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Abstract: This paper explored the concept of past Rényi entropy within the context of k-record values.
We began by introducing a representation of the past Rényi entropy for the n-th lower k-record values,
sampled from any continuous distribution function F, concerning the past Rényi entropy of the n-th
lower k-record values sampled from a uniform distribution. Then, we delved into the examination of
the monotonicity properties of the past Rényi entropy of k-record values. Specifically, we focused on
the aging properties of the component lifetimes and investigated how they impacted the monotonicity
of the past Rényi entropy. Additionally, we derived an expression for the n-th lower k-records in terms
of the past Rényi entropy, specifically when the first lower k-record was less than a specified threshold
level, and then investigated several properties of the given formula.
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1. Introduction

Record values play a crucial role in various fields of application and have been extensively
researched. Several books, such as Ahsanullah [1], Arnold et al. [2], and Nevzorov [3], focus on the
theory and applications of record values. In athletics, temperature, wind velocity, etc., researchers often
rely on available record data to address statistical inference problems related to the parent distribution,
but making inferences from records is challenging due to the records occurring rarely in real life
situations. The expected waiting time for each subsequent record after the first observation is infinite.
To address this issue, k-records, introduced by Dziubdziela and Kopociński [4], can be utilized as they
occur more frequently than traditional records. Consider the first 10 observations from David and
Nagaraja [5]: 0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179, -1.501, -0.690, and 1.372. The records
observed from the data are 0.464 and 1.486. However, one can construct upper k-records from the data,
which can be seen in Table 1.
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Table 1. Sequences of k-records for k = 2, 3, 4.

2-Records 0.060 0.464 1.022 1.394
3-Records 0.060 0.464 1.022 1.179 1.372
4-Records 0.060 0.464 0.906 1.022 1.179

Consider a sequence of independent and identically distributed (iid) random variables (RVs) {Xi, i ≥
1}, with a cumulative distribution function (cdf) F(x) and a probability density function (pdf) f (x). It
is assumed throughout the paper that the RVs Xi are nonnegative . For a fixed positive integer k ≥ 1,
the nth lower k-record time, denoted as Zn(k) for the sequence {Xi, i ≥ 1}, is defined as follows:

Z1(k) = 1, Zn+1(k) = min{ j : j > Zn(k), Xk:Zn(k)+k−1 > Xk: j+k−1}, n = 1, 2, . . . .

Here, the j-th order statistic in a sample of size m is denoted as X j:m. Using this notation, the k-th lower
record value in the sequence {Xi}, i ≥ 1, is defined as Ln(k) = Xk:Zn(k)+k−1. The pdf and cdf of Ln(k) are
commonly denoted as fn(k)(x) and Fn(k)(x), respectively, which are shown as follows:

fn(k)(x) =
kn

Γ(n)
[F(x)]k−1[− log F(x)]n−1 f (x), x > 0, (1.1)

Fn(k)(x) = [F(x)]k
n−1∑
i=0

[−k log F(x)]i

i!
=

Γ(n,−k log F(x))
Γ(n)

, x ≥ 0, (1.2)

where
Γ(a, x) =

∫ ∞

x
ua−1e−udu, a, x > 0, (1.3)

denotes the upper incomplete gamma function and the complete gamma function is denoted as Γ(·)
(refer to [6–8] for more information). We denote V ∼ Γt(α, β) to represent a random variable V
following a truncated Gamma distribution. The pdf of this distribution is given by:

fV(v) =
βα

Γ(α, t)
vα−1e−βv, v > t, (1.4)

where α > 0 and β > 0.
Since Shannon [9] introduced a measure of uncertainty for discrete distributions based on the

Boltzmann entropy, there has been significant interest in quantifying uncertainty associated with
probability distributions. Numerous studies have explored the Shannon measure of uncertainty and
its applications. Consider a nonnegative RV X characterized by its pdf denoted as f (x). Rényi [10]
introduced an entropy measure of order γ for the RV X, defined as follows:

Hγ(X) = c(γ) log
∫ ∞

0
f γ(x)dx, (γ > 0, γ , 1). (1.5)

Here, the expression log(·) represents the natural logarithm, and c(γ) = 1
1−γ . The Shannon differential

entropy can be obtained as H(X) = lim
γ→1
Hγ(X) = −E[log f (X)]. It is noteworthy that the Rényi

entropy serves as a measure of the uniformity of a density function. Higher values of the Rényi
entropy indicate increased uncertainty in the density function f and a reduced ability to predict future
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outcomes of X (see, e.g., Ebrahimi et al. [11]). The Rényi entropy is a one-parameter generalization
of Shannon entropy that offers greater flexibility and has diverse applications across various fields.
Its versatile nature is evident in areas such as in communication and coding theory Csiszár [12], data
mining, detection, segmentation, classification Neemuchwala et al. [13], hypothesis testing Molina and
Morales [14], characterization of signals and sequences Vinga and Almeida [15], signal processing
Basseville [16], and image matching and registration [13] and the references therein. The presented
applications underscore the broad applicability of Rényi entropy and highlight its crucial role in
addressing various challenges in the literature.

When assessing the lifetime of a new system, the Rényi entropyHγ(X) can be a very useful measure
for quantifying uncertainty. However, in some cases, it becomes necessary to assess the uncertainty
associated with the residual lifetime of the system, denoted as [X − t|X > t]. This refers to the situation
where the system’s lifetime extends beyond a given time t, and it raises questions about the remaining
uncertainty. In this case, the concept of residual Rényi entropy has been introduced in the literature as
follows (for further details, refer to Gupta and Nanda [17]):

Hγ(X; t) = c(γ) log
∫ ∞

t

(
f (x)
S (t)

)γ
dx, (1.6)

where S (t) = P(X > t) stands for the survival function of X. The notion of Hγ(X; t) has garnered
significant interest among researchers across diverse scientific and engineering fields. It serves as a
generalization of the classical residual Shannon differential entropy, encompassing a broad spectrum
of properties and applications. Scholars such as [17–19], and others have extensively investigated the
properties ofHγ(X; t). In a recent study, [20] explored the residual lifetime of a coherent system using
the concept of Rényi entropy.

Past and future uncertainties are inherent in real-world systems. The notion of past entropy captures
the uncertainty associated with previous events, while residual entropy quantifies uncertainty regarding
future events. The concept of past time or inactivity time is very important because it can be employed
in describing stochastic processes with real-world applications. This concept refers to the time elapsed
after an event (such as product failure, task completion, or automobile accident) until the observation or
reporting occurs, by knowing that the event happens at or before the observation time t. In forensic and
actuarial science, the time elapsed since failure is important for predicting the actual time of failure.
So, the study of past entropy and its statistical applications has garnered attention in the literature. The
works of Di Crescenzo and Longobardi [21], Nair and Sunoj [22], and Gupta et al. [23] have made
substantial contributions to the understanding of the properties and applications of past entropy in the
domain of order statistics. Consider an RV X which represents the lifetime of a system. Recall that the
pdf of Xt = [X|X < t] is expressed as ft(x) =

f (x)
F(t) , where 0 < x < t. This pdf provides the conditional

probability distribution of X given that it is less than t, with F(t) representing the cdf of X. In this
context, we recall the concept of past Rényi entropy (PRE) at time t for X, defined for all γ > 0 as
follows:

Hγ(Xt) = c(γ) log
∫ t

0
f γt (x)dx = c(γ) log

∫ t

0

(
f (x)
F(t)

)γ
dx (1.7)

= c(γ) log
[∫ 1

0
f γ−1
t (F−1

t (u))du
]
, t > 0, (1.8)
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where F−1
t (u) = inf{x; Ft(x) ≥ u} stands for the quantile function of Ft(x) = F(x)/F(t), 0 ≤ x ≤ t and

U ∼ U(0, 1) for all γ > 0. It is important to note that the PREHγ(Xt) lies within the range of [−∞,∞].
When an item is observed to fail at time t, the PREHγ(Xt) quantifies the level of uncertainty regarding
its past lifetime.

The study of record values, pioneered by Chandler [24], has gained significant attention across
various practical domains. Notably, Glick [25] provides an example involving the breaking strength
of wooden beams. For a comprehensive understanding of the theory and application of record values,
refer to Ahsanullah [1], Arnold et al. [2], and the referenced sources therein. Statistical inference based
on record data poses significant challenges due to the rarity of record occurrences and the infinite
expected waiting time for subsequent records after the first one. For instance, in actuarial science,
when analyzing insurance claims in nonlife insurance (as discussed in Kamps [26]). To address these
challenges, the model of k-record statistics, introduced by Dziubdziela and Kopociński [4], offers a
suitable alternative.

Numerous researchers have examined various information properties of record values. In this
case, Zarezadeh and Asadi [27] investigated properties of Rényi entropy for order statistics and
record values. Habibi et al. [28] examined Kullback-Leibler information of such records, while
Abbasnejad and Arghami [29] focused on Rényi information. Baratpur et al. [30] studied information
properties of records using Shannon entropy and mutual information, providing entropy bounds.
Jose and Sathar [31] discussed Rényi entropy and important properties of k-records from continuous
distributions. They also proposed a simple estimator and demonstrated applications using real-life
data. Asha and Chacko [32] explored properties of PRE for k-record values from absolutely continuous
distributions. Shrahili and Kayid [33] investigated the residual Tsallis entropy of lower record values
from iid RVs. Building upon this prior work, our paper further investigates and presents detailed results
on past Rényi entropy of k-records from continuous distributions.

This paper’s findings are structured as follows: In Section 2, we first present a representation of the
PRE of the n-th lower k-record values sampled from any continuous distribution function F, in terms
of the PRE of the n-th lower k-record values sampled from a uniform distribution. We investigate
various results including the monotonicity and aging properties of the proposed measure. In Section 3,
we delve into the examination and derivation of different properties of past Rényi entropy for the n-th
lower k-records, where the first k-record is less than a specified threshold level. Finally, in Section 4,
we provide the conclusion of the paper.

Throughout this paper, we consider nonnegative RVs denoted by X and Y . These variables have
absolutely cdfs denoted by F(x) and G(x) and pdfs denoted by f (x) and g(x), respectively. The terms
“increasing” and “decreasing” are used in a non-strict sense.

2. Results on past Rényi entropy of k-record values

In this section, we concentrate on exploring the past Rényi entropy of the RV Ln(k). This measure
quantifies the uncertainty inherent in the density of [t − Ln(k)|Ln(k) ≤ t] and provides insights into the
predictability of past lifetimes for the n-th lower k-records. It allows us to assess the predictability of the
system’s inactivity time. To enhance computational efficiency, we introduce a lemma that establishes
a formula connecting the PRE of order statistics in the uniform case with the imperfect beta function.
This connection is of practical significance as it simplifies the calculation of the PRE. We omit the
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proof of this lemma, as it involves straightforward computations based on the definition of the PRE.

Lemma 2.1. Let {Ui, i = 1, 2, . . .} be a sequence of iid RVs adopted from a uniformly distributed
population. In addition, let L?n(k) denote the n-th lower k-records of {Ui, i = 1, 2, . . .}. Then

Hγ(L?n(k); t) = c(γ) log
knγΓ(γ(n − 1) + 1,−(γ(k − 1) + 1) log t)

(γ(k − 1) + 1)γ(n−1)+1Γγ(n,−k log t)
, 0 < t < 1.

Proof. Substituting the pdf and cdf of uniform distributions from Eq (1.1) into Eq (1.7) yields the
following expression:

Hγ(Ln(k); t) = c(γ) log
∫ t

0

(
knuk−1[− log u]n−1

Γ(n,−k log t)

)γ
du

= c(γ) log
knγ

Γγ(n,−k log t)

∫ t

0
uγ(k−1)[− log u]γ(n−1)du.

By substituting z = − log u, we arrive at the following expression:

Hγ(Ln(k); t) = c(γ) log
knγ

Γγ(n,−k log t)

∫ ∞

− log t
zγ(n−1)e−(γ(k−1)+1)zdz

= c(γ) log
knγ

(γ(k − 1) + 1)γ(n−1)+1Γγ(n,−k log t)

∫ ∞

−(γ(k−1)+1) log t
xγ(n−1)e−xdx

= c(γ) log
knγΓ(γ(n − 1) + 1,−(γ(k − 1) + 1) log t)

(γ(k − 1) + 1)γ(n−1)+1Γγ(n,−k log t)
, 0 < t < 1.

The second equality follows from the change of variable x = (γ(k − 1) + 1)z while the last equality is
derived using Eq (1.3) and completes the proof. �

The utilization of the widely recognized imperfect gamma function, facilitated by the lemma
presented, allows researchers to effortlessly calculate the PRE of record values from a uniform
distribution. It improves the usability and applicability of PRE in different scenarios. The forthcoming
theorem will establish the connection of the PRE of n-th lower k-record values Ln(k) and the PRE of
n-th lower k-record values derived from a uniform distribution.

Theorem 2.1. Consider a sequence of iid RVs {Xi}, i ≥ 1, having the common cdf F and pdf f . Assume
that Ln(k) is the n-th lower record value of the sequence {Xi}. The past Rényi entropy of Ln(k) is obtained
as:

Hγ(Ln(k); t) = Hγ(L?n(k); F(t)) + c(γ) logE[ f γ−1(F−1(e−Vn(k)))], t ∈ (0,+∞), (2.1)

so that Vn(k) ∼ Γ− log F(t)(γ(n − 1) + 1, γ(k − 1) + 1).

Proof. By employing a change of variable u = F(x), and using Eqs (1.1), (1.2), and (1.7), we obtain
the following expression:

Hγ(Ln(k); t) = c(γ) log
∫ t

0

(
fLn(k)(x)
FLn(k)(t)

)γ
dx

= c(γ) log
∫ t

0

(
knFk−1(x)[− log F(x)]n−1 f (x)

Γ(n,−k log F(t))

)γ
dx
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= c(γ) log
knγ

Γγ(n,−k log F(t))

∫ t

0
Fγ(k−1)(x)[− log F(x)]γ(n−1) f γ(x)dx

= c(γ) log
knγ

Γγ(n,−k log F(t))

∫ F(t)

0
uγ(k−1)(− log u)γ(n−1) f γ−1(F−1(u))du.

Applying the transformation z = − log u, we obtain the following expression:

Hγ(Ln(k); t) = c(γ) log
knγ

Γγ(n,−k log F(t))

∫ ∞

− log F(t)
zγ(n−1)e−(γ(k−1)+1)z f γ−1(F−1(e−z))dz

= c(γ) log
knγΓ(γ(n − 1) + 1,−(γ(k − 1) + 1) log F(t))

(γ(k − 1) + 1)γ(n−1)+1Γγ(n,−k log F(t))

+ c(γ) log
∫ ∞

− log F(t)

(γ(k − 1) + 1)γ(n−1)+1zγ(n−1)e−(γ(k−1)+1)z f γ−1(F−1(e−z))
Γ(γ(n − 1) + 1,−(γ(k − 1) + 1) log F(t))

dz

= Hγ(L?n(k); F(t)) + c(γ) logE[ f γ−1(F−1(e−Vn(k)))], t > 0. (2.2)

The proof is completed upon recalling Lemma 2.1 and, hence, the theorem. �

Let us consider an example to illustrate that not all distributions are monotone in terms of
Hγ(Ln(k); t).

Example 2.1. Consider a nonnegative random variable X, characterized by the following cdf:

F(x) =


exp{−1

2 −
1
x }, if 0 ≤ x < 1

exp{−2 + x2

2 }, if 1 ≤ x < 2
1, if x ≥ 2.

(2.3)

It is challenging to derive an explicit expression for Hγ(Ln(k); t), and, as a result, we are compelled to
lean on numerical computation procedures.

We have plotted the relationship between Hγ(Ln(k); t) and t for the case where n = 5, which is
shown in Figure 1. We considered various values of k ranging from 1 to 5 and chose γ = 0.5 and
γ = 5 as examples. The graph clearly demonstrates thatHγ(Ln(k); t) is not a monotonic function for all
values of γ, as depicted in Figure 1.

The forthcoming theorem presents a significant result regarding the monotonicity of the PRE for
k-record values, assuming that the underlying random variable X exhibits the property of decreasing
reversed hazard rate (DRHR). In particular, we recall that a random variable X is said to possess DRHR
if the hazard ratio τ(x) = f (x)/F(x) decreases monotonically for all x > 0. This analysis provides new
senses into the demeanor of PRE in the context of DRHR, contributing to a deeper understanding of this
important class of stochastic notion. For references on the DRHR properties of record values, k-record
values, and generalized order statistics, the readers are refereed to, e.g., Ahmadi and Balakrishnan [34],
Wang and Zhao [35], and Zamani and Madadi [36] and the references therein.
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Figure 1. Graphical representation ofHγ(Ln(k); t) as a function of t for different values of γ.

Theorem 2.2. Let X be DRHR. Thus, for all γ > 0, the functionHγ(Ln(k); t) is increasing in t.

Proof. By utilizing the expressions given in (1.1) and (1.2), we can express the RHR function of Ln(k)

as follows:
τn(k)(t) =

fn(k)(t)
Fn(k)(t)

= ζn(k)(t)τ(t), t > 0, (2.4)

where

ζn(k)(t) =
kn[− log F(t)]n−1/Γ(n)∑n−1

i=0
[−k log F(t)]i

i!

. (2.5)

It is evident that the function ζn(k)(t) is monotonically decreasing with respect to t. Therefore, under
the assumption that X possesses the DRHR property, we can infer that Ln(k) also exhibits the DRHR
property. As a result, we can conclude that the PREHγ(Ln(k); t), for all γ > 0, is increasing in t, in line
with the findings presented in Theorem 1 of Kayid and Shrahili [37]. This confirms the favored result
and ends the proof. �

The subsequent example indicates the utility of Theorem 2.2.

Example 2.2. Consider a sequence of iid RVs {Xi}, i ≥ 1, where each Xi follows a Fréchet distribution
with the cdf given by:

F(x) = e−x−3
, x > 0. (2.6)

By observing that F−1(u) = (− log u)−1/3 for 0 < u < 1, we can proceed to calculate as

E[ f γ−1(F−1(e−Vn(k)))] =
3γ−1(γ(k − 1) + 1)γ(n−1)+1Γ(γ(n + 1

3 ) − 1
3 , γkt−3)

(γk)γ(n+ 1
3 )− 1

3 Γ(γ(n − 1) + 1, t−3(γ(k − 1) + 1))
,

and

Hγ(L?n(k); F(t)) = c(γ) log
knγΓ(γ(n − 1) + 1, t−3(γ(k − 1) + 1)))

(γ(k − 1) + 1)γ(n−1)+1Γγ(n, kt−3)
.
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Using (2.1), we get

Hγ(Ln(k); t) = c(γ) log
3γ−1knγΓ(γ(n + 1

3 ) − 1
3 , γkt−3)

(γk)γ(n+ 1
3 )− 1

3 Γγ(n, kt−3)

 , n ≥ 1. (2.7)

In order to examine the behavior of the PRE Hγ(Ln(k); t), we focus on the case where n = 5. We
plotHγ(Ln(k); t) as a function of t, considering different values of k = 1, 2, · · · , 5 and choosing γ = 0.5
and γ = 2. The resulting plots are depicted in Figure 2. The observed trends in the plots align with
the findings of Theorem 2.2, which establishes that the PRE decreases as t increases when the random
variable X exhibits the DRHR property.

The subsequent theorem presents a significant result regarding the closure property of increasing
PRE of distributions when forming lower k-record values.
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Figure 2. The graph of Hγ(Ln(k); t) for γ = 0.5 (left panel) and γ = 2 (right panel) as a
function of t.

Theorem 2.3. Assuming thatHγ(X; t) is increasing in t, thenHγ(Ln(k); t) is also increasing in t for all
γ > 0.

Proof. By referring to Eq (2.4), we observe that the RHR function of Ln(k) can be written as τn(k)(t) =

ζn(k)(t)τ(t), where ζn(k)(t) is defined in (2) and t > 0. It is clear that the values of ζn(k)(t) decrease as t
increases and takes values within the range (0, 1). Additionally, we readily notice that

lim
t→∞

Fn(k)(t)
F(t)

= 0.

Consequently, the assumptions of Theorem 3.1 of Mahmoudi and Asadi [38] are satisfied, establishing
thatHγ(Ln(k); t) increases for all γ > 0 concerning t. �
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The subsequent example indicates the utility of Theorem 2.3.

Example 2.3. Let us consider a sequence of iid RVs {Xi}, i ≥ 1 that follow a beta distribution with cdf
F(x) = x2, 0 < x < 1. It is straightforward to observe that

Hγ(X; t) =
γ

1 − γ
log

2
γ + 1

+ log t, 0 < t < 1,

which increases with increasing t. Additionally, employing (2.1), we can derive the following
expression

Hγ(Ln(k); t) = c(γ) log
(2k)nγΓ(γ(n − 1) + 1,−(γ(2k − 1) + 1) log t))

(γ(2k − 1) + 1)γ(n−1)+1Γγ(n,−2k log t)
, 0 < t < 1.

To investigate the behavior of the PRE Hγ(Ln(k); t), we consider the case where n = 5. We plot
the graph of Hγ(Ln(k); t) for different values of γ = 0.5 and γ = 2, while varying t, and considering
different values of k = 1, 2, · · · , 5. The resulting plots are presented in Figure 3. It shows that the PRE
decreases as t increases.
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Figure 3. The graph of Hγ(Ln(k); t) for γ = 0.5 (left panel) and γ = 2 (right panel) as a
function of t.

Several researchers, including Kochar [39], Raqab and Amin [40, 41], Khaledi [42], and Khaledi
and Shojaei [43], have investigated stochastic comparisons of upper record values. The preservation
properties of the n-th lower k-record values under the DRHR property were investigated by Kundu et
al. [44]. They have shown that if the n-th upper k-record values exhibit the DRHR property, then the
(n − 1)-th upper k-record values also possess the DRHR property. Moreover, they demonstrated that if
the n-th lower k-record has DRHR property, then the n-th lower l-record has also DRHR property for
l > k. Now, we obtain some results for the n-th lower k-record values and then provide some results on
the monotone property of PRE. The following theorem shows that DRHR property passes from Ln−1(k)

to Ln(k).
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Theorem 2.4. If Ln−1(k) is DRHR, then Ln(k) is also DRHR.

Proof. Consider the function φ(t) = − log F(t) ≥ 0, for all t > 0. Then, from Eq (2.4), one can write
τn(k)(t) = θ(t)τn−1(k)(t) such that

θ−1(t) =
n − 1

k

∑n−1
i=0

[kφ(t)]i

i!

φ(t)
∑n−2

i=0
[kφ(t)]i

i!

=
1
k

n − 1
φ(t)

+

[kφ(t)]n−2

(n−2)!∑n−2
i=0

[kφ(t)]i

i!

 .
Since φ(t) is a decreasing function of t, one can easily see that θ−1(t) is an increasing function of t and
hence θ(t) is a decreasing function of t. Thus, Lemma 2.1 of Kundu et al. [44] completes the proof. �

Let us consider a sequence of iid random variables Xi, i ≥ 1 with cdf F and pdf f . We denote the
n-th lower k-record value and l-record value as Ln(k) and Ln(l), respectively, and their hazard rates as
τn(k)(t) and τn(l)(t). In the following theorem, we present a significant result indicating that if the PRE of
n-th lower k-record values is increasing, then the PRE of n-th lower l-record values is also increasing
when k > l.

Theorem 2.5. IfHγ(Ln(l); t) is increasing in t, thenHγ(Ln(k); t) is also decreasing in t for all γ > 0 and
k > l.

Proof. It is assumed that Hγ(Ln(l); t) increases as t increases. Moreover, we can establish the
relationship τn(k)(t) = ηk,l,n−1(φ(t))τn(l)(t), where ηk,l,n−1(φ(t)) is given by

ηk,l,n−1(φ(t)) =

(
k
l

)n ∑n−1
i=0

[kφ(t))]i

i!∑n−1
i=0

[lφ(t)]i

i!

, t > 0,

and φ(t) = − log F(t). Note that φ(t) is a decreasing function of t > 0. Moreover, the function

ηk,l,n−1(x) =

(
k
l

)n ∑n−1
i=0

[kx)]i

i!∑n−1
i=0

[lx]i

i!

, x > 0,

is an increasing function of x > 0 when k > l, as shown in Lemma 2.1 of Raqab and Amin [40].
Furthermore, the range of ηk,l,n−1(x) is a subset of (0, 1). Consequently, ηk,l,n−1(φ(t)) is a decreasing
function of t > 0 and its range is a subset of (0, 1), which implies that the conditions of Theorem 3.1
of Mahmoudi and Asadi [38] are satisfied, thereby completing the proof. �

3. Conditional Rényi entropy of k-records

In the subsequent analysis, our focus lies on evaluating the past nth lower k-records denoted as
t − Ln(k), t ≥ 0, subject to the condition L1(k) ≤ t. Here, L1(k) corresponds to the first lower k-record,
which is equivalent to Xk:k. Therefore, the condition L1(k) ≤ t implies that the first lower k-record is less
than the specified threshold t > 0. Consequently, the cdf of Lt

n(k) = [t − Ln(k)|L1(k) ≤ t] can be expressed
as (as presented in Tavangar and Asadi [45])

FLt
n(k)

(x) = P(t − Ln(k) ≤ x|L1(k) ≤ t),
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=
Γ(n,−k log(F(t − x)/F(t)))

Γ(n)
, (3.1)

for all 0 ≤ x ≤ t. It follows that

fLt
n(k)

(x) =
kn

Γ(n)

(
F(t − x)

F(t)

)k−1 (
− log

F(t − x)
F(t)

)n−1 f (t − x)
F(t)

, 0 ≤ x ≤ t. (3.2)

It is important to note that the conditional distribution [t − Ln(k)|L1(k) ≤ t] represents the unconditional
distribution of the (n + 1)-th lower value of k-records from the distribution F(t − x)/F(t). In the
subsequent analysis, the primary objective is to investigate the Rényi entropy associated with the
random variable Lt

n(k), which quantifies the level of uncertainty inherent in the density of [t−Ln(k)|L1(k) ≤

t]. To accomplish this, we introduce the function Ft(x) = F(x)/F(t), where 0 ≤ x ≤ t. The probability
integral transformation Vn(k) = Ft(Lt

n(k)) plays a crucial role in this approach. The transformation
Vn(k) = Ft(Lt

n(k)) is of significant importance and possesses the following pdf:

gn(k)(u) =
kn

Γ(n)
uk−1(− log u)n−1, 0 < u < 1. (3.3)

The subsequent theorem provides a derived term for the Rényi entropy of Lt
n(k) through the use of the

aforementioned transformations.

Theorem 3.1. The Rényi entropy for Lt
n(k) can be written in the following expression:

Hγ(Lt
n(k)) = ω(γ) log

[∫ 1

0
gγn(k)(u) f γ−1

t (F−1
t (u))du

]
, t > 0, (3.4)

for all γ > 0 where F−1
t (u) = inf{x; Ft(x) ≥ u} and U ∼ U(0, 1) for all γ > 0.

Proof. By recalling relations (1.7) and (3.2) and by applying u = Ft(z), we can establish the following
relationship:

Hγ(Lt
n(k)) = ω(γ) log

[∫ t

0

(
fLt

n(k)
(x)

)γ
dx

]
= ω(γ) log

∫ t

0

 kn

Γ(n)

(
F(t − x)

F(t)

)k−1 (
− log

F(t − x)
F(t)

)n−1 f (t − x)
F(t)

γ dx


= ω(γ) log

[∫ t

0

(
kn

Γ(n)
[Ft(z)]k−1[− log Ft(z)]n−1 ft(z)

)γ
dz

]
(by taking z = t − x)

= ω(γ) log
[∫ 1

0

(
kn

Γ(n)
uk−1(− log u)n−1

)γ (
ft(F−1

t (u))
)γ−1

dx
]

= ω(γ) log
[∫ 1

0
gγn(k)(u)

(
ft(F−1

t (u))
)γ−1

du
]
.

The final equality is derived by recognizing gn(k)(u) as the pdf of Vn(k), as specified in Eq (3.3). By
incorporating this result, we conclude the proof successfully. �

The next theorem examines how aging affects the PRE of k-record values.
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Theorem 3.2. Let X have DRHR property. So,Hγ(Lt
n(k)) is increasing in t for all γ > 0.

Proof. It is evident that ft(F−1
t (x)) = xτt(F−1

t (x)). So, Eq (3.4) can be rewritten as

e(1−γ)Hγ(Lt
n(k)) =

∫ 1

0
gγn(k)(u)uγ−1

(
τt(F−1

t (u))
)γ−1

du, (3.5)

for all γ > 0. The relationship F−1
t (u) = F−1(uF(t)) holds true for all 0 < u < 1, and it can be easily

verified. Consequently, we obtain the following expression:

τt(F−1
t (u)) = τ(F−1(uF(t))), 0 < u < 1.

If t1 ≤ t2, it follows that F−1(uF(t1)) ≤ F−1(uF(t2)). Consequently, when X exhibits the property of
DRHR, for all γ > 1(0 < γ ≤ 1), we can establish the following inequality:∫ 1

0
gγn(k)(u)uγ−1

(
τt1(F

−1
t1 (u))

)γ−1
du =

∫ 1

0
gγn(k)(u)uγ−1

(
τ(F−1(uF(t1)))

)γ−1
du

≥ (≤)
∫ 1

0
gγn(k)(u)uγ−1

(
τ(F−1(uF(t2)))

)γ−1
du

=

∫ 1

0
gγn(k)(u)uγ−1

(
τt2(F

−1
t2 (u))

)γ−1
du,

for all t1 ≤ t2. Using (3.5), we get

e(1−γ)Hγ(Lt1
n(k)) ≥ (≤)e(1−γ)Hγ(Lt2

n(k)),

for all γ > 1(0 < γ ≤ 1). This implies that Hγ(L
t1
n(k)) ≤ Hγ(L

t2
n(k)) for all γ > 0, and this completes the

proof. �

We should remark that the DRHR property of X in Theorem 3.2 leads to the amount of probability
P(X > t − δ|X ≤ t) decreasing with t for some positive very small δ. It is therefore to be expected that
the extent of the uncertainty and surprise (and thus the value of PRE) increases with t if a value of X is
obtained close to t, provided that X is smaller than t.

The outcomes derived from Theorems 3.1 and 3.2 are demonstrated in the following example.

Example 3.1. Let us consider a sequence of iid RVs {Xi}, i ≥ 1, with the following cdf as F(x) =

e−1/x, x > 0. Here, we can show that

Hγ(Lt
n(k)) = c(γ) log

∫ 1

0

(
1
t
− log u

)2(γ−1)

uγ−1gγn(k)(u)du, t > 0.

Figure 4 presents a plot showcasing the PRE Hγ(Ln(k); t) for a specific scenario where n = 5. The
plot includes two different values of γ, namely, 0.5 and 2. Various values of k ranging from 1 to 5 are
considered, along with different values of t. The results demonstrate that the Rényi entropy of Lt

n(k)
increases as the time t increases. It is important to mention that the distribution under investigation
displays the property of decreasing RHRs.
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Figure 4. The values of Hγ(Lt
5(k)) for the Frêchet distribution concerning t for γ = 0.5 and

γ = 2 for k = 1, 2, 3, 4, 5.

In the subsequent theorem, we derive a lower bound for the Rényi entropy of Lt
n(k) in the case of

γ > 1, and an upper bound in the case of 0 < γ < 1. These bounds are established with respect to the
PRE of the parent distribution, denoted asHγ(X; t).

Theorem 3.3. When γ > 1 (0 < γ < 1), we have

Hγ(Lt
n(k)) ≥ (≤)

γ

1 − γ
log gn(k)(v?) +Hγ(X; t), (3.6)

where gn(k)(v?) and v? = e−
n−1
k−1 .

Proof. By observing the mode of gn(k)(v) as v? = e−
n−1
k−1 , we can deduce that gn(k)(v) ≤ gn(k)(v?) for

0 < v < 1. Consequently, for γ > 1 or 0 < γ < 1, we can establish the following inequality:

Hγ(Lt
n(k)) = c(γ) log

∫ 1

0
gγn(k)(v)

(
ft(F−1

t (u))
)γ−1

dv

≥ (≤)c(γ) log
∫ 1

0

(
gn(k)(v?)

)γ ( ft(F−1
t (u))

)γ−1
dv

=
γ

1 − γ
log gn(k)(v?) +Hγ(X; t).

The final equality is obtained by employing (1.8), which leads to the desired result. �

The application of the bounds provided in Theorem 3.3 is investigated in the following example.

Example 3.2. Consider a sequence of iid random variables {Xi}, i ≥ 1, where each Xi follows a
standard exponential distribution with the cdf F(x) = 1 − e−x for x > 0. From (1.7), we can obtain

Hγ(X; t) = c(γ)
[
log(1 − e−γt) − γ log(1 − e−t) − log(γ)

]
, t > 0.

The goal of this example is to verify a lower bound for the Rényi entropy of Lt
8(4) in the case of γ > 1

and an upper bound in the case of 0 < γ < 1. After performing the necessary calculations, we get
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v? = e−
n−1
k−1 = 0.09697197. Consequently, we find that g8(4)(v?) = 4.465042. Therefore, based on the

findings of Theorem 3.3, a lower bound emanated for the Rényi entropy of Lt
8(4) in the case of γ > 1 as

Hγ(Lt
8(4)) ≥

1.5γ
1 − γ

+ c(γ)
[
log(1 − e−γt) − γ log(1 − e−t) − log(γ)

]
, (3.7)

and an upper bound for 0 < γ < 1 as

Hγ(Lt
8(4)) ≤

1.5γ
1 − γ

+ c(γ)
[
log(1 − e−γt) − γ log(1 − e−t) − log(γ)

]
, (3.8)

for all t > 0. By assuming an exponential distribution, we have calculated the lower bound for
Hγ(Lt

8(4)) using (3.7) in the left panel and the upper bound using (3.8) in the right panel. Moreover,

we obtained the exact value ofHγ(Lt
8(4)) directly from (3.4). The results are presented in Figure 5.
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Figure 5. Exact value and the given bounds ofHγ(Lt
n(k)) for the exponential distribution with

respect to time t.

4. Conclusions

The paper presented some information properties of k-record values to quantify uncertainty using
the concept of past Rényi entropy. Specifically, we first provided an expression for the PRE of k-record
values and then delved into the monotonicity properties of the PRE of k-record values, considering the
aging properties of the component lifetimes. This examination enhanced our understanding of how
the PRE behaves as the lifetimes of the components change. Moreover, we studied the preservation
properties of PRE of k-record values in terms of the DRHR property. These findings revealed that
the DRHR property of the n-th lower k-records is transmitted to the previous ones. Additionally, we
extended this result to encompass k-record values, demonstrating that the DRHR property is passed
from Ln−1(k) to Ln(k). Furthermore, we established that if the PRE of n-th lower k-record values is
increasing, then the PRE of n-th lower l-record values is also increasing when k > l. In addition, we
derived an expression for the past Rényi entropy of the n-th lower k-records given that the first lower
k-record is less than a threshold level t. Through the investigation of several properties of this formula,
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we gained insights into the behavior and characteristics of Rényi entropy in the context of k-record
values. These findings offer insights on record value information, contributing to the understanding of
PRE in k-record values. The results presented in this paper expand the existing body of knowledge in
this field and can be generalized to the other area of information theory, for example, cumulative past
entropy, fractional generalized cumulative past entropy, and record values including generalized order
statistics.
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