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Abstract: The present work is dedicated to a study that focuses on solving space-fractional advection-
diffusion equations (SFADEs) using the Galerkin method. Through our analysis, we demonstrate the
effectiveness of this approach in solving the considered equations. After introducing the Chebyshev
cardinal functions (CCFs), the Caputo fractional derivative (CFD) was represented based on these bases
as an operational matrix. Applying the Galerkin method reduces the desired equation to a system
of algebraic equations. We have proved that the method converges analytically. By solving some
numerical examples, we have demonstrated that the proposed method is effective and yields superior
outcomes compared to existing methods for addressing this problem.
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1. Introduction

As we know, fractional calculus is a mathematical topic whose use dates back to recent years.
It has been discovered that fractional derivatives of various types [1] can be used to model many
systems across multiple fields, including viscoelastic materials, electromagnetic fields, control systems,
electrochemical reactions, porous media flow, and more [2–5]. Various analytical and numerical
techniques have been developed and implemented to investigate and solve fractional differential
equations, such as the wavelet method [6–9], Adomian decomposition [10], the Kuratowski measure of
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noncompactness technique [11], the B-spline collocation method [12], the least-squares finite element
method [13], the adaptive-grid technique [14], multi-step methods [15], an implicit integration factor
method [16], the Petrov-Galerkin finite element-meshfree [17], fast second-order accurate difference
schemes [18], etc.

This paper primarily focuses on solving a special form of FPDEs (fractional partial differential
equations) through the Galerkin method. The equation is represented as

vt + uvx + w ∂
µv
∂xµ + pv = f , x ∈ [a, b], t ∈ (0,T ],

v|t=0 = g(x), x ∈ [a, b],
v|x=a = ha(t), v|x=b = hb(t), t ∈ (0,T ],

(1.1)

where µ ∈ (1, 2], vx is the advection item, the anomalous diffusion ∂
µv
∂xµ is the Caputo fractional derivative

(CFD) with respect to variable x, the functions u,w, p belong to space C ([a, b] × (0,T ]), g(x) ∈ C[a, b],
and ha, hb ∈ C(0,T ]. The existence and uniqueness of the solution of Eq (1.1) are investigated in detail
in [19].

Equation (1.1) can refer to different PDEs (partial differential equations) based on the values of µ
and f . We have classical PDEs if µ ∈ Z+. In the case where µ = 2 and f = 0, it usually denotes
the standard Fokker-Planck equation. This equation is commonly used to describe the Brownian
motion of particles. If µ is equal to 2 and p ∈ R, then it represents the classical form of the
advection dispersion equation. However, if µ is not an integer, it is associated with the phenomenon
of anomalous diffusion. In anomalous diffusion, superdiffusion can be characterized by the space
fractional derivative of order µ ∈ (1, 2]. The anomalous diffusion involves the non-linear increase
of the mean squared displacement over time in a power-law form ⟨x2(t)⟩ = kµtµ, where kµ is the
diffusion coefficient, and the superdiffusion corresponds to µ ∈ (1, 2) being exactly the order of the
space fractional derivative [20,21]. On the other hand, the space fractional advection-diffusion equation
is an effective tool to describe superdiffusion with advection motion. For more details, we refer the
reader to [21].

The advection-diffusion equation with space fractional derivative (1.1) appears naturally in many
practical problems. It can be used to model the probability distribution of particles exhibiting advection
and superdiffusion, such as nonlocal and non-Fickian flows in porous media [22]. Some numerical
schemes have been developed and implemented to solve the space-fractional advection-diffusion
equation. Zheng et al. [23] used a finite element method to solve Eq (1.1). They investigated the
error estimate and presented two numerical examples to confirm their theoretical analysis. In [20], the
authors have used the spectral collocation method to solve SFADEs numerically. The finite volume
method has been used for solving (1.1) where stability and convergence of the scheme are investigated
in [24]. Jannelli et al. [25] utilized a new technique to solve Eq (1.1). They first transformed this
equation into fractional ordinary differential equations through the fractional Lie symmetries. They
then used an implicit trapezoidal method to solve the resulting ODE. In [26,27], the authors have used
a semi-discretization method that applies the weighted essentially non-oscillatory scheme and implicit
integration factor method for space and time discretization, respectively. Our main goal is to introduce
and implement a practical, efficient, and simple numerical method to reduce the computational cost
while solving these types of equations.

Cardinal functions have a unique property of having non-zero values at only one point. This makes it
easy to approximate any function and avoid any integration to find the coefficients in the corresponding
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expansion. The method for constructing these types of functions can be found in reference [28].
It provides a general framework for building these functions. These functions are widely used to
solve equations because of their high approximation power and unique characteristics. In [12], the
authors studied the collocation method based on Chebyshev cardinal functions (CCFs) to solve special
PDEs. These bases are used to solve the fractional Sturm-Liouville equation [29,30]. A pseudospectral
method based on the CCFs has been applied for solving fractional integro-differential equations [31].
Shahriari et al. [32] studied the Dirac operator using the pseudospectral method based on CCFs.

The subsequent sections of the paper are structured in the following manner: Chebyshev cardinal
polynomials and their properties are reviewed and introduced in Section 2. The Galerkin method is
applied to solve SFADEs (1.1), in Section 3. Section 4 is devoted to demonstrating the practicality and
precision of the method. Section 5 of our paper provides a concise summary of our findings.

2. Chebyshev cardinal polynomials

Before introducing the Chebyshev cardinal functions (CCFs), we must review the Chebyshev
polynomials and some related concepts critical for the CCFs’ introduction. Recall that the TChebyshev
polynomials (Chebyshev polynomials of the first kind) with degree J on [−1, 1] are specified through

TJ(cos(θ)) = cos(Jθ), J = 0, 1, . . . ,

and their roots are given by

r j := cos
(
( j + 1/2)π

J

)
, ∀ j = 0, 1, . . . , J − 1. (2.1)

To shift the Chebyshev polynomials for generic intervals [a, b], the shifted Chebyshev polynomials T ∗J
can be specified through a simple change of variable, viz.,

T ∗J (t) := TJ

(
2(t − a)
b − a

− 1
)
. (2.2)

Considering the aforementioned change of variable, it is easy to obtain the roots of T ∗J by

t j =
(r j + 1)(b − a)

2
+ a, j = 0, 1, . . . , J − 1. (2.3)

According to the ability of CCFs in numerical simulations, as mentioned for a few of them in
the Introduction section, we shall introduce these functions. One of the notable cardinal functions is
the cardinal function obtained through orthogonal functions. Considering the properties of Chebyshev
polynomials, it can be said that CCFs are among the most important orthogonal cardinal functions [28].
Considering T ∗J+1,t(t j) as the derivative of function T ∗J+1(t) with respect to the variable t, Chebyshev
cardinal functions can be specified by

C j(t) =
T ∗J+1(t)

T ∗J+1,t(t j)(t − t j)
, j = 0, 1, . . . , J. (2.4)

Cardinality is an impressive feature of these polynomials, which means

C j(ti) = δ ji, (2.5)
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in which δ ji indicates the Kronecker delta. This property is mostly important as it enables us to
approximate any function w ∈ Hα([a, b]) (the Sobolev space Hα([a, b]) will be briefly introduced)
easily and without integration in finding the coefficients, viz.,

v(t) ≈
J+1∑
j=1

v(t j)C j(t) := vJ+1(t). (2.6)

In what follows, we will provide a brief definition of Sobolev space and its norm, since it will be
necessary for our purposes. The Sobolev space, usually denoted byHn([a, b]), encompasses functions
v(t) such that they have continuous derivatives of order up to n ∈ N, subject to the condition Dµv ∈
L2([a, b]) (D indicates the derivative operator):

Hn([a, b]) =
{
v ∈ Cn([a, b]) : Dµv ∈ L2([a, b]),N ∋ µ ≤ n

}
,

with the norm

∥v∥2Hn([a,b]) =

n∑
j=0

∥v( j)(t)∥2L2([a,b]), (2.7)

and the semi-norm

|v|2Hn,J([a,b]) =

J∑
j=min{n,J}

∥v( j)(t)∥2L2([a,b]). (2.8)

Lemma 2.1. Let J ≥ 0. The error of approximation (2.5), obtained using the shifted Chebyshev nodes
{t j}

J
j=1, can be bounded:

∥v − vJ∥L2([a,b]) ≤ CJ−n|v|Hn,J([a,b]), (2.9)

where the constant C is independent of J. Furthermore, it can be verified that

∥v − vJ∥H l([a,b]) ≤ CJ2l−1/2−n|v|Hn,J([a,b]), n ≥ 1, 1 ≤ l ≤ n. (2.10)

2.1. Operational matrix of derivative

To specify the operational matrix of the derivative for CCFs, we must first take the derivative of
these functions. Then, we approximate the results obtained from the derivation based on CCFs. We
denote this matrix by D, which satisfies

D(C)(t) = DC(t). (2.11)

To determine the elements of D, it is necessary to follow a specific process that involves using the
approximation (2.6). By adhering to this methodology, one can evaluate the various elements of D
with high accuracy, i.e.,

D j,i = D(C j)(ti). (2.12)

It is worth noting that there is an alternative formula to present CCFs [29, 30]:

C j(t) = δ j

J+1∏
ν=1,ν, j

(t − tν), (2.13)
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where δ j = 22J+1/((b − a)J+1T ∗J+1,t(t j)). Upon applying operator D on both sides of (2.13) and taking
into account (2.4), we get

D(C j)(t) = δ j

J+1∏
ν=1
ν, j

D(t − tν) = δ j

J+1∑
k=1
k, j

J+1∏
ν=1
ν, j,k

(t − tν)

=

J+1∑
k=1
k, j

T ∗J+1(t)
(t − t j)(t − tk)T ∗J+1,t(t j)

=

J+1∑
k=1
k, j

1
(t − tk)

C j(t). (2.14)

Now, it follows from (2.12) and (2.14) that

D j,i = D(C j)(ti) =



J+1∑
k=1
k, j

1
(ti−tk) , j = i,

δ j

J+1∏
ν=1
ν, j,i

(ti − tν), j , i.

2.2. Operational matrix of fractional integration

It is worth noting that fractional integrals are a generalization of the classical integrals, and they
play a vital role in many areas of research, including signal processing, fluid mechanics, and statistical
physics. The fractional integrals are defined as

J
µ
0 (v)(t) :=

1
Γ(µ)

∫ t

0
(t − θ)µ−1w(θ)dθ, t ∈ [0, 1], µ ∈ R+, (2.15)

where Γ(µ) denotes the gamma function.
Similar to the operational matrix for the derivative, we note that a square matrix Iµ exists to represent

the operation of the fractional integral operator on CCFs, i.e.,

J
µ
0 (C(t)) ≈ IµC(t), t ∈ (0, 1). (2.16)

Demonstrating that the elements of this matrix can be obtained through the use of (2.6) is
straightforward. Strictly speaking, we can evaluate the elements of Iµ as follows:

(Iµ) j,i = J
µ
0 (C j(ti)). (2.17)

Based on the calculations presented in [33], it can be inferred that

J+1∏
ν=1
ν, j

(t − tν) =
J∑
ν=0

κ j,νtJ−ν, (2.18)
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in which

κ j,0 = 1, κ j,ν =
1
ν

ν∑
k=0

ϱ j,kκ j,ν−k, j = 1, . . . , J + 1, ν = 1, . . . , J,

and

ϱ j,k =

J+1∑
i=1
i, j

tk
i , j = 1, . . . , J + 1, k = 1, . . . , J.

Taking into account (2.13), the CCFs may be stated by

C j(t) = δ j

J∑
ν=0

κ j,νtJ−ν. (2.19)

Considering (2.19), Eq (2.17) leads to

J
µ
0 (C j(t)) = δ jJ

µ
0 (

J∑
ν=0

κ j,νtJ−ν)

= δ j

J∑
ν=0

κ j,νJ
µ
0 (tJ−ν)

= δ j

J∑
ν=0

κ j,ν
Γ(J − ν + 1)
Γ(J − ν + µ + 1)

tJ−ν+µ.

Thus, the entries of Iµ can be evaluated exactly as

(Iµ) j,i = δ j

J∑
ν=0

κ j,ν
Γ(J − ν + 1)
Γ(J − ν + µ + 1)

tJ−ν+µ
i . (2.20)

2.3. Operational matrix of fractional derivative

To obtain the operational matrix for the fractional derivative in the Caputo sense, we adopt a method
that circumvents the need to determine its elements directly. This approach will consider the relation
between the CFD and the fractional integral operator. To this end, let us start with the definition of the
CFD.

Definition 2.1. [34] Let µ ∈ R+ and m := ⌈µ⌉ ∈ N ( ⌈.⌉ denotes the ceiling function). The CFD is
denoted by

cD
µ
0(v)(t) :=

1
Γ(m − µ)

∫ t

0

f (m)(θ)dθ
(t − θ)µ−m+1 =: Jm−µ

0 Dm(v)(t), (2.21)

whereDm := dm

dtm .

Lemma 2.2. [34] Let µ ∈ R+. Then, we have

∥J
µ
0 (v)∥q ≤

1
Γ(µ + 1)

∥v∥q, 1 ≤ q ≤ ∞. (2.22)
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Considering (2.21) and using Lemma 2.2, we can conclude that

∥J
m−µ
0 Dm(v)∥q ≤

1
Γ(m − µ + 1)

∥Dm(v)∥q. (2.23)

Considering the definition 2.1, we can replace the fractional derivative operator cD
µ
0 with Jm−µ

0 Dm.
This helps us specify the CFD operational matrix using the operational matrices D and Iµ, viz.,

cD
µ
0(C)(t) = Jm−µ

0 Dm(C(t)) ≈ Dm(Im−µ)C(t). (2.24)

Thus, the CFD operational matrix is determined by

Dµ = Dm(Im−µ). (2.25)

3. Materials and methods

The present section will concentrate on solving the space fractional advection-diffusion equation
(FADE) by employing an efficient and precise approach based on the Galerkin method.

Considering the space of all polynomials up to degree J + 1 with ΠJ+1(t), the projection operator P
is utilized for mapping any continuous functions onto ΠJ+1(t). Given (2.6), we have

v(t) ≈ P(v)(t) = VTC(t) := vJ+1. (3.1)

To implement the Galerkin algorithm, the unknown solution v(x, t) should be projected to the two-
dimensional polynomial space ΠJ+1(x, t),

v(x, t) ≈ P(v)(x, t) =
J+1∑
i=1

J+1∑
j=1

vi, jCi(x)C j(t) = CT (x)VC(t) = vJ+1(x, t), (3.2)

in which V ∈ R(J+1)×(J+1) consists of unknown elements. Substituting vJ+1 instead of v in (1.1) leads to

vJ+1,t + uvJ+1,x + w
∂µvJ+1

∂xµ
+ pvJ+1 ≈ f , x ∈ [a, b], t ∈ (0,T ]. (3.3)

Now, it is straightforward to obtain the following approximations for all terms in (3.3).

• Considering the operational matrix for the derivative and using (3.2), we get

vJ+1,t ≈ P(vJ+1,t)(x, t) = CT (x)VDC(t). (3.4)

• The first step to approximate the second term is obtained using the operational matrix for the
derivative and Eq (3.2), as follows:

vJ+1,x ≈ P(vJ+1,x)(x, t) = CT (x)DT VC(t). (3.5)

We multiply the functions vJ+1,x and u together to get the function g1(x, t) := uvJ+1,x. Then, the
function g1 can be approximated by the projection operator P, i.e.,

g1(x, t) ≈ P(g1)(x, t) = CT (x)G1C(t), (3.6)

where G1 ∈ R
(J+1)×(J+1), whose elements depend on the unknowns V . In other words, each element

of G1 is a linear equation of unknowns vi, j, i, j = 1, . . . , J + 1.
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• Similar to the second item, we estimate ∂
µvJ+1
∂xµ using the CFD operational matrix Dµ as

∂µvJ+1

∂xµ
≈ CT (x)DT

µVC(t). (3.7)

Putting g2 := w∂
µvJ+1
∂xµ and approximating it using the projection operator P, we have

g2(x, t) ≈ P(g2)(x, t) = CT (x)G2C(t), (3.8)

where each element of G2 ∈ R
(J+1)×(J+1) is a linear equation of unknowns vi, j, i, j = 1, . . . , J + 1.

• For the fourth item, similar to the two previous items, we can write

g3(x, t) ≈ P(g3)(x, t) = CT (x)G3C(t), (3.9)

in which g3 := pvJ+1 and G3 ∈ R
(J+1)×(J+1). It is easy to show that these matrix elements depend

on unknowns V .
• The function f on the right hand side is easily approximated as follows:

f (x, t) ≈ P( f )(x, t) = CT (x)FC(t) = fJ+1(x, t), (3.10)

where F ∈ R(J+1)×(J+1).

Now, we substitute Eqs (3.4), (3.6), (3.8), (3.9), and (3.10) into (3.3) to introduce the residual
function

rJ+1(x, t) := CT (x) (VD +G1 +G2 +G3 − F)C(t). (3.11)

To implement the Galerkin scheme, rJ+1 must satisfy ⟨rJ+1(x, t),Ci(x)C j(t)⟩ = 0, i, j = 1, . . . , J. This
yields the system

VD +G1 +G2 +G3 = F. (3.12)

This system is linear, and we can write it as

GV̄ = F̄, (3.13)

where the matrices V and F are converted into the vectors V̄ and F̄, respectively, by the matrix-to-vector
conversion by row, and the matrix G ∈ R(J+1)2×(J+1)2

can be obtained by extracting the coefficients of
the linear system (3.12) using the Maple command G[i, j] := Coe f f (H̄i, V̄ j) (where H̄ is the matrix-
to-vector conversion by row of H := VD+G1 +G2 +G3 ). Solving this system by the GMRES method
(generalized minimal residual method) [35] leads to the unknown solution v(x, t).

3.1. Convergence analysis

Motivated by [36,37], for the function v(x, t) ∈ C2J[a, b]2, we can bound the error of approximation
as follows.

|v(x, t) − vJ(x, t)| ≤ Mv

(
1
2

)J 1
2J−1J!

2 + (
1
2

)J 1
2J−1J!

 , (3.14)
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in which vJ = P(v), and

Mv = max
{

sup
ξ∈[0,1)

|
∂J

∂xJ v(ξ, t)|, sup
τ∈[0,1)

|
∂J

∂tJ v(x, τ)|, sup
ξ′,τ′∈[0,1)

|
∂2J

∂xJ∂tJ v(ξ′, τ′)|
}
.

In a more abstract form, the residual (3.11) and the residual for Eq (1.1) can be written as

rJ+1(x, t) := P
(
vJ+1,t + uvJ+1,x + w

∂µvJ+1

∂xµ
+ pvJ+1 − f

)
, (3.15)

r(x, t) := vt + uvx + w
∂µv
∂xµ
+ pv − f , (3.16)

respectively. Subtracting (3.16) from (3.15) gives

R(x, t) : = vt + uvx + w
∂µv
∂xµ
+ pv − f − P

(
vJ+1,t + uvJ+1,x + w

∂µvJ+1

∂xµ
+ pvJ+1 − f

)
. (3.17)

Taking the L2-norm from both sides of (3.17), leads to

∥R∥ ≤∥vt − P(vJ+1,t)∥ + ∥uvx − P(uvJ+1,x)∥ + ∥w
∂µv
∂xµ
− P(w

∂µvJ+1

∂xµ
)∥

+ ∥pv − P(pvJ+1)∥ + ∥ f − P( f )∥. (3.18)

Taking into account Eqs (2.24) and (3.14), we obtain

•

∥vt − P(vJ+1,t)∥ ≤ ∥vt − vJ+1,t∥ + ∥vJ+1,t − P(vJ+1,t)∥

≤ C1

(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.19)

where C1 := Mvt + MvJ+1,t .
• As the function u is continuous, a constant cu exists, such that for all (x, t) in the domain of u, the

value of u(x, t) satisfies |u| ≤ cu. Using this assumption, we have

∥uvx − P(uvJ+1,x)∥ ≤ ∥uvx − uvJ+1,x∥ + ∥uvJ+1,x − P(uvJ+1,x)∥

≤ C2

(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.20)

where C2 := cuMvx + MuvJ+1,x

• As the function w is continuous, a constant cw exists, such that for all (x, t) in the domain of w,
the value of w(x, t) satisfies |w| ≤ cw. Thus, we obtain

∥w
∂µv
∂xµ
− P(w

∂µvJ+1

∂xµ
)∥ ≤ ∥w

∂µv
∂xµ
− w
∂µvJ+1

∂xµ
∥ + ∥w

∂µvJ+1

∂xµ
− P(w

∂µvJ+1

∂xµ
)∥

≤ C3

(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.21)

where C3 := cw
Γ(m−µ+1) MDm(v) + M ∂µvJ+1

∂xµ
.
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• Similar to the previous item, there is a constant cp such that |p| ≤ cp. This inequality helps us to
obtain

∥pv − P(pvJ+1)∥ ≤ ∥pv − pvJ+1∥ + ∥pvJ+1 − P(pvJ+1)∥

≤ C4

(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.22)

where C4 := cpMv + MpvJ+1 .
• Finally, we have

∥ f − P( f )∥ ≤ C5

(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.23)

where C5 := M f .

To proceed, by substituting (3.19)–(3.23) into (3.18), we can find

∥R∥ ≤ C
(
1
2

)J+1 1
2J(J + 1)!

2 + (
1
2

)J+1 1
2J(J + 1)!

 , (3.24)

in which C :=
∑5

i=1 Ci.
It is straightforward to show that the presented method converges,

lim
J→∞
∥R∥ → 0. (3.25)

4. Numerical results

By providing some numerical simulations, we can showcase the effectiveness of the present method.
These examples will demonstrate how the method can provide practical solutions to various problems.
To provide an overview of method efficiency, tables, and figures report absolute error

eJ = v(x, t) − vJ(x, t),

and L2-error

L2 − error =
(∫ 1

0
|v(t) − vJ(t)|2

)1/2

.

All examples were performed using Maple and Matlab software (version 2022). To have higher
precision, we increase precision beyond 50 digits.

Example 4.1. As the first example, we utilize the presented scheme for
vt −

∂µv
∂xµ + v = f , µ = 1.7, x ∈ [0, 2], t ∈ [0, 1],

v(x, 0) = x2(2 − x)2, x ∈ [0, 2],
v(0, t) = v(2, t) = 0, t ∈ [0, 1],

where

f (x, t) := −
8
((
µ2 − 7µ + 12

)
x2−µ + (3µ − 12) x3−µ + 3x4−µ

)
e−t

Γ (5 − µ)
,
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and motivated by [23], v(x, t) = e−tx2(2 − x)2 is the exact solution.

To verify that the presented method converges, Table 1 reports the L2-error. As we can see, the error
reduces with the increase of J. Table 2 is tabulated to compare the finite element method [23] and the
presented scheme. Figure 1 (left) demonstrates the L2-error versus J. Also, the right one shows the
L2-error at different times and different choices of J. Figure 2 is plotted to confirm that the method
converges.

Table 1. The L2-error and CPU time for Example 4.1.
J 5 6 7 8 9 10

L2-error 1.039 × 10−04 6.334 × 10−06 5.603 × 10−07 2.842 × 10−08 1.836 × 10−09 7.954 × 10−11

Time 0.094 0.103 0.125 0.266 0.484 0.718

Table 2. The comparison between the presented scheme and the finite element method [23]
for Example 4.1.

Proposed method [23]

t J = 8 J = 10 h = 1/160 h = 1/320

L2-error 1.836 × 10−09 7.954 × 10−11 3.137 × 10−06 7.839 × 10−07
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Figure 1. The L2-error obtained by different values of J (left) and the L2-error obtained by
different values of J at different times (right) for Example 4.1.
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(a) Approximate solution (b) J = 5

(c) J = 8 (d) J = 10

Figure 2. The plot of the approximate solution by choosing J = 10 and absolute error with
different choices of J for Example 4.1.

Example 4.2. As with the first example, we utilize the presented scheme for
vt −

1
6Γ(2.2)x2.8 ∂µv

∂xµ = −(1 + x)e−tx3, µ = 1.8, x ∈ [0, 2], t ∈ [0, 1],
v(x, 0) = x3, x ∈ [0, 1],
v(0, t) = 0, v(1, t) = e−t, t ∈ [0, 1].

Motivated by [23], v(x, t) = e−tx3 is the exact solution.
We report the L2-error in Table 3. As we can see, the error reduces with the increase of J. Table 4

is tabulated to compare the finite element method [23] and the presented scheme. Figure 3 (left)
demonstrates the L2-error versus J. Also, the right one shows the L2-error at different times and
different choices of J. Figure 4 is plotted to confirm the method converges. To show the ability of the
method to solve SFADE with a large time interval (t ∈ [0, 10]), Table 5 is tabulated. We must consider
more bases for time to solve these types of examples. Due to the high density of Chebyshev polynomial
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roots at the beginning and end of the interval, appropriate accuracy can be obtained. However, the
error at the end of the interval will be slightly more than at the beginning. For more details, please
refer to [28].

Table 3. The L2-error and CPU time for Example 4.2.

J 5 6 7 8
L2-error 9.598 × 10−06 3.802 × 10−07 1.319 × 10−08 4.198 × 10−10

Time 0.064 0.93 0.101 0.206

J 9 10 11 12
L2-error 1.236 × 10−11 3.099 × 10−13 4.227 × 10−14 1.076 × 10−15

Time 0.328 0.798 1.012 1.321

Table 4. The comparison between the presented scheme and the finite element method [23]
for Example 4.2.

Proposed method [23]

t J = 10 J = 12 h = 1/80 h = 1/160

L2-error 3.099 × 10−13 1.076 × 10−15 2.652 × 10−09 6.627 × 10−10

Table 5. The L2-error obtained at different times using 8 and 30 bases for space and time,
respectively, (Example 4.2).

t 2 4 6 8 10

L2-error 7.150 × 10−24 1.264 × 10−23 1.497 × 10−23 5.078 × 10−23 3.363 × 10−21
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Figure 3. The L2-error obtained by different values of J (left) and the L2-error obtained by
different values of J at different times (right) for Example 4.2.
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(a) Approximate solution (b) J = 5

(c) J = 8 (d) J = 10

Figure 4. The plot of the approximate solution by choosing J = 12 and absolute error with
different choices of J for Example 4.2.

Example 4.3. To show the ability of the presented method to solve the two-dimensional fractional
diffusion equation, we consider the equation

vt −
Γ(2.2)x2.8y

6
∂1.8v
∂x1.8 −

2xy2.6

Γ(4.6)
∂1.6v
∂x1.6 = −(1 + 2xy)e−tx3y3.6, x, y ∈ [0, 1], t ∈ (0,T ],

v|t=0 = x3y3.6, x, y ∈ [0, 1],
v|x=0 = v|y=0 = 0, v|x=1 = e−ty3.6, v|y=1 = e−tx3, t ∈ (0,T ].

The exact solution for this equation is v(x, y, t) = e−tx3y3.6 [38].
Table 6 is tabulated to show the convergence of the presented method. As we can see, the error

is reduced when the number of bases increases. Also, we reported Table 7 to compare the presented
scheme with other methods. To this end, the Kansa method [38] and the finite difference method
(FDM) [39] are considered.
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Table 6. The L2-error for Example 4.3.

t \ J 5 7 9 11

0.1 9.79 × 10−04 1.21 × 10−04 5.24 × 10−05 1.89 × 10−06

0.2 1.17 × 10−04 7.55 × 10−05 2.65 × 10−05 2.19 × 10−06

0.3 1.07 × 10−03 9.08 × 10−05 4.32 × 10−05 3.42 × 10−06

0.4 1.20 × 10−03 8.87 × 10−05 3.63 × 10−05 3.26 × 10−06

0.5 4.42 × 10−05 3.29 × 10−06 5.46 × 10−06 9.49 × 10−08

0.6 1.90 × 10−03 1.54 × 10−04 6.39 × 10−05 4.90 × 10−06

0.7 2.70 × 10−03 2.00 × 10−04 6.81 × 10−05 8.08 × 10−06

0.8 3.45 × 10−04 5.11 × 10−05 2.11 × 10−05 8.87 × 10−06

0.9 1.10 × 10−02 4.24 × 10−04 9.92 × 10−05 9.27 × 10−06

1.0 3.41 × 10−02 6.52 × 10−04 1.07 × 10−04 4.75 × 10−05

Table 7. Maximum absolute error at t = 1 for Example 4.3.

Proposed method Kansa method [38] FDM [39]
t J = 10 ∆x = ∆y = ∆t = 0.1 ∆x = ∆y = ∆t = 0.1

L2-error 1.24 × 10−05 1.13 × 10−03 1.26 × 10−03

Example 4.4. Consider the following SFADE:


vt + vx + v − ∂

µv
∂xµ = 0, µ ∈ (1, 2], x ∈ [0, 1], t ∈ [0, 1],

v(x, 0) = 1
√

2π
e−

x2
2 , x ∈ [0, 1],

v(0, t) = 0, v(1, t) = 0, t ∈ [0, 1].

No exact solution is available for this example. Figure 5, is plotted to demonstrate the approximate
solution. To demonstrate the efficiency of the presented schemes for non-integer values of µ, Figure 6
is plotted. Note that

limµ→m
cDµ0v(x, 1) = v(m)(x, 1),

limµ→m−1
cDµ0v(x, 1) = v(m−1)(x, 1) − v(m−1)(0, 1).

Our results confirm this, and we can verify that when µ → m, the estimated solutions with increasing
µ tend to the results for m.
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Figure 5. The approximate solution obtained by J = 10 for Example 4.4.
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Figure 6. The approximate solution for different choices of µ for Example 4.4.

5. Conclusions

The Galerkin method is a highly effective and efficient technique widely recognized for solving
various equations. On the other hand, CCFs are highly effective and powerful bases in numerical
techniques due to their inherent properties. Hence, we consider using the Galerkin method based
on CCFs to solve the space-fractional advection-diffusion equation. After introducing the CCFs, the
Caputo fractional derivative (CFD) is represented based on these bases as an operational matrix.
Applying the Galerkin method reduces the desired equation into a system of algebraic equations.
Several examples have been solved by the presented method to confirm the convergence analysis
presented in Section 3 and to demonstrate the accuracy and ability of the scheme. It is worth noting
that the presented method is effective for solving such problems. The method presented here provides
accurate solutions and is easier to implement than the finite element method. In addition, using this
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method leads to a reduction in computational cost, thanks to the CCFs’ properties.
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