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1. Introduction

The famous Cayley theorem reveals a basic fact: A finite group G of order n is isomorphic to a
subgroup of the finite symmetric group Sn. This means that G can be given as a group generated by
a set M of permutations in Sn, that is, G = 〈M〉. To construct a generating set of G, we need to
seek special kinds of elements in Sn, which are usually sought randomly. Further, to understand the
complexity of such searches, we need to estimate the proportions of various kinds of elements, such
as those with order p, 2p, or pq in Sn for the odd primes p and q. For examples, a transposition is
constructed by searching for an element g of order 2m in Sn for some odd positive integer m ≤ n18 log n;
see [1]. The upper bound for m is chosen so that the proportion of such elements is large enough to
find such an element g with high probability, and also to construct the transposition gm at a reasonable
cost. This method is better than a direct search for a transposition by examining random elements,
as the proportion of transpositions is very small. The proportion of elements with order a multiple
of p in Sn, called p-singular elements, is far greater than the proportion of elements with order p;
see [9, Section 1]. This means that constructing elements of order p by taking powers of p-singular
elements is much more efficient than searching for such elements directly by random selection.

The proportion of elements of a given prime order p in finite symmetric groups has been extensively
studied. For example, in [4], Jacabsthal gave recursive formulas and an asymptotic expansion on this
proportion for the first time. Chowla, Herstein, and Scott [2] and Moser and Wyman [6] extended
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Jacabsthal’s result in 1952 and 1955, respectively. In 2022, Praeger and Suleiman [9] gave an explicit
upper bound on the proportion of permutations of a given prime order p in finite symmetric groups.
More results can be found in [3, 7, 8].

In fact, a product of disjoint 2-cycles and p-cycles is a permutation of order 2p. But we note that
a permutation of order 2p may be obtained by other cycles, such as 2p-cycles, a product of disjoint
2p-cycles and p-cycles, or 2-cycles, and so on. In 2024, the first and third authors in [5] addressed an
upper bound on the proportion of permutations of twice a prime order, acting on a set of given size
n. In this paper, we generalize the result in [5] and present an upper bound for the elements that have
order a product of two distinct odd primes in finite symmetric groups.

This paper is organized as follows: After this introduction, we give some preliminary results in
Section 2. Then, the main result is given and proved in Section 3. Finally, we make a conjecture on the
proportion of elements with a given order in finite symmetric groups in Section 4.

2. Preliminaries

In this section, we give a lemma and several propositions, which will be used to prove our main
result in the next section.

Let m be a positive integer, and let [m] = {1, 2, · · · ,m} and Sm be the symmetric group on [m]. First,
we record a basic fact.

Lemma 2.1. For each positive integer m, there are exactly (m − 1)! pairwise distinct m-cycles in Sm.

Proof. Each m-cycle in Sm has a unique expression of the form (α1, α2, · · · , αm) where αi ∈ [m] =

{1, 2, · · · ,m} for 1 ≤ i ≤ m and α j = 1 for some j ∈ [m]. To count the number of possibilities for
the m-cycles, there are exactly m − 1 choices for α1 ∈ [m]\{1}, and exactly m − 2 choices for α2 from
[m]\{1, α1} when α1 is gven, and so on. This implies that there are exactly (m − 1)! m-cycles in Sm.

For two distinct odd primes p and q, the element g of order pq in Sn can be written out explicitly in
one of the following forms:

(I)

p−cycle︷︸︸︷
(· · · )

p−cycle︷︸︸︷
(· · · ) · · ·

p−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

s1

q−cycle︷︸︸︷
(· · · )

q−cycle︷︸︸︷
(· · · ) · · ·

q−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

t2

;

(II)

pq−cycle︷︸︸︷
(· · · )

pq−cycle︷︸︸︷
(· · · ) · · ·

pq−cycle︷︸︸︷
(· · · )︸                       ︷︷                       ︸

s2

;

(III)

p−cycle︷︸︸︷
(· · · )

p−cycle︷︸︸︷
(· · · ) · · ·

p−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

s3

pq−cycle︷︸︸︷
(· · · )

pq−cycle︷︸︸︷
(· · · ) · · ·

pq−cycle︷︸︸︷
(· · · )︸                       ︷︷                       ︸

t3

;

(IV)

q−cycle︷︸︸︷
(· · · )

q−cycle︷︸︸︷
(· · · ) · · ·

q−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

s4

pq−cycle︷︸︸︷
(· · · )

pq−cycle︷︸︸︷
(· · · ) · · ·

pq−cycle︷︸︸︷
(· · · )︸                       ︷︷                       ︸

t4

; or

(V)

p−cycle︷︸︸︷
(· · · )

p−cycle︷︸︸︷
(· · · ) · · ·

p−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

s5

q−cycle︷︸︸︷
(· · · )

q−cycle︷︸︸︷
(· · · ) · · ·

q−cycle︷︸︸︷
(· · · )︸                     ︷︷                     ︸

t5

pq−cycle︷︸︸︷
(· · · )

pq−cycle︷︸︸︷
(· · · ) · · ·

pq−cycle︷︸︸︷
(· · · )︸                       ︷︷                       ︸

m

;
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where si ≥ 1, t j ≥ 1 for 1 ≤ i ≤ 5, 2 ≤ j ≤ 5, and m ≥ 1.
Second, we find an upper bound on the proportion of elements in each form above. Let Pn(pq) and

P∗n(pq) denote the set consisting of all the elements of order pq, and the set of elements with form (*)
in Sn, respectively, where * is one of I, II,. . . , V above. The corresponding proportions are denoted
by ρn(pq) =

|Pn(pq)|
n! and ρ∗n(pq) =

|P∗n(pq)|
n! , respectively. In order to prove Theorem 3.1, we need the

following recursion for ρ∗n(pq).

Proposition 2.1. Let p and q be distinct odd primes such that p < q. Let n be a positive integer. Then
the proportion ρ∗n(pq) of elements with the form (*) as above in Sn satisfies the following relations:

(1) If ∗ = I and n ≥ p + q + 1, then

nρI
n(pq) = ρI

n−1(pq) + ρn−p(q) + ρI
n−p(pq) + ρn−q(p) + ρI

n−q(pq).

(2) If ∗ = II and n ≥ pq + 1, then

nρII
n (pq) = ρII

n−1(pq) + ρII
n−pq(pq) +

1
(n − pq)!

.

(3) If ∗ = III and n ≥ pq + p + 1, then

nρIII
n (pq) = ρIII

n−1(pq) + ρII
n−p(pq) + ρIII

n−p(pq) + ρn−pq(p) + ρIII
n−pq(pq).

(4) If ∗ = IV and n ≥ pq + q + 1, then

nρIV
n (pq) = ρIV

n−1(pq) + ρII
n−q(pq) + ρIV

n−q(pq) + ρn−pq(q) + ρIV
n−pq(pq).

(5) If ∗ = V and n ≥ pq + p + q + 1, then

nρV
n (pq) = ρV

n−1(pq) + ρIV
n−p(pq) + ρV

n−p(pq) + ρIII
n−q(pq) + ρV

n−q(pq) + ρI
n−pq(pq) + ρV

n−pq(pq).

Proof. (1) We partitionPI
n(pq) as 1P

I
n(pq)∪2P

I
n(pq), where 1P

I
n(pq) and 2P

I
n(pq) consist of all elements

g ∈ PI
n(pq) such that 1g = 1 and 1g , 1, respectively. We observe that 1P

I
n(pq) is precisely the set of

elements having form (I) in S∆ � Sn−1 where ∆ = [n]\{1}, and hence |1PI
n(pq)| = (n − 1)!ρI

n−1(pq).
Now we enumerate the elements of 2P

I
n(pq). Since 1g , 1, 1 lies in a cycle h of g of length p or q

for each such element g.
Case 1. h is a p-cycle.

The number of such cycles is equal to the number
(

n−1
p−1

)
of subsets ∆

′

of (p − 1)-element subsets of
∆\{1}, times the number (p−1)! of p-cycles in Sn by Lemma 2.1. Then, for each of g ∈ 2P

I
n(pq), g = hg

′

where g
′

∈ S[n]\{∆′ ,1} � Sn−p. The number of such elements g
′

is equal to the number |PI
n−p(pq)| = (n −

p)!ρI
n−p(pq) of elements with the form (I) in Sn−p, together with the number |Pn−p(q)| = (n− p)!ρn−p(q)

of elements of order q in Sn−p. Thus

|2P
I
n(pq)| =

(
n−1
p−1

)
(p − 1)!((n − p)!ρI

n−p(pq) + (n − p)!ρn−p(q))

= (n − 1)!(ρI
n−p(pq) + ρn−p(q)).

Case 2. h is a q-cycle.
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The number of such cycles is equal to the number
(

n−1
q−1

)
of subsets ∆

′

of (q − 1)-element subsets of
∆\{1}, times the number (q−1)! of q-cycles in Sn by Lemma 2.1. Then, for each of g ∈ 2P

I
n(pq), g = hg

′

where g
′

∈ S[n]\{∆′ ,1} � Sn−q. The number of such elements g
′

is equal to the number |PI
n−q(pq)| = (n −

q)!ρI
n−q(pq) of elements with the form (I) in Sn−q, together with the number |Pn−q(p)| = (n − q)!ρn−q(p)

of elements of order p in Sn−q. Thus

|2P
I
n(pq)| =

(
n−1
q−1

)
(q − 1)!((n − q)!ρI

n−q(pq) + (n − q)!ρn−q(p))

= (n − 1)!(ρI
n−q(pq) + ρn−q(p)).

It follows that

n!ρI
n(pq) = (n − 1)!ρI

n−1(pq) + (n − 1)!(ρI
n−p(pq) + ρn−p(q) + ρI

n−q(pq) + ρn−q(p))

= (n − 1)!(ρI
n−1(pq) + ρI

n−p(pq) + ρn−p(q) + ρI
n−q(pq) + ρn−q(p))

and so nρI
n(pq) = ρI

n−1(pq) + ρI
n−p(pq) + ρn−p(q) + ρI

n−q(pq) + ρn−q(p). This completes the proof of (1).
For (2) to (5), the proofs are analogous to the proof of (1).

Next, we will use Proposition 2.1 to give an upper bound on ρ∗n(pq) by induction on n, where
∗ ∈ {I, II, . . . ,V}.

Proposition 2.2. Let p and q be distinct odd primes such that p < q, and let n be a positive integer.
Write n = a · pq + k, where a ≥ 0 and 0 ≤ k ≤ pq − 1. Then

(1) ρI
n(pq) ≤ 1

pq with equality if and only if n = p + q or p + q + 1;
(2) ρII

n (pq) ≤ 1
pq·k! with equality if and only if pq ≤ n ≤ 2pq − 1;

(3) ρIII
n (pq) ≤ 1

p2q with equality if and only if n = 2p + q or 2p + q + 1;
(4) ρIV

n (pq) ≤ 1
pq2 with equality if and only if n = 2q + p or 2q + p + 1;

(5) ρV
n (pq) ≤ 1

p2q2 with equality if and only if n = 2(q + p) or 2(q + p) + 1.

Proof. (1) If n < p + q, then PI
n(pq) is empty, and so ρI

n(pq) = 0. If n = p + q, then |PI
n(pq)| = n!

pq , and
so ρI

n(pq) = 1
pq . We now assume that n ≥ p + q + 1 and assume inductively that the result holds for all

positive integers strictly less than n.
Case 1. n = p + q + k, and 1 ≤ k ≤ 3.

By induction, we have ρI
n−1(pq) = 1

pq·(k−1)! , ρ
I
n−p(pq) = 0 and ρI

n−q(pq) = 0, and we note that
ρn−p(q) ≤ 1

q and ρn−q(p) ≤ 1
p by [9, Theorem 1]. Thus, by Proposition 2.1 (1),

ρI
n(pq) =

1
n

(ρI
n−1(pq) + ρI

n−p(pq) + ρn−p(q) + ρI
n−q(pq) + ρn−q(p))

≤
1
n

(
1

pq · (k − 1)!
+ 0 +

1
q

+ 0 +
1
p

) ≤
1
pq
,

with equality if and only if n = p + q + 1.
Case 2. n > p + q + 3.

By induction, we observe that ρI
n−1(pq) ≤ 1

pq , ρI
n−p(pq) ≤ 1

pq and ρI
n−q(pq) ≤ 1

pq , and we see that
ρn−p(q) ≤ 1

q and ρn−q(p) ≤ 1
p by [9, Theorem 1]. Thus, by Proposition 2.1 (1),

ρI
n(pq) ≤

1
n

(
1
pq

+
1
q

+
1
pq

+
1
p

+
1
pq

)
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=
1
pq

(
3 + p + q

n
) <

1
pq
.

So we complete the proof of (1) by induction.
(2) If n < pq, then ρII

n (pq) = 0. If n = pq, then ρII
n (pq) = 1

pq . We now assume that n ≥ pq + 1 and
assume inductively that the result holds for all positive integers strictly less than n.

Note that n− pq = (a−1) · pq+k, n−1 = a · pq+k−1 if 1 ≤ k ≤ pq−1, and n−1 = (a−1) · pq+ pq−1
if k = 0.
Case 1. a = 1.

By induction, ρII
n−1(pq) = 1

pq·(k−1)! and ρII
n−pq(pq) = 0. Then, by Proposition 2.1 (2),

ρII
n (pq) =

1
n

(
1

pq · (k − 1)!
+ 0 +

1
k!

)

=
pq + k

pq · n · k!
=

1
pq · k!

.

Case 2. a ≥ 2.
If k = 0, then by induction, ρII

n−1(pq) ≤ 1
pq·(pq−1)! and ρII

n−2p(pq) ≤ 1
pq . So by Proposition 2.1 (2),

ρII
n (pq) ≤

1
n

(
1

pq · (pq − 1)!
+

1
pq

+
1

(n − pq)!
)

=
1

npq
(

1
(pq − 1)!

+ 1 +
pq

(n − pq)!
) <

3
npq

<
1
pq
.

If k ≥ 1, then by induction, ρII
n−1(pq) ≤ 1

pq·(k−1)! and ρII
n−pq(pq) ≤ 1

pq·k! . Thus, by Proposition 2.1 (2),

ρII
n (pq) ≤

1
n

(
1

pq · (k − 1)!
+

1
pq · k!

+
1

(n − pq)!
)

=
1

npq · k!
(k + 1 +

pq · k!
(n − pq)!

) <
k + 2

npq · k!
<

1
pq · k!

,

and this completes the proof of (2) by induction.
With techniques similar to those in (1) and (2), we can obtain the conclusions of (3) to (5).

3. Main result and proof

We present the main result and use Proposition 2.2 to prove it in this section. Our main result is
as follows:

Theorem 3.1. Let n be a positive integer, and let p and q be odd primes such that p < q, and write
n = a · pq + k, where 0 ≤ k ≤ pq − 1 and a ≥ 0. Let ρn(pq) be the proportion of elements of order pq
in the symmetric group Sn. Then one of the following holds:

(1) n < p + q, ρn(pq) = 0;
(2) p + q ≤ n ≤ pq − 1, ρn(pq) ≤ 1

pq , with equality if and only if n = p + q or p + q + 1;
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(3) pq ≤ n ≤ pq + p − 1, ρn(pq) < 1+k!
pq·k! ;

(4) pq + p ≤ n ≤ pq + q − 1, ρn(pq) < p+(p+1)k!
p2q·k! ;

(5) pq + q ≤ n ≤ pq + q + p − 1, ρn(pq) < pq+(pq+p+q)k!
p2q2·k! ;

(6) n ≥ pq + p + q, ρn(pq) < pq+(pq+p+q+1)k!
p2q2·k! .

Proof. Let n be a positive integer and p and q odd primes with p < q, and write n = a · pq + k where
0 ≤ k ≤ pq − 1 and a ≥ 0.

If n < p + q, then Pn(pq) is empty, and so ρn(pq) = 0. Therefore, (1) holds.
If p + q ≤ n ≤ pq − 1, then Pn(pq) = PI

n(pq), and thus ρn(pq) = ρI
n(pq) ≤ 1

pq with equality if
and only if n = p + q or p + q + 1 by Proposition 2.2 (1). Hence, (2) holds.

If pq ≤ n ≤ pq + p − 1, then Pn(pq) = PI
n(pq) + PII

n (pq), and so ρn(pq) = ρI
n(pq) + ρII

n (pq) <
1
pq + 1

pq·k! = 1+k!
pq·k! by Propositions 2.2 (1) and (2). Thus, (3) holds.

If pq + p ≤ n ≤ pq + q − 1, then Pn(pq) = PI
n(pq) + PII

n (pq) + PIII
n (pq), and thus ρn(pq) <

1
pq + 1

pq·k! + 1
p2q =

p+(p+1)k!
p2q·k! by Proposition 2.2 (1) to (3). So (4) holds.

If pq + q ≤ n ≤ pq + q + p − 1, then Pn(pq) = PI
n(pq) + PII

n (pq) + PIII
n (pq) + PIV

n (pq), and thus
ρn(pq) < 1

pq + 1
pq·k! + 1

p2q + 1
pq2 =

pq+(pq+p+q)k!
p2q2·k! by Proposition 2.2 (1) to (4). Therefore, (5) holds.

If pq + p + q ≤ n, then Pn(pq) = PI
n(pq) +PII

n (pq) +PIII
n (pq) +PIV

n (pq) +PV
n (pq), and so ρn(pq) <

1
pq + 1

pq·k! + 1
p2q + 1

pq2 + 1
p2q2 =

pq+(pq+p+q+1)k!
p2q2·k! by Proposition 2.2 (1) to (5). Thus, (6) holds.

4. Conclusions

We note that the upper bound of (1) and (2) is sharp in Theorem 3.1, but that in (3) to (6) it is not.
Besides, from the results in Theorem 3.1 on the proportion of elements of order twice distinct odd
primes in finite symmetric groups, we observe that the upper bound of the proportion is a function f
defined on [pq − 1] = {0, 1, 2, · · · , pq − 1}. With this in mind, we make the following conjecture:

Conjecture 4.1. The proportion ρn(m) of elements of order m in Sn is controlled by a function f defined
on [m − 1] = {0, 1, 2, · · · ,m − 1}.
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