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Abstract: Nonlinear Schrödinger equations are a key paradigm in nonlinear research, attracting both
mathematical and physical attention. This work was primarily concerned with the usage of a reliable
analytic technique in order to solve two models of (2+1)-dimensional nonlinear Schrödinger equations.
By applying a comprehensible wave transformation, every nonlinear model was simplified to an
ordinary differential equation. A number of critical solutions were observed that correlated to various
parameters. The provided approach has various advantages, including reducing difficult computations
and succinctly presenting key results. Some 2D and 3D graphical representations regarding presented
solitons were considered for the appropriate values of the parameters. We also showed the effect of
the physical parameters on the dynamical behavior of the presented solutions. Finally, the proposed
approach may be expanded to tackle increasingly complicated problems in applied science.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are commonly used to describe natural
phenomena, which are strongly related to fundamental principles in applied sciences [1–3]. One of
the areas that scientists find most intriguing in the current period is nonlinear phenomena [4, 5].
Environmental factors influencing the movement or flow of fluids or gases, for example, necessitate
the use of PDEs to include and deliberate all cogent constraints in order to ensure an accurate
description of this process, while keeping in mind the inherent nonlinearity of these processes when
describing them with NPDEs [6–8]. Thus, in the quest for long-term scientific, technical, and
industrial advancements, the multidisciplinary study of NPDEs cannot be abandoned. The solutions
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to NPDEs give information on the variables that influenced the behavior of these physical
phenomena [9, 10]. Moreover, nonlinear wave equations enable a variety of innovative solutions that
are significantly different from linear wave issues [11–14]. However, analytical and numerical
approximation for the NPDEs is still in early stages of research. Developing effective numerical
algorithms is crucial for solving these problems [15–18].

Mathematicians and other researchers have given solitonic investigations a great deal of attention
since they find them to be very applicable to their work [19–22]. Solitons are nondispersive long-wave
particles that move in packets at constant velocity. Soliton theory is closely related to modern physics
and is utilized to explain several physical challenges at the forefront of this dynamic discipline. Recent
years have seen significant progress in analytic solutions to highly nonlinear differential equations,
particularly the NPDEs. This is because trying to determine the dynamic behaviors of models described
by these NPDEs can become a mirage if their analyticity is not sufficiently entrenched [23–27].

The nonlinear Schrödinger (NLS) equations are used to represent numerous nonlinear processes in
nonlinear optics and other scientific fields [28–30]. These equations explain wave propagation in
mediums with dispersive and nonlinear features. The NLS equation affects the phase and dispersion
of self-modulations in optical Kerr applications [31, 32]. Using statistical mechanics domains, the
NLS complex field dynamics have been examined in [33]. The propagation of dark and bright solitons
in optical fibres depends on the balance of self-phase modulation and group velocity dispersive
effects [34–36]. Localized nonlinear potentials have been used to study the splitting of breather
solitons of the NLS equation [37]. The nonlocal NLS describes the propagation of paraxial beams in
nonlocal medium [38–40]. The propagation of the superimposed field of Laguerre-Gaussian and
Hermite-Gaussian solitons in a nonlocal NLS was studied [41].

In this work, we first consider the (2+1)-dimensional nonlinear Schrödinger (2D-NLS)
equation [42]:

iut + uxx + uyy + δ | u |2 u = 0, (1.1)

where u(x, y, t) denotes the complex wave, x, y are the position variables and t is the time variable,
and δ denotes the nonlinear coefficient. This model appears in several areas of physics, including
electromagnetic wave propagation [43], quantum mechanics [44], and design of certain optoelectronic
devices [45]. Najafi and Arbabi introduced exact traveling wave solutions for model (1.1), using the
sine-cosine technique.

Second, we consider the (2+1)-dimensional hyperbolic nonlinear Schrödinger (HNLS) model [46–
48]:

iqy +
1
2

(qxx − qtt)+ | q |2 q = 0, (1.2)

where q(x, y, t) represents the complex wave, x, y are the position variables, and t is the time variable.
The dynamics of optical soliton propagation in mono-mode optical fibres are described by this model.
The importance of studying the HNLS equation has led numerous researchers to use it as a standard
model in their research. Ai-Lin and Ji employed the Lie group symmetry technique to find Lie point
symmetries and exact traveling solutions for the HNLS model [49]. Aliyu et al. applied the solitary
wave ansatz to investigate optical solitary waves for model (1.2) [46]. Durur et al. proposed periodic
and singular wave solutions to the HNLS equation utilizing the projected approach [47].

The remainder of this work is constructed as follows. Section 2 provides the closed form solutions
of the form L1 Q′′ + L2 Q3 + L3 Q = 0. In physics and applied mathematics, this form allows important
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and meaningful impacts. Section 3 provides the solutions for the 2D-NLS equation. Section 4 provides
the solutions for the HNLS equation. The explanation of the provided solutions is shown in Section 5.
Some 2D and 3D graphs for the solutions generated for suitable free parameter values are also included.
Finally, in Section 6, a conclusion was made and assembled based on the unparalleled study results,
along with suggestions on potential areas of the presented results that may be further investigated in
the future.

2. Closed form of solutions

We present the following equation’s closed form solutions:

L1 Q′′ + L2 Q3 + L3 Q = 0. (2.1)

Using the solver reported in [23], the solutions for the Eq (2.1) are given as
(i) When L3 = 0:

Q1,2(x, y, t) =

∓√
−L2

2L1
(ζ + %)

−1

. (2.2)

(ii) When L3
L1
< 0:

Q3,4(x, y, t) = ±

√
L3

L2
tan

√−L3

2L1
(ζ + %)

 , (2.3)

and

Q5,6(x, y, t) = ±

√
L3

L2
cot

√−L3

2L1
(ζ + %)

 . (2.4)

(iii) When L3
L1
> 0:

Q7,8(x, y, t) = ±

√
−L3

L2
tanh

√ L3

2L1
(ζ + %)

 , (2.5)

and

Q9,10(x, y, t) = ±

√
−L3

L2
coth

√ L3

2L1
(ζ + %)

 . (2.6)

Here, % is an arbitrary constant.

3. Solutions of the 2D-NLS equation

Using the transformation

u(x, y, t) = U(ξ)ei(bx+ay+ct), ξ = x + y + wt, (3.1)
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w and c denote the speed and frequency of the solitary wave. We have

iut = (−cU + iwU′)ei(bx+ay+ct),

uxx = (U′′ + 2ibU′ − b2U)ei(bx+ay+ct), (3.2)
uyy = (U′′ + 2iaU′ − a2U)ei(bx+ay+ct).

Substituting Eq (3.2) into Eq (1.1) and distinguishing the real part yields

2U′′ + δU3 − (a2 + b2 + c) U = 0 , (3.3)

whereas imaginary part yields w = −2(a + b). The solutions of Eq (3.3) are

U1,2(x, y, t) =

∓√
−δ

4
(ξ + %)

−1

δ < 0. (3.4)

Thus, the solutions for Eq (1.1) are

u1,2(x, y, t) =

∓√
−δ

4
(x + y + wt + %)

−1

ei(bx+ay+ct), δ < 0. (3.5)

U3,4(ξ) = ±

√
−4Γ

δ
tan

(√
Γ (ξ + %)

)
,Γ > 0, δ < 0. (3.6)

and

U5,6(ξ) = ±

√
−4Γ

δ
cot

(√
Γ (ξ + %)

)
,Γ > 0, δ < 0. (3.7)

Thus, the solutions for Eq (1.1) are

u3,4(ξ) = ±

√
−4Γ

δ
ei(bx+ay+ct)tan

(√
Γ (x + y + wt + %)

)
,Γ > 0, δ < 0. (3.8)

and

u5,6(ξ) = ±

√
−4Γ

δ
ei(bx+ay+ct)cot

(√
Γ (x + y + wt + %)

)
,Γ > 0, δ < 0. (3.9)

U7,8(ξ) = ±

√
4Γ

δ
tanh

(√
−Γ (ξ + %)

)
,Γ < 0, δ < 0. (3.10)

and

U9,10(ξ) = ±

√
4Γ

δ
coth

(√
−Γ (ξ + %)

)
,Γ < 0, δ < 0. (3.11)

Thus, the solutions for Eq (1.1) are

u3,4(ξ) = ±

√
4Γ

δ
ei(bx+ay+ct)tanh

(√
−Γ (x + y + wt + %)

)
,Γ < 0, δ < 0. (3.12)

and

u5,6(ξ) = ±

√
4Γ

δ
ei(bx+ay+ct)coth

(√
−Γ (x + y + wt + %)

)
,Γ < 0, δ < 0. (3.13)

Here, Γ = a2+b2+c
4 .
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4. Solutions of the HNLS equation

Using the transformation

q(x, y, t) = Q(ζ)ei(x+α2y+β2t), ζ = x + α1y + β1t, (4.1)

β1 and β2 represent the speed and frequency of the solitary wave. We have

iqy = (iα1Q′ − α2Q)ei(x+α2y+β2t),

qxx = (Q′′ + 2iQ′ − Q)ei(x+α2y+β2t), (4.2)
qtt = (β2

1Q′′ + 2iβ1β2Q′ − β2
2Q)ei(x+α2y+β2t).

Substituting Eq (4.2) into Eq (1.2) and distinguishing the real part yields

(1 − β2
1)Q′′ + 2 Q3 + (β2

2 − 2α2 − 1) Q = 0 , (4.3)

whereas the imaginary part yields α1 = β1β2 − 1. The solutions of Eq (4.3) are

Q1,2(ζ) =

∓
√

1
β2

1 − 1
(ζ + %)


−1

, β1 > 1 or β1 < −1. (4.4)

Thus, the solutions for Eq (1.2) are

q1,2(x, y, t) =

∓
√

1
β2

1 − 1
(x + α1y + β1t + %)


−1

ei(x+α2y+β2t), β1 > 1 or β1 < −1, (4.5)

Q3,4(ζ) = ±

√
Λ

2
tan


√

Λ

2(β2
1 − 1)

(ζ + %)

 ,Λ > 0, β1 > 1 or β1 < −1, (4.6)

and

Q5,6(ζ) = ±

√
Λ

2
cot


√

Λ

2(β2
1 − 1)

(ζ + %)

 ,Λ > 0, β1 > 1 or β1 < −1. (4.7)

Thus, the solutions for Eq (1.2) are

q3,4(x, y, t) = ±

√
Λ

2
ei(x+α2y+β2t) tan


√

Λ

2(β2
1 − 1)

(x + α1y + β1t + %)

 , (4.8)

and

q5,6(x, y, t) = ±

√
Λ

2
ei(x+α2y+β2t) cot


√

Λ

2(β2
1 − 1)

(x + α1y + β1t + %)

 , (4.9)

where Λ > 0, β1 > 1 or β1 < −1.

Q7,8(ζ) = ±

√
−Λ

2
tanh


√

−Λ

2(β2
1 − 1)

(ζ + %)

 , (4.10)
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and

Q9,10(ζ) = ±

√
−Λ

2
coth


√

−Λ

2(β2
1 − 1)

(ζ + %)

 . (4.11)

Thus, the solutions for Eq (1.2) are

q7,8(x, y, t) = ±

√
−Λ

2
ei(x+α2y+β2t) tanh


√

−Λ

2(β2
1 − 1)

(x + α1y + β1t + %)

 , (4.12)

and

q9,10(x, y, t) = ±

√
−Λ

2
ei(x+α2y+β2t) coth


√

−Λ

2(β2
1 − 1)

(x + α1y + β1t + %)

 , (4.13)

where Λ < 0, β1 > 1 or β1 < −1. Here, Λ = β2
2 − 2α2 − 1.

5. Physical interpretation

The nonlinear Schrödinger (NLS) equation is a sophisticated model that has captured the interest
of mathematicians and physicists due to its potential applications in applied science and new physics.
This model can accurately represent many complicated natural processes. The solutions that supply
the equation owing to the structure of the Schrödinger equation are complex wave solutions. It was
stated that research on higher dimensional models is more accurate in explaining physical phenomena
that are not linear, like Bose-Einstein condensations, ultrafast nonlinear optics, optoelectronic devices,
coastal water motions, etc.

This study uses the closed form solutions for a commonly used NPDE to solve the two models of
2D-NLS equations. More specifically, engineers, mathematicians, and physicists can utilize this form
as a box solver. The main advantages of this solver over the others are that it avoids laborious and
complicated calculations and provides a greater range of applications for solving other natural science
equations without boundary or initial conditions. This approach displays hyperbolic, trigonometric,
and rational solution forms. These solutions give wave pictures in applied sciences that describe
complex processes. For example, these solutions were developed to improve optical wave
performance in fibres. Figures 1 and 2 represent the 2D and 3D periodic wave for solution (3.12).
Figure 3 illustrates that reducing δ reduced the amplitude of the periodic wave of solution (3.12).
Furthermore, there is no shift or reverse in the periodic amplitude in Figure 3. Figures 4 and 5
represent the 2D and 3D periodic wave for solution (4.12). The 3D graphical representation 6 of
| q7(x, y, t) | depicts the 2D localized soliton wave solution of (4.12). Finally, Figure 7 clarifies the 2D
localized soliton wave solution of (4.12) for different values of t.

Ultimately, the results demonstrate the effectiveness of the proposed method and its capacity to
provide a large number of wave solutions for NPDEs, which will be helpful in the study of physics’
solitary theory. This solver’s capacity to handle a broad variety of nonlinear fractional differential
equation models is one of its main features. We also plan for considering some important physical
properties and physical structures, such as positivity preservation, maximum principle, long time
behavior, singular solutions, etc [50–53].
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Figure 1. 2D periodic wave solution of (3.12) for different values of t.

Figure 2. 3D periodic wave solution of (3.12).

Figure 3. 2D periodic wave solution of (3.12) for different values of δ.
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Figure 4. 2D periodic wave solution of (4.12) for different values of t.

Figure 5. 3D periodic wave solution of (4.12).

Figure 6. 3D localized soliton wave solution of (4.12).
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Figure 7. 2D localized soliton wave solution of (4.12) for different values of t.

6. Conclusions

This article successfully retrieved the necessary wave solutions to the governing models using the
reliable analytical method, namely, we considered the 2D-NLS equation and the HNLS equation.
There are three types of solutions: hyperbolic, trigonometric, and rational. Certain constraints are also
provided for validating the results. Graphical illustrations of some solutions are provided to clarify
these behaviors. We also clarify the physical parameter’s influence on the dynamic of the provided
solutions. We anticipate that the results presented will be valuable in understanding some physical
phenomena for various nonlinear mathematical physics models. Many scientists will use the closed
form as a box solver to solve a number of additional complicated models that emerge in the applied
sciences.
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21. L. Akinyemi, M. Şenol, U. Akpan, K. Oluwasegun, The optical soliton solutions of generalized
coupled nonlinear Schrödinger-Korteweg-de Vries equations, Opt. Quant. Electron., 53 (2021),
394. https://doi.org/10.1007/s11082-021-03030-7

22. F. Mirzaee, S. Rezaei, N. Samadyar, Numerical solution of two-dimensional
stochastic time-fractional sine-Gordon equation on non-rectangular domains using
finite difference and meshfree methods, Eng. Anal. Bound. Elem., 127 (2021), 53–63.
https://doi.org/10.1016/j.enganabound.2021.03.009

23. M. A. E. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear
partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212.
https://doi.org/10.1088/1402-4896/ab80e7

24. Z. Zhou, H. Zhang, X. Yang, CN ADI fast algorithm on non-uniform meshes for the three-
dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics,
Appl. Math. Comput., 474 (2024), 128680. https://doi.org/10.1016/j.amc.2024.128680

25. X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear
partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117.
https://doi.org/10.1186/s13662-015-0452-4

26. W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for
the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193.
https://doi.org/10.1080/00207160.2024.2323985

27. B. Q. Li, Y. L. Ma, Interaction properties between rogue wave and breathers to the manakov system
arising from stationary self-focusing electromagnetic systems, Chaos Soliton. Fract., 156 (2022),
111832. https://doi.org/10.1016/j.chaos.2022.111832

28. X. Jin, J. Jiang, J. Chi, X. Wu, Adaptive finite-time pinned and regulation synchronization
of disturbed complex networks, Commun. Nonlinear Sci., 124 (2023), 107319.
https://doi.org/10.1016/j.cnsns.2023.107319

AIMS Mathematics Volume 9, Issue 9, 24359–24371.

https://dx.doi.org/https://doi.org/10.1007/s12190-022-01760-9
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2021.11.004
https://dx.doi.org/https://doi.org/10.1007/s12190-024-02000-y
https://dx.doi.org/https://doi.org/10.3389/fphy.2020.00181
https://dx.doi.org/https://doi.org/10.1007/s12043-015-1173-7
https://dx.doi.org/https://doi.org/10.1007/s11082-021-03030-7
https://dx.doi.org/https://doi.org/10.1016/j.enganabound.2021.03.009
https://dx.doi.org/https://doi.org/10.1088/1402-4896/ab80e7
https://dx.doi.org/https://doi.org/10.1016/j.amc.2024.128680
https://dx.doi.org/https://doi.org/10.1186/s13662-015-0452-4
https://dx.doi.org/https://doi.org/10.1080/00207160.2024.2323985
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111832
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2023.107319


24370

29. Z. J. Yang, S. M. Zhang, X. L. Li, Z. G. Pang, H. X. Bu, High-order revivable complex-valued
hyperbolic-sine-Gaussian solitons and breathers in nonlinear media with a spatial nonlocality,
Nonlinear Dyn., 94 (2018), 2563–2573. https://doi.org/10.1007/s11071-018-4510-9

30. Z. Sun, J. Li, R. Bian, D. Deng, Z. Yang, Transmission mode transformation of rotating
controllable beams induced by the cross phase, Opt. Express, 32 (2024), 9201–9212.
https://doi.org/10.1364/OE.520342

31. M. A. E. Abdelrahman, N. F. Abdo, On the nonlinear new wave solutions in unstable dispersive
environments, Phys. Scr., 95 (2020), 045220. https://doi.org/10.1088/1402-4896/ab62d7

32. H. G. Abdelwahed, M. A. E. Abdelrahman, S. Alghanim, N. F. Abdo, Higher-order
Kerr nonlinear and dispersion effects on fiber optics, Results Phys., 26 (2021), 104268.
https://doi.org/10.1016/j.rinp.2021.104268

33. J. L. Lebowitz, H. A. Rose, E. R. Speer, Statistical mechanics of the nonlinear Schrödinger
equation, J. Stat. Phys., 50 (1988), 657–687. https://doi.org/10.1007/BF01026495

34. G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts, P. J. Everitt, P. A. Altin,
et al., Bright solitonic matter-wave interferometer, Phys. Rev. Lett., 113 (2014), 013002.
https://doi.org/10.1103/PhysRevLett.113.013002

35. Y. L. Ma, Nth-order rogue wave solutions for a variable coefficient Schrödinger
equation in inhomogeneous optical fibers, Optik, 251 (2022), 168103.
https://doi.org/10.1016/j.ijleo.2021.168103

36. B. Q. Li, Y. L. Ma, Interaction properties between rogue wave and breathers to the manakov system
arising from stationary self-focusing electromagnetic systems, Chaos Soliton. Fract., 156 (2022),
111832. https://doi.org/10.1016/j.chaos.2022.111832

37. O. V. Marchukov, B. A. Malomed, V. A. Yurovsky, M. Olshanii, V. Dunjko, R. G. Hulet, Splitting of
nonlinear-Schrödinger-equation breathers by linear and nonlinear localized potentials, Phys. Rev.
A, 99 (2019), 063623. https://doi.org/10.1103/PhysRevA.99.063623

38. S. Shen, Z. Yang, X. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-
Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear
media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005

39. Z. Y. Sun, D. Deng, Z. G. Pang, Z. J. Yang, Nonlinear transmission dynamics of mutual
transformation between array modes and hollow modes in elliptical sine-Gaussian cross-phase
beams, Chaos Soliton. Fract., 178 (2024), 114398. https://doi.org/10.1016/j.chaos.2023.114398

40. S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton
solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl.
Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755

41. L. M. Song, Z. J. Yang, X. L. Li, S. M. Zhang, Coherent superposition propagation of
Laguerre-Gaussian and Hermite-Gaussian solitons, Appl. Math. Lett., 102 (2020), 106114.
https://doi.org/10.1016/j.aml.2019.106114

42. M. Najafi, S. Arbabi, Traveling wave solutions for nonlinear Schrödinger equations, Optik, 126
(2015), 3992–3997. https://doi.org/10.1016/j.ijleo.2015.07.165

AIMS Mathematics Volume 9, Issue 9, 24359–24371.

https://dx.doi.org/https://doi.org/10.1007/s11071-018-4510-9
https://dx.doi.org/https://doi.org/10.1364/OE.520342
https://dx.doi.org/https://doi.org/10.1088/1402-4896/ab62d7
https://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104268
https://dx.doi.org/https://doi.org/10.1007/BF01026495
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.113.013002
https://dx.doi.org/https://doi.org/10.1016/j.ijleo.2021.168103
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111832
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.99.063623
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2021.106005
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.114398
https://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107755
https://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106114
https://dx.doi.org/https://doi.org/10.1016/j.ijleo.2015.07.165


24371

43. M. Dehghan, A. Shokri, A numerical method for two-dimensional Schrödinger equation
using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136–146.
https://doi.org/10.1016/j.camwa.2007.01.038

44. S. V. Mousavi, S. Miret-Artés, On non-linear Schrödinger equations for open quantum systems,
Eur. Phys. J. Plus, 134 (2019), 431. https://doi.org/10.1140/epjp/i2019-12965-6

45. W. Huang, C. Xu, S. T. Chu, S. K. Chaudhuri, The finite-difference vector beam
propagation method: Analysis and assessment, J. Lightwave Technol., 10 (1992), 295–305.
https://doi.org/10.1109/50.124490

46. A. I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Optical solitary waves and conservation laws to the
(2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Mod. Phys. Lett. B, 32 (2018),
1850373. https://doi.org/10.1142/S0217984918503736

47. H. Durur, E. Ilhan, H. Bulut, Novel complex wave solutions of the (2+1)-
dimensional hyperbolic nonlinear Schrödinger equation, Fractal Fract., 4 (2020), 41.
https://doi.org/10.3390/fractalfract4030041

48. D. Baleanu, K. Hosseini, S. Salahshour, K. Sadri, M. Mirzazadeh, C. Park, A. Ahmadian,
The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons, AIMS
Mathematics, 6 (2021), 9568–9581. https://doi.org/10.3934/math.2021556

49. G. Ai-Lin, L. Ji, Exact solutions of (2+1)-dimensional HNLS equation, Commun. Theor. Phys., 54
(2010), 401. https://doi.org/10.1088/0253-6102/54/3/04

50. X. Yang, H. Zhang, The uniform l1 long-time behavior of time discretization for time-fractional
partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644.
https://doi.org/10.1016/j.aml.2021.107644

51. X. Yang, H. Zhang, Q. Zhang, G. Yuan, Simple positivity-preserving nonlinear finite volume
scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn.,
108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2

52. X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-
dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80.
https://doi.org/10.1007/s10915-024-02511-7

53. X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted
meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972.
https://doi.org/10.1016/j.aml.2023.108972

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 24359–24371.

https://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.01.038
https://dx.doi.org/https://doi.org/10.1140/epjp/i2019-12965-6
https://dx.doi.org/https://doi.org/10.1109/50.124490
https://dx.doi.org/https://doi.org/10.1142/S0217984918503736
https://dx.doi.org/https://doi.org/10.3390/fractalfract4030041
https://dx.doi.org/https://doi.org/10.3934/math.2021556
https://dx.doi.org/https://doi.org/10.1088/0253-6102/54/3/04
https://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107644
https://dx.doi.org/https://doi.org/10.1007/s11071-022-07399-2
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02511-7
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108972
https://creativecommons.org/licenses/by/4.0

	Introduction
	Closed form of solutions
	Solutions of the 2D-NLS equation
	Solutions of the HNLS equation
	Physical interpretation
	Conclusions

