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1. Introduction

The theory of variational inequalities (VIs) was initially originated from variational principles
for investigating partial differential equations [31]. It is a dynamic tool for unifying and studying
equilibrium problems. It has been recognized as a potential and compelling approach for exploring and
analyzing nonlinear problems of science and engineering, complex boundary value problems, models
of economics, and transportation and operations research by reformatting them as a VI. Since its rise,
this theory has been augmented by diverse techniques and methodologies.
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Among the succeeding expansions, one of the prominent, most fruitful and worthwhile
generalizations of VI is variational inclusion. The variational inclusion problem plays a crucial role
in the formulation of mathematical models of various real-life problems with practical implications
across diverse disciplines. The monotone inclusion problem (MIP) is to discern an element 6* € H so
that

0 € (p+y)d, (1.1)

where H is a real Hilbert space, ¢ : H — H is a single-valued monotone operator, and ¢ : H — 2%
is a maximal monotone operator. We indicate the solution set of the MIP (1.1) by (¢ + ¥)~1(0).
Variational inclusions have been implemented to tackle numerous equilibrium and optimization
problems including image processing, image deblurring, convex minimization, DC programming, split
feasibility, fixed point and VI problems; see [1,9,12,17,21,23,27-29,33]. Applicability and usefulness
of variational inclusions have captivated the attentiveness of numerous scholars in a short span of
time. As of now, a number of approaches have been carried out for figuring out the problem. One
of the fundamental approaches to deal with these problems is to reduce the inclusion problem into an
analogous fixed point problem by employing the technique of resolvent.

In recent times, for the sake of generalizing VIs and inclusions, the researchers have generalized
the conception of monotone and accretive mappings such as m-accretive mappings [20] as an allied
approach for maximal monotone, maximal 7-monotone and i-subdifterential mappings. In this sequel,
the concept of H-monotone mapping was incepted by Fang and Huang [15] in Hilbert spaces, and
later they further coined an analogous notion in Banach spaces named H-accretive mappings [16].
In 2008, Zou and Huang [35] enriched the literature by defining the H(,-)-accretive operator in
Banach spaces. Using these generalized monotone and accretive mappings, authors have examined
numerous variational inclusions by implementing the resolvent operators. Moreover, the notion of
the H(:, -)-co-coercive mapping was set forth by Ahmad et al. [3]. This concept was further extended
by defining H(-, -)-co-monotone mapping [4], which is the combination of symmetric co-coercive and
monotone mapping. An analogous conception was studied in Banach spaces and named as H(:, -)-co-
accretive mapping [5], which is the combination of symmetric co-coercive and accretive mapping. The
researchers explored some properties of these operators and applied them to investigate a number of
variational inclusions. Subsequently, a great deal of work has gone into examining variational inclusion
problems involving generalized monotone and accretive mappings using the graph convergence. Li and
Huang [22] brought the idea of graph convergence for H(, -)-accretive mappings and shown that it is
homologous to the resolvent operator convergence Further, Ahmad et al. [2] utilized the conception
of graph convergence to examine a system of generalized variational inclusions involving H(-, -)-co-
accretive mapping. For a detailed literature on graph convergence, we refer to [6,7,10,32].

Since the equilibrium point of the dynamical system leads to the solution of the corresponding VI
and inclusion problem, dynamical systems represent cohesive, all-encompassing frameworks of VIs
and inclusions as their equilibrium points serve as solutions to these problems. Thus, all the problems
whose mathematical models can be solved using VIs can also be examined in the general framework of
the dynamical systems. This characteristic has drawn the attention of researchers to study dynamical
systems associated with VI and inclusion problems. One can transform the model of VI or inclusion
problems into a fixed point problem by implementing the novel resolvent or projection operator, and
such transformations allow us to suggest dynamical systems. Dynamical systems directly or indirectly
appear in several useful areas encompassing celestial mechanics, environmental studies, financial
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forecasting, modeling of neuroscience, etc., and allow us to describe the trajectories of physical process
and real-world problems before achieving the steady state. For further applications of the dynamical
systems, see [11,13,14,18,24-26].

Inspired and persuaded by the above stated work, in this study, we investigate a generalized variation
inclusion problem. We define the resolvent operator for generalized n-co-monotone mapping and
estimate its Lipschitz constant. Further, its relationship with the graph convergence is accomplished.
An Ishikawa type iterative algorithm is structured and analyzed to obtain the common solution of the
generalized variational inclusion and the set of fixed points of a total asymptotically non-expansive
mapping by employing the novel implication of graph convergence. Moreover, we construct a
generalized resolvent dynamical system associated to the generalized variational inclusion and discuss
some of its attributes. Further, we investigated the considered generalized variation inclusion problem
by implementing the generalized resolvent dynamical system. Also, the theoretical results are verified
by illustrative examples.

2. Relevant concepts and auxiliary results

Now onward, H is assumed to be a real Hilbert space endued with norm || - || which induces the

metric d and inner product (-, -). The collection of all closed and bounded subsets of H is signified as
CB(H).

Definition 2.1. Let n : H X H — H be a single-valued mapping. A mapping ¥ : H — H is referred
to as

(i) n-monotone if

(W(0) — ¥(3),1(0,9)) 2 0,V6, 9 € H;

(ii) p-strongly n-monotone if 4p > 0 so that
W(O) — (@), n(6, 9) = pllo — I, V6,9 € H;
(iii) w-Lipschitz continuous if 3w > 0 so that
I (0) =yl < wllf - ||, V6, 9 € H;
(iv) {-expansive if A > 0 so that
4 (6) — Yyl = {116 — |, Y6, 9 € H.

The following lemma is a crucial instrument for carrying out the adopted scheme.

Lemma 2.1. [34] Let {p;},-, be a nonnegative real sequence and {q;},., be a real sequence in [0,1]
with Y020 qx = o0 fulfilling the following inequality:

Pis1 < (I = q)pi + qi7i, Yk 2 no,
where T, > 0,Vk > 0 and limy_,., T4 = 0. Then lim;_,, py = 0.
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2.1. Generalized n-co-monotone operator

Definition 2.2. Letn,® : HX H — H and ¥, ¢ : H — H be the single-valued mappings. Then ®(-,-)
is known as

(i) m-mixed Lipschitz continuous with respect to Y and ¢ if Am > 0 such that
1P (0), p(0) — PW(F), e(M)Il < ml|6 — Il|, V6, € H;

(ii) n-co-coercive with respect to Y if I > 0 such that

(D), a) — D), a), (0, B) = K [lW(6) — YD), V6,9 € H;
(iii) relaxed n-co-coercive with respect to ¢ if I > 0 such that
(@b, ¢(6)) = D(b, @(), 16, 9)) > (=K )ll(6) = (DI, V6, € H;

(iv) symmetric n-co-coercive with respect to ¥ and ¢ if (-, ) satisfies (ii) and (iii).

Definition 2.3. Letn,® : HX H — H; G,¥, ¢ : H — H be the single-valued mappings and ¥ : H —
CB(H) be a set-valued mapping. Then, ®(-,-) is known as mixed 5-strongly monotone with respect to
G and ¥, if for some w € Y(0), v € Y(#), A6 > O such that

(W (B), () = D), p(9)), N(G(w), G(@))) = 610 - I*, V6, € H.

Definition 2.4. Letn : HxXH — Hand f,g : H — H be the single-valued mappings. A set-valued
mapping M : H x H =3 H is known as

(i) T -strongly n-monotone with respect to f if It > 0 so that
(w—v,n0,9) > 70— 9> V¥0,9,b € H,u € M(f(6),b),v € M(f(9), b);
(ii) T -relaxed n-monotone with respect to g if It > 0 so that
(= v.6,9) > (=T)Il6 = I, V6,8, b € H,pu € M(b,g(6)),v € M(b, g();

(iii) M(-,-) is known as symmetric n-monotone with respect to f and g if M(-,-) satisfies (i) and (ii).

Definition 2.5. Let n,® : Hx H — H and ¥, ¢, f,g : H — H be the single-valued mappings. A
set-valued mapping M : H x H =3 H is referred to as generalized n-co-monotone if O(-,-) is symmetric
n-co-coercive with respect to W and ¢, M(-, ) is symmetric n-monotone with respect to f and g, and

[P, @) +oM(f, &))(H) = H, Yo > 0. 2.1

Note 2.1. Now onward, M is generalized n-co-monotone means, ®(-,-) is p-symmetric co-coercive
with respect to ¢ and ¢ with constants k and «~, respectively, and M(-,-) is symmetric 7-monotone
with respect to f and g with constants 7 and 7, respectively, and satisfies (2.1).

Lemma 2.2. Let n,® : HXH — Hand ¢,p, f,g : H — H be the single-valued mappings. Let
M : Hx H =3 H be a generalized n-co-monotone mapping. Let  be g-expansive and ¢ be I-Lipschitz
continuous. Then, for all o > 0, the mapping [P, ¢) + oM(f, g)17! is single-valued.
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Definition 2.6. Let n,® : HX H — Hand ¢, ¢, f,g : H — H be the single-valued mappings. Let
M : HxH =3 H be a generalized n-co-monotone mapping. The resolvent RZZE((..’,‘.)) : H — His described
as

RI0e0(0) = [D(W, @) + oM(f,8)]7'(6), Y0 € H.0 > 0. (22)
Proposition 2.1. Let n : H X H — H be a n-Lipschitz continuous mapping, ® : Hx H — H and
v, f,g : H — H be the single-valued mappings such that ¥ is ¢-expansive and ¢ is I-Lipschitz
continuous. Let M : H X H =3 H be a generalized n-co-monotone mapping. Then, quniz(()) :H — His
E-Lipschitz continuous, where

T
lo(@ =)+ (K* - " P)]

Proof. For given 0,4 € H, it follows from (2.2) that

(1]

RIC(6) = (04, ¢) + 0M(f, )17 (6), 2.3)
RIC) (9) = [0, ¢) + oM(f, )1 (). (2.4)
From (2.3) and (2.4), one can write
A ORI (0), R ()) € MFRI (6)), gRET (6))). 2.5)
5 = QWO PR N € MR O, R @) 2.6)

For the sake of simplicity, we indicate A(9) = R™)")(0) and A@®) = R’ (), and since M(.,-) is
symmetric r7-monotone, then

ot = TIIAB) - AD)IP
< {0 — OW(AD)), p(A0))) — (T — PW(AWD)), (AD))), n(A6), A(H)))
< (0 = 3, n(A6), AD))) — (PW(AD)), p(A(6))) — PW(A[D)), e(AD))), n(A6), A()))
= (0 — 9, n(A(6), A(D))) = (PW(AD)), (A6))) — PW(AD), p(A(D))), n(A(6), A(D)))
—(DW(AD)), p(A(0))) = P (AD)), (A(D))), n(AB), A(D))).
Invoking symmetric n-co-coercivity of @, ¢-expansiveness of i, [ and n-Lipschitz continuities of ¢ and

n, respectively, we attain
o(T = THIAWD) = AW < (0~ 3, n(A@B), A@))) — (K> = K" PIIAWG) = AD)IP, ie.,

[o(t =77 + (K s* — K PIAD) — A@)I* < 116 — Dlln(A©), A < 116 — Il A®B) — AW
Thus, for all 8,9 € H, we obtain ||A(6) — AD)| < Z||6 - I, i.e.,

n,®(:,) n,®(-,") = _
IRE(0) = RIS @) < Zllo - 911, V6, 9 € H, 2.7)

where, = = d O
T o =T+ (Kt = KB
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2.2. Graph convergence

Definition 2.7. The graph of a multivalued mapping M : H x H =3 H is expressed as
Graph(M) = {((0,9),£) : & € M(6,9)}.

Definition 2.8. Letn, ® : HxH — Hand ¥, ¢, f, g : H — H be the single-valued mappings. Forn > 0,
let M,, M : H x H = H be generalized n-co-monotone mappings. Then, {M,}> , is known as graph
convergent to M, indicated by (MHQ)M) if for each (f(0),g(0),&) € Graph(M), 3{(f(6,), g(6,),&,)} €
Graph(M,) so that

f(6,) — f(9),g(, — gB)and &, — Easn — oo.

Theorem 2.1. Letn,® : HX H — Hand ¥, ¢, f,g : H — H be the single-valued mappings such that
@(-, ) is m-mixed Lipschitz continuous with respect to W and ¢, and f, g are continuous mappings so
that f is {-expansive. Forn > 0, let M,,, M : H X H =3 H be generalized n-co-monotone mappings.
Then,

M,GM & R} (0) — Ry (6), Y6 € H,0 > 0.

Proof. For all § € H and o > 0, suppose that R M )(9) — RZ ;T;(('j;?)(e). Assume that (f(0), g(0),&) €
Graph(M), then

6 = RV [OW(6), ¢(6) + o€]. 2.8)
Letting
6, = RIS [OW(O), (6)) + o€, 2.9)
which turns into
OW(B), p(6)) + 0¢ € [DW(B,), ¢(6,)) + oM (f(6,), g(6))]. (2.10)

For each n > 0, take &, € M(f(6,), g(6,)), then (2.10) yields

D (8), 9(0)) + 06 = D(Y(0n), 9(6,)) + 0&n. (2.11)

Invoking the m-mixed Lipschitz continuity of @, it follows from (2.11) that
llo&, — 0€ll = DH(G,), 9(6,)) = P(O), O < (0 + p 16 — Oll. (2.12)
Thus, [I€, — £l < 2|16, — 6)l. Recalling the hypothesis R0 (0) — RIVE(®), it yields from (2.8)
Y
and (2.9) that ||6, — 6|| — 0 and, hence, from (2.12), we acquire ||£, — &|| — 0 as n — oco. Accounting
the continuity of f and g, we deduce f(6,) — f(6) and g(6,) — g(6), and so M,@)M .

On the contrary, assume that M,@;M and choose an arbitrary but fixed e € H. Since M(,-)
is a generalized n-co-monotone mapping, Range[®(y, ) + oM(f,g)] = H. Then, there exists

((£(0),8(0)),€) € Graph(M) such that e = D(0), p(0)) + 0&. Since (f(6),8(0),£) € Graph(M)
and suppose (f(6,), 8(0), &) € Graph(M,),
0 = RI [OW(O), 9(6)) + 0] and 6, = RTY [OW(B,), ¢(6,)) + 0é,].
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Letting e,, = ©((6,), ¢(6,)) + 0&,, for all n > 0, adducing the m-mixed Lipschitz continuity ®(-,-) and
making use of (2.7), we acquire

IRy (@) = Ry @l

0.M(-,) o.M(-,")
<IRZY (€)= RIG (el + IRTY (e) = RTY (el
< Elle, — ell + 116, — 0l (2.13)
= EllOW(6,), ¢(6,)) + 0&, — [PW(O), p(0)) + 0]l + 116, — 6l
< EllOW(6,), ¢(6,) — @W(0), p(O)ll + Zoll&, — &l + 116, — 6l
< [1 + Em]||6, — 0| + Zoll€, — £II.
The {-expansiveness of f yields
1f(6,) — fOIl = 116, — 6]l > 0. (2.14)
Thus, we deduce from (2.14) and the Definition 2.8 that §, — 6 and &, — & as n — oo. Thus,
from (2.13), we infer that R” "y () ,(6) — Z(('j;))(é). i

Example 2.1. Let H = R? with the usual inner product on R?, i.e.,
((61,62), (B1,2)) = 011 + 6292, Y(8),62), (91, 92) € R
Define yr, ¢ : R*> - R* and 7, ® : R? x R? — R? by

6 26,
27 3
OW(0), p(0)) = Y(B) + ¢(), Y0 € R, n(0,9) = 9%9, V6,9 € R%.

W(6:1,6,) = (%, %),90(91,92) = (— ) Y(6,,6,) € R?,

Then, for any fixed ¢ € R?, we find

(@W(0), §) = DY), ), 7(6, D) = 1 (6) — YD,
(O, 9(0) — D(s, (1)), (8, 3)) = (=Dllp(6) — eI

Thus, ©(-, ) is n-co-coercive with respect to Y and relaxed n-co-coercive with respect to ¢, hence O(-, )
is symmetric n-co-coercive. Next, we estimate the symmetric monotonicity of M. Define f, g : R* — R?
and M : R? x R? — R? by

J(01,6,) = (9__92’91 9) 8(61,6,) = (91 %_021 02)

M(f(6),86)) = f(6) - g(6),V6 € R,

Then for any fixed @ € R?, we find

Y(6,,6,) € R?,

1
(M(f(0). @) = M(f(9), @), 1(0, )} 2 16 = 97,

1
(M@, 8(0)) - M(w@, (1)), (0. 9)) 2 — [l - 9P,

AIMS Mathematics Volume 9, Issue 9, 24525-24545.
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i.e., M(-,-) is n-monotone with respect to f and relaxed n-monotone with respect to g, hence M(-,") is
symmetric n-monotone. Also, for any 6 € R? and o > 0,

[OW, ) + oM(f, 8)1(0) = () + () + o(f(6) — g(6))

[ Yool

ie., [OW, @) + oM(f,2)I(R*) = R%, VYo > 0. Thus, M(-,-) is a generalized n-co-monotone mapping.
Further, we show that M,,@)M. Let

0, 2 0 1
0)=— -6 —. 0 = —
f6)=(3 — 6+~ b+ + )
6 6, 2 6, 6 1
0)=(=+=+=,——+—+—),
&0 (3 2 T T2 T g n2)

and &, = M, (f(6,),£06,)) = f(0,) — g6, = (- %92 + % - n%, %91 + }102 + rll - n%) One can observe that

-0+ =+ = —0,,0, + =
R Y A R )

@+£_&+@+i) (i 92_91+%)
2 T 24T e :

lim (6,) = 132(% o0+ 2 0o (4 %)

0
Jim g6 = lim (5 + Y223
and lim &, = Tim (=36, +2 = 2,36, + 46, + 1 = ) = £(6) - 8(6) = M(f(0), 8(0)) = &,

Thus, we acquire that lim f(8,) = f(0) and lim g(6,) = g(0) and lim &, = &€ Hence, M,,Q;M.
Finally, it remains to manifest that M, @)M S RZ:;S’(:)’.)(H) - RZ:;(('.’;))(Q), VO € H,o > 0. Now, forpo =1,
the associated resolvent operators are estimated as:

RIVC) (6) = [DW, @) + M (f. )17 ()

Z(—191—§92+z—£,§91+i02+1—i)_1
4 2 n n®2 12 n n?
= %(401 +726, - 8,1—0 + i—(j, 726, — 126, + % - %)
and
RIS O = [0, ) + M1 O) = (— 361~ 30,30+ 56:)
= %(491 + 726, -720) - 126,),
which yields

D) D)
IR (6) = RIPC/@)] - 0 as n — oo,

Thus, we obtain

IR0 (6) = RIC(@) as M,CM.
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3. Problem formulation and convergence result

In this section, we employ a generalized r-co-monotone mapping for investigating a general
variational inclusion (GVIP). We examine the problem of discerning 6 € H, w € ‘¥(0) so that

0 € G(w) + M(£(0), (0)), (3.1

where G, f,g : H - Hand M : HXxH = H;¥Y : H = CB(H) are single-valued and multivalued
mappings, respectively. We signify the Problem (3.1) as GVIP and its solution set by Q(H, M, ®, G, n).

Lemma 3.1. Let n,® : HXH — Hand G, ¢, ¢, f,g : H — H be the single-valued mappings and
Y : H =3 CBH) a multivalued mapping. Let M : H X H =3 H be a generalized n-co-monotone
mapping. Then, (6, w), where 6 € H, w € Y(0) solves GVIP (3.1) if, and only if,

0 = RIS [OW(0), ¢(6) — 0G(w)]. (3.2)
Proof. One can obtain the conclusion immediately by implementing (2.2). O

A mapping F : H — H is referred to as non-expansive (NM) if ||F(0) — F(3)|| < |8 — 9|, V6, I € H.
In [19], the authors defined a generalized NM referred to as asymptotically nonexpansive (ANM) which
properly includes the class of NM.

Definition 3.1. [/9] A mapping F : H — H is known as ANM if 1 is a sequence {g,} C [1, c0) with
limeg, =1andV¥n € N,

IF"(O) — F" DIl < &,/16 - III, V6,9 € H.
In an attempt to obtain extension of NM and ANM, Sahu [30] introduced nearly asymptotically
non-expansive mapping (NANM). The class of NANM is an intermediate class which contains the
class of ANM and is contained in the class of mappings of asymptotically non-expansive type.

Definition 3.2. A mapping F : H — H is known as NANM, if Ie,} C [1, o0) and {v,} C [0, c0) with
limeg,=1,limv, =0, Vn e N,

n—oo n—oo

IF"(0) — F"(DI| < &l — 9| + v, VO, € H.

Further, Alber et al. [8] made an attempt to unify some classes of generalized NMs by introducing
total asymptotically non-expansive mapping (TANM).

Definition 3.3. A mapping F : H — H is known as TANM if 3 nonnegative sequences of real numbers
{eq}, {un} with lim g, = 0 = lim v, and a strictly increasing continuous function y : R* — R* such
that y(0) = 0 and Vn € N,

1F"(0) — F*(DI < 110 — I + pay (16 = I + v, Y6, € H.

Let F : H — H be a TANM and presume that the mappings n, ®, G, ¢, ¢, f, g, ¥, and M are identical
as in Lemma 3.1. Suppose that 8* € Fix(F) N Q(H, M, ®, G, n), then from (3.2), one can achieve the
following formulation:

0 = F'o" = R [D(0"), 9(8") — 0G(w")]

= F'RMYC) [0(6"), 9(8")) — 0G(w™)],

o.M(,)

(3.3)
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where 0 > 0 and w* € Y(6"). By the virtue of formulation (3.3), we design the following Ishikawa
type resolvent iterative scheme to explore a common element of Fix(F) and Q(H, M, ®,G,n). Here,
Fix(F) indicates the set of fixed points of TANM F and Q(H, M, ®, G, n) indicates the solution set of
GVIP (3.1).

Algorithm 3.1. Let n,® : HXx H — H and G, ¥, ¢, f,g : H — H be the single-valued mappings.
LetY : H = CB(M) be a multivalued mapping; M,, M : H X H = H be generalized n-co-monotone
mappings, and F : H — H be a TANM. For initial points 6,9 € H, wy € Y(6)), estimate the sequences
{6,}, {w,} by the following procedure:

Opit = (1 = @,)0, + ,, PRIV [OW(,), 9(9,) — 0G (@), (34)
By = (1= B0 + B F RV [OW(O,), 0(6,)) — 0G(w,)], (3.5)

forn=0,1,2, -, w, € ¥Y(6,), 0, € YW,), 0 < a,, 3, < 1, 3 @, = o0, and o > 0.
n=0

Theorem 3.1. Let n : HX H — H be a n-Lipschitz continuous mapping;, ® : Hx H — H and
v, o, f,g : H — H be the single-valued mappings such that ®(-, -) is m-mixed Lipschitz continuous with
respect to Y and ¢ and -mixed strongly monotone with respect to G and ¥, G is t-Lipschitz continuous,
Y is D-Lipschitz continuous with constant r, ¥ is g-expansive, and ¢ is [-Lipschitz continuous. Let
M, M : HxH =3 H be generalized n-co-monotone mappings. Let F : H — H be a ({u,}, {v,}, ¢)-
TANM so that Fix(F) N QMH, M, ®,G,n) # 0. If o > 0 obeys the following relation:

Lo -t + (g2 - kP
. .

Vm? — 201 + 021212 (3.6)

(i) Then Q(H, M, ®,G,n) is singleton.
(ii) If Mn@)M, then the sequence {0,} induced by (3.4)-(3.5) converges strongly to 8 € Fix(F) N
QH, M, 0, G, n).

Proof. (i) Define G : H — H as

G(0) = RV [DW(6), 9(6)) — 0G(w)], V6 € H. (3.7)

By making use of Proposition 2.1 and (3.7), for all 6, ¢ € H, we acquire

IG(®) - G| = IR [PW(6), 9(8)) — 0G(w)]
- RV OW@), o) - 0G@)]| (3.8)
< Z|OW(0), ¢(8)) — D), ¢(¥) - 0(G(w) — 0G(@))-

Utilizing the m-mixed Lipschitz continuity and ¢-mixed strong monotonicity of @ and Lipschitz
continuities of G and ¥, we acquire

IDW(B), 9(8)) — DY), p(9)) — o(G(w) — 0G(@))II

= [|DW(0), 9(8)) — DWW, e@NII” — 20(DW(B), p(6)) — PY(D),
¢(®)), G(w) - G(@)) + ¢°IG(w) - G@)II

< (m? =201 + 0**rH)||6 — 9|

(3.9)
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After simplification, the above inequality turns into

IOW(6), 9(6) = WD), p(P)) — 0(G(w) — eG@)I < \m? = 201 + Q*P2r||0 = D). (3.10)

Thus, (3.10) and (3.8) yield
IG(6) — Gl < 6|6 - I, (3.11)

T
[o(T" —1") + (K's? = k"))
consideration, we see that 0 < ® < 1. Thus, G being a contraction mapping owns a unique fixed point,
1.e., daunique 6 € H so that RZ:;I;('.’;)) [OW (), p(0)) —oG(w)] = 6. Consequently, Lemma 3.1 guarantees
that Q(H, M, ®, G, n) is singleton.

(i) By the assumption that @ # Fix(F)NQH, M, ®, G, n) and in (i), we confirmed that Q(H, M, ®, G, n)
is singleton. Suppose that Q(H, M, ®, G,n) = {6}, then we deduce that 6 € Fix(F) and consequently,
by (3.3), one can express

where @ = Em? — 20t + 0*2r? and E = Taking the premise (3.6) into

0= (1 - a,)0 + @, RIS [0W(®), o(8)) — 0G(@)]]

e (e (3.12)
= (1 =B +BuF"R ) 1y [PW(0), ¢(0)) — 0G(w)].

Utilizing the Proposition 2.1, we get

IRT [OW (B, ¢(B)) = 0G(@,)] = RIY - [OW(0), ¢(60)) - 0G(w)]l

< RIS [@W(,), 9(8) — 0G(@,)] = R [0W(6), ¢(6)) — oG(w)

+ IR [DW6), 9(60)) — 0G(w)] = RI [W(O), 9(6)) — oG(w)]| (3.13)
DWW W,), o)) — 0G(@,) — [DW(B), 9(8)) — 0G(W)]I| + [1Z,]

<E
= ElOW (), e(84)) = PW(6), p(6)) — 0[G(@n) = G + |12,

where £, = RYJ“ [0W(0), (6)) — 0G(w)] — RV [0W(0), ¢(6)) — 0G(w)]. Utilizing the Lipschtz
continuities of ¥ and G, we acquire

1G(@,) — G)ll < @, — wl| < DY (@,), Y(w)) < trild, — 6| (3.14)

Also, utilizing m-mixed Lipschitz continuity of ® regarding ¢ and ¢, --mixed strong monotonicity with
respect to G and ¥ and combining (3.14), we acquire

IDW(,), (D)) — WD), 9(0)) — ol G(@) — G(W)]I

= |OW(D), ¢ @) — PW(O), O = 20(PH (D), ()
— DW(0), 9(0)), G(@,) — G(w)) + 0*IIG(@,) — G(w)I

< m?|18, — 0l - 20u19, — OIF + * 72119, — 6l

= (m* =200+ )19, - 61,

which yields

QW (), p(Fn)) — P((0), ¢(0)) = 0l G(@y) = G(w)]]

(3.15)
< \m? =201 + Q*212||9, — 6.

AIMS Mathematics Volume 9, Issue 9, 24525-24545.



24536

After substituting (3.15) into (3.13), we obtain

IRV [, 9() = 0G(@,)] = REY 7 [DWO), 9(0)) — oG]l < Bl — 6]l + 1%, ]I, (3.16)

M ( o.M()

where @ = E+/m? — 20t + 0*r2. Now, recalling that F is ({u,}, {v,}, $)-total asymptotically non-
expansive and applying (3.4) and (3.12), we get
161 = 01l = 11 = @B, + u F'RIG [0W(8,), 0(9,)) — 0G(@,)]
= [(1 = @8 + @, F'RI [0 ), 0(0)) — 0G(w)]]|
< (1= a6y — 6l + @, IF"R D [OW(@,), o)) — 0G(@y)]
- F'RI O [0W(0), ¢(60)) - 0G(w)]|
< (1 = allf, - 0l + e IRT [DW(W,), (3)) — 0G (@)
= R [D(6), 9(8)) — oG ()
+ IR [OW(,), () — 0G(@y)]
= RISV [@W(O), 9(8) = oG (@)1 + V|-

(3.17)

By substituting (3.16) in (3.17), we acquire

1851 = Oll < (1 = @)lE, — Ol + @, [(®llF, — Ol + [IZ,]])

(3.18)
+ O, = Ol + IZall) + v

Following the same steps and employing the same facts as in (3.17), it follows from (3.5) and (3.12)
that

19, = 61l = I(1 = B0, + B RIS [OW(B,), (6,)) — 0G(wy)]

= [(1 = B8 + BRI (@), 0(8) - oG]l

< (1= B0 = 0l + BIFRE [DW(6,), 9(6,)) — 0G(wy)]
- F'RI O IOW(0), 9(0) - 0G(w)]|

< (1= Bl = Ol + B[ IR [@W (), (6,) - 0Glwy)]
- RV [DW(0), 9(6)) — oG (W)
+ @ LIRY ) [DW(6,), 9(6,)) — 0G(w,)]
= RIS D (6), (0)) - oG (@)1l + v, |

< (1= B0, — 61l + B[ @16, — 61 + I,
+ ta®(©16, = Ol + IZ,11) + v |

(3.19)

By the hypothesis MngM , we obtain £, — 0, thus from (3.18) and (3.19), we deduce that
160,41 = Ol < (1 = @B, — Ol + @ulOlF, — Oll + (B[, — Oll) + Vil (3.20)
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192 = 6ll < (1 =Bl = Ol + B [O6, — Oll + 12,(OI6, — 6l]) + vi]. (3.2

Substituting (3.21) into (3.20), we acquire

1641 = Ol < (1 = @)l — 61l + @u[O(1 = BIE, — Ol + B[Ol — 6l
+ (Ol — 61D + vil} + pa(OF(1 = B)II6, — Ol + B, [O]|6, — 6]
+ i (©116, = Ol) + val}) + vi]
= [(1 = @) + @,O[1 = B,(1 = O)]IIE, — Oll + @ [B,Ofn (16, — Oll) + v} (3.22)
+ O[] = Bu(1 = OB, — ll + ap(Oll6, — OII) + vi}} + vi]
< [1 = a,(1-0)])l6, - 6l
[8:O{und(¥) + v} + uap{ O + pup(¥) + v} + i

+a,(1 - ©) —o) :

where ¥, = 0||6,—6|| and ', = [1-,(1-0)]||6,—6||. For each n > ny, setting p, = ||6,—0ll, g, = a,,(1-
_ BBl d(Fy) + vl + 1,900, + @, (V) + vl + vy

®) and 7, = 1-0) . Clearly, >\ ,g, = oo because of
Do @y = 0. In fact, y,,v, = 0asn — oo yields 7, = 0. Thus, we deduce from Lemma 2.1 that
lim p, = 0 and, hence, lim 6, = 6. O

Example 3.1. Let H = [0, 00) with inner product (6,%) = 609 and norm | - |. Define F(6) = sinf, V6 €
[0, 00). Then, clearly 0 € Fix(F) for all 8,9 € [0, c0), and we express

IF(6) = F@)Il = [|sin6 — sin |

@ -9 @+
rcos —

= |2 sin

<16 = 91l

Thus, F is non-expansive , hence F is TANM with u, = n% and v, = n%, Vn > 1. Define the mappings
n,®:HXH - Hand G, ¥, ¢, f,g: H— Hby

60— 61
n(o,9) = 7 QW (0), p(0)) = Y(0) + ¢(6),G(O) = 5
30+ 1 -6-1 1
() = : ,p(0) = T,f(@) =460+ 1,g(0) = -20 + E

t = =z, and

N | —

It can be easily observed that n,G, and ¢ are Lipschitz continuous with constants m = JT,

@ = }P respectively, and  is %-expansive. Also,

1
1P 8), ¢(6)) — O D), (@Il < 5116 - DI, V6, & € HL,

1
(QW(O), ¢(6)) = QY(D), o)), n(0. ) = £l = 91, ¥6,9 € H,

1
(@), k) — D), k), (0, 9)) = () — YOI, V6,9, k € H,
(D(k, () — Dk, p()), 76, B)) = (=D)llp(6) — eI, V6,9, k € H,
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i.e., O(,-) is 1/2-mixed Lipschitz continuous, 1/8-mixed strongly monotone, and symmetric n-co-

coercive with respect to ¥ and ¢ with constants 1/3 and 1, respectively. Define M : Hx H =3 H
0 0 0
and ¥ : H — CB(H) by M(f(6), (0)) = w and () = {5 + 1}. Then, ¥ is 1/5-Lipschitz

continuous and

(M(f(6), k) = M(f(#), k), n(6,9) = 1/3]16 = 9I*, V6, 9,k € H,
(M(k, g(0)) = M(k, g(®)),n(6,9)) = (=1/6)l16 = 9I*, V8,9, k € H,

i.e., M(-,-) is symmetric n-monotone with respect to f and g with constants 1/3 and 1/6, respectively.
Thus, M(-,-) is a generalized n-co-monotone mapping. Also, G(0) = R" E(( )) [ (O), p(0)) — QG((U)]

lo(t =)+ (Ks* —« 12)]'

%9 and the estimated constants satisfy (3.6), that is, \Jm> — 201 + 01212 <

m
Therefore, 8° = 0 € H is a unique fixed point of G. Thus, we have 0* = 0 € Fix(F) N QH, M, ®, G, n).
Next, we compute the sequence {0,} by employing Algorithm 3.1. Let @, = 5 and 3, = nlj Then

Opar = (1 — @), + @RI [OW(@,), ¢(B,)) — 0G (@),
n+1 3n
Ops1 = (m)‘gn + (m)ﬂm
9y = (1= B + BRI [OW(0,), 9(6,)) — 0G(wy)],

n 3
B0 = (7)) +(5(n+ 1))9”

For different initial points: 6, = —10.5 and 6, = 1 5, the sequence 6, — 0 and 0 € Fix(F) N
Q(H, M, ®, G, n) and the convergence behavior of {6,} is shown in Figure 1.

Example 3.2. Let H = R with inner product {6,9) = 6-9 and norm | - |. Define F(6) = sinf,V¥6 € R.
Then, clearly F is TANM with u, = niz and v, = n%,Vn > 1 and 0 € Fix(F). Define the mappings
n,®:HxH - Hand G, ¢, ¢, f,g: H— Hby

0— 9 o + o6
(0, 9) = T’ D (6). ¢(0)) = M

-0
(o) = 5. 90(9) 7 f(O) =20.800) =

0
,G() = -,
0) 3

Then n,G, and ¢ are Lipschitz continuous with constants 1 = t = % and | = i, respectively, and ¥

is %—expansive. Also, ®©(-,-) is 1/8-mixed Lipschitz continuous, 1/16-mixed strongly monotone, and

symmetric n-co-coercive with respect to Y and ¢ with constants 1/3 and 2/3, respectively. Define

M:HxH = Hand ¥ : H — CB(H) by M(f(6).8(0)) = {259 and P(9) = {0}. Then, ¥ is

1-Lipschitz continuous and M(-,-) is symmetric n-monotone with respect to f and g with constants

2/9 and 1/9, respectively. Thus, M(-,-) is a generalized n-co-monotone mapping. Also, for o = 1,

lo(r =)+ (Ks* = &' P)]
m

and RZE(( >)[q>(¢(9),¢(9)) - 0G(w)] = —%6’. Therefore, 0 € R is a unique fixed point of

R >)[q>(¢/(9) ©(0)) — 0G(w)). Thus, we have 0 € Fix(F) N Q(H, M, ®, G, ). Now for a, =

Bn =+ +1, we compute the sequence {0,} by employing Algorithm 3.1 as under:

the estimated constants satisfy (3.6), that is, m?— 2ot +@*2r* <

n
2n+1 and
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Oper = (1 = )0, + RIY [OW(,), (I,) — 0G(@)],

n+1 5n
Ot = (Zn n 1)9" B (11(2n n 1))’9”’

3y = (1= B0, + BRI [OW(E,). (6,)) — 0G(wy)],

n 5
3, =(——)8, — |————)0,.
(n+1) (11(n+1))
For different initial points: 6, = 6, and 6, = 1, the sequence 6, — 0 and 0 € Fix(F)NQMH, M, ®,G,n)
and the convergence is shown by the graph (Figure 1) below.

Example 1 with 6= -10.5
—— Example 1 with 0,=1.5

Example 2 with 0= -6
Example 2 with 0,=1 [

1641l
£ & R i o - nN w »~ o ) ~ ®
T T T T T T T T T T T T T
L

- Il Il Il L
0 5 10 15 20 25
Number of iterations

Figure 1. Convergence behavior of {6,} for Example 3.1 and Example 3.2 with initial values
6y = —10.5,6y = 1.5, and 6y = -6, 6, = 1, respectively.

4. Generalized resolvent dynamical system

Herein, we employ the technique of the dynamical system to explore the solution of GVIP (3.1).
By utilizing Lemma 3.1, the generalized resolvent dynamical system (GRDS) that we examine is as

under:
do

ds
where 6 € H, w € ¥(0), and & > 0 is a parameter.

Definition 4.1. [24] It is stated that the GRDS (4.1) converges to the solution set Q(H, M, ®, G, n) of
GVIP (3.1) if the trajectory of the dynamical system, irrespective of the initial point, satisfies

lim dist(6(s), Q) =0,

§—00

= ER[DWO, 96) — 0G(w)] - 6}, 6(s0) = 6p € H, (4.1)

where
dist(0(s), Q) = %ngfz |16 — |
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If 6" is a unique point of €, then lim 6(s) = 6*.

t—00
Definition 4.2. [25] The dynamical system is referred to as globally exponentially stable with degree
k at " if the trajectory of the dynamical system, irrespective of the initial point, satisfies
16(s) — 0"l < coll&(s0) — & |l exp(—k(s — s0)), 5 = 50,
where positive constants k and cy do not depend on the initial point.

Lemma 4.1. [26] Let 6 and O be real-valued nonnegative continuous functions with domain {s : s >
So} and let a(s) = ay(|s — so|) where ay is a monotonic increasing function. If for all s > s,

A(s) < als) + f Bddr,

50

then i
A(s) < a(s).exp f B(0)dt).

Next, by utilizing Lemma 4.1 and Theorem 3.1, we investigate the unique solution of GRDS (4.1).

Theorem 4.1. Assume that the Theorem 3.1 holds. Then, for each 6, € H with wy € Y(6y), there exists
a unique continuous solution 6(s) with 6(sy) = 6y of GRDS (4.1) over [s(, ).

Proof. Define
G(0) = ERI [DYH, 96) — 0G(w)] - 6}, Y0 € H.
Invoking the arguments as for (3.8), we obtain
IG(6) — G| = EIRTY (@0, 96) — 0G(w)] - 6
— {RI [@, o) — 0G(@)] — B

4.2)
< EE[ D0, 9b) — DY, ¢1}) — 0(G(w) = G(@))]
+¢£ll6 = 3l.
Invoking the arguments as employed to (3.9), we obtain
DO, pb) — DY, ) — o(G(w) = G@)I| < Vm? = 201 + Q*12r2||0 - B (4.3)
(4.2) and (4.3) together yields
I66) - GO < £01 + ©)]16 - I (4.4)

which proves that G is locally Lipschitz continuous in H. Thus, for each 8, € H, 4 a unique continuous
solution 6(s) of GRDS (4.1) with 6(sy) = 6, in the interval sy < s < S. Let the maximal interval of its
existence be [s9, S). Next, we substantiate that S = co. Now, for any 6 € H, w € W(6), we have
IO = EIRLS [0, 98) — 0G(w)] - 6
< R [DWO, 90) — oG(w)] = 6l + &0 - 6|
= EIRY 7 [0, 96) — 0G(w)]
—RYG @O, 00" — 0G(w)]ll + &6 — 67| (4.5)

< CEIOWH, pb) — PO, ¢0") — o(G(w) — G(W )]l + £110 — 0|

<&+ 00—l

< &1+ 00l + £(1 + O)le7]l.
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Employing the integral on (4.5) over [sy, s] and utilizing Lemma 4.1, we get

16Cs) < 116oll + f GOl

< {1160)l + ks(s = s0)} + ks f 6, s € [50,S) (4.6)
< {1601l + ks(s = s0)} explks(s — o)}, Vs € [50, S),

where ks = £(1 + ©)]|67|| and k¢ = £(1 + ®). Hence the solution is bounded on [sg, S), so S = . O

In the next theorem, we shall examine GVIP (3.1) by the convergence of the trajectory of the
solution of considered GRDS (4.1).

Theorem 4.2. Assume Theorem 3.1 is true. Then, GRDS (4.1) converges globally exponentially to the
unique solution §* € Q(H, M, ®, G, n).

Proof. 1t is evident from the Theorem 4.1 that GRDS (4.1) owns a unique solution. Assume that
0(s) = (s, So; 6p) is a solution of GRDS (4.1) with 6(sy) = 6,. Define the Lyapunov function £ on H by

£ = %ne —0"|”, V60 € H. 4.7)

We obtained the relation 6 = RZ:E((',’:.))[Q)(MH), ¢(0)) — 0G(w)] from the Lemma 3.1 and, utilizing (3.8)—
(3.11), we acquire

% = (0(s) -0, Z—z)
= &0(s) — 0", R [Do, 06) — 0G(w)] — 0)
= —£(0(s) - 07, 6(s) — ) + ERI (O, 00) — 0G(w)] - 67)
< —&00(s) - O°1F + £0(s) — 07, RIS [0, 96) — 0G(w)]
—RIGODWE", 0") — 0G(w")])
< —&)0(s) — 0'1% + £116Cs) — ORI [0, 06) — 0G(w)]
= RN D", 08") — 0G (W)

< ~€l6(s) - O°I1” + £0116(s) — 611,

which yields
d1 i i
— 10— 6" = =£(1 - ©)]16(s) - 6"II%, (4.8)
ds?

T
lo(@ = 7") + (K's? — k" IP)]

16 = 6711 < 116 — "]} =070, (4.9)

where ® = E/m? — 201 + 0*2r? and E = . Thus, we acquire

From (3.6), we know that 1 —©® > 0. As a result, the trajectory of the solution of GRDS (4.1) converges
globally exponentially to the unique solution of GVIP (3.1). O
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5. Conclusions

In this work, we investigate a generalized variation inclusion problem. The resolvent operator
for generalized n-co-monotone mapping is structured, the Lipschitz constant is estimated and its
relationship with the graph convergence is accomplished. An Ishikawa type iterative algorithm is
designed and employed to explore the common solution of the generalized variational inclusion and
the set of fixed points of a TANM by using the novel implication of graph convergence. Moreover,
a generalized resolvent dynamical system is considered and implemented to examine the considered
generalized variation inclusion problem.
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