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Abstract: The latest advances in engineering, science, and technology have contributed to an 

enormous generation of datasets. This vast dataset contains irrelevant, redundant, and noisy features 

that adversely impact classification performance in data mining and machine learning (ML) techniques. 

Feature selection (FS) is a preprocessing stage to minimize the data dimensionality by choosing the 

most prominent feature while improving the classification performance. Since the size data produced 

are often extensive in dimension, this enhances the complexity of search space, where the maximal 

number of potential solutions is 2nd for n feature datasets. As n becomes large, it becomes 

computationally impossible to compute the feature. Therefore, there is a need for effective FS 

techniques for large-scale problems of classification. Many metaheuristic approaches were utilized for 

FS to resolve the challenges of heuristic-based approaches. Recently, the swarm algorithm has been 

suggested and demonstrated to perform effectively for FS tasks. Therefore, I developed a Hybrid 

Mutated Tunicate Swarm Algorithm for FS and Global Optimization (HMTSA-FSGO) technique. The 

proposed HMTSA-FSGO model mainly aims to eradicate unwanted features and choose the relevant 

ones that highly impact the classifier results. In the HMTSA-FSGO model, the HMTSA is derived by 

integrating the standard TSA with two concepts: A dynamic s-best mutation operator for an optimal 

trade-off between exploration and exploitation and a directional mutation rule for enhanced search 

space exploration. The HMTSA-FSGO model also includes a bidirectional long short-term memory 

(BiLSTM) classifier to examine the impact of the FS process. The rat swarm optimizer (RSO) model 

can choose the hyperparameters to boost the BiLSTM network performance. The simulation analysis 

of the HMTSA-FSGO technique is tested using a series of experiments. The investigational validation 

of the HMTSA-FSGO technique showed a superior outcome of 93.01%, 97.39%, 61.59%, 99.15%, 

and 67.81% over diverse datasets. 
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1. Introduction  

FS is nothing but an ML model, which is utilized to decrease the dimension of a data set [1]. Its 

main intention is to pick the significant feature for an analytical method, allowing the ones that are 

terminated or will not deliver beneficial data, which contain numerous advantages. One vital advantage 

is enhanced interpretability, which will be mainly helpful if the model decisions want to be clarified to 

human consumers [2]. Furthermore, FS can strengthen performance and simplification by eliminating 

noise from the data and decreasing the number of features that reduce the danger of overfitting the 

training dataset. Last, FS can result in forecast times and quicker training owing to the diminished 

dimension of the dataset [3]. Generally, numerous techniques are accessible and can be acquired to 

achieve FS. One of the best choices is using filter models that trust the numerical events of the feature 

to recognize the appropriate one. These models are independent of ML techniques and are used in any 

method [4]. Otherwise, wrapper models can be employed, which includes training the method with 

dissimilar mixtures of features and choosing the grouping that produces the finest identification 

performance. Whereas many are more mathematically costly than filter models, wrapper techniques 

consider the contact between features and method, foremost to more excellent performance [5]. 

Embedded models constructed using ML techniques can be employed for FS by classifying the 

related features over a mixture of FS and model training. Hybrid models that merge the powers of 

dissimilar techniques are chosen for FS, such as utilizing a filter model to pre-pick features and a 

wrapper model to perfect the choice [6]. In FS, addressing the optimum sub-set is a vital problem. 

Complete exploration can yield every possible sub-set by inspecting the full set of features [7]. This 

method is impossible for a vast dataset and has a very high computing cost since if a dataset grasps M 

features, then 2M sub-sets of features are present [8]. In the preceding dual years, meta-heuristics have 

established their efficacy and productivity in resolving the challenging and larger-scale issues in ML, 

data mining, and engineering design applications. The mid-level models are proposed to develop 

further representation to aid high-level statistical techniques [9]. There are three basic classes of these 

techniques: Evolutionary-based (for instance, evolutionary and genetic models), physics-based, and 

swarm-based (for instance, ant and bee colonies). While utilizing these techniques, dual different 

criteria are accessible, such as intensification (exploitation of the finest solution obtained) and 

diversification (exploration of the searching space) [10]. As indicated, swarm models derive the search 

mechanism of animals such as moths, bats, ants, cuckoos, etc. Currently, swarm techniques are 

projected and have shown a valued performance for numerous FS tasks. 

I am motivated by the illustrated efficiency of meta-heuristic approaches, specifically swarm-

based models, in addressing convolutional and large-scale threats across ML, engineering design 

applications, and data mining. These methods, inspired by natural behaviors seen in animals such as 

bats, moths, and ants, present robust outcomes for optimization tasks by balancing intensification 

(exploitation of the optimum outcome) and diversification (exploration of the search space). I also 

aims to advance these techniques by presenting the hybrid model, incorporating novel mutation 

scenarios to improve global optimization procedures and feature selection. The method contributes 
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substantially to enhancing the efficiency and effectualness of solving real-world issues where precise 

feature selection and optimization are significant, thereby improving the field's abilities to handle 

growing convolutional data-driven threats. 

I develop a Hybrid Mutated Tunicate Swarm Algorithm for FS and Global Optimization 

(HMTSA-FSGO) technique. The proposed HMTSA-FSGO model mainly aims to eradicate unwanted 

features and choose the relevant ones that highly impact the classifier results. The HMTSA-FSGO 

model, the HMTSA is derived by integrating the standard TSA with two concepts: Dynamic s-best 

mutation operator for optimal trade-off between exploration and exploitation and directional mutation 

rule for enhanced search space exploration. The HMTSA-FSGO model also includes a bidirectional 

long short-term memory (BiLSTM) classifier to examine the impact of the FS process. The 

hyperparameters can be chosen by rat swarm optimizer (RSO) to boost the Bi-LSTM model 

performance. The experimental values highlighted that the HMTSA-FSGO model gains better 

performance over other models. The novel contributions of the HMTSA-FSGO model are as follows: 

• The HMTSA-FSGO technique introduces the HMTSA model, which innovatively 

incorporates the standard TSA with dynamic s-best mutation and directional mutation 

rules. This combination improves the models' ability to balance exploration and 

exploitation during optimization tasks, enhancing their efficiency in exploring 

convolutional search spaces. The model optimizes parameters, which is ideal for robust 

performance in dynamic environments, namely plant disease classification with BiLSTM. 

• The HMTSA-FSGO model integrates the BiLSTM classifier to evaluate the impact of FS, 

joining its sequential learning capabilities to improve the accuracy of the disease 

classification. This incorporation explores the efficiency of FS to optimize data 

representation for enhanced detection results in agricultural contexts 

• The presented technique also utilizes the RSO model for optimizing hyperparameters, 

improving the accomplishment of the BiLSTM network. This confirms an optimum 

setting custom-made for accurate and efficient recognition of plant disease, enhancing the 

accuracy of the detection in agricultural applications 

• The novelty of the HMTSA-FSGO method is in the incorporation of HMTSA with 

BiLSTM techniques for plant disease classification, presenting a fusion model that 

integrates evolutionary swarm intelligence with DL approaches to attain improved 

robustness and accuracy in disease detection 

2. Literature review 

Houssein et al. [11] introduced an innovative variation of the Coati Optimizer Algorithm (COA), 

named eCOA. The developed eCOA includes the RUNge Kutta Optimizer (RUN) and COA techniques. 

The Enhanced Solution Quality (ESQ) and Scale Factor (SF) device from RUN were used to solve the 

higher faults of COA. Also, the eCOA is very useful for dual and multi-class identification of feelings 

utilizing multi-layer perceptron neural networks (MLPNNs). In [12], a hybrid ML technique 

incorporating dual FS models and a Bayesian optimizer (BO) technique is projected. The method 

employed dual Random Forest (RF) models of feature significance. Depending on the FS outcomes, 

ten techniques were proposed and equated: (1) 5 separate ML methods with RF, Bagged Trees 

Regression (BTR), Classification and Regression Trees (CART), SVR, and MLP; and (2) similar 

methods adjusted by the BO models. Mostafa et al. [13] projected a novel modified Gorilla group 
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optimizer (mGTO) technique using a set of operators. The combination of CICD and TFO was used to 

optimize the exploitation capability. Kwakye et al. [14] proposed a hybrid SI-based MA named Particle 

Swarm-guided Bald Eagle Search (PS-BES) model. The technique uses the rapidity of PS to guide BE 

in certifying an even changeover of the technique from exploration to exploitation. Furthermore, the 

method presents the Attack-Retreat-Surrender model, a novel local-optimal escape approach to 

improve the balance among intensification and diversification of PS-BES. 

Houssein et al. [15] projected a wrapper FS technique that unites the RSO model to evade local 

optimum. In the projected technique, the transfer function (TF) is inserted to balance global and local 

search by adapting a constant searching space into a separate space. In [16], a new hybrid 

metaheuristic technique named SSA-FGWO is proposed. The hybrid tool contains dual stages, such 

as solid exploitation, to upgrade the leaders' location in the chain populace. In [17], an advanced 

technique, namely GNDAOA, employed three components: Generalized Normal Distribution 

Optimizer (GNF), Arithmetic Optimizer Algorithm (AOA), and OBL. Xu et al. [18] projected a CPA 

variant called the Covariance Gaussian Cuckoo Colony Predation Algorithm (CGCPA) model. The 

intended GC variable approach was mainly employed to reorganize the agent populace in CPA. In [19], 

two improved TSA models are introduced, OCSTA and COCSTA, integrating chaos theory, 

opposition-based learning (OBL), and Cauchy mutation. OCSTA employs static and dynamic OBL, 

while COCSTA implements centroid opposition-based computing. In [20], the Multi-Strategy Hybrid 

Harris Hawks Tunicate Swarm Optimization Algorithm (MSHHOTSA) model is introduced. This 

method integrates hyperbolic tangent domain modification and utilizes a non-linear convergence factor. 

The HHO model is also used. 

Alizadeh et al. [21] present a model by integrating meta-heuristic models and various mechanisms. 

It also uses salp swarm optimization (SSO) and African vulture optimization algorithm (AVOA) 

methods for optimization. Furthermore, opposition-based learning (OBL) and β-hill climbing (BHC) 

approaches are incorporated with the AVOA-SSA model. Pan, Lei, and Wang [22] propose the Discrete 

Extended Permutation Flow Shop Scheduling Problem (DEPMSP) model by incorporating factory and 

machine assignments into an extended machine assignment model, utilizing a Knowledge-Based Two-

Population Optimization (KTPO) method to minimize energy utilization and delay concurrently. Zhao, 

Di, and Wang [23] focused on the energy-efficient Distributed Blocking Flow Shop Scheduling 

Problem (EEDBFSP) employing a hyperheuristic with Q-learning (HHQL), which chooses low-level 

heuristics (LLHs) based on historical feedback to minimize total tardiness (TTD) and total energy 

consumption (TEC). Zhao et al. [24] present an Improved Iterative Greedy (IIG) model, employing 

the Variable Neighborhood Descent (VND) method with perturbation operators based on critical 

factories. It also integrates a Q-learning mechanism to select weighting coefficients. 

Limitations and research gaps 

The existing studies need to be revised in various areas. For instance, eCOA integrates RUN with 

COA, potentially enhancing computational complexity. Hybrid ML models with Bayesian 

optimization may need help with high-dimensional spaces and scalability. The mGTO and PS-BES 

methods must balance algorithm parameters for efficient synergy, while RSO-based wrapper FS needs 

careful parameter tuning for robustness. SSA-FGWO, GNDAOA, OCSTA, COCSTA, and 

MSHHOTSA each face limitations in optimizing various and sometimes conflicting strategies. 

Incorporating SSO, AVOA, OBL, and BHC needs cautious coordination and parameter management 
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to reduce computational complexities and ensure efficient accomplishment across varied optimization 

tasks. A notable research gap is in the comparative analysis of the HMTSA against other recent meta-

heuristic optimization models in terms of feature selection efficiency and computational 

accomplishment. Moreover, more exploration needs to be conducted into the specific impact of 

HMTSA's incorporated mutation strategies to optimize complex search spaces, specifically within the 

context of agricultural data and BiLSTM-based disease classification methods. Addressing these gaps 

could provide valuable insights into the effectiveness and applicability of the models across diverse 

optimization scenarios. 

3. Methodology 

In this work, an HMTSA-FSGO method is presented. The proposed HMTSA-FSGO model 

mainly aims to eradicate the redundant features and choose the relevant ones that highly impact the 

classifier results. Figure 1 represents the working flow of the HMTSA-FSGO method. 

 

Figure 1. Overall flow of HMTSA-FSGO technique. 

3.1. Process involved in HMTSA 

In 2024, Chandran and Mohapatra proposed a new metaheuristic approach named the TSA that 
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stimulates the foraging behaviors of tunicates [25]. All the tunicates are cylindrical and show a 

gelatinous tunic that helps to connect each tunicate. However, TSA is based on two dissimilar 

behavioral patterns of tunicate in the deep sea, such as swarm intelligence and jet propulsion to 

discover food sources (viz., the optimum solution). Figure 2 illustrates the flowchart of the TSO model, 

and also the mathematical modelling of TSA is given below: 

• Avoiding conflict between the search individual. 

• Moving to the optimum search individuals. 

• Converge towards the area surrounding the optimum search individuals. 

 

Figure 2. Flowchart of TSA. 

On the other hand, the swarm intelligence technique helps to update the tunicate's location 

according to the optimum solution. 

Avoiding conflict between the search individuals: The 𝐴 vector determines the updated location of 

the individual to avoid conflict between the search individuals as follows: 

𝐴 =
�⃗�

�⃗⃗⃗�
                                                                     (1) 

�⃗� = 𝑟2 + 𝑟3 − �⃗�                                                             (2) 

�⃗� = 2 ∗ 𝑟1                                                                  (3) 
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�⃗⃗⃗� = ⌊𝑃𝑚𝑖𝑛 + 𝑟1 ∙ (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)⌋                                           (4) 

Here, �⃗⃗⃗� shows the social forces between the tunicates. The gravitational force and the water 

stream rate from the deep sea are �⃗� and �⃗�, respectively. 𝑟1, 𝑟2 , and 𝑟3 are uniform distribution 

random numbers in [0,1]. 𝑃𝑚𝑖𝑛 and 𝑃 max are the initial and subordinate speeds of tunicates fixed as 

1 and 4, respectively. 

Moving to the better search, individual: After avoiding the conflict between the tunicates, everyone 

proceeded to the optimum tunicates. Eq (5) determines the mathematical formula for approaching the 

optimum tunicates. 

𝑆𝐷⃗⃗⃗⃗⃗⃗ = |𝐹𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 ∗ 𝑋(𝑡)|                                               (5) 

where 𝐹𝑏𝑒𝑠𝑡  is the food location, 𝑋(𝑡)  denotes the tunicate location, and 𝑟𝑎𝑛𝑑 ∈ [0,1], 𝑆𝐷⃗⃗⃗⃗⃗⃗  
represents the spatial distance from the tunicates to the food source. 
Converging to the region nearby the better search for individuals: The tunicate converges to the 

location of optimum tunicates as denoted in Eq (6) and Eq (7). 

𝑋(𝑡) = 𝐹𝑏𝑒𝑠𝑡 + 𝐴. 𝑆𝐷⃗⃗⃗⃗⃗⃗ , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5                                      (6) 

𝑋(𝑡) = 𝐹𝑏𝑒𝑠𝑡 − 𝐴. 𝑆𝐷⃗⃗⃗⃗⃗⃗ , 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5                                      (7) 

Now, 𝑋(𝑡) shows the updated location of the tunicate concerning the food location 𝐹𝑏𝑒𝑠𝑡 . 

Swarming behavior of tunicates: In the swarm intelligence, the tunicate position is updated 

according to the locations of the first two optimum tunicates.  

𝑋𝑖(𝑡 + 1) = {

𝑋𝑖(𝑡) + 𝑋𝑖−1(𝑡 + 1)

2 + 𝑟1
, 𝑖𝑓 𝑖 > 1

𝑋𝑖(𝑡), 𝑖𝑓 𝑖 = 1

                               (8) 

In Eq (8), 𝑖 =  1, 2, . . . 𝑁, 𝑁 indicates the population size, 𝑋𝑖(𝑡 + 1), and 𝑋𝑖−1(𝑡 + 1) are the 

updated locations of the present and prior search individuals at the next iteration. 

Adaptive 𝒔‐best mutation scheme: One of the primary key features is the exploration‐exploitation 

balance used to search capability better [26]. In the HMTSA technique, the present solution generates 

a new solution with no bias, and the continuing shift from exploration to exploitation is lost. Now, the 

𝑆‐optimum mutation is presented. The 𝑠‐optimum mutation randomly chooses one from the 𝑆 range 

to generate a new solution. Here, the 𝑖‐ 𝑡ℎ updated solution is produced by mutating any solution 

arbitrarily selected from the topmost 𝑆 or mutating the present solution. Parameter 𝑆 is nonlinearly 

reduced, which enables the choice of a different search space; however, the solution selected becomes 

more constrained. This improves the diversity and good search capability while it shifts to exploitation. 

During the exploitation, it focuses on a smaller range of selective solutions near the global optimum. 

𝑦 = 𝑋𝑠𝑏𝑒𝑠𝑡 + 𝐹 × (𝑋𝑟1 − 𝑋𝑟2)                                             (9) 

where 𝑋𝑠𝑏𝑒𝑠𝑡  is the solution from the top 𝑆  𝑁  solutions rather than the deterministic optimum 

solution, the 𝑋𝑟1 and 𝑋𝑟2 are arbitrarily chosen entities from the whole generation, which satisfy 
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that 𝑟1  is not equivalent to 𝑟2 . Either is comparable to the existing individual. 𝐹  are a constant 

chosen within [0,1], and 𝑆 is linearly dropped. 

𝑆𝑡 = 1 − (1 −
1

𝑁
) ×

𝑡 − 1

𝑇 − 1
                                             (10) 

In Eq (10), 𝑡  refers to the existing time, 𝑇  denotes the maximum iteration count, and 𝑁 

indicates the population size. Hence, the significant value of 𝑆  occurs in the solution for better 

exploration, whereas in the later generation, 𝑆  becomes small to function on the exploitation 

enhancement. 

Directional mutation rule: Modification of the searching agent’s direction makes it possible to find 

within the search range efficiently. The mutated solutions exploit the guiding data without any bias to 

any direction, and the 𝑑-directed values are added to Eq (9). 

𝑦 = 𝑋𝑠𝑏𝑒𝑠𝑡 + 𝑑 × 𝐹 × (𝑋𝑟2 − 𝑋𝑟3)                                    (11) 

𝑑 value is altered with the fitness of the arbitrarily chosen solution as follows. 

𝑑 = {
1   𝑖𝑓𝑓𝑋𝑟2

< 𝑓𝑋𝑟3

−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                               (12) 

Nearest neighbor comparison (NNC): The concept trial gets an assessment value worse than the 

present solution. This mainly occurs in a metaheuristic algorithm, which causes wasted time, and the 

search arrow moves farther from the global optimum solution. NNC is integrated into the adaptive 

mutation approach and added with the HMTSA technique to prevent and decrease redundant function 

assessments. NNC exploits the 𝑘‐nearest neighbour (𝑘𝑁𝑁) predictor to judge whether the newest 

solution is worth assessing. Bi-LSTM predictor relies on active learning that decreases the strict 

assessment number via the search techniques. For trial vector 𝑣, nearby neighbour 𝑋𝑛 is discovered 

through the distance measure represented in Eq (13). 

𝑑(𝑥, 𝑣) = √∑(

𝐷

𝑖=1

𝑋𝑖 − 𝑣𝑖

𝑥max − 𝑋min 
)2                                     (13) 

𝑑(𝑥, 𝑣)  denotes the distance between 𝑥  and 𝑣  vectors .  𝑥 max,  𝑋min  are the maximal and 

minimal values of vector 𝑋. So, 𝑋𝑛 refers to the minimum distance to the vector 𝑣. 

Compare 𝑋𝑛 with the solution. If 𝑋𝑛 worsens, the trial vector skips it; otherwise, it will assess. 

3.1.1. Application of Swarm Intelligence Model in FS 

Swarm intelligence optimization models are extensively utilized in FS to improve the 

effectiveness and efficiency of ML techniques. These approaches, motivated by the overall 

characteristics of natural swarms, namely bees, birds, and ants, utilize populace-based search strategies 

to navigate convolutional feature spaces. They also outperform in balancing exploration (searching for 

diverse subsets of features) and exploitation (refining the best feature subsets) for identifying optimum 

feature combinations that optimize anticipative accomplishment while minimizing computational 

costs. By iterative computing and choosing subsets of features depending on fitness criteria, swarm 
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intelligence algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), 

and Genetic Algorithm (GA), contribute crucially to automating the FS procedure, enhancing the 

interpretability of the method, and improving the comprehensive predictive accuracy in several areas 

comprising image processing, financial forecasting, and bioinformatics [27]. 

3.1.2. Fitness function of HMTSA 

The feature combination typically has 2𝑁 in FS if the feature vector size is 𝑁 [28]. The hybrid 

mechanism dynamically explores the search range and generates a better feature combination. FS falls 

within a multiobjective problem since it should fulfil multiple objectives to get a better solution that 

increases the performance and decreases the selected features. The fitness function to determine a 

solution is constructed to balance both objectives. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛬𝑅(𝐷) + 𝛽
|𝑌|

|𝑇|
                                           (14) 

In Eq (14), 𝛥𝑅(𝐷) is the classification error rate. |𝑌| refers to the size of the subset, and |𝑇| 

shows the overall number of features. 𝛼 refers to parameter ∈ [0, 1] concerning the weight of the 

classifier error rate, correspondingly and 𝛽 = 1 − 𝛼 specifies the importance of the feature reduction. 

The effects will be the neglect of solutions if the assessment function considers the classifier accuracy, 

which might have similar accuracy and lesser features chosen that serve as a critical factor in 

decreasing the problem's dimensionality. 

3.2. Classifier selection 

Next, the HMTSA-FSGO model also includes a BiLSTM classifier to examine the impact of the 

FS process. LSTM is a special RNN with a recurrent hidden layer (HL) named memory units [29]. 

3.2.1. BiLSTM Model 

Input Sequences: Input data, generally sequences of feature vectors or tokens, are given using the 

BiLSTM method. Each input sequence can portray a time series, text sequence, or sequential data. 

Bidirectional Processing: The BiLSTM technique comprises two LSTM networks: one processes 

the input sequence forward in time (from the beginning to the end), and the other processes it 

backwards (from the end to the beginning). This bidirectional processing assists in capturing 

dependencies and patterns in both directions of the input sequence. 

Hidden State Calculation: As the input sequence is processed via every LSTM unit (forward and 

backwards), hidden states are computed at every time step. These hidden states encapsulate data about 

the input sequence up to that point, considering both past and future contexts due to bidirectional 

processing. 

Concatenation: The outputs (hidden states) from the forward and backward LSTMs at each time 

step are concatenated. This integrated representation captures an overall understanding of the input 

sequence related to unidirectional LSTM methods. 

Output Layer: The concatenated hidden states are then sent to an output layer, which usually 

comprises additional processing (such as dense layers or softmax activation) relying on the specific 

task, namely classification or regression. 
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Training and Optimization: The entire BiLSTM method is trained using labelled data with 

appropriate loss functions (e.g., categorical cross-entropy for classification). During training, the 

model's parameters (weights and biases) are optimized by employing backpropagation through time 

(BPTT) to minimize the loss function and improve prediction accuracy. 

Prediction: Once trained, the BiLSTM model can be used to make predictions on new input 

sequences. The model's bidirectional architecture and learned representations enable it to capture 

complex dependencies and patterns in sequential data effectively. It benefits natural language 

processing (NLP), time series, and biological sequence analysis. 

3.2.2. Classification process 

Self‐connection exists within the memory units. It has forgotten the input and output gates for all 

the memory cells. The HL of LSTM is termed the LSTM cells. LSTM can plot long‐term dependency 

by determining all the memory cells with gates ℜ𝑑, where the memory size of HL of LSTM is 𝑑. The 

LSTM cells have the input 𝑥𝑡 and the output ℎ𝑡 layers at iteration 𝑡. LSTM has three gates, namely 

existing input 𝑥𝑡 and HL 𝑏𝑡−1: input gate 𝑖𝑡, forget gate 𝑓𝑡, and output gate 0𝑡. Also, it considers 

the input cell layer 𝑠𝑡, the output cell layer 𝑐𝑡, and the prior output cell layer 𝑐𝑡−1 while updating 

and training parameters. 

These gates are evaluated as follows. 

𝑖𝑡 = 𝜎(𝑤𝑖𝑥
𝑥𝑡 + 𝑤𝑖ℎ

ℎ𝑡−1 + 𝑏𝑖)                                            (15) 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥
𝑥𝑡 + 𝑤𝑓ℎ

ℎ𝑡−1 + 𝑏𝑓)                                            (16) 

𝑜𝑡 = 𝜎(𝑤𝑜𝑥
𝑥𝑡 + 𝑤𝑜ℎ

ℎ𝑡−1 + 𝑏𝑜)                                           (17) 

𝑠𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑠𝑥
𝑥𝑡 + 𝑤𝑠ℎ

ℎ𝑡−1 + 𝑏𝑠)                                        (18) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑠𝑡                                                     (19) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑐𝑡)⨀𝑜𝑡                                                        (20) 

where ⨀  refers to the component‐wise product; 𝑤𝑖 , 𝑤𝑓 , 𝑤𝑜 , and 𝑤𝑠  denote the weighing factor 

utilized to map the HL and inputted to the gates mentioned above, and the input cell states; 𝑏𝑖, 𝑏𝑓, 

𝑏𝑜, and 𝑏𝑠 are bias vectors; and 𝜎 and tanh are the sigmoid and tangent functions. 

The last output of LSTM is a vector of output, as stated in Eq (21). 

𝑌𝑡 = [ℎ𝑡−𝑛, … … … , ℎ𝑡−1]                                                  (21) 

The Bi-LSTM links two HLs into one output layer. The backward‐layer output series, ℎ⃡ , is 

evaluated by the reversed input from time 𝑡 − 𝑛  to 𝑡 − 1 . The forward layer output series ℎ⃗  is 

repeatedly computed by the input in the positive series from time 𝑡 − 𝑛 to 𝑡 − 1. Both layers' outputs 

are evaluated using the typical LSTM updating equation. This representation is concatenated together 

through the attention module. The BiLSTM layer produces the output vector where all the elements 

are evaluated in Eq (22). 
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𝑦𝑡 = 𝜎(ℎ→𝑡, ℎ↔𝑡)                                                         (22) 

The model could capture several salient words where 𝜎 indicates the soft attention function for 

combining both output sequences. Therefore, the last output of the Bi-LSTM layer is given in Eq. (23). 

𝑌𝑡 = [𝑦𝑡−𝑛, … … . , 𝑦𝑡−1]                                                    (23) 

3.3. Hyperparameter optimization 

To enhance the performance of the BiLSTM model, the RSO technique is implemented in the 

hyperparameter tuning process [30]. Diverse in size and weight, Rats comprise black and brown rat 

variants, with females named as does and males as bucks. Rats are well known for their intelligence; 

they engage in activities like training, chasing, boxing, and jumping. Despite their intelligence, rat 

aggressiveness may pave the way to the death of some animals. This study focuses on mathematically 

modelling rat hunting and chasing behaviors to develop the RSO model for optimization objectives. 

The proposed RSO technique and the fighting and chasing behaviors of rats are discussed in the 

following section.  

3.3.1. Chasing the prey 

Rats are naturally sociable creatures that hunt the target in packs through social behaviors. The 

optimum searching agent should know the prey location to describe these behaviors. Based on the 

optimum search agent, the other search agents could update the positions, and it is given below: 

�⃗⃗� = 𝐴. �⃗⃗�𝑖(𝑥) + 𝐶. (�⃗⃗�𝑟(𝑥) − �⃗⃗�𝑖(𝑥))                                   (24) 

In Eq (24), �⃗⃗�  is the resulting vector or a position in the searching space, �⃗⃗�𝑖(𝑥)  implies the 

current position or solution vector influenced by the parameter 𝑥 , and �⃗⃗�𝑟(𝑥)  denotes a reference 
position or vector also influenced by 𝑥 , potentially showing a global best solution or a guiding 

reference point. 𝐴 and 𝐶 are scalar coefficients. 𝐴 scales the influence of �⃗⃗�𝑖(𝑥) directly, and 𝐶 

scales the difference between �⃗⃗�𝑖(𝑥)  and �⃗⃗�𝑟(𝑥) , adjusting the influence of the reference position 

relative to the present position. 

𝐴 = 𝑅 − 𝑥 × (
𝑅

Max𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
),                                         (25) 

where 𝑥 = 0,1,2, …, Max𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, and: 

𝐶 = 2. 𝑟𝑎𝑛𝑑( )                                                      (26) 

𝑅 depicts a constant or a predefined value related to the optimization procedure. 𝑥 illustrates 

the current iteration or some form of iteration index. Max𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 refers to the maximum number of 

iterations set for the optimization procedure. Also, 𝑟𝑎𝑛𝑑(⋅) shows a function that generates random 

numbers, and 2 represents a constant multiplier. 𝑅 and 𝐶 are independent random parameters within 

[1,5] and [0,2] . The 𝐴  and 𝐶  parameters result in the best exploitation and exploration at the 

iteration. 
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3.3.2. Fighting with prey 

Eq (27) describes the interaction of rats with the target, 

𝑃𝑖
⃗⃗⃗(𝑥 + 1) = |𝑃𝑟

⃗⃗⃗⃗ (𝑥) − �⃗⃗�|,                                            (27) 

In Eq (27), �⃗⃗�𝑖(𝑥 + 1) is the revised following location of the rat. It saves the better solution, 

changes other solutions' positions, and compares search agents based on the best one. The parameter 

is changed to attain various locations corresponding to the existing location. Also, this concept is 

extended in an 𝑛‐dimensional setting. Thus, the revised values of the 𝐴 and 𝐶 parameters ensure 

exploitation and exploration. Figure 3 defines the flowchart of RSO. 

 

Figure 3. Flowchart of RSO. 

The RSO technique derives an FF to attain better classifier results. It describes a positive integer 

to characterize the superior outcome of the solution candidate. Here, the reduction of the classifier 

error rate is regarded as the FF. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                  (28) 
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4. Result analysis and discussion 

4.1. Dataset details  

The simulation analysis of the HMTSA-FSGO method is tested under five distinct medical 

datasets [31]. The datasets include various features and are collected from the UCI repository. The 

details relevant to the dataset are given in Table 1. 

Table 1. Details on database. 

S. No Dataset Name No. of Features No. of Samples Classes 

Dataset 1 Hepatitis 19 155 2 

Dataset 2 Breast cancer 9 699 2 

Dataset 3 Lung Cancer 56 32 3 

Dataset 4 Dermatology 34 366 6 

Dataset 5 Arrhythmia 279 452 16 

4.2. Best cost analysis of HMTSA-FSGO technique 

Table 2 represents the features obtained by the HMTSA-FSGO technique with existing FS models 

on all datasets. The HMTSA-FSGO technique has chosen the optimal number of features on all 

datasets, selecting 8, 4, 23, 17, and 154 features under datasets 1–5. 

Table 2. FS on five datasets. 

S. No Dataset Name No. of Features Selected Features 

Dataset 1 Hepatitis 19 8 

Dataset 2 Breast cancer 9 4 

Dataset 3 Lung Cancer 56 23 

Dataset 4 Dermatology 34 17 

Dataset 5 Arrhythmia 279 154 

Table 3 and Figure 4 represent the best fitness values (BFVs) of the HMTSA-FSGO technique 

with other FS models [32]. The results indicate that the ant lion optimization (ALO) and grey wolf 

optimization (GWO) methods have shown worse BFV values on all datasets. On continuing with the 

Salp swarm algorithm (SSA), PSO and GA methods have obtained closer BFV values. Although the 

improved SSA (ISSA) has gained reasonable BFV, the HMTSA-FSGO technique demonstrates 

optimal BFV values. It is noticed that the HMTSA-FSGO technique accomplishes a lower BFV of 

0.0211, whereas the ISSA, SSA, PSO, GA, ALO, and GWO methods obtain higher BFV of 0.0284, 

0.0378, 0.0323, 0.0482, 0.0832, and 0.1097, correspondingly. 
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Table 3. BFV analysis of HMTSA-FSGO technique with other FS methods under five datasets. 

BFVs 

Dataset HMTSA-FSGO ISSA SSA PSO GA ALO GWO 

Hepatitis 0.0560 0.0692 0.0775 0.0861 0.0868 0.1298 0.1961 

Breast cancer 0.0037 0.0095 0.0347 0.0346 0.0226 0.0407 0.0400 

Lung cancer 0.0221 0.0302 0.0300 0.0470 0.0319 0.1894 0.2536 

Dermatology 0.0009 0.0015 0.0174 0.0206 0.0180 0.0192 0.0227 

Arrhythmia 0.0228 0.0317 0.0295 0.0396 0.0817 0.0369 0.0361 

Average 0.0211 0.0284 0.0378 0.0323 0.0482 0.0832 0.1097 

 

Figure 4. BFV analysis of the HMTSA-FSGO technique under five datasets. 

Table 4 and Figure 5 characterize the average fitness values (AFVs) of the HMTSA-FSGO 

technique with other FS methods. The outcomes specify that the ALO and GWO have revealed worse 

AFV values on all datasets. On continuing with, the SSA, PSO, and GA techniques have gained closer 

AFV values. Even though the ISSA has attained reasonable AFV, the HMTSA-FSGO method validates 

optimal AFV values. Note that the HMTSA-FSGO technique achieves a lower AFV of 0.039, whereas 

the ISSA, SSA, PSO, GA, ALO, and GWO methods obtain higher AFV of 0.054, 0.062, 0.100, 0.099, 

0.085, and 0.121, correspondingly.  
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Table 4. AFV analysis of HMTSA-FSGO technique with other FS models under five datasets. 

AFVs 

Dataset HMTSA-FSGO ISSA SSA PSO GA ALO GWO 

Hepatitis 0.093 0.111 0.121 0.161 0.151 0.130 0.220 

Breast cancer 0.011 0.020 0.040 0.039 0.038 0.043 0.042 

Lung cancer 0.063 0.091 0.071 0.151 0.173 0.191 0.285 

Dermatology 0.003 0.004 0.031 0.091 0.043 0.022 0.023 

Arrhythmia 0.026 0.045 0.047 0.061 0.091 0.038 0.037 

Average 0.039 0.054 0.062 0.100 0.099 0.085 0.121 

 

Figure 5. AFV analysis of the HMTSA-FSGO technique under five datasets. 

Table 5 and Figure 6 represent the worst fitness values (WFVs) of the HMTSA-FSGO technique 

with other FS methods. The outcomes indicate that the ALO and GWO techniques have shown worse 

WFV values on all datasets. On continuing with, the SSA, PSO, and GA models have obtained closer 

WFV values. Even though the ISSA has attained reasonable WFV, the HMTSA-FSGO method 

illustrates optimum WFV values. It is noticed that the HMTSA-FSGO approach obtains a minimum 

WFV of 0.072 while the ISSA, SSA, PSO, GA, ALO, and GWO approaches gain greater WFV of 

0.081, 0.089, 0.115, 0.127, 0.097, and 0.164, correspondingly. 
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Table 5. WFV analysis of HMTSA-FSGO technique with other FS models under five datasets. 

WFVs 

Dataset HMTSA-FSGO ISSA SSA PSO GA ALO GWO 

Hepatitis 0.120 0.129 0.154 0.197 0.198 0.136 0.396 

Breast cancer 0.017 0.027 0.044 0.044 0.048 0.044 0.046 

Lung cancer 0.138 0.148 0.118 0.206 0.215 0.222 0.296 

Dermatology 0.041 0.051 0.068 0.052 0.069 0.026 0.031 

Arrhythmia 0.043 0.052 0.058 0.077 0.104 0.055 0.052 

Average 0.072 0.081 0.089 0.115 0.127 0.097 0.164 

 

Figure 6. WFV analysis of the HMTSA-FSGO technique under five datasets. 

4.3. Classifier results of HMTSA-FSGO technique 

Table 6 and Figure 7 portray the overall classifier results of the HMTSA-FSGO technique with 

other models. The results highlighted that the HMTSA-FSGO technique gains improved 𝑎𝑐𝑐𝑢𝑦 

values. With the hepatitis dataset, the HMTSA-FSGO technique offers a higher 𝑎𝑐𝑐𝑢𝑦  of 93.01% 

while the ISSA, SSA, PSO, GA, ALO, and GWO models obtain lower 𝑎𝑐𝑐𝑢𝑦 values of 91.30%, 

89.44%, 87.55%, 86.10%, 88.32%, and 84.84%, correspondingly. Moreover, the HMTSA-FSGO 

method offers a maximum 𝑎𝑐𝑐𝑢𝑦 of 97.39% with the breast cancer dataset. The ISSA, SSA, PSO, GA, 

ALO, and GWO techniques attain minimum 𝑎𝑐𝑐𝑢𝑦  values of 95.76%, 95.56%, 95.56%, 95.17%, 

95.07%, and 95.34%, correspondingly. Furthermore, the HMTSA-FSGO method provides a maximum 

𝑎𝑐𝑐𝑢𝑦  of 99.15% with the dermatology dataset. The ISSA, SSA, PSO, GA, ALO, and GWO 

approaches attain minimum 𝑎𝑐𝑐𝑢𝑦  values of 98.31%, 96.29%, 96.51%, 90.76%, 93.28%, and 

94.95%, correspondingly. Finally, the HMTSA-FSGO method offers the highest 𝑎𝑐𝑐𝑢𝑦  with the 

arrhythmia dataset of 67.81%. The ISSA, SSA, PSO, GA, ALO, and GWO techniques attain the lowest 

𝑎𝑐𝑐𝑢𝑦 values of 66.05%, 63.85%, 58.08%, 57.11%, 54.68%, and 56.46%, correspondingly. 
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Table 6. 𝐴𝑐𝑐𝑢𝑦 analysis of the HMTSA-FSGO technique with other models under five 

datasets. 

Accuracy (%) 

Dataset HMTSA-FSGO ISSA SSA PSO GA ALO GWO 

Hepatitis 93.01 91.30 89.44 87.55 86.10 88.32 84.84 

Breast cancer 97.39 95.76 95.56 95.56 95.17 95.07 95.34 

Lung cancer 61.59 59.85 60.30 48.26 56.34 50.62 50.18 

Dermatology 99.15 98.31 96.29 96.51 90.76 93.28 94.95 

Arrhythmia 67.81 66.05 63.85 58.08 57.11 54.68 56.46 

 

Figure 7. 𝐴𝑐𝑐𝑢𝑦 analysis of the HMTSA-FSGO technique under five datasets. 

The classier outcome of the HMTSA-FSGO model is graphically shown in Figure 8 for training 

accuracy (TRAAC) and validation accuracy (VALAC) curves under five datasets. The figure shows 

valuable insight into the behavior of the HMTSA-FSGO method over different epochs, validating its 

generalization capabilities and learning process. Notably, the figure indicates a consistent development 

in the TRAAC and VALAC with increasing epochs. It ensures the adaptive nature of the HMTSA-

FSGO approach in the pattern detection technique on both datasets. The increasing tendency in 

VALAC describes the capability of the HMTSA-FSGO approach to adapt to the TRA data. Also, it 

offers the correct classification of hidden data, pointing out the strong generalizability. 
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Figure 8. 𝐴𝑐𝑐𝑢𝑦 curve of HMTSA-FSGO technique under five datasets. 

Figure 9 represents the training loss (TRALS) and validation loss (VALLS) outcomes of the 

HMTSA-FSGO technique over distinct epochs under five datasets. The progressive decline in TRALS 

highlights the HMTSA-FSGO technique, minimizing the classification error and enhancing the 

weights on both datasets. The figure clearly shows the HMTSA-FSGO model's relationship with the 

TRA dataset, highlighting its proficiency in capturing patterns within both datasets. Notably, the 

HMTSA-FSGO approach constantly progresses its parameters in decreasing the variances amongst the 

prediction and real TRA classes. 
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Figure 9. Loss curve of HMTSA-FSGO technique under five datasets. 

4.4. Execution time analysis 

Finally, the execution time (ET) of the HMTSA-FSGO technique with other models is shown in 

Table 7 and Figure 10. The experimental values highlighted that the HMTSA-FSGO technique offered 

the least ET values. With the hepatitis dataset, the HMTSA-FSGO technique provides a lower ET of 

20.38s, while the ISSA, SSA, PSO, GA, ALO, and GWO models gain higher ET of 24.04s, 24.22s, 

27.26s, 29.42s, 29.42s, and 28.21s, correspondingly. 
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Table 7. ET analysis of the HMTSA-FSGO technique with other models under five datasets. 

ET (sec) 

Dataset HMTSA-FSGO ISSA SSA PSO GA ALO GWO 

Hepatitis 20.38 24.04 24.22 27.26 29.42 29.41 28.21 

Breast cancer 17.37 21.25 21.77 21.76 23.47 27.20 23.84 

Lung cancer 26.29 31.84 31.28 33.76 33.55 36.54 39.78 

Dermatology 48.44 52.84 54.09 55.26 61.30 57.86 64.54 

Arrhythmia 87.82 122.25 130.85 108.67 125.82 242.84 233.23 

 

Figure 10. ET analysis of the HMTSA-FSGO technique under five datasets. 

Furthermore, the HMTSA-FSGO method provides the lowest ET of 87.82s with the arrhythmia 

dataset. In contrast, the ISSA, SSA, PSO, GA, ALO, and GWO techniques gain the highest ET of 

122.25s, 130.85s, 108.67s, 125.82s, 242.84s, and 233.23s, correspondingly. Therefore, the HMTSA-

FSGO technique can be employed to enhance the classification process. 

5. Conclusions 

In this study, an HMTSA-FSGO technique is presented. The proposed HMTSA-FSGO model 

mainly aims to eradicate unwanted features and choose the relevant ones that highly impact the 

classifier results. The HMTSA-FSGO model, the HMTSA is derived by integrating the standard TSA 

with two concepts: dynamic s-best mutation operator for the optimal trade-off between exploration 

and exploitation and directional mutation rule for enhanced search space exploration. The HMTSA-

FSGO model also includes a BiLSTM classifier to examine the impact of the FS process. RSO can 

choose the hyperparameters to boost the BiLSTM network performance. The simulation analysis of 

the HMTSA-FSGO model is tested using a series of experiments. The empirical values highlighted 

that the HMTSA-FSGO model gains better performance over other models. 
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