥ It1 .

Integrate (1.1) from t to s, we get

−r (t)
(
ϕ∆3)ν

(t) + r (t)
(
ϕ∆3)ν

(s) =

∫ t

s
r (τ) uν (υ (τ)) ∆τ.

When s tends to∞ in the above inequality, we obtain

q (t)
(
ϕ∆3)ν

(t) ≥
∫ ∞

t
r (τ) uν (υ (τ)) ∆τ, for all t ≥ It1 ,

which implies that

ϕ∆3
(t) ≥ u (υ (t))

(
1

q (t)

∫ ∞

t
r (u) ∆u

)̃ν
, for all t ≥ It1 .

Integrate from t to∞ to get

−ϕ∆2
(t) ≥

∫ ∞

t
u (υ (v))

(
1

r (v)

∫ ∞

v
q (u) ∆u

)̃ν
∆v

≥ u (υ (t))
∫ ∞

t

(
1

r (v)

∫ ∞

v
q (u) ∆u

)̃ν
∆v. (2.5)

Since u∆ (t) ≥ 0 and τ (t) ≤ t, for all t ∈ It1 , then

u (t) ≥
ϕ (t)

1 + p (t)
, for all t ≥ It1 . (2.6)

Substituting (2.6) in (2.5), we get

−ϕ∆2
(t) ≥

ϕ (υ (t))
1 + p (υ (t))

∫ ∞

t

(
1

r (v)

∫ ∞

v
q (u) ∆u

)̃ν
∆v

≥
ϕ (t)

1 + p (υ (t))

∫ ∞

t

(
1

r (v)

∫ ∞

v
q (u) ∆u

)̃ν
∆v = ξ (t)ϕ (t) . (2.7)

Substituting (2.7) in (2.4), we get

Ξ∆ (t) ≤ −ζσ1 (t) ξ (t) +
ζ

∆

1+
(t)

ζ1 (t)
Ξ (t) − ζσ1 (t)

(
ϕ∆ (t)

)2

ϕσ (t)ϕ (t)
. (2.8)
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Since ϕ∆2 (t) ≤ 0, for all t ∈ It1 , we have

ϕ (t) ≥
∫ t

t1
ϕ∆ (s) ∆s ≥ ϕ∆ (t) (t − t1) , for all t ∈ It1 .

Therefore,
t →

ϕ

t − t1
,

is nonincreasing on It1 , then
ϕσ (t)

σ (t) − t1
≤
ϕ (t)
t − t1

,∀t ∈ It1 . (2.9)

Substituting (2.9) in (2.8), we have

Ξ∆ (t) ≤ −ζσ1 (t) ξ (t) +

[
ζ

∆

1 (t)
]
+

ζ1 (t)
u (t) − Λ (t − t1) Λζ1 (t)

Ξ2 (t)
ζ1 (t)

.

As in [12], we obtain

Ξ∆ (t) ≤ −ζσ1 (t) ξ (t) +
Λ (t − t1)

(
ζ

∆

1 (t)
)2

4ζσ1 (t)
.

Integrating from t1 to t, we have

∫ t

t1
ζσ1 (s) ξ (s) −

Λ (s − t1)
(
ζ

∆

1 (s)
)2

4ζσ1 (s)
∆s ≤ Ξ (t2) ,

which contradicts (2.1).
Suppose that ϕ satisfies 2.1 of Lemma 2.1. Integrating (1.1) from t to∞, we get

−q (t)
(
ϕ∆3

(t)
)ν
≥

∫ +∞

t
r (s) uν (υ (s)) ∆s, for all t ∈ It1 .

Since ϕ∆ (t) ≥ 0, for all t ∈ It1 , u is decreasing on It1 , and by (2.6) , we have

−ϕ∆3
(t) ≥ u (υ (t))

(
1

q (t)

∫ +∞

t
r (s) ∆s

)̃ν
≥

ϕ (υ (t))
1 + p (υ (t))

(
1

q (t)

∫ +∞

t
r (s) ∆s

)̃ν
= β (t)ϕ (υ (t))

≥ β (t)ϕ (t) , ∀t ∈ It1 .

Let

Θ (t) = ζ3 (t)
ϕ∆2 (t)
ϕ (t)

, ∀t ∈ It1 .

Then,

Θ∆ (t) =
ζ∆

3 (t)
ζ2 (t)

Θ (t) + ζσ3 (t)
ϕ∆3 (t)
ϕ (t)

− Λζ3 (t)
ϕ∆ (t)
ϕσ (t)

Θ (t)
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≤ −ζσ3 (t) β (t) +

[
ζ∆

3 (t)
]
+

ζ3 (t)
Θ (t) − Λζ3 (t)

ϕ∆ (t)
ϕσ (t)

Θ (t) . (2.10)

Then, by ϕ∆3 (t) ≤ 0, ∀t ∈ It1 , we have

ϕ∆ (t) ≥
∫ t

t1
ϕ∆2

(s) ∆s ≥ ϕ∆2
(t) (t − t1) , ∀t ∈ It1 . (2.11)

Therefore, ϕ∆

t−t1
is a nonincreasing function It1 , then

ϕ (t) ≥
ϕ∆ (t)
t − t1

∫ t

t1
(s − t1) ∆s

≥
h2 (t, t1)

t − t1
ϕ∆ (t) , for all t ∈ It1 .

Thus ϕ

h2(.,t1) is a nonincreasing function It1 , and we get

ϕσ (t)
hσ2 (t, t1)

≤
ϕ (t)

h2 (t, t1)
, for all t ∈ It1 . (2.12)

Substituting (2.12) in (2.10), we get

Θ∆ (t) ≤ −ζσ3 (t) β (t) +
ζ∆

3+
(t)

ζ3 (t)
Θ (t) − (t − t1)

Λζ3 (t)
ζ3 (t) Λh2 (t, t1)

Θ2 (t) .

As in [12], we obtain

Θ∆ (t) ≤ −ζσ3 (t) β (t) +
Λh2 (t, t1)

(
ζ∆

3 (t)
)2

4 (t − t1) ζσ3 (t)
.

Integrate from t1 to t, we have

∫ t

t1
ζσ3 (s) β (s) −

Λh2 (s, t1)
(
ζ∆

3 (s)
)2

4 (s − t1) ζσ3 (s)
∆s ≤ Θ (t1) ,

which contradicts (2.2).
Suppose that u satisfies claim 2.1 of Lemma 2.1. By the definition of ϕ, we have ϕ (t) ≥ u (t), and
from (1.1), we have(

q (t)
(
ϕ∆3

(t)
)ν)∆

= −Φ (t, uν (τ (t))) ≤ −r (t) uν (υ (t)) ≤ 0, ∀t ∈ It0 . (2.13)

Thus,
t → q (t)

(
ϕ∆3

(t)
)ν
,

is decreasing on It1 , then, for any s ≥ It1 , we have

q (t)
(
ϕ∆3

(t)
)ν
≥ p (s)

(
ϕ∆3

(s)
)ν
, for all t ∈ It0 .
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Then,

ϕ∆3
(s) ≤

(
q (t)
q (s)

)̃ν
ϕ∆3

(t) , for all s, t ∈ It0 .

Integrating from t to v,

ϕ∆2
(v) − ϕ∆2

(t) ≤ qν̃ (t)ϕ∆3
(t)

∫ v

t
q−ν̃ (s) ∆s.

When v tends to∞ in the above inequality, we obtain

ϕ∆2
(t) ≥ −qν̃ (t)

(∫ ∞

t
q−ν̃ (s) ∆s

)
ϕ∆3

(t)

= −qν̃ (t) π0 (t)ϕ∆3
(t) , (2.14)

thus ϕ∆2 (t)
π0 (t)

∆

=
ϕ∆3 (t) π0 (t) + q−ν̃ (t)ϕ∆2 (t)

π0 (t) πσ0 (t)
≥ 0.

Therefore,

t →
ϕ∆2

π0
,

is an increasing function on It1 . Thus, we get

−ϕ∆ (t) ≥
∫ ∞

t
π0 (s)

ϕ∆2 (s)
π0 (s)

∆s

≥
ϕ∆2 (t)
π0 (t)

∫ ∞

t
π0 (s) ∆s

=
π1 (t)
π0 (t)

ϕ∆2
(t) . (2.15)

Then, (
ϕ∆ (t)
π1 (t)

)∆

=
ϕ∆2 (t) π1 (t) + π0 (t)ϕ∆ (t)

π1 (t) πσ1 (t)
≤ 0.

Thus,

t →
ϕ∆

π1
,

is a nonincreasing function on It1 , and we have

−ϕ (t) ≤
∫ ∞

t
ϕ∆ (t) ∆s

≤
ϕ∆ (t)
π1 (t)

∫ ∞

t
π1 (s) ∆s =

π2 (t)
π1 (t)

ϕ∆ (t) , (2.16)

then (
ϕ (t)
π2 (t)

)∆

=
ϕ∆ (t) π2 (t) + π1 (t)ϕ (t)

π2 (t) πσ2 (t)
≥ 0. (2.17)
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Thus,
t →

ϕ

π2
,

is an increasing function on It1 , and we have

ϕ (τ (t)) ≤
π2 (τ (t))
π2 (t)

ϕ (t) , for all t ∈ It1 . (2.18)

Moreover, by the definition of ϕ and (2.18), we have

u (t) = ϕ (t) − p (t) u (τ (t))

≥ ϕ (t) − p (t)ϕ (τ (t))

≥

[
1 − p (t)

π2 (τ (t))
π2 (t)

]
ϕ (t) . (2.19)

From (2.19), and (2.13), we get

(
q (t)

(
ϕ∆3

(t)
)ν)∆

≤ −r (t)
[
1 − p (υ (t))

π2 (υ (τ (t)))
π2 (υ (t))

]ν
ϕν (υ (t))

= −P (t)ϕν (υ (t)) . (2.20)

From (2.14)–(2.16), we obtain

ϕ (t) ≥ −π2 (t) qν̃ (t)ϕ∆3
(t) , for all t ∈ It1 . (2.21)

Let

ω (t) = ζ2 (t)

q (t)
(
ϕ∆3 (t)

)ν
ϕν (t)

+ π−ν2 (t)

 , for all t ∈ It1 .

From (2.21), we have ω (t) ≥ 0, for all t ∈ It1 and

ω∆ (t) =
ζ∆

2 (t)
ζ2 (t)

ω (t) + ζσ2 (t)

[
q (t)

(
ϕ∆3 (t)

)ν]∆

ϕν (t)
(2.22)

−ζσ2 (t)
q (t)

(
ϕ∆3 (t)

)ν
(ϕν (t))∆

ϕν (t)ϕν (σ (t))
− ζσ2 (t)

(
πν2 (t)

)∆

πν2 (t) πν2 (σ (t))
.

By Pöotzsche’s chain rule [4, Theorem 1.90], we get

(ϕν (t))∆ = νϕ (t)∆

∫ 1

0
(hϕ (t) + (1 − h)ϕσ (t))ν−1 ∆h

≤ νϕ (t)∆ ϕν−1 (t) , (2.23)

and
−

(
πν2 (t)

)∆
≤ νπ1 (t) πν−1

2 (t) , for all t ∈ It1 . (2.24)
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Substituting (2.20), (2.23) , and (2.24) in (2.22), we have

ω∆ (t) =
ζ∆

2 (t)
ζ2 (t)

ω (t) − ζσ2 (t) P (t)
ϕν (υ (t))
ϕν (t)

(2.25)

−νζσ2 (t)
p (t)

(
ϕ∆3 (t)

)ν
ϕ∆ (t)

ϕ (t)ϕν (σ (t))
+

νζσ2 (t) π1 (t)
π2 (t) πν2 (σ (t))

.

Since ϕ∆ (t) < 0 and
(
π−1

2 (t)ϕ (t)
)∆
> 0, for all t ∈ It1 , we obtain

ϕν (υ (t))
ϕν (t)

≥ 1 and ϕσ (t) ≥
πσ2 (t)
π2 (t)

ϕ (t) , for all t ∈ It1 . (2.26)

By (2.14) and (2.15), we get

ϕ∆ (t) ≤ π1 (t) pν̃ (t)ϕ∆3
(t) , for all t ∈ It1 . (2.27)

Substituting (2.26) and (2.27) in (2.25), we have

ω∆ (t) =
ζ∆

2 (t)
ζ2 (t)

ω (t) − ζσ2 (t) P (t)

−νζσ2 (t)
π1 (t)

Tπ2 (t)

[
ω (t)
ζ2 (t)

−
1

πν2 (t)

]1+ν̃

+
νζσ2 (t) π1 (t)
π2 (t) πν2 (σ (t))

.

We conclude that [
ω (t)
ζ2 (t)

−
1

πν2 (t)

]1+ν̃

≥

(
ω (t)
ζ2 (t)

)1+ν̃

− (1 + ν̃)
ω (t)

π2 (t) ζ2 (t)
+ ν̃

1
πν+1

2 (t)
.

Thus,

ω∆ (t) = −

[
ζσ2 (t) P (t) +

ζσ2 (t) π1 (t)
πσ2 (t) πν2 (t)

−
νζσ2 (t) π1 (t)
π2 (t) πν2 (σ (t))

]
+

[
ζ∆

2+
(t)

ζ2 (t)
+ (1 + ν) Λζ2 (t)

π1 (t)
πσ2 (t)

]
ω (t) − ν

Λζ2 (t) π1 (t)
ζ ν̃2 (t) Λπ2 (t)

(ω (t))1+ν̃ .

Then,

ω∆ (t) = −ζσ2 (t)
[
P (t) +

π1 (t)
πσ2 (t) πν2 (t)

−
νπ1 (t)

π2 (t) πν2 (σ (t))

]
+

1
(ν + 1)ν+1

[
ζ∆

2+ (t) + (1 + ν) ζσ2 (t)
π1 (t)
πσ2 (t)

]ν+1 [
Λπ2 (t)

ζσ2 (t) π1 (t)

]ν
= −ζσ2 (t) φ (t) +

1
(ν + 1)ν+1ψ

ν+1 (t) ην (t) .

Integrating from t1 to t, we have∫ t

t1
ζσ2 (s) φ (s) −

ψν+1 (s) ην (s)
(ν + 1)ν+1 ∆s ≤ ω (t1) ,

which contradicts (2.3). �
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Corollary 2.1. If ∫ ∞

t1
ξ (t) ∆t =

∫ ∞

t1
φ (t) ∆t =

∫ ∞

t1
β (t) ∆t = ∞, (2.28)

then every solution u of (1.1) is oscillatory.

Proof. Similar to the proof of Theorem 2.1, we put

ζ1 (t) = ζ2 (t) = γ (t) = 1,

in Eqs (2.1)–(2.3), and we find (2.28) �

Theorem 2.2. Assume that there exist three functions ζ ∈ C1
rd

(
It0 , (0,∞)

)
such that (2.1) holds and

π0 (t0) = ∞.

Then, every solution u of (1.1) is oscillatory.

Proof. Suppose, on the contrary, that u is a positive solution of (1.1) on It0 . Then, there exists t1 ∈ It0 ,
such that

u (τ (t)) > 0, u (υ (t)) > 0 and u (t) > 0, for all t ∈ It1 .

From (1.1), we have that q (t)
(
ϕ∆3 (t)

)ν
is decreasing for all t ∈ It1 . We claim that q (t)

(
ϕ∆3 (t)

)ν
> 0,

for all t ∈ It1 . If not, then there exist a t2 ∈ It1 such that

q (t)
(
ϕ∆3

(t)
)ν
≤ −m, for all It2 ,

where m > 0. Integrating from t2 to t, we obtain

ϕ∆2
(t) ≤ −mν̃π0 (t2) , for all It2 .

This gives
lim

t→−∞
ϕ∆2

(t) = −∞,

then
lim

t→−∞
ϕ (t) = −∞,

which is a contradiction. �

As some applications of the main results, we present the following example.

Example 2.1. Consider a fourth-order half-linear delay dynamic equation[
u (t) + u

( t
2

)](4)
+

1
t3 u (2t) = 0, for all t ≥ 1. (2.29)

Here, T = R, ν = 1, q (t) = p (t) = 1, r (t) = t−3, τ (t) = t
2 , and υ (t) = 2t.

Set ζ (t) = 1, then

ξ (t) =
1
4t
, π0 (t0) = ∞.

Thus, (2.1) holds. By Theorem 2.2, Eq (2.29) is oscillatory.

AIMS Mathematics Volume 9, Issue 9, 24576–24589.



24587

Remark 2.1. If fourth-order hybrid nonlinear functional dynamic equations with damping on
timescale are consideredq (t)

([
u (t) + p (t) u (τ (t))

]∆3)ν
h (t, u (t))


∆

+ Φ (t, uν (υ (t))) = 0,∀t ∈ It0 , (2.30)

on an arbitrary timescale T with supT = ∞, with the function

h : It0 × R→ R,

such that
h ∈ C

(
It0 × R,R

)
, uΦ (t, u) > 0, ,∀ (t, u) ∈ It0 × R− {0} ,

and there exists ψ ∈ C
(
It0 , [0,+∞)

)
, so that

h (t, u) ≥ ψ (t) ,∀ (t, u) ∈ It0 × R− {0} .

Thus, (1.1) becomes a special case of (2.30) in a case h ≡ 1. Using the same method presented in
this research, we can obtain some oscillation criteria for (2.30). It means obtaining generalizations of
Theorems 2.1 and 2.2.

3. Conclusions

The investigation of sufficient circumstances ensures oscillation of all fourth-order neutral
functional differential equation delay solutions. However, this problem remains largely open for future
research. We used the generalized Riccati transformations to present a few new theorems for the
oscillation of (1.1). Our results here support some well-known results that have recently been published
in the literature. A certain number of results reported in the literature are supplemented by the results
provided; for more details, see [13–15].

Furthermore, our results can be extended to study a class of systems of higher order hybrid advanced
differential equations, for example,q (t)

 ϕ∆3 (t)
F (t, u (t))

ν∆

+ Φ (t, uν (υ (t))) = 0, (3.1)

where
ϕ (t) = u (t) + p (t) u (τ (t)) ,

and ν ≥ 1 is the ratio of two odd positive integers, see [16–19]. It will be our next work.

Author contributions

Abdelkader Moumen: Methodology, Formal analysis; Amin Benaissa Cherif: Writing-original
draft preparation; Fatima Zohra Ladrani: Writing-original draft preparation; Keltoum Bouhali:
Supervision; Mohamed Bouye: Writing-review and editing. All authors have read and approved the
final version of the manuscript for publication.

AIMS Mathematics Volume 9, Issue 9, 24576–24589.



24588

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
research.

Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King
Khalid University for funding this work through Large group research project under grant number
RGP2/281/45.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods,
Econometrica, 37 (1969), 424. https://doi.org/10.2307/1912791

2. B. Gourevitch, R. L. B. Jeanne, G. Faucon, Linear and nonlinear causality between signals:
Methods, examples and neurophysiological application, Biol. Cybern., 95 (2006), 349–369.
https://doi.org/10.1007/s00422-006-0098-0

3. S. Hilger, Ein Maßkettenakül mit anwendung auf zentrumsannigfaltigkeiten, PhD thesis,
Universität Würzburg, 1988.

4. M. Bohner, A. Peterson, Dynamic equations on timescales, an introduction with applications,
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