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Abstract: A fundamental assumption in addressing real-world problems is acknowledging the
presence of uncertainty and dynamism. Dismissing these factors can lead to the formulation of an
optimal solution for an entirely different problem. This paper presents a novel variant of the capacitated
dispersion problem (CDP) referred to as the stochastic and non-static CDP. The main objective of this
problem is to strategically position facilities to achieve maximum dispersion while meeting the capacity
demand constraint. The proposed approach combines stochastic and non-static elements, introducing
a new paradigm to address the problem. This innovation allows us to consider more realistic and
flexible environments. To solve this challenging problem, a novel sim-learnheuristic algorithm is
proposed. This algorithm combines a biased-randomized metaheuristic (optimization component) with
a simulation component (to model the uncertainty) and a machine learning component (to model non-
static behavior). The non-static part works by using black box and white box mechanisms to learn the
uncertainty with some related facilities’ variables. Based on an extended set of traditional benchmarks
for the CDP, a series of computational experiments were carried out. The results demonstrate the
effectiveness of the proposed sim-learnheuristic approach for solving the CDP under non-static and
stochastic scenarios.
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1. Introduction

Real-world applications of combinatorial optimization algorithms in fields such as logistics,
manufacturing, finance, telecommunications, and computer science are vast and diverse, demonstrating
the broad impact and significance of solving these complex optimization challenges. In the CDP,
the objective is to maximize the dispersion of facilities while considering a capacity constraint that
must meet the minimum capacity demand [17]. This NP-hard problem has been defined by [29] in
order to model a type of facility location problem with dispersion. Hence, the goal is to choose a
subset of facilities with the objective of maximizing their dispersion according to a specified distance
measure [9]. The concept of diversity focuses on the measurement of the distances between facilities,
which is customized to suit the particular requirements of the application at hand [20]. In the traditional
CDP, the quantities demanded and the capacities of the facilities are assumed to be deterministic and
known without any ambiguity. Nonetheless, in numerous real-world scenarios, particularly in logistics
and transportation, the demand for goods or services may experience randomness, which means that
the facilities’ capacities might be influenced by uncertain factors. The stochastic capacitated dispersion
problem (SCDP) introduces a further layer of realism by incorporating uncertainties. Actually, in
many practical situations, the capacity of facilities may not always remain fixed due to a myriad of
reasons, such as equipment failures, maintenance requirements, or unforeseen changes in available
resources. As such, the SCDP presents a more comprehensive and accurate representation of real-
world complexities in supply chain and distribution systems. One of the main challenges in choosing a
facility location is ensuring it can handle customer demand. In other words, the capacity of operational
facilities should ideally surpass the total demand they need to serve. This condition frequently arises
in various logistics-related problems, regardless of the decision level [12].

Furthermore, the capacity parameter in the CDP may also need to be non-static to better reflect
real-world scenarios. In real case studies, certain nodes may have limited capacity due to factors such
as physical space, equipment availability, or regulatory restrictions. For instance, in a transportation
network, some distribution centers might have zero capacity due to maintenance or temporary closures,
while others operate at their maximum capacity. This implies that some facilities might unexpectedly
exhibit zero capacity, determined by a black box mechanism that considers environmental, operational,
or market-related variables [13]. Thus, in this paper, a new stochastic and non-static capacitated
dispersion problem (SNS-CDP) is proposed. In the SNS-CDP, the capacities of the facilities may
be stochastic or non-static, and a sim-learnheuristic solution approach is proposed to address the
complexities introduced in the stochastic and non-static components. Figure 1 illustrates a simplified
SNS-CDP where the blue shapes show the selected facilities and the white small circles show the
unselected ones. In this figure, facilities are depicted with stochastic or non-static storage capacities.
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Figure 1. Visualizing a SNS-CDP: Balancing distribution efficiency with resource
limitations.

Authors such as [4,27], among many others, have explained why it is important to consider random
variables (following certain probability distributions) when modeling real-life capacities (or other
inputs of the optimization problem). Assuming these real-life capacities as deterministic values might
not properly reflect the uncertainty that characterizes real-life operations. Hence, the main contribution
of this paper is designing an innovative sim-learnheuristic algorithm that hybridizes a metaheuristic
algorithm, simulation, and machine learning in order to solve the novel SNS-CDP. By defining the
type of each facility, the algorithm is able to address the random capacities as well as the non-static
ones. In addition to its contribution to the field of facility location and optimization, the proposed sim-
learnheuristic algorithm holds significant potential for broader applications in logistics, supply chain
management, manufacturing, and telecommunication networks, where both the stochastic and non-
static capabilities should be considered to produce solutions closer to reality. The rest of this paper
is organized as follows: Section 2 presents related work on the CDP. The mathematical formulation
is described in Section 3. In Section 4, our solution methodology is proposed. Following that, in
Section 5, we present the numerical findings achieved through the experimentation of our method.
Lastly, Section 6 summarizes the main contributions of the paper and outlines potential lines for future
research.

2. Related work

Since the stochastic and non-static CDP have not been studied before, we provide some references
on the classical version of the CDP as well as on some stochastic or dynamic versions of the more
general facility location problem (FLP).
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2.1. Previous work on the CDP

Despite the CDP not having been extensively explored in the scientific literature, there are several
works on its deterministic version. For instance, Marti et al. [19] presented a heuristic based on the
scatter search methodology to solve the CDP. The results demonstrate the superiority of the proposed
model and heuristic over existing methods. In another paper, Marti et al. [26] proposed heuristics
based on the greedy randomized adaptive search procedure (GRASP) and variable neighborhood
descent (VND) methodologies to the CDP. Gomez et al. [12] proposed a multi-start biased-randomized
algorithm to solve the deterministic CDP efficiently. Compared to the available instances’ solutions
in the literature, the proposed approach is highly competitive. In another paper, Mladenovic et
al. [24] presented a variable neighborhood search VNS-based heuristics to solve the deterministic
CDP. The proposed heuristics are basic VNS, general VNS, and general skewed VNS, and their
efficiency has been assessed on benchmark instances. Also, Lu et al. [17] proposed a fast greedy
construction parameter-free heuristic algorithm based on tabu search. Additionally, Landete et al. [16]
explored the CDP from a mathematical perspective. In this work, the CDP is considered through
various mathematical formulations. The study enhanced the formulations by incorporating valid
inequalities and variable-fixing procedures. Computational experiments demonstrated the practicality
of the proposed approaches for solving diverse instances of the problem in its deterministic version.
More recently, Rosati et al. [28] proposed a multi-neighborhood simulated annealing for the CDP. This
paper considers two compact mathematical models to achieve good bounds on various instance sizes.

2.2. Stochastic and dynamic facility location problems

The majority of CDP literature predominantly concentrates on the deterministic variant, while the
stochastic and non-static CDP models have not been extensively addressed yet. However, a recent
research by [11] presented a new simulation-based metaheuristic approach for solving the stochastic
CDP. This paper introduces two models for the CDP with stochastic capacities, incorporating soft
constraints and penalty costs for violating the total capacity constraint. There has been some research
conducted on stochastic and/or dynamic FLPs. For instance, Bieniek [3] addressed the single source
capacitated FLP with general stochastic demands. They proposed a unified solution for determining
facility locations and customer allocations. Additionally, some papers have employed actual case
studies on the dynamic FLP. For instance, Mišković, et al. [23] introduced a robust variant of the
dynamic FLP, focusing on optimizing the emergency service network of police special forces units in
Serbia. The paper also used the variable neighborhood search method with an efficient local search
procedure to solve real-life problem instances. Jena et al. [15] addressed a multi-period FLP with
multiple commodities and capacity levels, allowing for facility relocation and temporary closures.
The study proposed a formulation for the problem and a hybrid heuristic that combines Lagrangian
relaxation and a restricted mixed-integer programming model. In another paper, Marufuzzaman et
al. [22] addressed the capacitated dynamic FLP, which aims to satisfy customer demands at minimum
cost by determining facility opening, closing, or retention over time. To tackle this challenging
problem, the paper proposed a unique hybrid solution algorithm, combining a rolling horizon algorithm
with an accelerated Benders decomposition approach. Pearce et al. [25] proposed an approach to solve
the budget-constrained dynamic uncapacitated facility location and network design problem optimally.
The problem involves constructing or expanding a network and placing facilities within a given budget
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to meet demands. The study utilizes disaggregated Benders decomposition within a branch-and-cut
framework. In another work, Wang et al. [31] introduced a dynamic k-level FLP considering the
time factors, and proposed a combinatorial primal-dual approximation algorithm that finds a constant
factor approximate solution. Additionally, Oliveira et al. [6] investigated two variants of a dynamic
multi-period two-level uncapacitated FLP, where first-level plants serve scattered clients over time via
second-level facilities. The study proposed a decomposition approach using Benders decomposition
and GRASP. Finally, Silva et al. [30] focused on the dynamic FLP with modular capacities, aiming
to minimize location and demand allocation costs over a planning horizon. They proposed three
linear relaxation-based heuristics and an evolutionary heuristic that hybridizes a genetic algorithm
with a variable neighborhood descent metaheuristic. Recently, Xu et al. [32] explored two ensemble
methods for decision-making in stochastic mixed-integer FLP with limited computational budgets,
focusing on variance reduction and probabilistic guarantees. Additionally, Ala et al. [1] exploreed the
dynamic capacitated FLP for mobile renewable energy charging stations using two-stage stochastic
programming. Finally, Aydin et al. [2] addressed the capacitated reliable facility location problem
under uncertainty by developing two novel algorithms that integrate sample average approximation
and progressive hedging algorithm.

3. Mathematical formulation

In this section, the mathematical formulation of the deterministic CDP proposed by [29] is
presented; then, the stochastic and non-static formulations derived from the deterministic model are
proposed.

The CDP is mathematically defined as follows: Consider a graph G = (V, E), where V represents
a set of n nodes (facilities), and E is a set of edges connecting these nodes. Each node i ∈ V has an
average capacity denoted by ci, and for every pair of nodes i and j, connected by an edge (i, j) ∈ E,
their distance is represented by di j (di j = d ji). The objective of the CDP is to choose a subset of V , such
that the total capacity of the selected nodes is equal to or exceeds a given value B, while simultaneously
maximizing the minimum distance among all pairs of selected facilities. Additionally, we introduce
a binary variable xi that is equal to 1 when facility i is selected, and 0 otherwise. Based on these
definitions, the mathematical model of the deterministic CDP is the following:

max min
i, j∈V,i< j

di jxix j (3.1)

s.t.:
∑
i∈V

cixi ≥ B (3.2)

xi ∈ {0, 1}, ∀i ∈ V. (3.3)

Equation (3.1) represents the objective function aiming to maximize the minimum distance among
the selected pairs of facilities. Additionally, constraints (3.2) guarantee that the selected nodes
meet the minimum capacity requirement (B). Finally, constraints (3.3) refer to the nature of the xi

variable, enforcing that xi is a binary decision variable. This restriction ensures that xi = 1 when
facility i is selected and xi = 0 when it is not. It is assumed that ci represents the deterministic capacity
of facility i.
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In the stochastic model of CDP, it is assumed that the storage capacity of each facility is not known
in advance. Instead, it is modeled using a probability distribution function. To achieve this, each
facility is associated with an independent parameter, denoted by Ci (for all i ∈ V), which follows a non-
negative probability distribution, such as the Weibull or log-normal distributions. The formulations of
the stochastic variant are as follows:

max min
i, j∈V,i< j

di jxix j (3.4)

s.t.: P(
∑
i∈V

Cixi ≥ B) ≥ α (3.5)

xi ∈ {0, 1} ∀i ∈ V. (3.6)

In this model, constraints (3.5) state that the selected facilities collectively have a capacity greater
than or equal to the specified minimum requirement with a probability of at least α. When faced
with a specific scenario, if the system is incapable of fulfilling the requested demand, there are no
available backup or recourse actions that can be employed to revise the situation. Consequently, it
becomes essential to calculate the probability of the solution’s failure, which refers to the likelihood
of the system not being able to provide the necessary service as required. This computation allows
us to assess the reliability and performance of the system in uncertain situations, helping to identify
potential shortcomings and make informed decisions to improve its overall effectiveness.

In the non-static scenario, we assume that the storage capacities of the facilities are neither
deterministic nor stochastic subject to a predefined probability distribution function. We refer to
it as non-static because the parameter is defined in a manner that is not mathematically dynamic,
meaning it does not depend on time. However, it is also not entirely static. Therefore, in this paper,
the term “non-static” denotes the specific nature of the parameter. In this scenario, the probability of
obtaining a capacity for node i is assumed to follow a logistic regression model. According to [13], the
formulations of the non-static component are as follows:

max min
i, j∈V,i< j

di jxix j (3.7)

s.t.:
∑
i∈V

picixi ≥ B (3.8)

xi ∈ {0, 1} ∀i ∈ V. (3.9)

In this model, constraint (3.8) ensures that the total capacity of the selected nodes meets the
minimum required threshold. This constraint incorporates a probability term pi following a Bernoulli
distribution, pi ∼ Ber(φ(ci, sdi, odi)) where φ is a sigmoid function of the logistic regression model.
The function φ is defined as:

φ(ci, sdi, odi) =
1

1 + exp(−(β0 + β1ci + β2sdi + β3odi))
∀i ∈ V. (3.10)

In Eq (3.10), the function φ is a black box model that imitates the behavior of the real world. In
this function, the parameter ci represents the deterministic capacity of node i, sdi denotes the seasonal
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demand at node i, and odi indicates the operational disruption associated with node i. In addition, β1,
β2, and β3 are dependent coefficients, while the β0 is the intercept term. In this model, the variables
sdi and odi are binary variables, taking on values of either 0 or 1. A value of 1 signifies a promising
condition, while a value of 0 denotes a non-promising condition.

In the stochastic-non-static scenario, we recognize that the capacities of facilities do not all follow
the same statistical pattern. Some facilities’ capacities are modeled stochastically, incorporating
variability and uncertainty through a probability distribution function. For other facilities, capacities
are considered non-static, meaning they can either be zero or match the deterministic capacity based on
the variabilities of seasonal demand and operational disruption. Unlike stochastic capacities, non-static
capacities are not described by probability distributions but are assumed to be influenced by a black
box model.

4. Our solution approach

In this section, our proposed solution approach is presented. Since the problem described in the
previous section is NP-hard, an approximation algorithm is defined to address the complexities of the
problem. To address the solution approach for the SNS-CDP, a sim-learnheuristic methodology is
proposed. We utilize the power of metaheuristics to handle the deterministic variant of the problem
effectively. Additionally, a simulation technique is integrated with the metaheuristics to address the
SCDP. Finally, a machine learning component is incorporated to account for the non-static CDP. In the
following subsections, each component of our sim-learnheuristic solution approach is described.

4.1. Metaheuristic component

To address the deterministic version of the CDP, a novel hybrid metaheuristic is proposed. Our
metaheuristic involves two distinct phases: The initial phase focuses on generating a solution, while
the subsequent phase aims to improve it. During the first phase, a constructive heuristic is developed
that can adapt based on the specific instance being addressed. This method is repeatedly employed
in a classic multi-start pattern to create multiple solutions. In the second phase, the solutions
undergo further improvement using a multi-start biased-randomized (MSBR) algorithm. This approach
potentially refines the solutions to obtain higher-quality results.

4.1.1. Constructive heuristic

The constructive heuristic, proposed by [10], involves adding elements to a partial solution in a
greedy manner. In order to randomly select elements from a list of promising candidates based on the
distance objective function, it is incorporated into the GRASP framework [7]. To further enhance these
methods, we introduce biased-randomization (BR) techniques [14], enabling the addition of nodes.
These BR techniques utilize skewed probability distributions, transforming deterministic heuristics
into probabilistic algorithms. As a result, this algorithm can rapidly generate numerous high-quality
solutions for the problem.

Our constructive heuristic using a BR technique starts with an initial empty solution S . During
the execution of the algorithm, nodes from set V are added to solution S , all while ensuring that
the capacity constraint remains unfulfilled. The instance I, which is going to be solved, encompasses
important information, such as the capacity of each node (facility) i (ci), the minimum required capacity
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level (B), and the distances between pairs of nodes (di j). The other parameter of the algorithm is
δ, which acts as a balancing factor between the distance metric and the capacity aspect within the
governing greedy function. Equation (4.1) provides the mathematical expression to calculate the hi,
where ds is the shortest distance between i and any other nodes j in S , and ci is the capacity of node i.
Parameter δ manages the balance between distance and capacity considerations.

hi = δ · ds(i, j) + (1 − δ) · ci. (4.1)

A flowchart of the algorithm steps is presented in Figure 2. In the algorithm, the procedure begins
by initializing an empty set S to represent the evolving solution. The edges within the input graph
are sorted in descending order based on their distances, forming the list edges − list, which aids edge
selection. A biased-randomized selection is used to choose the edge (i0, j0) from edges − list using a
geometric probability distribution function, and its nodes i0 and j0 are added to S . Then, the candidate
list CL is formed, comprising nodes from V excluding those in S . The total weight of the solution
S is set to the distance between i0 and j0. An iterative process begins, where nodes in CL are sorted
in descending order based on a certain criterion, and a node i∗ is chosen using a geometric selection
strategy. A biased random selection of the elements with the geometric probability distribution based
on the h values provided by Eq (4.1) returns the element i∗ to be added to the solution. Node i∗ is added
to S and the solution’s total weight is updated. Then, the node i is removed from CL. This iterative
process continues until S becomes feasible. Finally, the algorithm returns the evolved solution S as the
output.

In the non-static model, a white box is applied in order to provide predictions to deal with the
uncertainty of the problem. The white box is defined as a function that approximates the black box. In
this regard, for the first two nodes, the Eq (4.2) should be used to calculate the hi instead of Eq (4.1),
where prob(i) is the probability of facility i covering the capacity.

hi = δ · ds(i, j) +
1 − δ

2
·
(
prob(i) · ci + prob( j) · c j

)
. (4.2)

In the algorithm, after generating the S set, the black box updates the capacities of the nodes regarding
the facilities condition variables. In the non-static model, the candidate list evaluates the nodes and
ranks them in order of preference based on an evaluation function. The evaluation function, defined
in Eq (4.3), considers several key factors. The term min distance(i) represents the minimum distance
between node i and the selected facilities. The term max min distance is the maximum value of these
minimum distances among all candidates in the candidate list. The capacity of a candidate facility
is denoted by ci, while max cap represents the maximum capacity among all candidate facilities.
Additionally, prob(i) signifies the probability that facility i will cover the required capacity. The value
of δ ∈ (0, 1) is a tuning parameter that is selected based on a value that produces the best outcome.

eval(i) = δ ·
min distance(i)

max min distance(V \ S )
+ (1 − δ) ·

ci · prob(i)
max cap(V \ S )

. (4.3)
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Start

Initialize S = {}

Put all the edges of the input in edges − list and sort

Randomly select an edge (i0, j0) from edges − list, and put S = S ∪ i0 ∪ j0

Put f (S ) = di0, j0

Create CL = V \ S

Sort CL and Select i∗ from CL

Add i∗ to S and update f (S )

Remove i∗ from CL

f is feasible

Return S

Update CL

End

Yes

No

Figure 2. The flowchart of the constructive heuristic algorithm.

4.1.2. Multi-start biased-randomized methodology

Figure 3 shows the framework of the MSBR algorithm. This algorithm takes the initial solution
as its input, denoted as S , which is generated through the constructive method, and a parameter
representing the maximum number of iterations. The algorithm starts by putting the set S in an initial
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solution set, S 0. Subsequently, the algorithm sets the counter to zero. The core of the algorithm
emerges in a loop, where each iteration increments the counter by one unit. Within this iterative
process, the algorithm first identifies the oldest node from S , effectively removing it from S set.
Subsequently, it proceeds to select a node, denoted as u∗, with the maximum minimum distance to
S . This selected node, u∗, is then incorporated into the solution set S . Following this adjustment,
the algorithm evaluates the quality of the updated solution set by calculating the objective function
value, denoted as f (S ). If the new objective function value is better than the value associated with
the initial solution set, f (S 0), the algorithm updates the set S 0 and resets the counter to zero. If,
however, the new solution does not obtain an improvement, the algorithm continues its iterative loop.
This iterative process persists until the algorithm reaches the maximum specified number of iterations.
Upon reaching this threshold, the final solution set S 0 becomes the output of the algorithm, representing
the best solution achieved throughout the optimization process. The computational complexity of the
MSBR is O(n2). This complexity arises from the necessity to sort the edge list in increasing distance
order and the iterative process of selecting and removing nodes based on the geometric probability
distribution until the capacity constraint is satisfied. The second-phase improvement has a complexity
of O(n log n) per iteration, due to the management of the list and neighborhood explorations. Therefore,
the overall complexity of the algorithm can be described as O(n2 + itmax · n log n), where itmax denotes
the maximum number of iterations without improvement.

Our two-phase algorithm comprising the construction and improvement phases, which encompass
the constructive step, as well as MSBR improvements, is described in the previous paragraphs. We
collectively refer to this two-phase algorithm, MSBR methodology in the rest of this paper. The
subsequent subsection describes the sim-learnheuristic algorithm and the integration of MSBR with
our simulation and machine-learning frameworks.
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Start

Initialize S 0 = S , and counter = 0

counter = counter + 1

Define u as the oldest node in S , and put S = S \ u

Select best node (u∗) from V with max-min distance to S

S = S ∪ u∗

If f (S ) > f (S 0)

Update S 0 to S

Reset counter to 0 If counter < MaxIt

Return S 0

End

Yes

No

No

Yes

Figure 3. The flowchart of the MSBR algorithm.

4.2. Machine learning component

As it has been explained in Section 3, the non-static part of the solution works based on black box
and white box mechanisms. The black box imitates the behavior of real life; however, the white box
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approximates the black box. A multivariate logistic regression machine learning method is applied to
predict categorical values based on input variables described in Section 3. The variables used in the
logistic regression model are seasonal demand, operational disruption, and deterministic capacity of
each facility. This method estimates the probability of a binary dependent variable by modeling the
relationship between the dependent and independent variables. The non-static capacities can be zero
if the black box model predicts zero or equal to the deterministic capacity, as described in Eq (3.10).
The values provided by the black box model are stored in the white box model, which then adjusts the
candidate list as outlined in the constructive heuristic section. This process ensures that the capacities
in our non-static component are continuously updated.

4.3. Simulation component

In Section 4.1.2, the MSBR algorithm specifically adjusted for addressing the deterministic variant
of the CDP is introduced. However, it is not able to deal with the inherent uncertainty prevalent in
real-world problems. In this section, the MSBR is improved by incorporating a simulation framework.
Algorithm 1 shows the simulation procedure employed within the sim-learnheuristic approach. As
mentioned before, in our SNS-CDP, the facilities are categorized into two distinct groups based on
their characteristics: Facilities with stochastic or non-static capacities, which are determined through
simulation. First, for stochastic facilities, the capacity is determined by generating random numbers
utilizing a probability distribution function, specifically- the log-normal distribution function with
location µ and scale σ parameters. As discussed in [5, 18], among others, the choice of a log-normal
distribution for modeling facility capacities is justified by its suitability in representing positively
skewed data, which is typical in capacity-related scenarios. Notice that the specific parameters of
the log-normal will be obtained from real-life observations using best-fit statistical techniques. The
log-normal distribution is frequently used in practical applications where values are strictly positive
and exhibit variability across several orders of magnitude. This characteristic makes it an ideal fit for
modeling the stochastic nature of facility capacities in our problem. Second, black box and white box
mechanisms are employed to generate the non-static capacities of the corresponding facilities, utilizing
three independent variables: ci, sdi, and odi, along with their respective coefficients.

In the context of simulation (Algorithm 1), the key inputs to this algorithm include the solution,
its associated nodes, nodes’ types, and the maximum number of simulations. The algorithm starts by
initializing an empty list named capacity. Subsequently, a loop is initiated to iterate through each of the
specified maximum simulation iterations. Within this loop, a new variable named all nodes capacity
is created. The primary objective is to populate this list with capacities associated with all facilities
in all the iterations. Within another loop, facilities marked for opening as determined by the MSBR
algorithm are considered to be given the capacity values based on their type. If the facility type is
stochastic, the capacity is generated as a random number using the log-normal distribution function. In
cases where the facility type is non-static, a black box function generates a probability value based on
deterministic capacity, seasonal demand, and operational disruption variables. The resulting capacities
are then stored using the white box function. Upon completing capacity assignments, the capacities
of all facilities are aggregated into the capacity list, and the cumulative capacities are stored in the
all nodes capacity variable. A major constraint enforced throughout this process is that the collective
capacities of all facilities must meet or exceed a predefined demand threshold. However, in instances
where this constraint is not met, the algorithm encounters a failure. In the final step, the total capacity is
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appended to the capacity list. Consequently, this list accumulates different total capacity values across
different iterations. Finally, the reliability and the final solution are determined. Table 1 describes all
the parameters used in the Algorithm 1.

Algorithm 1 Simulation module
1: fail← 0
2: capacity← []

3: while simulation ≤ max simulations do
4: all nodes capacity← 0
5: for each node in solution do
6: if dict type[node] is 1 then
7: node capacity← StochasticValue[node]

8: else
9: probValue← simulate blackbox(capacity, operation disruption,seasonal demand)

10: node capacity← probValue × capacity

11: Add node capacity to white box
12: end if
13: Add node capacity to all nodes capacity
14: end for
15: if all nodes capacity < max demand then
16: fail = fail+1

17: end if
18: Append all nodes capacity to capacity
19: end while
20: Update reliability = ( max simulations - fail) / max simulations

Table 1. Explanation of variables used in the simulation module algorithm.
Variable Description
fail Counter for fails
capacity List storing the capacities of all nodes after each simulation
max simulations Maximum number of simulations to run
all nodes capacity Sum of capacities for all nodes in the current simulation
solution Set of nodes selected to be established
dict type Dictionary indicating the type of each node
StochasticValue Pre-determined function to generate stochastic using log-normal function
simulate blackbox Function to calculate probability value based on inputs
operation disruption Input parameter for the fit blackbox function
seasonal demand Input parameter for the fit blackbox function
probValue Probability value obtained from fit blackbox
white box Data structure to store intermediate results for nodes not of type 1
node capacity Capacity of the current node
max demand Maximum demand that all nodes’ capacity must meet
reliability Reliability metric for the solution
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4.4. Sim-learnheuristic

It is well-established in stochastic literature that excellent solutions obtained for the deterministic
version of an optimization problem carry over its quality to its stochastic counterpart, albeit with
an understanding that some level of variability comes with the random components [8]. The
sim-learnheuristic uses the strength of deterministic optimization to obtain solutions that exhibit
a remarkable degree of stability to the stochastic-non-static counterpart. The sim-learnheuristic
employs a multi-step process to address SNS-CDP. In the initial stage, it transforms the stochastic-
non-static problem into a deterministic problem by substituting expected values for stochastic-
non-static parameters. Subsequently, the problem is resolved using the MSBR algorithm, the
metaheuristic component, followed by refinement through a short simulation enhanced by the log-
normal distribution function and machine learning techniques. This process iterates until the best
solutions are achieved within the designated time frame. The pool of the best stochastic and non-
static solutions is dynamically updated during this phase. In the next phase, a simulation with a
high number of replications is applied to the solutions. This long simulation enables us to attain
a more accurate estimation of the solutions. Finally, in the last step, the algorithm computes the
reliability and assesses risks associated with the solutions, providing valuable statistical tools for
result analysis. Figure 4 shows our sim-learnheuristic approach for solving the SNS-CDP. Based
on the mathematical formulations provided for the stochastic CDP in Section 3, specifically the
constraint 3.5, the reliability of a solution S is the probability that this solution is feasible. This
approach guarantees a comprehensive optimization process, resulting in top-quality solutions with
strong reliability assessments.

Figure 4. The sim-learnheuristic schema for solving the SNS-CDP.

AIMS Mathematics Volume 9, Issue 9, 24247–24270.
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5. Computational experiments

In this section, we explore four distinct variants of the CDP, each characterized by specific
assumptions regarding facility behavior. In the first scenario, a deterministic version of the CDP is
considered. In the second scenario, it is assumed that the capacity of the facilities follows a log-
normal distribution function to define a stochastic scenario. In the third scenario, it is assumed that the
capacities of the nodes are non-static using the whitebox black box mechanism and the multivariate
logistic regression model. Finally, in the combination scenario, there are two types of facilities. It
is assumed that facilities with odd identification numbers are non-static, while the even ones are
stochastic facilities. Additionally, each variant of the CDP has been solved twice. First, we consider
the deterministic solution in stochastic, non-static, and stochastic-non-static environments. Then, we
solve the stochastic, non-static, and stochastic-non-static problems using MSBR-simulation, MSBR-
machine learning, and MSBR-simulation-machine learning, respectively.

Two groups of instances are considered to be solved. First, the GKD benchmark, constructed using
Euclidean distances, with node coordinates generated from a uniform distribution ranging between 0
and 10. This dataset is originally from [21] and comprises two subsets: GKD-b (instances with 50 and
150 nodes) and GKD-c (instances with 500 nodes). The MDG benchmark incorporates real numbers
randomly selected from a uniform distribution between 0 and 1000. This dataset, initially presented
by [7], consists of instances with 500 nodes. In the scenarios with the stochastic capacities (scenarios
two and four), the capacity of each facility is depicted as a random variable, denoted as Ĉi, using the
log-normal probability distribution function with two parameters (µ, σ) that are determined using the
deterministic mean capacity parameter of the facilities (ci). Additionally, the number of short and long
simulation iterations in these scenarios is set at 100 and 1000, respectively.

Two sets of parameters for the stochastic and non-static problems have been defined. Table 2 shows
the corresponding values for the black box coefficients β0, β1, β2, β3, and σ level of the log-normal
function in low and high scenarios. Figure 5 visualizes the probability of selecting a new node using
the black box model based on the chosen set of coefficients for the high and low scenarios. Three
different values for the capacity, namely 10, 50, and 100, are considered. Figures 5(a)–(c) depict
the visualization with the high-level set of coefficients, while Figures 5(d)–(f) show the visualization
with the low-level set of coefficients. Seasonal demand and operational disruption are considered
binary variables, each taking values of either 0 or 1. In Figure 5, the cells (0, 0) show the probability
of selecting a node under the non-promising condition. Conversely, the cells (1, 1) represent the
probability of selecting a node when both variables are in the promising condition.

Table 2. Parameter values for non-static and stochastic components.

non-static component stochastic component
β0 β1 β2 β3 σ

High -1.5 0.005 2.0 1.0 10.0
Low -0.7 0.010 0.8 1.0 5.0

AIMS Mathematics Volume 9, Issue 9, 24247–24270.
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(a) C = 10 (b) C = 50 (c) C = 100
High Scenario

(d) C = 10 (e) C = 50 (f) C = 100
Low Scenario

Figure 5. Behaviors of the black box using three different capacities and high and low
coefficients’ values.

The algorithms are implemented using Python 3.10.5 and executed on an Intel(R) Core(TM)i3
CPU @ 2.00GHz with 8 GB of RAM. The sim-learnheuristic code is provided at: https://github.
com/Elnazghorbani/Sim-learnheuristic_CDP. We imposed a maximum execution time of 60s
for smaller and medium-sized instances (those with fewer than 500 nodes) and extended it to 180s
for larger instances with 500 nodes. Tables 3 and 4 represent the results achieved for solving the
different variants of the CDP for the high and low levels of coefficients, respectively. In the first
column of both tables, the instances are introduced, then the deterministic solution using the MSBR
algorithm is presented. The deterministic solution in the stochastic environment column reveals the
performance of the deterministic solution when tested in a stochastic environment, along with its
reliability (percentage of the feasibility of the solution) measure. Then, in the next column, the
stochastic objective function values generated by the MSBR-simulation(sim) algorithm are presented.
Similar columns are repeated for the non-static and stochastic-non-static scenarios. The solutions in the
columns MSBR-machine learning(ml) and MSBR-sim-ml are provided considering the solo stochastic
and the stochastic-non-static scenarios, respectively. Finally, the gaps(%) between the MSBR-sim-ml
solution and deterministic solution in a non-static environment (a), MSBR-sim (b), and MSBR-ml (c)
for all the instances are calculated to compare the sim-learnheuristic with other methodologies.

Figure 6 presents a comparison of solutions across various scenarios for all instances. Figure 6(a)
illustrates the behavior of the methodologies with high-level coefficients, while Figure 6(b) shows the
results for low-level coefficients. As expected, the deterministic values serve as upper bounds for all

AIMS Mathematics Volume 9, Issue 9, 24247–24270.
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solutions. Notably, across solution methodologies—MSBR-sim, MSBR-ml, and MSBR-sim-ml—the
objective function values consistently surpass those of deterministic solutions in stochastic, non-static,
and combined stochastic-non-static environments for both levels of coefficients. The results underscore
the robustness of the sim-learnheuristic algorithm, demonstrating its efficacy alongside MSBR-sim and
MSBR-ml approaches in addressing combined uncertainties within the stochastic-non-static scenario.

(a) High-level scenario

(b) Low-level scenario

Figure 6. Comparison of solutions across different scenarios for all the instances.

AIMS Mathematics Volume 9, Issue 9, 24247–24270.
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Figure 7 compares the percentage gaps of the MSBR-sim-ml with other methodologies. The
data is provided in the last three columns of Tables 3 and 4. These figures highlight the significant
positive gaps between the solutions provided by the MSBR-sim-ml and the deterministic solutions
in a stochastic-non-static environment for both levels of coefficients. Figure 7(a) demonstrates
minimal gaps between MSBR-sim-ml and other methodologies, such as MSBR-sim and MSBR-ml.
Additionally, Figure 7(b) confirms the similar behavior of MSBR-sim-ml to MSBR-sim and MSBR-
ml in low-level scenarios. Besides, it indicates that even in low-level scenarios, the performance of the
sim-learnheuristic is superior to the deterministic solution in a stochastic-non-static environment.

(a) High-level scenario (b) Low-level scenario

Figure 7. Comparison of percentage gaps between MSBR-Sim-ML and other solution
methods.
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6. Conclusions

In this study, novel variants of the CDP have been explored by considering the storage capacity
parameter of the facilities as stochastic, non-static, and a combination of stochastic and non-static
values. To address the proposed combination problem, a sim-learnheuristic solution approach is
developed in order to use the power of machine learning, metaheuristic, and simulation to respond
to the stochastic and non-static characteristics of the problem. In this approach, the facilities are
classified into two distinct categories based on their unique characteristics. In particular, stochastic
facilities are characterized by capacities produced by a log-normal distribution function, while non-
static facilities are modeled using a machine learning framework to predict their non-static behavior.
Defining both a black box and a white box allows for the creation of a procedure designed to receive
real data and generate an approximation thereof. Notably, a multivariate logistic regression model has
been applied to perform a classification prediction. The predictions are multiplied by the deterministic
capacities. Thus, the non-static capacities can be either zero or equal to the corresponding deterministic
capacity value. The logistic regression model incorporates independent factors, each contributing
unique coefficients to the modeling process. A constructive multi-start biased-randomized (MSBR)
technique is proposed as the metaheuristic component to resolve the problem’s deterministic version
by replacing the random capacities’ expected values. Additionally, a Monte Carlo simulation technique
is incorporated to provide the solution for the combination model by a maximum iteration number.

To provide a comprehensive assessment of the results, four different scenarios for the CDP are
considered: deterministic, solo-stochastic, solo-non-static, and stochastic-non-static. The deterministic
scenario has been answered by using the proposed metaheuristic algorithm. However, the second
scenario is resolved by MSBR and the simulation component. Besides, the solo-non-static variant
has been answered by a combination of MSBR and our machine-learning component. Finally,
the stochastic-non-static scenario has been addressed by our sim-learnheuristic method, which is
a combination of the metaheuristic, simulation, and machine-learning components. Two types of
comparisons have been conducted. First, we generate deterministic solutions within stochastic, non-
static, or stochastic-non-static environments, accompanied by their respective reliability values, to
facilitate comparisons with our methodologies. Second, we evaluate the efficiency of our proposed sim-
learnheuristic (MSBR-sim-ml) algorithm by comparing it with other solution approaches like MSBR-
sim and MSBR-ml. This comparison aims to demonstrate the effectiveness of our methodology in
addressing two types of uncertainties.

As expected, the results demonstrated that the deterministic scenario produced the most favorable
outcomes. However, the results for the deterministic scenario are not reliable, since it underestimates
the real-world constraints. In the first comparison, the sim-learnheuristic outperforms deterministic
solutions within the stochastic-non-static environment, as well as the other two solution approaches
(MSBR-sim and MSBR-ml). The second comparison highlights the strong performance of the
sim-learnheuristic, with only minor gaps observed in its behavior compared with the two other
methodologies.

In the future, prospective research should explore deeper the complexities associated with non-
static storage capacities. For instance, exploring more intricate models, such as neural networks or
other advanced methods, can enhance the predictions. Moreover, employing sophisticated modeling
techniques like time-series forecasting has the potential to significantly enhance the predictions of
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facility capacity. Besides, in future works, a comprehensive analysis can be conducted to discover
other factors influencing changes in facility capacity and identify additional variables that may impact
the dynamic values. Finally, future studies can improve our understanding of this field by proposing
other methodologies to compare the results achieved in this paper using different solution approaches.
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23. S. Mišković, Z. Stanimirović, I. Grujičić, An efficient variable neighborhood search for solving a
robust dynamic facility location problem in emergency service network, Electron. Notes Discrete
Math., 47 (2015), 261–268. https://doi.org/10.1016/j.endm.2014.11.034
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