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1. Introduction

Fixed point (fp) theorems have extensive applications in multiple disciplines. In economics,
Arrow [1] applied these theorems to demonstrate the impossibility of a perfect voting system, a
cornerstone of social choice theory. The Turing fp theorem [2] in computer science established the
undecidability of the halting problem, a fundamental concept in the field. In physics, the fp theory
is instrumental in comprehending quantum system behaviors (see [3]). Image processing leverages
fp algorithms for image registration, aligning images for purposes such as medical imaging (see [4]).
In game theory, Nash [5] employed fp theorems to prove the existence of Nash equilibria in non-
cooperative games. In finance, fp methods are crucial for deriving the Black-Scholes equation [6], a
pivotal model in financial mathematics. Social sciences utilize fp theory to study network architecture,
social dynamics, and system stability (see [6]). Optimization techniques, like the Gauss-Seidel
method for solving linear equations, frequently use fp iterations (see [7]). The original approach of
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Hutchinson [8] to fractals considers the defining equation as an fp problem. Barnsley and Vince [9]
used fp theorems to demonstrate that the ‘chaos game’ technique almost always produces the attractor
of an iterated function system. In short, the fp theory is an effective method for solving equations
in many fields. The first fp theorem was given by Brouwer [10] in 1912. However, this theorem is
not valid in infinite dimensional spaces. The first fp theorem for infinite dimensional Banach spaces
was provided by Schauder [11] in 1930. The Schauder fp theorem guarantees the existence of fps
for continuous maps defined on a compact, convex subset of a Banach space. Despite the extensive
attention researchers have dedicated to analytical solutions, their scarcity in numerous scenarios
remains a challenging yet accepted reality.

Given these circumstances, researchers have used iterative algorithms to seek approximate
solutions. One prominent approach is the Picard iterative algorithm [12], which is used for contraction
maps in the Banach fp theorem [13]. However, the Picard iterative algorithm may not always converge
to an fp in the class of nonexpansive maps. Alternatively, there are several iterative schemes in the
literature having various steps, for example, Mann iteration [14] (one-step), Ishikawa iteration [15]
(two-step), and Noor iteration [16] (three-step) for approximating fps of nonexpansive maps in Banach
spaces. In 2007, Agarwal et al. [17] introduced a two-step iteration independent of the Mann and
Ishikawa iterative algorithms. This iterative algorithm is more applicable than the Picard, Mann, and
Ishikawa iterative algorithms because it converges faster than these iterative algorithms for contraction
maps and works for nonexpansive maps. In 2014, Abbas and Nazir [18] introduced a three-step
iterative algorithm, which converges faster than Agarwal et al. iterative algorithm. In 2016, Thakur
et al. [19] proposed a new three-step iterative algorithm to approximate the fps of nonexpansive
maps, proving that it converges faster than existing algorithms for contraction maps. In 2018, Ullah
and Arshad [20] proposed a new three-step iterative algorithm, called the M-iterative algorithm,
to approximate the fps of Suzuki generalized nonexpansive maps in Banach spaces. In 2020, Ali
and Ali [21] introduced the three-step F-iterative algorithm, which slightly modifies the M-iterative
algorithm and is independent of all iterative schemes in the existing literature. They proved that this
iterative algorithm converges faster than other iterative algorithms.

Abbas et al. [22] introduced a new four-step iterative algorithm, termed the AA-iterative algorithm,
in Banach spaces as follows: 

u1 ∈ L,

wn = (1 − σn) · un + σn · ϕ(un),
zn = ϕ ((1 − ρn) · wn + ρn · ϕ(wn)),
vn = ϕ ((1 − ηn) · ϕ(wn) + ηn · ϕ(zn)),
un+1 = ϕ(vn), n ∈ N.

(1.1)

Using this iterative algorithm, they established a stability outcome for enriched contraction maps and
convergence outcomes for enriched nonexpansive maps in Banach spaces with an application to a delay
fractional differential equation. Also, they proved that the AA-iterative algorithm converges faster
than all the previously mentioned iterative algorithms for enriched contraction maps. Moreover, Beg
et al. [23] presented the strong and weak convergence outcomes of the AA-iterative algorithm (1.1) for
generalized α-nonexpansive maps in Banach spaces with an application to a delay composite functional
differential equation. Later, Asghar et al. [24] approximated the fps of generalized αm-nonexpansive
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maps employing the AA-iterative algorithm in the structure of modular spaces and proved the stability
theorem of this iterative algorithm for m-contraction maps in the modular space. In the same year,
Suanoom et al. [25] proved the strong and weak convergence results using the AA-iterative algorithm
for the generalized AK-α-nonexpansive maps in Banach spaces. Asghar et al. [26] proposed an efficient
inertial viscosity algorithm hybrid with the AA-iteration for approximating the common solution of
more generalized nonlinear problems. Abbas et al. [27] also used the AA-iterative algorithm to
approximate solutions for boundary value problems involving Caputo fractional differential equations
and proved the stability theorem of this iterative algorithm in Banach spaces. All these studies have
highlighted the widely adopted AA-iterative algorithm, which continues to advance computational
techniques in finding fps and addressing other nonlinear problems.

Given the prevalence of nonlinear phenomena in nature, mathematicians and scientists continuously
strive to devise techniques for addressing real-world nonlinear problems. Consequently, translating
linear problems into their nonlinear counterparts holds significant relevance. Therefore, once the
approximation of an fp is established in a Banach space, then the extension of such findings on
a nonlinear domain, especially the hyperbolic space (HS) defined by Kohlenbach [28], is always
desirable. The reason behind this fact is that the scope of many problems naturally falls within the
HS setting.

Motivated by the above works, we investigate the AA-iterative algorithm’s applicability in the HS.
Our focus is developing the HS adaptation of the AA-iterative algorithm and establishing the weak w2-
stability theorem of this iterative algorithm for contraction maps. We also aim to obtain the strong and
∆-convergence theorems of this iterative algorithm for generalized (α, β)-nonexpansive (GαβN) maps
in HSs. Furthermore, we furnish an illustrative example of GαβN maps and conduct a comparative
analysis of convergence rates between the AA-iterative and other iterative algorithms for this class of
maps. We employ our major findings to demonstrate practical applicability in solving linear Fredholm
integral equations (FIEs) and nonlinear Fredholm-Hammerstein integral equations (FHIEs) on time
scales, supported by a numerical example. Our study is more general and unifies the comparable
results in the existing literature, such as those presented in [22, 23, 27].

2. Preliminaries

2.1. Essentials on metric and hyperbolic spaces

In this section, we provide essential definitions and theorems necessary for establishing our primary
outcomes.

Consider a nonempty subset L of a metric space (M, %) and a map ϕ : L→ L. The map ϕ is called a
contraction if there exists a constant θ ∈ [0, 1) such that %(ϕ(u), ϕ(v)) ≤ θ%(u, v) for all u, v ∈ L. In the
contraction map, if θ = 1, that is, %(ϕ(u), ϕ(v)) ≤ %(u, v), it is described as nonexpansive. Nonexpansive
maps are a natural generalization of contraction maps. If %(ϕ(u), u∗) ≤ %(u, u∗) for all u ∈ L and each
u∗ ∈ Fϕ, where Fϕ is the set of all fps of ϕ, it is called quasi-nonexpansive. All nonexpansive mappings
with an fp are quasi-nonexpansive.

The class of nonexpansive maps has been extensively studied because of their diverse
applications. Various authors have extensively studied different generalizations of nonexpansive maps
(see, e.g., [29–34]). Below, we outline some of these maps.

Definition 1. Let ϕ be a self-map on a nonempty subset L of a metric space (M, %). Then, the map ϕ is
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said to be
(i) (see [29]) Suzuki generalized nonexpansive if for all u, v ∈ L,

1
2
· %(u, ϕ(u)) ≤ %(u, v)⇒ %(ϕ(u), ϕ(v)) ≤ %(u, v).

(ii) (see [30]) generalized α-nonexpansive if, for all u, v ∈ L, there exists α ∈ [0, 1) such that

1
2
· %(u, ϕ(u)) ≤ %(u, v)⇒ %(ϕ(u), ϕ(v)) ≤ α · %(u, ϕ(v)) + α · %(v, ϕ(u)) + (1 − 2α) · %(u, v).

(iii) (see [31]) β-Reich-Suzuki-type nonexpansive if, for all u, v ∈ L, there exists β ∈ [0, 1) such that

1
2
· %(u, ϕ(u)) ≤ %(u, v)⇒ %(ϕ(u), ϕ(v)) ≤ β · %(u, ϕ(u)) + β · %(v, ϕ(v)) + (1 − 2β) · %(u, v).

It is clear that every nonexpansive map is Suzuki generalized nonexpansive, and the reverse is not
always valid. See, for instance, the following example.

Example 1. [29, Example 1] Let L = [0, 3] and set ϕ : L→ L by

ϕ(u) =

0, if u , 3,
1, if u = 3.

Here, the map ϕ is a Suzuki generalized nonexpansive but not a nonexpansive.

When α = 0 and β = 0 in Definition 1(ii) and (iii), respectively, the generalized α-nonexpansive
and β-Reich-Suzuki type nonexpansive maps are reduced to a Suzuki generalized nonexpansive map.
The following example shows that the reverse implication does not generally hold.

Example 2. LetM = < be a space endowed with the usual metric %(u, v) = |u − v|.
(i) (see [35, Example 4.6]) Let L = [0,∞) be a subset of< and ϕ : L→ L be defined as

ϕ(u) =

0, if 0 ≤ u ≤ 2,
u
2 , if u > 2.

Then, the map ϕ is generalized 1
3 -nonexpansive but not a Suzuki generalized nonexpansive.

(ii) (see [31, Example 3.4]) Let L = [−2, 2] be a subset of<. Define ϕ : L→ L by

ϕ(u) =


−u

2 , if u ∈ [−2, 0)\{−1
8 },

0, if u = −1
8 ,

−u
3 , if u ∈ [0, 2].

Then, the map ϕ is 1
2 -Reich-Suzuki type nonexpansive but not a Suzuki generalized nonexpansive.

In 2020, Ullah et al. [36] proposed a novel category of generalized nonexpansive maps that surpasses
the scope of previously established classes, such as Suzuki generalized nonexpansive, generalized
α-nonexpansive, and β-Reich-Suzuki type nonexpansive maps. They also outlined the fundamental
characteristics of this expanded class of maps.
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Definition 2. A self map ϕ on a nonempty subset L of a metric space (M, %) is said to be GαβN if there
exist α, β ∈ <+ satisfying α + β < 1 such that 1

2 · %(u, ϕ(u)) ≤ %(u, v) implies

%(ϕ(u), ϕ(v)) ≤ α · %(u, ϕ(v)) + α · %(v, ϕ(u)) + β · %(u, ϕ(u)) + β · %(v, ϕ(v)) + (1 − 2α − 2β) · %(u, v),

for all u, v ∈ L.

Remark 1. The validity of the following statements is readily apparent.
(i) If ϕ is identified as Suzuki generalized nonexpansive, it automatically qualifies as generalized

(0, 0)-nonexpansive.
(ii) Whenever ϕ is deemed generalized α-nonexpansive, it implies its classification as generalized

(α, 0)-nonexpansive.
(iii) Given that ϕ is characterized as β-Reich-Suzuki-type nonexpansive, it follows that ϕ meets the

criteria for being generalized (0, β)-nonexpansive.

Proposition 1. [36] Let ϕ be a GαβN map. Then, the following statements are valid.
(i) If Fϕ , ∅, then ϕ is quasi-nonexpansive.
(ii) The set Fϕ is closed.
(iii) For all u, v ∈ L,

%(u, ϕ(v)) ≤
3 + α + β

1 − α − β
· %(u, ϕ(u)) + %(u, v).

In 1990, Reich and Shafrir [37] introduced the concept of HS and investigated an iterative algorithm
tailored for nonexpansive maps within these spaces. In 2004, Kohlenbach [28] expanded on this
concept by providing a more comprehensive definition of HS.

Definition 3. [28] Let (M, %) be a metric space. Then (M, %,Q) will be the HS if the function Q :
M ×M × [0, 1]→ M satisfies the following properties

(i) %(z,Q(u, v, α)) ≤ (1 − α) · %(z, u) + α · %(z, v),
(ii) %(Q(u, v, α),Q(u, v, β)) = |α − β| · %(u, v),
(iii) Q(u, v, α) = Q(v, u, 1 − α),
(iv) %(Q(u, z, α),Q(v,w, α)) ≤ (1 − α) · %(u, v) + α · %(z,w),

for all u, v, z,w ∈ M and α, β ∈ [0, 1].

IfM satisfies only condition (i), then the structure (M, %,Q) coincides with the convex metric space
described by Takahashi [38]. For the broader context of convex metric spaces, the subsequent equalities
are valid: for all u, v ∈ M, and α ∈ [0, 1],

%(v,Q(u, v, α)) = (1 − α) · %(u, v) and %(u,Q(u, v, α)) = α · %(u, v).

It follows that
Q(u, v, 0) = u and Q(u, v, 1) = v.

A linear instance of an HS is a Banach space, and nonlinear instances are Hadamard manifolds,
the Hilbert open unit ball endowed with the hyperbolic metric, and CAT(0) spaces as defined by
Gromov [39].

Here, we present an example of an HS which is not linear. Therefore, it is a non-trivial example of
an HS.
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Example 3. [31, Example 3.5] LetM = {(u1, u2) ∈ <2 : u1, u2 > 0}. Define % : M ×M→ [0,∞) by

%(u, v) = |u1 − v1| + |u1 · u2 − v1 · v2|,

for all u = (u1, u2) and v = (v1, v2) in M. Then, (M, %) is a metric space. Now, for α ∈ [0, 1], define a
function Q : M ×M × [0, 1]→ M by

Q(u, v, α) =

(
(1 − α) · u1 + α · v1,

(1 − α) · u1 · u2 + α · v1 · v2

(1 − α) · u1 + α · v1

)
.

Then, (M, %,Q) is an HS but not a normed linear space.

In a given HS (M, %,Q), a subset L is termed convex if, for any scalar α ∈ [0, 1], the point Q(u, v, α)
lies within L for all pairs of elements u, v ∈ L.

An HS (M, %,Q) is uniformly convex if, for any r > 0 and ε ∈ (0, 2], there exists a constant δ ∈ (0, 1]
such that

%

(
Q

(
u, v,

1
2

)
, ω

)
≤ (1 − δ) · r,

for all u, v, ω ∈ M with %(u, ω) ≤ r, %(v, ω) ≤ r and %(u, v) ≥ r · ε.
A map ξ : (0,∞) × (0, 2] → (0, 1] is called the modulus of uniform convexity if γ = ξ(r, ε) for any

r > 0 and ε ∈ (0, 2]. Additionally, the function γ is termed monotone if it decreases with respect to r
for a fixed ε.

Lemma 1. [40] Let (M, %,Q) be a uniformly convex HS with the monotone modulus of convexity ξ.
Assume that u ∈ M and {τn} is a sequence in [p, r] for some p, r ∈ (0, 1). If {un} and {vn} are sequences
inM such that

lim sup
n→∞

%(un, u) ≤ ς, lim sup
n→∞

%(vn, u) ≤ ς, lim
n→∞

%(Q(un, vn, τn), u) = ς,

for some ς ≥ 0, then
lim
n→∞

%(un, vn) = 0.

Let L be a nonempty subset of an HS (M, %,Q), and {un} be a bounded sequence in M. For each
u ∈ M, define:

(i) asymptotic radius of {un} at u by Ar(u, {un}) := lim sup
n→∞

%(u, un);

(ii) asymptotic radius of {un} concerning L by Ar(L, {un}) = inf {Ar(u, {un}) : u ∈ L};
(iii) asymptotic center of {un} concerning L by Ac(L, {un}) = {u ∈ L : Ar(u, {un}) = Ar(L, {un})}.

Lemma 2. [41] A bounded sequence {un} in a complete uniformly convex HS M with the monotone
modulus of uniform convexity ξ has a unique asymptotic center concerning every nonempty closed
convex subset L ofM.

In 1976, Lim [42] introduced the notion of ∆-convergence, akin to weak convergence but applicable
to metric spaces, employing the idea of the asymptotic center.

Definition 4. [42] In a metric space (M, %), a sequence {un} is ∆-convergent to a point u ∈ M if u
serves as the unique asymptotic center for every subsequence {kn} of {un}.
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Definition 5. [43] Two sequences {un} and {pn} are said to be equivalent if

lim
n→∞

%(un, pn) = 0.

Timiş [44] defined the following concept of weak w2-stability using equivalent sequences.

Definition 6. [44, Definition 2.4] Let (M, %) be a metric space, ϕ be a self-map onM, and for arbitrary
u1 ∈ M, {un} ⊂ M be the iterative algorithm defined by

un+1 = f (ϕ, un), n ∈ N.

Suppose that {un} converges strongly to u∗ ∈ Fϕ. If for any equivalent sequence {pn} ⊂ M of {un},

lim
n→∞

%(pn+1, f (ϕ, pn)) = 0⇒ lim
n→∞

pn = u∗,

then the iterative sequence {un} is said to be weak w2-stable with respect to ϕ.

Remark 2. [44] Any stable iteration will be also weakly stable, but the reverse is generally not true.

2.2. Fundamental information about time scales

In this section, we provide a concise overview of fundamental concepts in time scales. Time scale
theory, which has garnered considerable interest recently, was pioneered by Hilger [45] in his Ph.D.
thesis to bridge continuous and discrete analysis.

In this study, we denote a time scale by the symbol Γ, which signifies any arbitrary nonempty closed
subset of the real numbers <. Well-known examples of time scales include <, Z, N, [0, 1], and the
Cantor set. However, C, Q,<− Q, and (0, 1) do not qualify as time scales.

The forward and backward jump operators σ, ρ : Γ → Γ are respectively defined by σ(t) = inf{s ∈
Γ : s > t} and ρ(t) = sup{s ∈ Γ : s < t}, where we put inf ∅ = sup Γ and inf Γ = sup ∅. A point
t ∈ Γ is said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-
scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t), and dense if ρ(t) = t = σ(t). The graininess function
µ : Γ → [0,+∞) is defined by µ(t) = σ(t) − t. If Γ has a left-scattered maximum, then we define
Γκ = Γ −max Γ; otherwise, Γκ = Γ.

Definition 7. [46, Definition 1.10] Assume that h : Γ → < is a function and fix t ∈ Γκ. The ∆-
derivative h∆(t) exists if, for every ε > 0, there exists a neighbourhood U = (t − δ, t + δ) ∩ Γ for some
δ > 0 such that ∣∣∣[h(σ(t)) − h(s)] − h∆(t) · [σ(t) − s]

∣∣∣ ≤ ε · |σ(t) − s| for all s ∈ U.

Here, we illustrate an example of time scales.

Example 4. Let Γ = {n3 , n ∈ N0 = N ∪ {0}}. For all t ∈ Γ, σ(t) = t + 1
3 and µ(t) = 1

3 . Then, all points of
this time scale are right-scattered. Consider the continuous functions h(t) = t2

2 −
t
6 and g(t) = t3

3 −
t2
6 + t

54
for t ∈ Γ. By Theorem 1.16 in [46], we get

h∆ (t) =
h(σ(t)) − h(t)

µ(t)
=

h(t + 1
3 ) − h(t)
1
3

= t, (2.1)

and

g∆ (t) =
g(σ(t)) − g(t)

µ(t)
=

g(t + 1
3 ) − g(t)
1
3

= t2. (2.2)
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Definition 8. [46, Definition 1.1] A function h : Γ → < is called rd-continuous, provided it is
continuous at all right-dense points in Γ and its left-sided limits exist (finite) at all left-dense points in
Γ.

If h is rd-continuous, then there exists a functionH such thatH∆(t) = h(t) (see [46, Theorem 1.74]).
In this case, the Cauchy ∆-integral is defined by

d∫
c

h(t) ∆t = H(d) −H(c) for all c, d ∈ Γ.

Remark 3. [47, Theorem 2.14] Assume c, d ∈ Γ and c < d. If Γ = R, then a bounded function h on
[c, d) is ∆-integrable from c to d if and only if h is Riemann integrable on [c, d) in the classical sense;
in this case ∫ d

c
h(t) ∆t =

∫ d

c
h(t) dt,

where the integral on the right is the usual Riemann integral.

Theorem 1. [47] Let c, d ∈ Γ. Suppose h and g are ∆-integrable on [c, d).

(i) h + g is ∆-integrable and
d∫

c
[h(t) + g(t)] ∆t =

d∫
c

h(t) ∆t +
d∫

c
g(t) ∆t.

(ii) If h(t) ≤ g(t) for all t ∈ [c, d), then
d∫

c
h(t) ∆t ≤

d∫
c

g(t) ∆t.

(iii) Then

∣∣∣∣∣∣ d∫
c

h(t) · g(t) ∆t

∣∣∣∣∣∣ ≤ d∫
c
|h(t) · g(t)| ∆t ≤ (supt∈[c,d) |h(t)|) ·

d∫
c
|g(t)| ∆t.

Adomian [48] established a decomposition method in 1988, recently attracting much attention in
applied mathematics and infinite series solutions. It is an effective method for solving a large class of
differential and integral equations. The Adomian decomposition method defines the solution u(t) by
the series

u(t) =

∞∑
n=0

un(t), (2.3)

or equivalently,
u(t) = u0(t) + u1(t) + u2(t) + ...,

where the components un(t), n ∈ N0, are to be determined recurrently. To establish the recursive
relation, we substitute (2.3) into the following linear Fredholm integral equation (FIE) of the second
kind on a time scale

u(t) = h(t) + λ

∫ d

c
K(t, s) · u(s) ∆s, (2.4)

where the kernel function K(t, s) and the function h(t) are given, the unknown function u(t) must be
determined, and λ is a real parameter. Then, we obtain

u0(t) + u1(t) + u2(t) + ... = h(t) + λ

∫ d

c
K(t, s) · (u0(t) + u1(t) + u2(t) + ...) ∆s.

AIMS Mathematics Volume 9, Issue 9, 24480–24506.



24488

By Theorem 1(i), we set

u0(t) = h(t),

u1(t) = λ

∫ d

c
K(t, s) · u0(s) ∆s,

u2(t) = λ

∫ d

c
K(t, s) · u1(s) ∆s,

and so on for the other components, or equivalently,

u0(t) = h(t),

un(t) = λ

∫ d

c
K(t, s) · un−1(s) ∆s, n ∈ N.

(2.5)

Given (2.5), the components u0(t), u1(t), u2(t), ... are completely determined. The solution u(t)
of (2.4) in a series form is obtained using the series (2.3). In other words, the Adomian decomposition
method converts the FIE into a determination of computable components. Note that the obtained series
converges to the solution if an exact solution exists for (2.4).

3. The weak w2-stability result

Initially, we extend the AA-iterative algorithm (1.1) into HSs in the following manner:

u1 ∈ L,

wn = Q(un, ϕ(un), σn),
zn = ϕ(Q(wn, ϕ(wn), ρn)),
vn = ϕ (Q(ϕ(wn), ϕ(zn), ηn)) ,
un+1 = ϕ(vn), n ∈ N,

(3.1)

where {σn}, {ρn} and {ηn} are real sequences in [0, 1].
We prove the following strong convergence theorem, which will play a significant role in

establishing our weak w2-stability result.

Theorem 2. Let L be a nonempty, closed, and convex subset of an HSM, ϕ : L → L be a contraction
map with the constant θ ∈ [0, 1) such that Fϕ , ∅, and {un} be an iterative sequence generated by (3.1).
Then limn→∞ un = u∗, where u∗ ∈ Fϕ.

Proof. Let u∗ ∈ Fϕ. Using (3.1), we have

%(wn, u∗) = %(Q(un, ϕ(un), σn), u∗)
≤ (1 − σn) · %(un, u∗) + σn · %(ϕ(un), u∗)
≤ (1 − σn) · %(un, u∗) + σn · θ · %(un, u∗)
= (1 − σn(1 − θ)) · %(un, u∗). (3.2)

Since θ ∈ [0, 1) and 0 ≤ σn ≤ 1, then we know that 1 − σn(1 − θ) ≤ 1. Thus, (3.2) becomes

%(wn, u∗) ≤ %(un, u∗). (3.3)
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We also obtain

%(zn, u∗) = %(ϕ(Q(wn, ϕ(wn), ρn)), u∗)
≤ θ · %(Q(wn, ϕ(wn), ρn), u∗)
≤ θ · [(1 − ρn) · %(wn, u∗) + ρn · %(ϕ(wn), u∗)]
≤ θ · (1 − ρn) · %(wn, u∗) + θ2 · ρn · %(wn, u∗)
= θ · (1 − ρn(1 − θ)) · %(wn, u∗). (3.4)

Again, since θ ∈ [0, 1) and 0 ≤ ρn ≤ 1, then we know that 1 − ρn(1 − θ) ≤ 1. Thus, by (3.3), the
inequality (3.4) becomes

%(zn, u∗) < %(wn, u∗) ≤ %(un, u∗). (3.5)

From (3.1) and (3.5), we have

%(vn, u∗) = %(ϕ (Q(ϕ(wn), ϕ(zn), ηn)) , u∗)
≤ θ · %(Q(ϕ(wn), ϕ(zn), ηn), u∗)
≤ θ · [(1 − ηn) · %(ϕ(wn), u∗) + ηn · %(ϕ(zn), u∗)]
≤ θ2 · (1 − ηn) · %(wn, u∗) + θ2 · ηn · %(zn, u∗)
< θ2 · (1 − ηn) · %(wn, u∗) + θ2 · ηn · %(wn, u∗)
= θ2 · %(wn, u∗). (3.6)

Since θ ∈ [0, 1), by (3.3) and (3.6), we get

%(vn, u∗) < %(un, u∗). (3.7)

Finally, using (3.7) and the fact θ ∈ [0, 1), we obtain

%(un+1, u∗) = %(ϕ(vn), u∗) ≤ θ · %(vn, u∗) < %(vn, u∗) < %(un, u∗). (3.8)

If we put %(un, u∗) = An, then (3.8) takes the form

An+1 < An for all n ∈ N.

Hence, {An} is a monotone decreasing sequence of real numbers. Furthermore, it is bounded below, so
we have

lim
n→∞

An = inf {An} = 0.

Therefore, we get
lim
n→∞

un = u∗.

�

Remark 4. The strong convergence theorem of the iterative algorithm (1.1) can be obtained as a
corollary from Theorem 2.

Now, we prove that the modified iteration algorithm defined by (3.1) is weak w2-stable.
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Theorem 3. Suppose that all conditions of Theorem 2 hold. Then, the iterative algorithm (3.1) is weak
w2-stable with respect to ϕ.

Proof. We assume that the sequence {pn} ⊂ L is equivalent to the sequence {un} defined by (3.1) and
let the sequence {εn} ⊂ <

+ be defined by

p1 ∈ L,

rn = Q(pn, ϕ(pn), σn),
sn = ϕ(Q(rn, ϕ(rn), ρn)),
qn = ϕ (Q(ϕ(rn), ϕ(sn), ηn)) ,
εn = %(pn+1, ϕ(qn)), n ∈ N,

(3.9)

where {σn}, {ρn} and {ηn} are real sequences in [0, 1]. Suppose limn→∞ εn = 0 and u∗ ∈ Fϕ. Recalling
that θ ∈ [0, 1) and 0 ≤ σn, ηn, ρn ≤ 1, then it follows that 1 − σn(1 − θ) ≤ 1, 1 − ρn(1 − θ) ≤ 1
and 1 − ηn(1 − θ) ≤ 1. So, we have

%(wn, rn) = %(Q(un, ϕ(un), σn),Q(pn, ϕ(pn), σn))
≤ (1 − σn) · %(un, pn) + σn · %(ϕ(un), ϕ(pn))
≤ (1 − σn) · %(un, pn) + σn · θ · %(un, pn)
= (1 − σn(1 − θ)) · %(un, pn)
≤ %(un, pn). (3.10)

From (3.10), we obtain

%(zn, sn) = %(ϕ(Q(wn, ϕ(wn), ρn)), ϕ(Q(rn, ϕ(rn), ρn)))
≤ θ · %(Q(wn, ϕ(wn), ρn),Q(rn, ϕ(rn), ρn))
≤ θ · [(1 − ρn) · %(wn, rn) + ρn · %(ϕ(wn), ϕ(rn))]
≤ θ · (1 − ρn) · %(wn, rn) + θ2 · ρn · %(wn, rn)
= θ · (1 − ρn(1 − θ)) · %(wn, rn)
≤ θ · %(wn, rn)
≤ θ · %(un, pn). (3.11)

Using (3.10) and (3.11), we have

%(vn, qn) = %(ϕ (Q(ϕ(wn), ϕ(zn), ηn)) , ϕ (Q(ϕ(rn), ϕ(sn), ηn)))
≤ θ · %(Q(ϕ(wn), ϕ(zn), ηn),Q (ϕ(rn), ϕ(sn), ηn))

≤ θ · [(1 − ηn) · %(ϕ(wn), ϕ(rn)) + ηn · %(ϕ(zn), ϕ(sn))]
≤ θ2 · (1 − ηn) · %(wn, rn) + θ2 · ηn · %(zn, sn)
≤ θ2 · (1 − ηn) · %(wn, rn) + θ3 · ηn · %(wn, rn)
= θ2 · (1 − ηn(1 − θ)) · %(wn, rn)
≤ θ2 · %(wn, rn)
≤ θ2 · %(un, pn). (3.12)
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By (3.1), (3.9), and (3.12), we get

%(pn+1, u∗) ≤ %(pn+1, un+1) + %(un+1, u∗)
≤ %(pn+1, ϕ(qn)) + %(ϕ(qn), un+1) + %(un+1, u∗)
= %(pn+1, ϕ(qn)) + %(ϕ(qn), ϕ(vn)) + %(un+1, u∗)
≤ εn + θ · %(vn, qn) + %(un+1, u∗)
≤ εn + θ3 · %(un, pn) + %(un+1, u∗). (3.13)

As established in Theorem 2, limn→∞ %(un, u∗) = 0. Therefore, we have limn→∞ %(un+1, u∗) = 0.
Because {un} and {pn} are equivalent sequences, we have limn→∞ %(un, pn) = 0. Now, taking the limit of
both sides of (3.13) and then using the assumption limn→∞ εn = 0, it yields to limn→∞ %(pn+1, u∗) = 0.
Thus, the iterative sequence {un} is weak w2-stable with respect to ϕ. �

Remark 5. Since the concept of weak w2-stability is more general than the concept of stability, then
Theorem 3 improves the stability results proved in [22, 27].

4. Convergence outcomes

For simplicity, we useM to represent a complete uniformly convex HS with the monotone modulus
of uniform convexity ξ for the rest of the paper.

We present the ∆-convergence outcome of the modified iterative algorithm (3.1).

Theorem 4. Let L be a nonempty, closed, and convex subset of M, ϕ : L → L be a GαβN map with
Fϕ , ∅, and {un} be an iterative sequence generated by (3.1) with the real sequence {σn} in [p, r] for
some p, r ∈ (0, 1). Then, {un} is ∆-convergent to an fp of ϕ.

Proof. The proof is split into three parts.
Part 1. For any u∗ ∈ Fϕ, we prove that

lim
n→∞

%(un, u∗) exists. (4.1)

Since u∗ ∈ Fϕ, by Proposition 1(i), ϕ is a quasi-nonexpansive map, i.e.,

%(ϕ(u), u∗) ≤ %(u, u∗) for all u ∈ L and each u∗ ∈ Fϕ.

Now, using (3.1), we have

%(wn, u∗) = %(Q(un, ϕ(un), σn), u∗)
≤ (1 − σn) · %(un, u∗) + σn · %(ϕ(un), u∗)
≤ (1 − σn) · %(un, u∗) + σn · %(un, u∗) = %(un, u∗). (4.2)

From (4.2), we obtain

%(zn, u∗) = %(ϕ(Q(wn, ϕ(wn), ρn)), u∗)
≤ %(Q(wn, ϕ(wn), ρn), u∗)
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≤ (1 − ρn) · %(wn, u∗) + ρn · %(ϕ(wn), u∗)
≤ (1 − ρn) · %(wn, u∗) + ρn · %(wn, u∗) = %(wn, u∗)
≤ %(un, u∗). (4.3)

By combining (4.2) and (4.3), we have

%(vn, u∗) = %(ϕ (Q(ϕ(wn), ϕ(zn), ηn)) , u∗)
≤ %(Q(ϕ(wn), ϕ(zn), ηn), u∗)
≤ (1 − ηn) · %(ϕ(wn), u∗) + ηn · %(ϕ(zn), u∗)
≤ (1 − ηn) · %(wn, u∗) + ηn · %(zn, u∗)
≤ (1 − ηn) · %(un, u∗) + ηn · %(un, u∗) = %(un, u∗). (4.4)

Finally, using (3.1) and (4.4), we get

%(un+1, u∗) = %(ϕ(vn), u∗) ≤ %(vn, u∗) ≤ %(un, u∗). (4.5)

Then, by (4.5), {%(un, u∗)} is a non-increasing sequence of real numbers that is bounded below. Hence,
it implies the desired outcome (4.1).

Part 2. Next, we prove that
lim
n→∞

%(un, ϕ(un)) = 0. (4.6)

From (4.1), we have limn→∞ %(un, u∗) exists for each fp u∗ of ϕ. Thus, we can put

lim
n→∞

%(un, u∗) = ς. (4.7)

By (4.2) and (4.7), we obtain

lim sup
n→∞

%(wn, u∗) ≤ lim sup
n→∞

%(un, u∗) = ς. (4.8)

Since ϕ is quasi-nonexpansive, we get

lim sup
n→∞

%(ϕ(un), u∗) ≤ lim sup
n→∞

%(un, u∗) = ς. (4.9)

On the other hand, by (3.1), we have

%(un+1, u∗) ≤ %(vn, u∗)
≤ (1 − ηn) · %(ϕ(wn), u∗) + ηn · %(ϕ(zn), u∗)
≤ (1 − ηn) · %(wn, u∗) + ηn · %(zn, u∗)
≤ (1 − ηn) · %(wn, u∗) + ηn · %(wn, u∗) = %(wn, u∗),

which implies that
%(un+1, u∗) ≤ %(wn, u∗).

Therefore
ς ≤ lim inf

n→∞
%(wn, u∗). (4.10)
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By (4.8) and (4.10), we obtain
lim
n→∞

%(wn, u∗) = ς. (4.11)

From (4.11), we have

ς = lim
n→∞

%(wn, u∗) = lim
n→∞

%(Q(un, ϕ(un), σn), u∗). (4.12)

Finally, from (4.7), (4.9), and (4.12), and applying Lemma 1, we obtain the required result (4.6).
Part 3. We are ready to establish the ∆-convergence of {un}. Because we have seen that the sequence

{un} is bounded, it essentially has a unique asymptotic center Ac(L, {un}) = {u∗} by Lemma 2. Let {kn}

be any subsequence of {un} such that Ac(L, {kn}) = {k}. Then, by (4.6), we get

lim
n→∞

%(kn, ϕ(kn)) = 0.

We want to show that k is an fp of ϕ. By Proposition 1(iii), we have

Ar(ϕ(k), {kn}) = lim sup
n→∞

%(kn, ϕ(k))

≤
3 + α + β

1 − α − β
· lim sup

n→∞
%(kn, ϕ(kn)) + lim sup

n→∞
%(kn, k)

= lim sup
n→∞

%(kn, k)

= Ar(k, {kn}).

This implies that ϕ(k) ∈ Ac(L, {kn}). Now, the uniqueness of the asymptotic center suggests ϕ(k) = k,
that is, k ∈ Fϕ. Subsequently, we assert that the fp k stands as the unique asymptotic center for any
subsequence {kn} derived from {un}. Conversely, let us suppose that u∗ , k. By (4.1), we deduce that
limn→∞ %(un, k) exists. Now, keeping the uniqueness of the asymptotic center in mind, we can see that

lim sup
n→∞

%(kn, k) < lim sup
n→∞

%(kn, u∗)

≤ lim sup
n→∞

%(un, u∗)

< lim sup
n→∞

%(un, k)

= lim sup
n→∞

%(kn, k).

However, this is a contradiction. Thus, u∗ ∈ Fϕ is the unique asymptotic center for each subsequence
{kn} of {un}. This proves that {un} is ∆-convergent to an fp of ϕ. �

Now, we present the necessary and sufficient conditions for the strong convergence of the iterative
algorithm (3.1).

Theorem 5. Let L, ϕ, and {un} be the same as in Theorem 4. Then {un} converges strongly to an fp of ϕ
if and only if

lim inf
n→∞

%(un, Fϕ) = 0 or lim sup
n→∞

%(un, Fϕ) = 0,

where %(u, Fϕ) = inf{%(u, u∗) : u∗ ∈ Fϕ}.
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Proof. If {un} converges strongly to a point u∗ ∈ Fϕ, then limn→∞ %(un, u∗) = 0. Because 0 ≤ %(un, Fϕ) ≤
%(un, u∗), we have

lim
n→∞

%(un, Fϕ) = 0.

For the converse part, assume that lim infn→∞ %(un, Fϕ) = 0. By Proposition 1(ii), the set Fϕ is
closed in L. The rest of the proof can be continued similarly to the proof of Theorem 7 in [49] and
hence is omitted. �

In 1974, Senter and Dotson [50] presented a map that fulfills condition (I), as articulated below.

Definition 9. [50] A map ϕ : L → L satisfies condition (I) if there exists a non-decreasing function
f : [0,∞) → [0,∞) with f (0) = 0, f (r) > 0 for all r ∈ (0,∞) such that %(u, ϕ(u)) ≥ f (%(u, Fϕ)) for
each u ∈ L.

Based on condition (I), we present the following outcome.

Theorem 6. Given the assumptions outlined in Theorem 4, if ϕ satisfies condition (I), then {un}

converges strongly to an fp of ϕ.

Proof. By (4.6), we have limn→∞ %(un, ϕ(un)) = 0. By condition (I), we get

0 ≤ lim
n→∞

f (%(un, Fϕ)) ≤ lim
n→∞

%(un, ϕ(un)) = 0,

that is, limn→∞ f (%(un, Fϕ)) = 0. It follows from the properties of f that

lim
n→∞

%(un, Fϕ) = 0.

Since all the requirements of Theorem 5 are now available, {un} has a strong limit in Fϕ. �

The following outcome is based on the compactness of the domain.

Theorem 7. Let L be a nonempty, compact, and convex subset ofM, ϕ : L → L be a GαβN map with
Fϕ , ∅, and {un} be an iterative sequence generated by (3.1) with the real sequence {σn} in [p, r] for
some p, r ∈ (0, 1). Then, the sequence {un} converges strongly to an fp of ϕ.

Proof. Consider an element u∗ ∈ L. Given that L is compact, we can conclude that there exists a
subsequence {kn} of {un} such that limn→∞ %(kn, u∗) = 0. From (4.6), we have limn→∞ %(kn, ϕ(kn)) = 0.
By Proposition 1(iii), we get

lim
n→∞

%(kn, ϕ(u∗)) ≤
3 + α + β

1 − α − β
· lim

n→∞
%(kn, ϕ(kn)) + lim

n→∞
%(kn, u∗) = 0.

Hence, we obtain ϕ(u∗) = u∗, that is, u∗ ∈ Fϕ. Also, limn→∞ %(un, u∗) exists by (4.1). Thus, u∗ is the
strong limit of {un}. �

Remark 6. Theorems 4–7 extend the corresponding findings of Beg et al. [23] in two ways: (i) from
the class of generalized α-nonexpansive maps to the class of GαβN maps, (ii) from uniformly convex
Banach spaces to complete uniformly convex HSs.

From Remark 1(ii) and (iii), we obtain the following new result in the literature.
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Corollary 1. Consider the set L and the sequence {un} as defined in Theorem 4. If ϕ : L → L is a
generalized α-nonexpansive (or β-Reich-Suzuki-type nonexpansive) map such that Fϕ , ∅, then the
following holds:
(i) {un} is ∆-convergent to an fp of ϕ.
(ii) {un} converges strongly to an fp of ϕ if and only if lim inf

n→∞
%(un, Fϕ) = 0 or lim sup

n→∞
%(un, Fϕ) = 0.

(iii) If ϕ satisfies condition (I) or L is compact, then {un} converges strongly to an fp of ϕ.

Remark 7. Corollary 1 generalizes Theorems 2–5 in [23] from a uniformly convex Banach space to a
complete uniformly convex HS.

5. An illustrative example

Next, we will illustrate a map that satisfies the GαβN condition but does not meet the conditions of
being Suzuki generalized nonexpansive, generalized α-nonexpansive, and β-Reich Suzuki type.

Example 5. LetM = < be a space endowed with the metric %(u, v) = |u − v|, and Q be a map defined
by Q(u, v, α) = (1 − α) · u + α · v for u, v ∈ M and α ∈ [0, 1]. It has been clearly seen that (M, %,Q) is
an HS. Assume that L = [0,∞). Consider a self-map ϕ : L→ L defined by

ϕ(u) =

0, if 0 ≤ u ≤ 1
8 ,

19u
40 , if u > 1

8 .

Clearly, u∗ = 0 is the unique fp of ϕ.
Now, taking α = 1

4 and β = 1
4 , consider the following cases.

Case 1. If u, v ∈ [0, 1
8 ], then we obtain ϕ(u) = ϕ(v) = 0. Thus,

1
4
· %(u, ϕ(v)) +

1
4
· %(v, ϕ(u)) +

1
4
· %(u, ϕ(u)) +

1
4
· %(v, ϕ(v)) + 0 · %(u, v)

=
1
4
· |u − ϕ(v)| +

1
4
· |v − ϕ(u)| +

1
4
· |u − ϕ(u)| +

1
4
· |v − ϕ(v)|

=
1
4
· |u| +

1
4
· |v| +

1
4
· |u| +

1
4
· |v|

≥ 0 = |ϕ(u) − ϕ(v)| = %(ϕ(u), ϕ(v)).

Case 2. If u, v > 1
8 , then it follows ϕ(u) = 19u

40 and ϕ(v) = 19v
40 . Thus,

1
4
· %(u, ϕ(v)) +

1
4
· %(v, ϕ(u)) +

1
4
· %(u, ϕ(u)) +

1
4
· %(v, ϕ(v)) + 0 · %(u, v)

=
1
4
· |u − ϕ(v)| +

1
4
· |v − ϕ(u)| +

1
4
· |u − ϕ(u)| +

1
4
· |v − ϕ(v)|

=
1
4
.

∣∣∣∣∣u − 19v
40

∣∣∣∣∣ +
1
4
·

∣∣∣∣∣v − 19u
40

∣∣∣∣∣ +
1
4
·

∣∣∣∣∣u − 19u
40

∣∣∣∣∣ +
1
4
·

∣∣∣∣∣v − 19v
40

∣∣∣∣∣
≥

1
4
·

∣∣∣∣∣59u
40
−

59v
40

∣∣∣∣∣ +
1
4
·

∣∣∣∣∣21u
40
−

21v
40

∣∣∣∣∣
≥

1
2
· |u − v|
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≥
19
40
· |u − v| = |ϕ(u) − ϕ(v)| = %(ϕ(u), ϕ(v)).

Case 3. If u ∈ [0, 1
8 ] and v > 1

8 , then one has ϕ(u) = 0 and ϕ(v) = 19v
40 . Thus,

1
4
· %(u, ϕ(v)) +

1
4
· %(v, ϕ(u)) +

1
4
· %(u, ϕ(u)) +

1
4
· %(v, ϕ(v)) + 0 · %(u, v)

=
1
4
· |u − ϕ(v)| +

1
4
· |v − ϕ(u)| +

1
4
· |u − ϕ(u)| +

1
4
· |v − ϕ(v)|

=
1
4
·

∣∣∣∣∣u − 19v
40

∣∣∣∣∣ +
1
4
· |v| +

1
4
· |u| +

1
4
·

∣∣∣∣∣v − 19v
40

∣∣∣∣∣
≥

1
4
·

∣∣∣∣∣80v
40

∣∣∣∣∣
≥

19
40
· |v| = |ϕ(u) − ϕ(v)| = %(ϕ(u), ϕ(v)).

Consequently, ϕ is a GαβN map with α = β = 1
4 .

Let u = 1
8 and v = 23

120 . Then, we have that 1
2 · %(u, ϕ(u)) = 1

16 <
1

15 = %(u, v), while
(i) %(ϕ(u), ϕ(v)) = 437

4800 >
1
15 = %(u, v),

(ii) %(ϕ(u), ϕ(v)) = 437
4800 >

1723
19200 = 1

4 · %(u, ϕ(v)) + 1
4 · %(v, ϕ(u)) + (1 − 2 · ( 1

4 )) · %(u, v),
(iii) %(ϕ(u), ϕ(v)) = |ϕ(u) − ϕ(v)| = 437

4800 >
1723
19200 = 1

4 · %(u, ϕ(u)) + 1
4 · %(v, ϕ(v)) + (1 − 2 · ( 1

4 )) · %(u, v).
Therefore, ϕ does not satisfy the conditions of being Suzuki generalized nonexpansive, generalized

α-nonexpansive, and β-Reich Suzuki type.
Table 1 and Figure 1 illustrate that the AA-iterative algorithm convergences faster than other

algorithms for the map ϕ with the specified parameters σn = 10
13 , ρn = 10

12 and ηn = 10
11 for all n ∈ N and

the initial point u1 = 20.
Table 1. Convergence comparison of iterative algorithms for the initial point u1 = 20.

un Mann Ishikawa Noor Agarwal
et al.

Abbas
and Nazir

Thakur
et al.

M-
iteration

F-
iteration

AA-
iteration

u1 20 20 20 20 20 20 20 20 20
u2 11.92308 8.43531 7.05474 6.01224 4.73775 3.38188 2.53828 1.20568 0.42654
u3 7.10799 3.55773 2.48847 1.80735 1.12231 0.57186 0.32214 0.07268 0
u4 4.23745 1.50053 0.87778 0.54331 0.26586 0.09670 0 0 0
u5 2.52617 0.63287 0.30962 0.16333 0.05464 0 0 0 0
u6 1.50599 0.26692 0.07145 0.01790 0 0 0 0 0
u7 0.89780 0.11258 0.01649 0 0 0 0 0 0
u8 0.53523 0.02598 0.00381 0 0 0 0 0 0
u9 0.31908 0.00600 0.00088 0 0 0 0 0 0
u10 0.19022 0.00138 0.00020 0 0 0 0 0 0
u11 0.11340 0.00032 0.00005 0 0 0 0 0 0
u12 0.02617 0.00007 0.00001 0 0 0 0 0 0
u13 0.00604 0.00002 0 0 0 0 0 0 0
u14 0.00139 0 0 0 0 0 0 0 0
u15 0.00032 0 0 0 0 0 0 0 0
u16 0.00007 0 0 0 0 0 0 0 0
u17 0.00002 0 0 0 0 0 0 0 0
u18 0 0 0 0 0 0 0 0 0
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Figure 1. Graphical comparison between the AA-iteration and other iterations to Table 1.

In Table 2, we examine the influence of initial points for various iterative algorithms using σn = 10
13 ,

ρn = 10
12 and ηn = 10

11 for all n ∈ N.

Table 2. Numbers of iterations required to obtain the fixed point 0 for different initial points.

u1 Mann Ishikawa Noor Agarwal
et al.

Abbas
and Nazir

Thakur
et al.

M-
iteration

F-
iteration

AA-
iteration

2 14 12 11 5 4 4 3 3 2
20 18 14 13 7 6 5 4 4 3
300 24 17 16 9 8 7 6 5 4
5000 29 21 19 11 9 8 7 6 4
20000 32 22 20 12 10 9 8 6 5
105 35 24 21 14 12 10 8 7 5
106 39 27 24 16 13 11 10 7 6

Also, we obtain the influence of the parameters for various iterative algorithms with the initial point
u1 = 20 in Table 3.
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Table 3. Numbers of iterations required to obtain the fixed point 0 for different parameters.

Iteration σn = 0.90, ρn = 0.65,
ηn = 0.90

σn = ρn = ηn = 2n
3n+1 σn = n

2n+5 , ρn =
√

n
√

n+2
, ηn = 1

√
n+1

Mann 14 24 41
Ishikawa 10 20 38
Noor 10 20 37
Agarwal et al. 6 8 9
Abbas and Nazir 6 6 5
Thakur et al. 5 6 6
M-iteration 5 5 5
F-iteration 4 4 4
AA-iteration 3 3 3

Remark 8. In Tables 2 and 3, the items in bold show that the AA-iterative algorithm (3.1) has a better
convergence rate than other iterative methods for the class of GαβN maps.

6. Applications to some special integral equations on time scales

Many problems in mathematical physics, engineering, and mechanics can be formulated as
Hammerstein integral equations; see [51–53]. Kalkan et al. [54] showed that the homogeneous FHIE
of the second kind on a time scale has a unique solution. In this section, we use the AA-iterative
algorithm to approximate the solutions of linear FIEs and nonlinear FHIEs, two particular kinds of
integral equations on time scales.

We now define the nonlinear FHIE of the second kind on a time scale as follows.

Definition 10. Let Γ be a time scale with the ∆-derivative and c, d ∈ Γ. A nonlinear FHIE of the second
kind on the time scale Γ is defined by

u(t) = h(t) + λ

∫ d

c
K(t, s) · ψ(s, u(s)) ∆s, t, s ∈ [c, d]Γ = [c, d] ∩ Γ, (6.1)

where h : [c, d]Γ → < is a function, λ ∈ < is a non-zero constant, and the kernel function K :
[c, d]Γ × [c, d]Γ →< and the nonlinear function ψ : [c, d]Γ ×< → < are ∆-integrable.

LetM =C ([c, d]Γ) be the space of all continuous functions u : [c, d]Γ →< endowed with the norm
‖u − v‖ = supt∈[c,d]Γ

|u(t) − v(t)|. Clearly, (M, ‖ · ‖) is a Banach space and, therefore, a linear HS.
Next, we prove that the AA-iterative sequence convergences strongly to the solution of the

FHIE (6.1).

Theorem 8. Let L be a nonempty, compact, and convex subset ofM, and ϕ : L→ L be defined by

ϕ(u(t)) = h(t) + λ

∫ d

c
K(t, s) · ψ(s, u(s)) ∆s, t, s ∈ [c, d]Γ. (6.2)

Suppose the following conditions are satisfied:
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(i) h,K, and ψ are continuous functions.
(ii) There exists a constant k ≥ 0 such that

|ψ(t, u(t)) − ψ(t, v(t))| ≤ k · |u(t) − v(t)| , ∀t ∈ [c, d]Γ. (6.3)

(iii) There exists a constant φ ≥ 0 such that∫ d

c
|K(t, s)| ∆s ≤ φ.

(iv) |λ| ≤ (φ · k)−1 .

Then, the FHIE (6.1) has a solution in L, and the iterative sequence {un} produced by (3.1) converges
strongly to the solution.

Proof. Observe that, by the conditions (ii), (iii), and Theorem 1, we get

|ϕ(u(t)) − ϕ(v(t))| =

∣∣∣∣∣∣h(t) + λ

∫ d

c
K(t, s) · ψ(s, u(s)) ∆s − h(t) − λ

∫ d

c
K(t, s) · ψ(s, v(s)) ∆s

∣∣∣∣∣∣
= |λ| ·

∣∣∣∣∣∣
∫ d

c
K(t, s) ·

[
ψ(s, u(s))−ψ(s, v(s))

]
∆s

∣∣∣∣∣∣
≤ |λ| ·

∫ d

c
|K(t, s)| · |ψ(s, u(s))−ψ(s, v(s))| ∆s

≤ |λ| ·

∫ d

c
|K(t, s)| · k · |u(s) − v(s)| ∆s

≤ |λ| · k · sup
s∈[c,d]Γ

|u(s) − v(s)| ·
∫ d

c
|K(t, s)| ∆s

≤ |λ| · k · φ · ‖u − v‖.

Thus, we have
sup

t∈[c,d]T
|ϕ(u(t)) − ϕ(v(t))| ≤ |λ| · k · φ · ‖u − v‖.

Since |λ| · k · φ ≤ 1, we obtain
‖ϕ(u) − ϕ(v)‖ ≤ ‖u − v‖.

Hence, ϕ is a nonexpansive map and, therefore, continuous. By the Schauder fp theorem, the map ϕ
defined by (6.2) has an fp in L; that is, the FHIE (6.1) has a solution. Since ϕ is a nonexpansive map, it
is a Suzuki generalized nonexpansive, and so is a generalized (0, 0)-nonexpansive map. Consequently,
all assumptions of Theorem 7 have been satisfied, and the iterative sequence {un} produced by (3.1)
converges strongly to the solution of the FHIE (6.1). �

The following example illustrates the result of Theorem 8.

Example 6. Consider the time scale Γ = < and the following nonlinear FHIE

u(t) =
√

t −
28
9

+
1

12

∫ 12

0

√
[u(s)]2 + 4 ∆s, t, s ∈ [0, 12]Γ, (6.4)
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where h(t) =
√

t − 28
9 is chosen so that the exact solution is u(t) =

√
t. Also, here K(t, s) = 1, λ = 1

12

and ψ(t, u(t)) =
√

[u(t)]2 + 4. Using the mean value theorem, we get

|ψ(t, u(t)) − ψ(t, v(t))| =
∣∣∣∣ √[u(t)]2 + 4 −

√
[v(t)]2 + 4

∣∣∣∣
≤ supr∈<

∣∣∣∣∣∣ r
√

r2 + 4

∣∣∣∣∣∣ · |u(t) − v(t)|

≤ |u(t) − v(t)| .

Hence, the inequality (6.3) holds with k = 1. By Remark 3, we have∫ 12

0
|K(t, s)| ∆s =

∫ 12

0
1 ds = 12,

that is, φ = 12 > 0. Also, we obtain λ = 1
12 = 1

φ·k . As an outcome, all assumptions of Theorem 8 are
met. Then, the iterative sequence {un} produced by (3.1) converges strongly to the fp of the map given
by

ϕ(u(t)) =
√

t −
28
9

+
1

12

∫ 12

0

√
[u(s)]2 + 4 ∆s,

and hence to the solution of the FHIE (6.4).

If we take u(t) instead of ψ(t, u(t)) in Theorem 8, then we can similarly obtain the following result,
which is new in the literature. Hence, we omit its proof.

Theorem 9. Let L be a nonempty, compact, and convex subset ofM, and ϕ : L→ L be defined by

ϕ(u(t)) = h(t) + λ

∫ d

c
K(t, s) · u(s) ∆s, t, s ∈ [c, d]Γ. (6.5)

Suppose the following conditions are satisfied:
(i) h and K are continuous functions.
(ii) There exists a constant φ ≥ 0 such that∫ d

c
|K(t, s)| ∆s ≤ φ.

(iii) |λ| ≤ (φ)−1 .

Then, the linear FIE (2.4) has a solution in L, and the iterative sequence {un} produced by (3.1)
converges strongly to the solution.

The following example illustrates the result of Theorem 9.

Example 7. Consider the time scale in Example 4 and the following linear FIE

u(t) = t + 1 +

∫ 1

0
t · s · u(s) ∆s, t, s ∈ [0, 1]Γ. (6.6)

Here, h(t) = t + 1, K(t, s) = t · s and λ = 1. From (2.1), we get for t ∈ [0, 1]Γ∫ 1

0
|K(t, s)| ∆s =

∫ 1

0
|t · s| ∆s
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= t
∫ 1

0
s ∆s = t

∫ 1

0

(
s2

2
−

s
6

)∆

∆s

= t
(

s2

2
−

s
6

)∣∣∣∣∣∣s=1

s=0

=
1
3
· t ≤

1
3
,

that is, here φ = 1
3 > 0. Also, we have λ = 1 < 3 = 1

φ
. As an outcome, all assumptions of Theorem 9 are

met. Then, the iterative sequence {un} produced by (3.1) converges strongly to the fp of the map given
by

ϕ(u(t)) = t + 1 +

∫ 1

0
t · s · u(s) ∆s,

and hence to the solution of the FIE (6.6).
The solution to the FIE (6.6) can be found using the Adomian decomposition method (2.3). If we

apply this method using (2.1) and (2.2), we get

u0(t) = t + 1,

u1(t) =

∫ 1

0
t · s · (s + 1) ∆s

= t ·
∫ 1

0
(s2 + s) ∆s

= t ·
∫ 1

0

( s3

3
−

s2

6
+

s
54

)∆

+

(
s2

2
−

s
6

)∆
 ∆s

= t ·
(

s3

3
−

s2

6
+

s
54

+
s2

2
−

s
6

)∣∣∣∣∣∣s=1

s=0

=
14
27
· t,

u2(t) =

∫ 1

0
t · s ·

(
14
27
· s

)
∆s

=
14
27
· t ·

∫ 1

0
s2 ∆s

=
14
27
· t ·

(
s3

3
−

s2

6
+

s
54

)∣∣∣∣∣∣s=1

s=0

=
14
27
·

5
27
· t,

u3(t) =

∫ 1

0
t · s ·

(
14
27
·

5
27
· s

)
∆s

=
14
27
·

5
27
· t ·

∫ 1

0
s2 ∆s

=
14
27
·

(
5

27

)2

· t.
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Then, the solution in a series form is given by

u(t) = t + 1 +
14
27
· t +

14
27
·

5
27
· t ·

[
1 +

5
27

+ ...

]
.

The solution of the FIE (6.6) is u(t) = 18
11 · t + 1, where t ∈ [0, 1]Γ.

7. Conclusions

We present several novel contributions:
(i) We adapted the AA-iterative algorithm, as shown in (1.1), to the HS and established the stability

outcome for contraction maps and convergence outcomes for GαβN maps in HSs using this modified
iterative algorithm.

(ii) We presented a numerical illustration of GαβN maps and employed Python software to generate
tabular and graphical representations for the given example.

(iii) To demonstrate the practical applicability of our results, we applied our findings to certain
solutions of linear FIEs and nonlinear FHIEs on time scales.

(iv) Our results hold in both Banach and CAT(0) spaces, generalizing the stability results of [22,27]
and the convergence results of [23].

In forthcoming research, numerical examples of GαβN maps in HSs that do not comply with
the property of Banach space and applications of our theoretical results to solve the linear and
nonlinear Volterra integral equations on time scales may be offered. Furthermore, it is anticipated
that convergence results for enriched GαβN maps in HSs will be investigated.
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