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Abstract: Diffusion is a ubiquitous process in real-world syetems. In many complex systems, ranging
from neuronal networks to traffic in cities, diffusion is nonconservative (NC) in the sense that diffusive
particles can be created/annihilated at the entities of the system. Here, we consider the important
problem of identifying potential navigational bottlenecks in NC diffusion occurring in the networks
representing skeletons of complex systems. We develop a first-principles approach based on an NC
diffusion using the Lerman-Ghosh Laplacian on graphs. By solving analytically this NC diffusion
equation at two different times, we get an index which characterizes the capacity of every vertex
in a network to spread the diffusive particles across the network in a short time. Vertices having
such capacity diminished are potential navigational bottlenecks in this kind of dynamics. We solve
analytically the situations in which the vertices with the highest degree (hubs) are at different distances
in the network, allowing us to understand the structural significance of the index. Using algebraic
methods, we derive a Euclidean distance between vertices in the context of NC diffusion with potential
navigational bottlenecks. We then apply these indices to study several real-world networks. First,
we confronted our theoretical results with experimental data about traffic congestion in a city. Then,
we illustrated the application of the new methodologies to the study of a neuronal system, an air
transportation network and two urban street networks.
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1. Introduction

Networks [1] represent the skeletons of complex systems [2], which facilitate the spread of
“information” between the entities of the systems (vertices of the network) using their pairwise
connections (edges) [3]. Here, “information” is used generically to account for any item-from electrons
in a molecule to people in a city-moving across a network [4]. Therefore, one of the most fundamental
problems in the investigation of complex networks is to understand the mechanisms behind the
transmission of information across them. In a connected network, there is always a shortest path
between any pair of vertices. These are paths of the minimum lengths in terms of the number of edges
connecting the pairs of vertices [5–7]. There is a misunderstanding in considering that information
flows in a network via shortest paths, even in systems with billions of entities like the human brain [8].
As clearly remarked by Goñi et al. [9] “a routing/navigation process implies that communication flows
from a specific source to a specific target along the fastest or most direct route, which implies a global
knowledge about the network topology”. For most of complex systems, the sender of information is
unaware of the global structure of the network used to transmit the information, which excludes the
possibility that it uses the shortest path [10–16]. Diffusion is a navigational process which seems to
be ubiquitous in nature, implying that [9] “communication occurs in the absence of specific targets, or
that, even if targets are specified, a lack of knowledge about global network topology prevents particles
or messages from taking the shortest paths”.

Diffusion has been widely studied in the context of complex networks [17–19] as well as in
engineering under the term “consensus dynamics” [20–22]. A characteristic signature of diffusion
in graphs is its conservative nature. A dynamical process on a graph is mediated by the interactions
between nodes [1, 3]. It is said to be conservative if the total amount of diffusive material is constant
on the graph at any time [23]. This type of process excludes those in which (i) some information is
dissipated to or taken from outside the graph, (ii) part of the information is annihilated/created at the
vertices of the graph. In these cases, the amount of diffusive material on the graph does not remain
constant in time, and these are known as nonconservative (NC) processes. There are several important
examples of NC diffusive processes in complex systems [24–30]. Traffic in a city is frequently
studied by assuming that it flows via the shortest paths between origin-destination pairs [31–34], or
by considering a conservative diffusion model [35–37]. However, the number of cars flowing through
the streets (edges) of an urban street network is not necessarily the same at slightly different times,
making the process NC in its nature. The reason is that some cars may “disappear”/“appear” in the
street leg between two intersections due to the fact that they may park or emerge from parking in
such street leg, known as “mid-link sink and sources” in traffic literature [38, 39]. Another example
frequently considered from the perspective of shortest paths and conservative diffusion is the flow
of matter and energy in a food web. In this case the nodes represent species and the directed edges
represent their trophic relations (who eats who), which are the pathways over which energy and matter
can flow. When one species A (predator) predates another species B (prey), A utilizes only a portion
of the material and free energy originally in B, which is then retained in the predator, giving rise to a
non-conservative process. Such mass and energy can then be diffused across the food web in an NC
diffusive way [40]. Another non-conservative scenario is the chemical synapses in neuronal systems
where apart from the wiring intercellular communication, which is expected to be conservative, there
is also communication in the form of a volume transmission (VT), which uses the extracellular fluid
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filling channels of the extracellular space and the cerebrospinal fluid filling ventricular space and sub-
arachnoidal space (Figure 1(e)) [26, 41–46]. More examples of NC diffusion include communication
in social media like X (formerly known as Twitter) [27–29], where a user can post a message that can
be read by her followers, but also (if not constrained by the user) by non-followers, all of whom can
retweet such information to others. Even the transmission of packages of information via the Internet
may be an NC diffusion process due to the existence of long queues at given servers, which may result
in some packages being discarded, making the transmission process NC on the graph.*

Here, we consider navigational processes occurring in complex systems that can be modeled by
NC diffusive dynamics. We then focus on understanding which are the network characteristics that
may burden the navigability in this framework. Let us consider an NC diffusion dynamics reaching a
steady state at a given time tc. Then, if we start the diffusive process by concentrating all the diffusive
particles at a vertex i, we can obtain tc,i. Similarly, we can initialize the process at vertex j and obtain
tc, j. Obviously, if tc, j > tc,i it means that it is more difficult to reach the steady state of the diffusion when
starting at vertex j than when starting at vertex i. If we do this for all vertices in the network, we can
obtain those which are the ones producing the biggest delay in reaching the steady state. We will call
these vertices “navigational bottlenecks” for obvious reasons. The identification of network bottlenecks
is a foundational work for improving network traffic conditions and preventing traffic congestion [47–
55]. However, we should stress an important problem with dealing with this matter before we can
proceed. In a real-world situation, the existence of a bottleneck does not only depend on the topology
of the network supporting the dynamics but also depends on the traffic allocated to the given vertices.
For instance, a vertex that is identified as a navigational bottleneck in a network does not necessarily
behave as a bottleneck if the traffic allocated to it is relatively small. Therefore, what we propose in
this work is the identification of those vertices that have a large propensity to become navigational
bottlenecks if the amount of traffic allocated to them is significantly large. Developing the previously
mentioned program for identifying navigational bottlenecks implies the realization of n simulations of
the NC diffusion on a network of n vertices, i.e., one simulation starting the process at each vertex.
Therefore, what we propose here is to solve the problem analytically, such that we can define an index
characterizing the propensity of every vertex to become a navigational bottleneck without the necessity
of performing any simulation of the dynamics.

2. Preliminaries

Let G = (V, E) be a simple, connected graph and let A be its adjacency matrix. The degree of
the vertex i, ki, is the number of edges connected to that vertex in the graph. Let A = UΛUT be the
spectral decomposition of the adjacency matrix, such that Λ is the diagonal matrix of eigenvalues of
A and U is the orthogonal matrix of eigenvectors. In general, we designate the spectrum of a matrix
M, S pec (M) to be the set of eigenvalues of this matrix together with their multiplicities, which are
represented as superscripts in parentheses. In the case of the matrix A of a connected undirected graph:
S pec (M) =

{
λ1, λ

(m2)
2 , · · · , λ(m2)

n

}
, such that λ1 > λ2 ≥ · · · ≥ λn are the eigenvalues of A. Let ψ j be the

eigenvector associated with the eigenvalue λ j. We will designate by ψ j,i the ith entry of ψ j. The entry
ψ1,i is known as the eigenvector centrality of the vertex i, ECi [56–58]. The standard, conservative

*We remark that the process is always conservative in the physical universe, but we are referring to the case of being conservative or
not on the discrete space defined by the graph.
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diffusion process on a graph represents the change of the “concentration” Ci of items at the vertices of
the graph with the pass of time, which is defined by [17]:

Ċ (t) = −L C (t) , (2.1)

with initial condition C (0) = C0. In this equation, Ċ (t) =
[
Ċ1 (t) , . . . , Ċn (t)

]T
where Ċ (t) =

dC (t)
dt

,

C (t) = [C1 (t) , . . . ,Cn (t)]T and L = K−A is the graph Laplacian, with K being the diagonal matrix of
vertex degrees. The solution of the Cauchy problem (2.1) is given by C (t) = e−tL C0, where e−tL is the
matrix exponential function of the graph Laplacian. Matrix functions of the adjacency matrix, which
will frequently appear in this work, are defined by: G B exp (A). The term Gi, j for i , j is known as
the communicability between the two vertices, while the term Gii is known as the subgraph centrality
of the vertex i. The term EE (G) B Tr exp (A) is known as the Estrada index of the graph, where Tr is
the trace of the corresponding matrix.

The squared communicability distance between two vertices in a graph is defined as [59] (see
also [60–62]):

ξ2
vw B Gvv + Gww − 2Gvw, (2.2)

which has been proved to be a Euclidean and spherical distance between the corresponding vertices in
the graph.

The nonconservative (NC) diffusion process on a graph has been previously studied. In this case,
the change of concentration of items at the vertices of the graph with time is described by the equation:

Ċ (t) = −LχC (t) , (2.3)

where Lχ B χI − A is the Lerman-Ghosh Laplacian of the graph [64] (see also [65]), and the process
has initial condition C (0) = C0.

3. Theoretical results

We start by proving the following result.

Theorem 1. Let G be a graph in which the NC diffusion (2.3) takes place. Then,

lim
t→∞

C (t) =


(
ψT

1 C0
)
ψ1et(λ1−χ) = ∞ for χ < λ1(∑

j C0
jψ1 ( j)

)
ψ1 for χ = λ1(

ψT
1 C0

)
ψ1e−t(χ−λ1) = 0 for χ > λ1.

(3.1)

Proof. The solution of the diffusion equation is given by

C (t) = e−t(χI−A)C0, (3.2)

which can be written as

C (t) = et(λ1−χ)
(
ψT

1 C0
)
ψ1 + et(λ2−χ)

(
ψT

2 C0
)
ψ2 + · · · + et(λn−χ)

(
ψT

n C0
)
ψn. (3.3)

Then, when χ < λ1 we have
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lim
t→∞

C (t) = et(λ1−χ)
(
ψT

1 C0
)
ψ1, (3.4)

which diverges as t → ∞.
If χ = λ1 we have that the first term of Eq (3.3) is zero, and the rest are negative, such that

lim
t→∞

C (t) =
(
ψT

1 C0
)
ψ1, (3.5)

which indicates that the solution is proportional to the entries of the eigenvector ψ1 associated with the
spectral radius λ1 of A. This eigenvector was introduced by Bonacich [56–58] as a centrality index of
the vertices in a graph and it is nowadays known as the eigenvector centrality. Therefore, the current
framework provides a dynamics interpretation of this centrality index in terms of the concentration
reached by a vertex at the steady state of a non-conservative diffusion controlled by the Lerman-Ghosh
Laplacian matrix [64] when χ = λ1. Because the second smallest eigenvalue of (λ1I − A) is λ1 − λ2, it
determines the rate of convergence of the diffusive process. Notice that if C0 = ψ1, then the diffusion
process is conservative because:

1TC (t) =
[
1Tψ1

]
= 1TC0. (3.6)

Finally, if χ > λ1 then,

lim
t→∞

C (t) = e−t(χ−λ1)
(
ψT

1 C0
)
ψ1, (3.7)

which goes to zero as t → ∞. �

Therefore, the only NC diffusion process that does not diverge is when χ = λ1. Let us then consider
such a process on G. Let us then consider the concentration of items at a given vertex i ∈ V when
C0

i = 1 and C0
j = 0 for all j , i, when t � ∞, which is given by

Ci (t) =
(
e−t(λ1I−A)C0

)
i
= e−tλ1

(
etA

)
ii
. (3.8)

Let us now consider such concentration at an infinitely large time. That is the following:

lim
t→∞

Ci (t) = lim
t→∞

e−tλ1
(
etA

)
ii

= e−tλ1
((
ψ1etλ1ψT

1

)
C0

)
i
=


∑

j

C0
jψ1,i

ψ1


i

= ψ2
1,i, (3.9)

where ψ2
1,i is the square of ith entry of the eigenvector associated with λ1. Notice that ψ1,i is the

eigenvector centrality of i, ECi, such that lim
t→∞

Ci (t) = EC2
i when C0

i = 1 and C0
j = 0 for all j , i.

Remark 2. Notice that when C0
i = 1 and C0

j = 0 for all j , i, the concentration at any node j , i when
the steady state is reached is given by

lim
t→∞

C j (t) =


∑

j

C0
jψ1,i

ψ1


j

= ψ1,iψ1, j. (3.10)

Let us then consider the following.
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Definition 3. Let G be a graph in which the NC diffusion (2.3) takes place with initial conditions given
by C0

i = 1 and C0
j = 0 for all j , i. Let χ = λ1. Then, the difference Ci (t = 1) − lim

t→∞
Ci (t) accounts

for how fast or slow a vertex spreads the concentration of items across the graph when all the initial
concentration is at this vertex:

Ci (t = 1) − lim
t→∞

Ci (t) = e−λ1
(
eA

)
ii
− EC2

i

=

(
eA

)
ii
− EC2

i eλ1

eλ1

=
S Ci − EC2

i eλ1

eλ1
,

(3.11)

where S Ci is the subgraph centrality of the vertex i [66]. Then, because the denominator is just a
normalization factor we will consider here the index

Xi B S Ci − EC2
i eλ1 . (3.12)

A small value of Xi indicates that the vertex i has a large capacity to deliver items from it to reach
the steady-state concentration corresponding to an NC process taking place on the graph. On the other
hand, a large value of this index indicates that it takes a long time for this vertex to reach such steady-
state concentration. Therefore, the last vertex is a potential bottleneck in the diffusive navigational
processes taking place on the graph. Therefore, we will call Xi the navigational bottleneck index (NBI)
of the vertex i. Notice that if comparisons between vertices in different graphs are intended, then the
normalization by exp (λ1) is necessary.

To gain insights about the role of graph structure in the values of Xi, we have designed the three
toy graphs illustrated in Figure 3.1. The first graph, also known as an agave graph, represents two
large degree vertices (hubs) that are connected to each other as well as through a series of vertices of
degree two. The multiple dots indicate that the number of these vertices of degree two is arbitrary. The
second graph is the same as the previous one, but in this case, the two hubs are not interconnected. The
communication between the two hubs in this graph occurs only via the vertices of degree two. The
third graph consists of two hubs that are not directly connected to each other but connected through
paths of length three. In closing, this example has a pair of hubs communicated by a peripheral set
of vertices of degree two. The difference among them resides in the fact that in the three graphs the
“effective separation” between the two hubs increases from G1 to G3.

Figure 3.1. illustration of three toy graphs used to describe analytically the properties of the
index Xi (see text for description).
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We now find the values of Xi for the two types of vertices in the graphs in Figure 3.1 analytically.

Lemma 4. Let G1 be the graph illustrated in Figure 3.1 on n vertices where v is any of the two vertices
of degree n − 1 (hubs) and w is any of the vertices of degree two. Let α =

√
8n − 15. Then,

Xv (G1) =
1
4

e(1/2)(1−α)
(
1 − α−1

)
+

1
2e
, (3.13)

and

Xw (G1) =
n − 3
n − 2

+
(α + 1) e1/2(1−α)

2α (n − 2)
. (3.14)

Proof. The eigenvalues of the adjacency matrix of the agave graph G1 are:

S pec (A (G1)) =

{
1
2

(1 + α) , 0n−3,−1,
1
2

(1 − α)
}
, (3.15)

and the entries of the eigenvector associated with λ j for the vertex v are: ψ2
1,v =

1
4

(
1 + α−1

)
, ψ2

2≤ j≤n−2,v =

0, ψ2
n−1,v =

1
2

, ψ2
n,v =

α − 1
4α

. Therefore,

(
eA(G1)

)
vv

=

e3/2

(
1
α

sinh
(
α

2

))
+ cosh

(
α

2

)
+ 1

2e
. (3.16)

Because, Xv (G1) =
(
eA(G1)

)
vv
−

1
4

(
1 + α−1

)
e1/2(1+α) we have

Xv (G1) =
1
2e

+
α − 1

4α
e1/2(1−α), (3.17)

which proves the first part of the result.
Then, (

eA(G1)
)

ww
=

EE (G1) − 2
(
eA(G1)

)
vv

n − 2
, (3.18)

where the Estrada index of an agave graph on n vertices EE (G1) is:

EE (G1) = Tr
[
eA(G1)

]
= e1/2(1+α) + e1/2(1−α) + e−1 + n − 3

= 2
√

e cosh
(
α

2

)
+

1
e

+ n − 3.
(3.19)

Then, after substitution and arrangements, we have

(
eA(G1)

)
ww

=
n − 3
n − 2

+
(α − 1) e1/2(1+α)

2α (n − 2)
+

(α + 1) e1/2(1−α)

2α (n − 2)
. (3.20)

Finally, we have that Xw (G1) =
(
eA(G1)

)
ww
− ψ2

1,weλ1 =
(
eA(G1)

)
ww
−

4
α (α + 1)

e1/2(1+α), so that we obtain

the final result. �
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Lemma 5. Let G2 be the graph illustrated in Figure 3.1 on n ≥ 5 vertices where v is any of the two
vertices of degree n − 1 (hubs) and w is any of the vertices of degree two. Let β =

√
2 (n − 2). Then,

Xv (G2) =
1
4

e−β +
1
2
, (3.21)

and

Xw (G2) =
e−β

β2 +
n − 3
n − 2

. (3.22)

Proof. The graph G2 is a complete bipartite graph K2,n−2, so the eigenvalues of its adjacency matrix
are:

S pec (A (G2)) =
{
β, 0n−2,−β

}
, (3.23)

and ψ1,v =
1
2

such that

(
eA(G2)

)
vv

=
1
4

eβ +
1
4

e−β +
∑

2≤ j≤n−1

ψ2
j . (3.24)

Because
∑n

j=1 ψ
2
1, j = 1 we get

∑
2≤ j≤n−1 ψ

2
j =

1
2
, such that

(
eA(G2)

)
vv

=
1
4

(
eβ + e−β

)
+

1
2

(3.25)

and

Xvv (G2) =
1
4

e−β +
1
2
. (3.26)

For obtaining
(
eA

)
ww

we use again the trace of exp (A), such that

Tr
(
eA(G2)

)
= eβ + e−β + n − 2 (3.27)

and

(
eA(G2)

)
ww

=
Tr

(
eA(G2)

)
− 2

(
eA(G2)

)
vv

n − 2

=
cosh (β) + n − 3

n − 2
,

(3.28)

such that

Xww (G2) =
e−β

β2 +
n − 3
n − 2

. (3.29)

�
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Lemma 6. Let G3 be the graph illustrated in Figure 3.1 on n ≥ 8 vertices where v is any of the two
vertices of degree n − 1 (hubs) and w is any of the vertices of degree two. Let γ =

√
2 (n − 3). Then,

Xv (G3) =
eγ (γ + 1) + e (γ + 1) + τ − 1

4γ
e−1/2(γ+1), (3.30)

and

Xw (G3) =
eγ (γ − 1) + e (γ − 1) + γ + 1

2γ (n − 2)
e−1/2(γ+1) +

1 + e2

2e
(n − 4)
(n − 2)

. (3.31)

Proof. The eigenvalues of the adjacency matrix of the agave graph G3 are (notice that n is always even
in this graph):

S pec (A (G3)) =

{
γ + 1

2
,
γ − 1

2
, 1

n
2−2,−1

n
2−2,

1 − γ
2

,
−γ − 1

2

}
, (3.32)

and ψ2
1,v =

1
4

(
1 −

1
γ

)
, ψ2

1,w =
γ + 1

2 (n − 2) γ
, ψ2

n−1,v =
1
4

(
1 +

1
γ

)
, ψ2

n−1,w =
γ − 1

2 (n − 2) τ
. Therefore,

(
eA(G3)

)
vv

= cosh
(
1
2

)
cosh

(
γ

2

)
−

sinh
(
1
2

)
γ

sinh
(
γ

2

)
. (3.33)

We can also write

(
eA(G3)

)
ww

=
Tr

(
eA(G3)

)
− 2

(
eA

)
vv

n − 2
, (3.34)

such that

(
eA(G3)

)
ww

=

2 cosh
(
1
2

)
cosh

(
γ

2

)
n − 2

+

2 sinh
(
1
2

)
sinh

(
γ

2

)
(n − 2) γ

+
1 + e2

2e
(n − 4)
(n − 2)

. (3.35)

We can now obtain the values of Xv (G3) and Xw (G3) by subtracting ψ2
1,ve

λ1 and ψ2
1,weλ1 from the

expressions of
(
eA(G3)

)
vv

and
(
eA(G3)

)
ww

, respectively, which proves the result. �

To illustrate the results obtained in the previous three Lemmas we calculate here the values of the
X index for the two non-equivalent vertices in the three classes of graphs illustrated in Figure 3.1. We

select n = 10 in this example. In the case of the graph G1 it is easy to see that lim
n→∞

Xv (G1) =
1
2e

and
lim
n→∞

Xw (G1) = 1. The results given in Table 1 give Xv (G1) ≈ 0.19 and Xw (G1) ≈ 0.88 , which are close
to the limit values. However, the most interesting thing here is that, as predicted, the vertex w, which
is the one of degree two, is the one having the largest capacity to create a navigational bottleneck
in the graph. This is corroborated by the fact that time tc (w) needed to reach the steady state, i.e.,(
ui (t) − u j (t)

)
≤ 10−4 for all i, j ∈ V , when the initial concentration is located at the vertex w is bigger

than that when the concentration is located at the vertex v, tc (v). That is, reaching the steady state of
a nonconservative diffusion in G1 is harder if the initial concentration is located at the vertex w than
at the vertex v, exactly as predicted by the index X. The situation is similar for the graph G2 where
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24306

lim
n→∞

Xv (G2) =
1
2

and lim
n→∞

Xw (G2) = 1. Here again tc (w) > tc (v) indicating that the vertices of degree
two are potential navigational bottlenecks relative to vertex w (see Table 1). The graph G3 is, however,
an example where the hubs are the potential navigational bottlenecks for a nonconservative diffusion.
In this case Xv (G3) > Xw (G3), indicating that the vertex with the largest degree inhibits the spread
of concentration across the vertices of the graph more than the vertex w. In fact, we can observe that
indeed tc (v) > tc (w), confirming that this hub as the navigational bottleneck of the graph.

Table 1. Example of the values of the X index for the two non-equivalent vertices in the three
classes of graphs studied here, where we have used n = 10 in this example. We mark the
higher values for each graph in boldface.

Xv Xw tc (v) tc (w)
G1 0.190 0.877 172 286
G2 0.505 0.877 232 246
G3 1.560 1.399 988 884

The previous example teaches us that such generalizations as “the hubs facilitate/inhibit” the
dynamical spread of “information” across a network are not necessarily correct and they depend on
the topological position of the hubs in the graph. For instance, when the hubs are directly connected or
very close to each other, like in the cases of graphs G1 and G2, they have the capacity of spreading a lot
of information between each other, avoiding the creation of a potential navigational bottleneck at them.
However, if the hubs are not close together but separated by relatively large paths, like in the case of
graph G3, they lose this capacity of alleviating the traffic by sending information among them. In this
case they become navigational bottlenecks, inhibiting the spread of information between vertices in the
graph.

4. The geometry of navigational bottlenecks

Definition 7. Let Λ̃ be the (n − 1)× (n − 1) diagonal matrix obtained by removing the row and column
of Λ corresponding to λ1 and let Ũ be the (n) × (n − 1) matrix resulting from removing the column of
U corresponding to ψ1. Let us define the matrix G̃ = ŨeΛ̃ŨT .

Lemma 8. The matrix G̃ is positive semidefinite.

Proof. Let z be a nonzero column vector of length n. Then,

zTG̃z = zT ŨeΛ̃ŨT z

=

n∑
j=2

eλ j

 n∑
u=1

zuψ ju

2

≥ 0,
(4.1)

where λ j is an eigenvalue of A and ψ ju is the uth entry of the eigenvector corresponding to λ j. The term
in parentheses is zero if and only if z = ψ1, where ψ1 is the eigenvector associated with the spectral
radius of A. Because the eigenvectors are orthogonalized it happens that ψT

1ψ j = 0 for all j ≥ 2, which
proves the result. �
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Remark 9. It is easy to realize that G̃uu = Xu. That is,

(
ŨeΛ̃ŨT

)
uu

=

n∑
j=2

ψ2
j,ueλ j

=

n∑
j=1

ψ2
j,ueλ j − ψ2

1,ueλ1 B Xu.

(4.2)

Also notice that ŨeΛ̃ŨT , eŨΛ̃ŨT
= eÃ, where Ã B ŨΛ̃ŨT .

Let us now interpret the term G̃uv. As we have seen in Remark 2, lim
t→∞

Cv (t) = ψ1,uψ1,v, which is the
amount of items diffused to vertex v when the initial concentration is completely localized at vertex
u in the NC diffusion that we are considering in this work. If we obtain the concentration Cv (t = 1)
under the same conditions, we obtain:

Cv (t = 1) = e−λ1eAC0 = e−λ1
(
eA

)
uv

= e−λ1Guv, (4.3)

where Guv is the communicability function [67, 68] between the two vertices. Therefore,

Cv (t = 1) − lim
t→∞

Cv (t) = e−λ1Guv − ψ1,uψ1,v

=
Guv − eλ1ψ1,uψ1,v

eλ1

=
G̃uv

eλ1
,

(4.4)

which means that G̃uv is proportional to the amount of items diffused from u to v at an early time of
the process minus the amount that arrives at v at the steady state. In other words, it is a measure of the
rate of transfer from u to v when the whole initial concentration is at the first vertex. The largest G̃uv

indicates a larger capacity for delivering items from the two vertices (due to the non-directionality of
the graphs) as the NC diffusion evolves. We now have the following.

Definition 10. Let G̃ be defined as before, and let us define

Yuv B G̃uu + G̃vv − 2G̃uv. (4.5)

Notice that while G̃uu and G̃vv give the capacity of the vertices to create navigational bottlenecks, the
term G̃uv is a measure of how good transmission exists between the two vertices. Thus, a large value of
Yuv indicates that items can easily get trapped at the vertices u and v because both vertices are potential
navigational bottlenecks and they do not have a large capacity of diffusing the items among them. A
relatively low value of this measure indicates a good capacity for delivering the items between the two
vertices at an early time of the NC process, such that there would not be a bottleneck among them. We
now prove the following result.

Lemma 11. Yuv is a squared Euclidean distance between the vertices u and v of G.
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Proof. Let us write

Yuv =

n∑
j=2

ψ2
j,ueλ j +

n∑
j=2

ψ2
j,ve

λ j − 2
n∑

j=2

ψ j,uψ j,veλ j

=

n∑
j=2

(
ψ j,u − ψ j,v

)2
eλ j ,

(4.6)

which proves that Yuv ≥ 0 as required for a distance.
Let us now define ϕ̃u B

[
ψ2,v, . . . , ψn,v

]T , such that we can write

Yuv = (ϕ̃u − ϕ̃v)T eΛ̃ (ϕ̃u − ϕ̃v) . (4.7)

Then, because eΛ̃ is positive definite we can find its square root and express:

Yuv =
(
eΛ̃/2ϕ̃u − eΛ̃/2ϕ̃v

)T (
eΛ̃/2ϕ̃u − eΛ̃/2ϕ̃v

)
. (4.8)

Finally, by defining x̃u B eΛ̃/2ϕ̃u we have

Yuv = (x̃u − x̃v)T (x̃u − x̃v)

= ‖x̃u − x̃v‖
2 .

(4.9)

�

Theorem 12. Let G1 be the graph described in Figure 3.1 on n vertices in which the vertices v and v′

are the two ones with degree n − 1 and the vertices u and u′ are any two of the vertices of degree two.
Then,

Yv,v′ (G1) =
2
e
, (4.10)

Yu,u′ (G1) = 2, (4.11)

Yu,v (G1) =
n − 3
n − 2

+
1
2e

+

(
α2 + n (α − 1) + 3

)
e1/2(1−α)

4α (n − 2)
. (4.12)

Proof. We have proved before that the eigenvalues of A (G1) are:

S pec (A (G1)) =

{
1
2

(1 + α) , 0(n−3),−1,
1
2

(1 − α)
}

(4.13)

with α B
√

8n − 15. Let ϕi =
[
ψ1,i, ψ2,i, . . . , ψn,i

]T . Then,
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ϕv =



1
2

√
α + 1
α

0n−3

±2−1/2

−
1
2

√
α − 1
α


, ϕu =



2
√

1
α (α + 1)
%n−3

0

−2
√

1
α (α + 1)


, (4.14)

where 0n−3 is a column of zeros of length n − 3 and %n−3 is a vector of length n − 3 giving a different
value for the different u vertices of An. By using this information it is straightforward to obtain:

G̃vv′ (G1) =
α − 1

4α
e1/2(1−α)

−
1
2e
, (4.15)

G̃uu′ (G1) =
n − 3
n − 2

+
(α + 1) e1/2(1−α)

2α (n − 2)
, (4.16)

G̃uv (G1) =
−e1/2(1−α)

α
. (4.17)

We then obtain Yvv′ (G1) = 2G̃vv (G1) − 2G̃vv′ (G1), Yuu′ (G1) = 2G̃uu (G1) − 2G̃uu (G1), and Yuv (G1) =

G̃uu (G1) + G̃vv (G1)− 2G̃uv (G1), by substitution and further algebraic simplification to prove the result.
�

Theorem 13. Let G2 be the graph described in Figure 3.1 on n vertices in which the vertices v and v′

are the two ones with degree n − 1 and the vertices u and u′ are any two of the vertices of degree two.
Then,

Yv,v′ (G2) = 2, (4.18)

Yw,w′ (G2) = 2, (4.19)

Yv,w (G2) =
(β + 2)2

4β2 e−β +
1
2

+
n − 3
n − 2

. (4.20)

Proof. We start by finding Yv,v′ (G2) = 2G̃vv (G2) − 2G̃vv′ (G2) for which we have to find the second
term. That is,

G̃vv′ (G2) =

n∑
j=2

ψ j,vψ j,v′eλ j =
1
4

e−β −
∑

2≤ j≤n−1

ψ2
j,v =

1
4

e−β −
1
2
. (4.21)

Therefore, Yv,v′ (G2) = 2
(
1
4

e−β +
1
2

)
− 2

(
1
4

e−β −
1
2

)
, which proves this part of the result.

Similarly, for Yw,w′ (G2) = 2G̃ww (G2) − 2G̃ww′ (G2) we find
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G̃ww′ (G2) =
e−β

β2 +
∑

2≤ j≤n−1

ψ j,wψ j,w′ , (4.22)

which by considering that
∑

2≤ j≤n−1 ψ j,wψ j,w′ = −2ψ2
1,w give G̃ww′ (G2) =

e−β

β2 −
1

n − 2
. Therefore,

Yw,w′ (G2) =
e−β

n − 2
+ 2

n − 3
n − 2

−
e−β

n − 2
+

2
n − 2

, which proves this part of the result.

Finally, we have Yv,w (G2) = G̃vv (G2) + G̃ww (G2) − 2G̃vw (G2) for which we find first

G̃vw (G2) = −
e−β

2β
, (4.23)

such that Yv,w (G2) =
e−β

4
+

1
2

+
e−β

β2 +
n − 3
n − 2

+
2e−β

2β
, which, after simplifications, reduces to the final

result. �

The most important consequence of the previous two results is the fact that the distance between the

two hubs in G1 and G2 is constant and independent of the size of the graphs. That is, Yv,v′ (G1) =
2
e
≈

0.7358 and Yv,v′ (G2) = 2, which indicates that in G1, where the hubs are connected, the communication
is very good and the Y-distance is smaller than the shortest path between the two hubs. In the case of
G2, where the two hubs are separated at distance two, the communication between them is still good,
but in this case the Y-distance is identical to the shortest path. To further investigate this phenomenon,
we prove the following result for Yv,v′ (G3) . In this graph, there are six different distances between pairs
of vertices, so we will focus only on the Y-distance between the two hubs.

Theorem 14. Let G3 be the graph described in Figure 3.1 on n vertices in which the vertices v and v′

are the two ones with degree n − 1 and the vertices u and u′ are any two of the vertices of degree two.
Then,

Yv,v′ (G3) =
2
√

eγ

(
sinh

(
γ

2

)
+ τ cosh

(
γ

2

))
, (4.24)

where γ =
√

2n − 3.

Proof. The Y-distance between the two hubs in G3 is Yv,v′ (G3) = 2Xv,v (G3) − 2Xv,v′ (G3) . Thus, we
have to obtain Xv,v′ (G3) as:

Xv,v′ (G3) =
1
4

(
1 +

1
γ

)
e−1/2(γ−1)

−
1
4

(
1 +

1
γ

)
e1/2(γ−1)

−
1
4

(
1 −

1
γ

)
e−1/2(γ+1). (4.25)

Then, by using Xv (G3) =
eγ (γ + 1) + e (γ + 1) + τ − 1

4γ
e−1/2(γ+1) from Lemma 6, after some

algebraic work, we obtain the result. �

Remark 15. The previous results help us to interpret the differences in the propensities to create
navigational bottlenecks of vertices in the graphs G1, G2 and G3. Let us consider n = 10 for an
example. In this case Yv,v′ (G1) ≈ 0.7359, Yv,v′ (G2) = 2, and Yv,v′ (G3) ≈ 5.9807. Notice that the
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shortest path distances between these two vertices are one, two, and three, respectively. However,
while the Y-distance between the two hubs remains constant in G1, and G2, it grows very quickly with
size in G3. This indicates that if we allocate a diffusive particle at the vertex v in G1 or G2, in a situation
where the graph is susceptible to jamming due to its capacity, this vertex still has a large capacity for
spreading this particle to the other hub, v′, avoiding the creation of a navigational bottleneck at v. This
is the reason why in G1, and G2, the propensity to be a navigational bottleneck is higher in vertex
w than in vertex v. However, when we consider the graph G3, the large value of Yv,v′ (G3) indicates
that the capacity of vertex v to spread a diffusive particle to the other hub is very much diminished.
Therefore, the hubs have a larger propensity to be navigational bottlenecks in G3 than in G1 or G2, and
consequently, as we have proven analytically, it has a higher propensity to be a bottleneck than the
vertex w.

5. Navigational bottlenecks and real-world networks

5.1. How to use the concept of navigational bottleneck?

Every time a new index characterizing a topological property of networks or their parts is
introduced, it is desirable to confront it with real-world situations that help us understand how to
use it in an appropriate way. In this subsection, we confront the index X with the problem of traffic
congestion in a real-world network. Unfortunately, there is no experimental data about congestion in
networks apart from those related to the problem of urban traffic in cities. This particular problem is
very complex, and many approaches exist in the literature to tackle it [47–55]. In one of these papers,
Samani et al. [69] have combined data-driven approaches with mathematical modeling to estimate
the non-congestion probability of every street in the city of Sioux Falls in South Dakota, USA. The
network is formed by 24 street intersections which form the vertices of the graph and 38 streets forming
its edges. The authors also provide the origin-destination travel demand Di j and calculated the non-
congestion probability Pi j for every street connecting intersections i and j. The representation of the
network can be seen in Figure 5.1.

1
2

3

4 5

6

78

9
101112

13

14 15

16
17

18

19

20
21
2223

24

Figure 5.1. Graphical representation of the Sioux Falls network.
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Our current approach is based on the propensity of intersections, more than streets, to get congested
if we allocate a significant amount of diffusive particles to them. Therefore, we start by converting the
data produced by Samani et al. [69] into information reliable to be compared with the X index. First,
we compute the global demand Di at intersection i as: Di =

∑
j Di j. We also obtained the average

probability of observing congestion at the streets intersecting at i as Pi =
1
k
∑k

j=1 Pi j. We then consider
that an intersection has a low probability of congestion if Pi < 0.333 and it has a high probability
of congestion otherwise. We found that nine intersections are classified as low congestion, with an
average probability equal to 0.125, with only two values over 0.2. On the other hand, there are 15
intersections of high congestion in this city. The average probability of of these 15 intersections is
0.567, of which there are five intersections with a probability higher than 0.5.

In Figure 5.2, we plot the values of the global demand of every intersection versus their X indices.
Every intersection is then drawn in the x, y-plane as a point with size and color proportional to its
average congestion probability. A linear discriminant analysis (LDA) clearly separates the two groups
of intersections, leaving only four ones incorrectly classified, i.e., a classification accuracy of 83.3%.
As can be seen in Figure 5.2, the intersections with relatively low values of X display a low probability
of congestion particularly when their traffic demand is also low. On the other hand, the intersections
with relatively large values of X tend to have a larger congestion probability, particularly if they have a
relatively large traffic demand.

Figure 5.2. Plot of the values of the global traffic demand at the intersections of the city of
Sioux Falls vs. the X index. The points representing the intersection are located in the x,y-
plane with size and color proportional to the congestion probability obtained by Samani et
al. [69]. The broken line represents the classification obtained by linear discriminant analysis
and the points encircled are those incorrectly classified by the model.
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The important message of this exercise is that the X index identifies the vertices in a graph that
have a large propensity to get congested if (and this is a very important if) the amount of diffusive
particles allocated at that vertex is significantly large. Therefore, in a real-world situation, like the
study of urban traffic congestion, this index should be used accompanied by indicators of the demand
of traffic at the corresponding vertices. The X itself teaches us about the topological propensity of a
vertex to get congested, but such congestion will depend on the amount of traffic allocated to it. Let
us illustrate this point with an example. The intersection number 3 in Sioux Falls has a large value of
X, i.e., it has the third largest value of this index in this network. However, the traffic data indicates
that this intersection has a congestion probability of 0.0033. The reason is not that the index X fails
when identifying this intersection as one with large propensity of getting congested but that the traffic
demand on it is extremely low, i.e., the lowest in the whole network. On the other extreme, we have
the intersection 10, which has the highest demand in the whole network. However, it has only the fifth-
highest congestion probability, mainly because, as identified by the X index, it has a large capacity to
deliver traffic across the network, i.e., it has a relatively low value of the X index.

As a final proof of concept we ask whether the X index, which characterizes the propensity of a
vertex to get congested, somehow reflects the different capacities of the edges to get congested, which
is what is really measured by Pi j in Samani et al. [69]. For this, we selected the vertex 8 which is
the one having the largest value of X, i.e., X8 ≈ 3.2545. We then change the “length” of the edges
which are incident with this vertex in the network. That is, instead of having A (8, i) = A (i, 8) = 1
in the adjacency matrix, we change this values to A (8, i) = A (i, 8) = 1/2. This is equivalent to
reduce the length of the corresponding street, increasing its capacity to deliver traffic to its nearest
intersection. Samani et al. [69] performed a similar exercise by increasing the width of streets, which
is mathematically equivalent to what we are doing here. After dropping the value of the edge {8, 6} to
0.5 we obtain X8 (G − {8, 6}) = 2.7989. Doing the same for the rest of edges incident with vertex 8 we
get: X8 (G − {8, 7}) = 2.8483, X8 (G − {8, 9}) = 2.9412, and X8 (G − {8, 16}) = 3.0689. These results
indicate that the edge contributing the most to the high value of X8 corresponds to the street {8, 6}
which is the one having the highest probability of congestion of all the streets in the city according to
the results of Samani et al. [69]. It is followed by street {8, 7}which is the one having the second highest
congestion probability among all streets incident to intersection 8. Therefore, this experiment reveals
that the topological indication about the potential congestion of vertices in a network as developed here
matches some of the situations observed in the real-world, so it can be used in the subsequent analysis
of complex systems.

5.2. Applications in the context of complex systems

We will start this section by studying three types of real-world networks (see [1] for more details
about these networks). The first example is the representation of the airport transportation network of
US, where the 332 vertices represent the airports in the continental USA, Alaska, and overseas places,
and the 2,126 edges represent the existence of connecting flights between the airports. The hubs of
the USA air transportation network are: Chicago O’Hare Int. (degree 139), Dallas/Fort Worth (degree
118), Hartsfield-Jackson Atlanta International Airport (degree 101), Pittsburg Int. (degree 94) and
Lambert-St. Louis Int. (degree 94). All these airports are directly connected to each other forming
a clique in the network. There are, of course, many other airports connected to pairs of these hubs,
forming a structure similar to the one of the graph G1 in Figure 3.1. In the second class, we include
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the neuronal network of C. elegans, where 277 neurons of this worm are represented as vertices, and
its 1,918 synaptic connections are accounted by means of edges. The top five hubs in this network
represent the neurons AVAL (degree 76), AVAR (degree 74), AVER (degree 54), AVDR (degree 53),
AVBR (degree 52), AVEL (degree 52) and PVCR (degree 52). The mean separation between these hubs
is 1.28, with 6 pairs that are connected only via a path of length 2. We can consider these networks as
examples of the class represented by the toy graph G2 in Figure 3.1. Finally, the third class is formed
by two urban street networks representing the central area of São Paulo city and downtown Atlanta,
which are illustrated in Figure 5.3. The nodes represent intersections and endpoints, while the edges
represent the roads and streets. We obtain all data via the Python module OSMNx [63]. The obtained
graph is simplified to undirected, unweighted, and without self-loops. The hubs in the urban street
networks are intersections having connections to 6 or 5 other vertices. In the case of the city of São
Paulo, the average separation between every pair of hubs is 19.3, and in the case of the city of Atlanta,
it is 20.6. Every pair of hubs is separated by very long paths in these cities, which is similar to what
happens in the case of the graph G3 in Figure 3.1.
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Figure 5.3. Urban street network of Downtown Atlanta (a), with n = 2586 and m = 3982,
centered at coordinates (33.75, -84.38). In panel (b) we illustrate the urban street network of
São Paulo (Brazil), with n = 3971 and m = 6147, centered at coordinates (-23.546, -46.634).

We start our analysis by considering the network representing the US airport system. In
Figure 5.4(a), we illustrate the network of US airports representing them with sizes proportional to
their Xi values. The top ten airports in this ranking are (their degrees are in parenthesis): Salt Lake
City Intl. (59); Portland Intl. (41); Stapleton Intl. (85); Raleigh-Durham Intl. (50); Seattle-Tacoma
Intl. (57); Ontario Intl. (23); Sacramento Metropolitan (23); San Francisco Intl. (68); Metropolitan
Oakland Intl. (20); Phoenix Sky Harbor Intl. (60). Therefore, the average degree of these airports
is 48.6, and they do not include the main hubs of the network, although they are in the top 50 most
connected airports. This confirms our previous hypothesis that this network behaves similarly to the

AIMS Mathematics Volume 9, Issue 9, 24297–24325.



24315

one represented by the graph G1 in Figure 3.1. Let us consider the airport of Salt Lake City Int.; which
is the one showing the highest X index. When we consider the distance Yuv which measures the quality
of communication when there is a jam at the corresponding airport, the closest airports from Salt Lake
City are Stapleton Intl.; Portland Intl.; Seattle-Tacoma Intl.; Ontario Intl.; San Francisco Intl.; Phoenix
Sky Harbor Intl.; Sacramento Metropolitan.; Metropolitan Oakland Intl.; San Diego Intl.; Lindbergh
Fld; San Jose Intl. All of which have direct flights to Salt Lake City and are also surrounding a
relatively close area to that airport as can be seen in Figure 5.4(b). On the contrary, the most distant
airports are: Raleigh-Durham Intl.; La Guardia; Washington National; Charlotte Douglas Intl.; Newark
Intl; Bradley Intl.; Baltimore-Washington Intl.; Palm Beach Intl.; Fort Lauderdale Hollywood Intl.;
Philadelphia Intl. All of them are on the east coast of the USA. Contrastingly, in normal conditions,
as measured by the communicability distances ξuv, the airports which are better communication with
the one of Salt Lake City are: General Mitchell Intl.; Louis Armstrong New Orleans International
Airport; Fort Lauderdale-Hollywood Intl; Kansas City Intl; Raleigh-Durham Intl; Port Columbus Intl;
Seattle-Tacoma Intl. Those in poor communication with it are mainly airports in Alaska or in the
Pacific: Tuntutuliak; Kongiganak; Kwigillingok; Napaskiak; Napakiak; Eek; Quinhagak; West Tinian.
Consequently, the current results indicate that in a situation of navigational vulnerability the airport of
Salt Lake City represents a potential bottleneck, which will stay well communicated only with those
nearby it and will dramatically diminish its communicability with those on the East Coast of the US.

(a) (b)

Figure 5.4. (a) Airport transportation network of the USA in 1997 in which the nodes
(airports) are drawn with size proportional to Xi and the edges between pairs of nodes
represent the existence of flight connections between the two airports. (b) Plot of the airports
with size directly proportional to their Yuv from the airport of Salt Lake City.

We now investigate the network which resembles the graph G2 Figure 3.1. In Figure 5.5(a), we
illustrate the values of X for every neuron in C. elegans representing them proportionally to the color
and size of the vertices of the neuronal network. The average degree of the neurons in the top ten of
the X ranking is 24.1. The two neurons identified with the highest propensity to become navigability
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bottlenecks are Ring Interneuron A Right (RIAR) (degree 35) and Ring Interneuron A Left (RIAL)
(degree 30), which are located on the head of the worm and form part of the “second layer” interneurons
in the process of integration of information from the outside world and the inner state of the animal,
which then leads to a behavioral response. None of the neurons with the largest values of the X
index is among the main hubs of this network, as we would expect from its resemblance to the toy
model provided by the graph G2 in Figure 3.1. In panel (b), we illustrate again the communicability
distance from the RIAR neuron (very similar results for RIAL) to the rest of the neurons. The shortest
communicability distances between RIAL and RIAR are with the neurons located in the lateral ganglia
of the head (ASHL, AIZD), the head (RMGL), left lumbar ganglia (PQR) and retrovesicular ganglion
of head (AVF). They have a variety of functions, like the main nociceptor being a center of hub-and-
spoke circuit, and integration of information, among others. The longest communicability distance
is with command interneurons AVAR, AVAL, AVBR and AVBL, all located in the lateral ganglia of
the head. When considering the Y-distance (see panel (c) of Figure 5.5) the largest proximity is to
neurons located in the head, such as RIH, RMDR, and RMDL, as well as among themselves, i.e., a
short distance between RIAL and RIAR. The neurons of the group RMD regulate the spontaneous
foraging movements in the worm. On the other hand, the longest Y-distances are with neurons located
in the tail or lumbar ganglion, such as PVCR, PVCL, PVNR, PVNL, or in the lateral ganglia of the
head (AVDR and AVDL), which are all command interneurons. These results point out the possibility
that certain navigational bottlenecks at the RIA neurons, which are involved in processing information
from outside, limit their diffusive communication only to neurons located in the head and affect more
significantly the communication with farthest away neurons which are involved in locomotion.

(a) (b) (c)

Figure 5.5. Illustration of the neuronal network of C. elegans where the vertices are drawn
with colors and radii proportional to their X indices (a), the communicability distance from
the RIAR neuron (b), and the Y-distance from the same neuron to the rest of neurons in the
network (c).

We now consider the two urban street networks described before. The plots in Figure 5.6 illustrate
the X indices associated with each node in the urban street networks in both cities. We point to the
vertices with the two highest X, which are marked as A and B, respectively. As we have mentioned
before, the urban street networks have the largest degrees of 6 or 5, which are separated by about 20
streets as average from each other. This is a characteristic feature of the graphs of the class of G3 in
Figure 3.1. Therefore, it is expected that the intersections with the largest values of X are those with
the largest degree. Indeed, in the city of Atlanta, the vertices marked as A and B both have degree 6,
and in São Paulo they have degrees 5 and 6.
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Figure 5.6. Illustration of the X index of every vertex in the city of Atlanta (a) and of São
Paulo (b) where the intersections with the two largest values of the index are marked as A
and B, respectively.

The separation between the two vertices with the largest X values, which coincide with the hubs
in both urban street networks, is of 24 street legs in Atlanta and 20 in São Paulo. In Atlanta there
are 31 different paths of 25 street legs which connect both hubs (see Figure 5.7(a)) and in São Paulo
there are 37 paths of length 21 between the vertices A and B as illustrated in Figure 5.7(b). Therefore,
the two urban street networks studied here, which can be thought of as representatives of their class
of networks, correspond to the class of networks in which the hubs are separated by a relatively large
shortest path distance, for which the graph G3 in Figure 3.1 serves as a toy model.

A

B

Atlanta

(a)

A

B

São Paulo

(b)

Figure 5.7. All paths of between the two hubs A and B in Atlanta (a) as well as in São Paulo
(b). The lengths of the paths in Atlanta are 24 and 25 and those in São Paulo are 20 and 21.
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Finally, to understand the reasons why the intersections A and B are the ones with the highest risk of
becoming navigational bottlenecks in the cities of Atlanta and São Paulo we investigate the Y-distances
from these intersections to the rest of the vertices in their respective urban street networks. The results
are illustrated in Figure 5.8. As can be seen in the figure, the Y-distance from the intersections A and
B in both cities is significant only to a close neighborhood of these vertices and not to any intersection
relatively distant from them. If we remember what we observed for the toy graph G3 in Figure 3.1, the
Y-distance between the two hubs in this graph was significantly larger than the shortest path distance
connecting them. That is, the two hubs were in poor communication. This resulted in the fact that if one
of the hubs is jammed, it loses its capacity to deliver traffic to the other one, increasing the probability
of remaining jammed. This is exactly what happens in the intersections A and B, whose Y-distance is
extremely large in these two cities, as can be seen in the plots of Figure 5.8. It is remarkable to realize
that in Atlanta, the intersection A connects six roads categorized as two avenues, three boulevards,
and one residential, and the intersection B has a traffic light and connects six roads, categorized as an
avenue link, three boulevards, and a road that connects neighborhoods. In the case of São Paulo the
intersection A has six roads connecting it, one of which is a link to one of the most critical avenues in
the city, while the other five interconnect neighborhoods. The intersection B connects five roads, two
of them are avenues; one links to an avenue, and two others connect neighborhoods.

AIMS Mathematics Volume 9, Issue 9, 24297–24325.



24319

46
.66

46
.64

46
.62

46
.60

Long

23
.58

23
.56

23
.54

23
.52

La
t

A

0

2

4

6

8

10

12

14

(a)

46
.66

46
.64

46
.62

46
.60

Long

23
.58

23
.56

23
.54

23
.52

La
t

B

0

2

4

6

8

10

12

14

(b)

84
.42

5
84

.40
0

84
.37

5
84

.35
0

Long

33
.74

33
.76

33
.78

La
t

A

0

2

4

6

8

10

12

14

(c)

84
.42

5
84

.40
0

84
.37

5
84

.35
0

Long

33
.74

33
.76

33
.78

La
t B

0

2

4

6

8

10

12

14

(d)

Figure 5.8. Illustration of the Y-distances in the city of São Paulo from the intersections
marked as A (panel (a) and B (panel b), as well as the values of Y-distance in Atlanta from
the intersections A (panel (c) and B (panel d).

6. Conclusions

The networked structure of complex systems facilitates the spread of information between the
entities that compose the system. Therefore, detecting potential bottlenecks inhibiting the information
spreading in these networks is of great practical relevance for the study of complex systems.
Additionally, the problem is far from trivial if approached from a structure-dynamics perspective.
That is, we are interested in finding vertices and edges that potentially inhibit information spreading
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by analyzing the network structure without the necessity of performing intensive simulations of the
dynamics of interest. For that purpose we have obtained a first principles connection between the
NC diffusion on a network and functions of the adjacency matrix representing their structure. In this
way we measure the capacity of every vertex in a network to spread the diffusive particles across
the network in a short time. This approach allows one to identify those vertices which are potential
navigational bottlenecks due to their diminished capacity to spread information through the network.
We have shown here how this approach can be used to study analytically the problem using algebraic
graph-theoretic approaches gaining many insights about the different situations in which a vertex can
be a potential navigational bottleneck. More interestingly, our approach connects this topic with that of
Euclidean distance matrix analysis creating a mathematical framework for the analysis of navigational
bottlenecks in networks. Our results are confirmed by studying several real-world networks, such as a
neuronal system, an air transportation network and two urban street networks. All in all, the current
approach represents a step-forward in our understanding of the structure-dynamics relations in complex
networks, which is one of the foundational goals of this discipline.
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