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Abstract: This paper investigates rumor propagation in a multilingual environment, taking into
account language usage variations. Firstly, a 2I2S2R model is proposed within a heterogeneous
network framework that incorporates both immunologic and cross-transmitted mechanisms. Secondly,
the paper calculates the basic reproduction number R0 by the next-generation matrix method. Thirdly,
the local asymptotic stability and the global asymptotic stability are further explored, which indicate
that whether the rumor continuously spreads or becomes extinct is determined by the threshold. Finally,
the numerical simulation and sensitivity analysis are given to illustrate the effectiveness of theoretical
results and the influence of model parameters on rumor spreading.
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1. Introduction

Recently, the dissemination of rumors has invariably harmed society. Rumors often conceal the
truth and cause people to be misled and deceived, which may affect people’s judgment and decision-
making ability. What is more serious is that rumors often spread unreliable information, creating
panic and chaos, which poses a great threat to social stability and security. With the development of
social networks, rumors spread more rapidly and widely, so the issue of rumor propagation needs to be
given more attention. Hence, understanding the patterns and traits of rumor dissemination empowers
governments and individuals to effectively implement appropriate measures, steer public opinion, and
safeguard social stability.

Research on rumor propagation has been underway since the last century. In 1965, Daley and
Kendall [1] established a connection between rumors and epidemics, introducing the classical DK
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rumor-spreading model. Subsequently, numerous scholars have identified increasing distinctions
between rumor propagation and epidemic transmission, leading to the development of various rumor
propagation models, such as, the SIR model [2], the SIHR model [3], the stochastic model [4], the
diffusion model [5], and so on [6–9]. Concretely, in reference [2], an enhanced rumor propagation
model based on the SIR model was utilized to investigate the rumor issue in complex social networks.
Reference [3] introduced a SIHR model, which considered the interplay between forgetting and
memory mechanisms. Additionally, an extended rumor spreading model incorporating knowledge
education was presented in [6]. Notably, the above research is conducted on the basis of homogeneous
networks.

In a homogeneous network, all nodes belong to the same type and share similar features or attributes.
However, the applicability of the above studies is limited, as it is challenging to find a social network
where all users have the same degree of reality. Especially with the increasing development of social
networks, users with different characteristics or attributes are more easily accessible [10–13]. Hence,
more research on the spread of rumors on heterogeneous networks has begun to emerge [14–16].
Some heterogeneous network models were introduced to analyze the dynamic behaviors of the rumor
propagation [17–20]. For example, an IFCD model was addressed, which took full consideration
of the heterogeneity of network users and stochastic disturbances in the network environment [11].
In references [16, 19], some delay rumor propagation models were proposed to study its stability and
bifurcation occurs in heterogeneous networks. Anti-rumor mechanism was introduced to control rumor
spreading in heterogeneous networks [17]. The dynamical behaviors and control of rumor propagation
model incorporating delay were investigated under a heterogeneous social networks [20].

Notably, most research on rumor dissemination focuses on a single-language environment.
However, in recent years, particularly in multi-ethnic regions of China, the escalation of social issues
due to rumors has underscored the growing significance of studying rumor propagation in multilingual
settings. This is related to social stability and national unity. At present, some scholars have redirected
their attention towards examining rumor dissemination in multilingual environments, such as, some
extended multi-lingual SIR rumor spreading models that were proposed to delve into its dynamical
behaviors and control strategies [21,22]. However, the above research landscape on multilingual rumor
propagation within homogeneous networks cannot achieve a comprehensive and practical study of the
multilingual rumor spreading mechanism.

Subsequently, more dynamic models and control strategies were addressed to analyze the problem
of multilingual rumor propagation in the heterogeneous network [6, 23–25]. For instance, a rumor
propagation model with two language spreaders was proposed to analyze its stability, which considered
the network topology [23]. However, it is worth noting that the above studies, whether based
on homogeneous or heterogeneous networks [21–23], mostly treat multiple languages as equally
prevalent, assuming consistent usage across all languages. While this approach may be suitable for
some situations, it does not reflect the reality of many multilingual areas. For example, in China,
Mandarin is widely spoken, but proficiency in other languages is limited, which results in networks
with varying language hierarchies. Motivated by these analyses, the language usage variations are
taken into account in this paper, and a novel rumor propagation model tailored to such asymmetric
language networks is introduced to address the complexities of real-world multilingual settings.

Based on the mechanism described above, this paper focuses on studying the global stability of a
multilingual SIR rumor propagation model with unidirectional propagation patterns between different
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groups. The main contributions of this paper include the following aspects:

1) Compared to existing results [21–23], this paper explores the impact of language usage scope,
considers the unidirectional transmission relationship between two language groups, which can fill a
gap in the dissemination of multilingual rumors to a certain extent.

2) Based on a one-way propagation relationship in a multilingual environment, a 2I2S2R model
is proposed to analyze the dynamics of multilingual rumor propagation by applying the Lyapunov
function and the

3) In the numerical simulations, the sensitivity analysis of the basic reproduction number is
addressed to further illustrate the influence of model parameters on the process of rumor propagation
and provide control strategies for rumor suppression.

Inspired by these analyses, the paper is organized as follows: The network model is introduced in
Section 2. The existence and stability of equilibrium solutions are shown in Section 3. Some numerical
examples are further addressed to demonstrate the validity of Section 4. The conclusions are given in
Section 5.

2. Network model

In this section, we construct a SIR multilingual rumor propagation model. Six states are proposed
to indicate the different statuses of the rumor-spreading process. Ignorants-1 (I1(t)) and Ignorants-
2 (I2(t)) represent the people who do not know the rumor. Language-1 is the one with a smaller
usage range, while Language-2 has a larger one. In our hypothetical environment, people who can
speak Language-1 will definitely speak Language-2. Spreaders-1 (S 1(t)) represent the people who
know Rumor-1, and Spreaders-2 (S 2(t)) represent those who know Rumor-2. Removers-1 (R1(t)) and
Removers-2 (R2(t)) mean the people who know Rumor-1 and Rumor-2, respectively, but have not
spread them. Rumor-1 and Rumor-2 are the same rumor, which are popular in the environments of
Language-1 and Language-2, respectively. I1(t), S 1(t), and R1(t) form Group-1, and Group-2 consists
of I2(t), S 2(t), and R2(t). People in Group-1 can speak both Language-1 and Language-2, so people
from Group-1 will have a certain probability of transferring to Group-2. The people who are originally
in Group-2 can only speak Language-2, for which people in Group-2 will not transfer to Group-1.
Next, the state transition is depicted in Figure 1 with the following rules, and the meaning of main
parameters is shown in Table 1.

1) A user changes state I1 to state S v by believing the rumor with different possible routes of
transmission (v = 1, 2). An ignorant I1 becomes S v(v = 1, 2) with rumor conversion rate αv(v = 1, 2),
and I1 is connected to one or more S v(v = 1, 2) with probability Φv(t)(v = 1, 2) at time t. Hence, the
infected probability of I1 becoming S 1 (or S 2) is α1I1

ki
(t)Φ1(t) (or α2I1

ki
(t)Φ2(t)), respectively.

2) An ignorant I2 becomes S 2 with rumor conversion rate α2, and is connected to one or more S 2

with probability Φ2(t). Additionally, S 1 can also become S 2 with probability α2S 1
ki

(t)Φ2(t).

3) In this process of rumor propagation, the population enters each group in a ratio of bv(v = 1, 2).
The proportion of users leaving the system in each group is d. I1 and I2 can both be directly converted
into R1 and R2 with probabilities of µ1 and µ2, respectively.
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Table 1. Main parameters in the 2I2S2R model.

Parameters Meaning
bv Coming rate of the group v
d Leaving rate of the different compartment
αv Rumor conversion rate (i.e., cross transmission showed in Figure 1)
βv Probability of S v

ki
cured and transformed into Rv

ki

µv Immunity rate of Ignorants against rumors
〈k〉 The average degree
θ(ki) Infectivity of a user with degree ki

Φv(t) The probabilities that an ignorant whether
in Group-1 or Group-2 gets in touch with spreaders

Figure 1. The state transition of 2I2S2R model.

From the above analysis, the 2I2S2R rumor propagation is described as follows:

dI1
ki

(t)

dt
= b1 − α1I1

ki
(t)Φ1(t) − α2I1

ki
(t)Φ2(t) − (µ1 + d)I1

ki
(t),

dI2
ki

(t)

dt
= b2 − α2I2

ki
(t)Φ2(t) − (µ2 + d)I2

ki
(t),

dS 1
ki

(t)

dt
= α1I1

ki
(t)Φ1(t) − α2S 1

ki
(t)Φ2(t) − (β1 + d)S 1

ki
(t),

dS 2
ki

(t)

dt
= α2[I1

ki
(t) + I2

ki
(t) + S 1

ki
(t)]Φ2(t) − (β2 + d)S 2

ki
(t),

dR1
ki

(t)

dt
= µ1I1

ki
(t) + β1S 1

ki
(t) − dR1

ki
(t),

dR2
ki

(t)

dt
= µ2I2

ki
(t) + β2S 2

ki
(t) − dR2

ki
(t),

(2.1)
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where Φv(t) represents the probabilities that an ignorant person whether in Group-1 or Group-2 gets in
touch with spreaders, and Φv(t) is defined as

Φv(t) =

∑n
i=1 θ (ki) Z (ki) S v

ki
(t)

〈k〉
, v = 1, 2. (2.2)

It represents the contact rate between group S v and another group. Z(ki) is defined as the ratio of
people with degree ki to all users in the network; therefore,

∑n
i=1 Z (ki) = 1 and 〈k〉 =

∑n
i=1 kiZ (ki)

measures the average degree. The active nodes in the network satisfy I1
ki

(t) + I2
ki

(t) + S 1
ki

(t) + S 2
ki

(t) +

R1
ki

(t) + R2
ki

(t) = 1 and d = b1 + b2.

Remark 1. In contrast to references [2, 3, 21], both the multilingual environment and homogeneous
networks are considered in constructing the rumor propagation model (2.1), which is more in line
with the actual social networks. Besides, it is note worthy that θ(ki) has several cases, such as, θ(ki) is a
constant [26], θ(ki) = ki [27], or θ(ki) being a nonlinear function [28]. Here, we select θ(ki) = kp

i /(1+kq
i )

since a larger degree yields larger infectivity in practice.

3. Existence and analysis of equilibrium solution

In this section, we will calculate equilibrium solutions, including the zero-equilibrium solutions
and positive-equilibrium solutions, and analyze their existence and properties. To begin with, the next-
generation matrix method [29] is used to calculate the basic reproduction number of the model (2.1).

Let
ψ =

(
S 1

ki
(t), S 2

ki
(t), I1

ki
(t), I2

ki
(t),R1

ki
(t),R2

ki
(t)

)
.

Then model (2.1) can be written as
dψ
dt

= F (ψ) −V(ψ),

where

F (ψ) =



α1I1
ki

(t)Φ1(t)
α2(I1

ki
(t) + I2

ki
(t) + S 1

ki
(t))Φ2(t)

0
0
0
0


,

V(ψ) =



α2S 1
ki

(t)Φ2(t) + (β1 + d)S 1
ki

(t)
(β2 + d)S 2

ki
(t)

−b1 + α1I1
ki

(t)Φ1(t) + α2I1
ki

(t)Φ2(t) + (µ1 + d)I1
ki

(t)
−b2 + α2I2

ki
(t)Φ2(t) + (µ2 + d)I2

ki
(t)

−µ1I1
ki

(t) − β1S 1
ki

(t) + dR1
ki

(t)
−µ2I2

ki
(t) − β2S 2

ki
(t) + dR2

ki
(t)


.

Obviously, the zero-equilibrium solution is

E0 =

{
(

b1

d + µ1
,

b2

d + µ2
, 0, 0,

µ1b1

d(µ1 + d)
,

µ2b2

d(µ2 + d)
), · · · , (

b1

d + µ1
,

b2

d + µ2
, 0, 0,

µ1b1

d(µ1 + d)
,

µ2b2

d(µ2 + d)
)
}
,
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and the Jacobian matrices of F (ψ) andV(ψ) at E0 are

DF (E0) =


F 0 0
0 0 0
0 0 0

 , DV (E0) =


V 0 0
J1 J2 0
J3 J4 J5

 ,
where F =

(
F1 0
0 F2

)
, V =

(
V1 0
0 V2

)
, Vi = diag(βi + d)n×n, i = 1, 2 and

F1 =



α1I1
k1

(t)θ (k1) Z (k1)

〈k〉

α1I1
k1

(t)θ (k2) Z (k2)

〈k〉
· · ·

α1I1
k1

(t)θ (kn) Z (kn)

〈k〉
α1I1

k2
(t)θ (k1) Z (k1)

〈k〉

α1I1
k2

(t)θ (k2) Z (k2)

〈k〉
· · ·

α1I1
k2

(t)θ (kn) Z (kn)

〈k〉
...

...
. . .

...

α1I1
kn

(t)θ (k1) Z (k1)

〈k〉

α1I1
kn

(t)θ (k2) Z (k2)

〈k〉
· · ·

α1I1
kn

(t)θ (kn) Z (kn)

〈k〉


.

Next, according to the elementary transformation of a matrix, one has

F1 →
1
〈k〉


α1

∑n
i=1 θ (ki) Z (ki) I1

ki
(t) α1I1

k1
(t)θ (k2) Z (k2) · · ·α1I1

k1
(t)θ (kn) Z (kn)

0 0 · · · 0
...

...
...

...

0 0 · · · 0

 .
Similarly, it follows

F2 →
1
〈k〉


α2

∑n
i=1 θ (ki) Z (ki) (I1

ki
(t) + I2

ki
(t) + S 1

ki
(t)) · · · · · · · · ·

0 0 · · · 0
...

...
...

...

0 0 · · · 0

.
Hence, the basic reproduction number R0 of the model is computed as

R0 = ρ(FV−1) = max{R01,R02},

where

R01 =
α1b1

∑n
i=1 θ(ki)Z(ki)

〈k〉(β1 + d)(µ1 + d)
, R02 =

α2( b1
d+µ1

+ b2
d+µ2

)
∑n

i=1 θ(ki)Z(ki)

〈k〉(β2 + d)
.

Theorem 3.1. For the basic reproduction number of the model (2.1), the equilibrium solution is unique
in the following three different cases:

(i) If R0 < 1, model (2.1) only has a zero-equilibrium solution.

(ii) If R01 < 1 and R02 > 1, model (2.1) has a unique positive-equilibrium solution.

(iii) If R01 > 1 and R02 > 1, model (2.1) has a unique positive-equilibrium solution.
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Proof. (i) Obviously, when R0 < 1, model (2.1) only has a zero-equilibrium solution, E0.

(ii) When R01 < 1,R02 > 1, define the solution as E∗1, i.e.,

E∗1 = (I1∗
1ki
, I2∗

1ki
, S 1∗

1ki
, S 2∗

1ki
,R1∗

1ki
,R2∗

1ki
),

where
S 1∗

1ki
= 0, I1∗

1ki
=

b1

α2Φ
∗
2 + µ1 + d

, I2∗
1ki

=
b2

α2Φ
∗
2 + µ2 + d

,

S 2∗
1ki

=
α2(I1∗

1ki
+ I2∗

1ki
)Φ∗2

β2 + d
, R1∗

1ki
=
µ1I1∗

1ki

d
, R2∗

1ki
=
µ2I2∗

1ki
+ β2S 2∗

1ki

d
.

It is obviously that Φ∗1 = 0, and

Φ∗2 =
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2( b1

α2Φ∗2+µ1+d + b2
α2Φ∗2+µ2+d )

β2 + d
Φ∗2. (3.1)

Further, we set

G1(Φ∗2) = 1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2( b1

α2Φ∗2+µ1+d + b2
α2Φ∗2+µ2+d )

β2 + d
,

and it yields that to any Φ∗2 > 0, G′1(Φ∗2) > 0 and G′1(+∞) = 1. Then, we have

lim
Φ∗2→0+

G1(Φ∗2) = 1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2( b1

µ1+d + b2
µ2+d )

β2 + d
= 1 − R02 ≤ 0.

It proves that model (2.1) has a unique equilibrium solution when R01 < 1,R02 > 1.
(iii) When R01 > 1,R02 > 1, define the solution as E∗2,

E∗2 = (I1∗
2ki
, I2∗

2ki
, S 1∗

2ki
, S 2∗

2ki
,R1∗

2ki
,R2∗

2ki
),

where
I1∗
2ki

=
b1

α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d

, I2∗
2ki

=
b2

α2Φ
∗
2 + µ2 + d

,

S 1∗
2ki

=
α1I1∗

2ki
Φ∗1

α2Φ
∗
2 + β1 + d

, S 2∗
2ki

=
α2(I1∗

2ki
+ I2∗

2ki
+ S 1∗

2ki
)Φ∗2

β2 + d
,

R1∗
2ki

=
µ1I1∗

2ki
+ β1∗

1 S 1∗
2ki

d
, R2∗

2ki
=
µ2I2∗

2ki
+ β2S 2∗

2ki

d
.

Next, expanding S 1∗
2ki

and S 2∗
2ki

, we obtain

S 1∗
2ki

=
α1b1Φ

∗
1

(α2Φ
∗
2 + β1 + d)(α1Φ

∗
1 + α2Φ

∗
2 + µ1 + d)

and

S 2∗
2ki

=
α2Φ

∗
2

β2 + d
[

b1

α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d

+
b2

α2Φ
∗
2 + µ2 + d

+
b1α1Φ

∗
1

(α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d)(α2Φ

∗
2 + µ2 + d)

].
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Similarly to case (ii), one has

Φ∗1 =
1
〈k〉

n∑
i=1

θ (ki) Z (ki) S 1∗
2ki

=
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α1b1Φ

∗
1

(α2Φ
∗
2 + β1 + d)(α1Φ

∗
1 + α2Φ

∗
2 + µ1 + d)

,

Φ∗2 =
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2Φ

∗
2

β2 + d
[

b1

α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d

+
b2

α2Φ
∗
2 + µ2 + d

+
b1α1Φ

∗
1

(α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d)(α2Φ

∗
2 + µ2 + d)

].

G2(Φ∗1,Φ
∗
2) = 1 −

1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α1b1

(α2Φ
∗
2 + β1 + d)(α1Φ

∗
1 + α2Φ

∗
2 + µ1 + d)

,

and

G3(Φ∗1,Φ
∗
2) = 1 −

1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2

β2 + d
[

b1

α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d

+
b2

α2Φ
∗
2 + µ2 + d

+
b1α1Φ

∗
1

(α1Φ
∗
1 + α2Φ

∗
2 + µ1 + d)(α2Φ

∗
2 + µ2 + d)

].

It is easy to obtain that for all Φ∗1,

∂G2

(
Φ∗1,Φ

∗
2

)
∂Φ∗1

> 0, lim
Φ∗1→+∞

G2(Φ∗1,Φ
∗
2) = 1,

∂G3

(
Φ∗1,Φ

∗
2

)
∂Φ∗2

> 0, lim
Φ∗2→+∞

G3(Φ∗1,Φ
∗
2) = 1.

Moreover, it shows that

lim
Φ∗1→0+

G2(Φ∗1, 0) = 1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α1b1

(β1 + d)(µ1 + d)
= 1 − R01 < 0,

lim
Φ∗2→0+

G3(0,Φ∗2) = 1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2

β2 + d
[

b1

µ1 + d
+

b2

µ2 + d
] = 1 − R02 < 0.

Hence, model (2.1) has a unique positive-equilibrium solution if R01 > 1 and R02 > 1. �

Theorem 3.2. The zero-equilibrium solution E0 of the model (2.1) is locally asymptotically stable if
R0 < 1.

Proof. According to stability theory [30], we first derive the Jacobin matrix J(E0)

J (E0) =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann

 , (3.2)
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where
f1 =

α1b1θ(ki)Z(ki)
〈k〉(d + µ1)

− β1 − d, f2 =
α2θ(ki)Z(ki)
〈k〉

(
b1

d + µ1
+

b2

d + µ2
) − β2 − d,

and

Aii =



f1 0 0 0 0 0
0 f2 0 0 0 0

−
α1b1θ(ki)Z(ki)
〈k〉(d+µ1) −

α2b1θ(ki)Z(ki)
〈k〉(d+µ1) −µ1 − d 0 0 0

0 −
α2b2θ(ki)Z(ki)
〈k〉(d+µ2) 0 −µ2 − d 0 0

β1 0 µ1 0 −d 0
0 β2 0 µ2 0 −d


,

Ai j =



α1b1θ(ki)Z(ki)
〈k〉(d+µ1) 0 0 0 0 0

0 α2θ(ki)Z(ki)
〈k〉 ( b1

d+µ1
+ b2

d+µ2
) 0 0 0 0

−
α1b1θ(ki)Z(ki)
〈k〉(d+µ1) −

α2b1θ(ki)Z(ki)
〈k〉(d+µ1) 0 0 0 0

0 −
α2b2θ(ki)Z(ki)
〈k〉(d+µ2) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


.

Further, we have

|λ − J(E0)|
= (λ + β1 + d)n−1(λ + β2 + d)n−1(λ + µ1 + d)2n(λ + µ2 + d)2n

×[λ + (β1 + d)(1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α1b1

(β1 + d)(µ1 + d)
)]

×(λ + (β2 + d)[1 −
1
〈k〉

n∑
i=1

θ (ki) Z (ki)
α2

β2 + d
(

b1

µ1 + d
+

b2

µ2 + d
)]).

Then, the eigenvalues of (3.2) are λ1 = λ2 = · · · = λn−1 = −(β1 + d), λn = λn+1 = · · · = λ2n−2=− (β2 + d),
λ2n−1 = λ2n = · · · = λ4n−2 = −(µ1 +d), λ4n−1 = λ4n = · · · = λ6n−2 = −(µ2 +d), λ6n−1 = −(β1 +d))(1−R01),
λ6n = −(β2 + d))(1 − R02). Since R0 < 1, it is obvious that for any i from 1 to 6n, λi < 0. Therefore, the
zero-equilibrium solution E0 is locally asymptotically stable in model (2.1). �

Theorem 3.3. The zero-equilibrium solution E∗0 of model (2.1) is globally asymptotically stable if
R0 < 1.

Proof. According to model (2.1) and [31], one has

dI1
ki

(t)

dt
= b1 − α1I1

ki
(t)Φ1(t) − α2I1

ki
(t)Φ2(t) − (µ1 + d)I1

ki
(t)

≤ b1 − (µ1 + d)I1
ki

(t),
(3.3)

which means that sup I1
ki

(t) ≤ b1
µ1+d = Ĩ1.

Next, amuse ε1 > 0 that is sufficiently small. So for t → +∞, we have

sup I1
ki

(t) ≤ Ĩ1 + ε1,
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and
dS 1

ki
(t)

dt
≤ α1Φ1(t)(Ĩ1 + ε1) − (d + β1)S 1

ki
(t).

From the principle of comparison, we set a new function Q1
ki

(t), Q1
ki

(0) = S 1
ki

(0) = 0 and

dQ1
ki

(t)

dt
= α1Φ̃1(t)(Ĩ1 + ε1) − (d + β1)Q1

ki
(t),

where

Φ̃1(t) =
1
〈k〉

n∑
i=1

θ (ki) Z (ki) Q1
ki

(t).

Construct a Lyapunov function

V1(t) =
1
〈k〉

n∑
i=1

θ (ki) Z (ki) Q1
ki

(t). (3.4)

Then, it derives that

dV1(t)
dt

=
1
〈k〉

n∑
i=1

θ (ki) Z (ki) [α1Φ̃1(t)(Ĩ1 + ε1) − (d + β1)Q1
ki

(t)]

= Φ̃1(t)(β1 + d)[R01 +
1
〈k〉

n∑
i=1

θ (ki) Z(ki)α1ε1

β1 + d
− 1].

Since R01 < 1 and the definition of ε1, we select a small enough ε1, so we can obtain that dV1(t)
dt ≤ 0.

Similarly, one has
dI2

ki
(t)

dt
≤ b2 − (µ2 + d)I2

ki
(t), (3.5)

and sup I2
ki

(t) ≤ b2
µ2+d = Ĩ2. Besides, construct a small enough ε2 > 0, I2

ki
(t) ≤ Ĩ2 + ε2, 0 < S 1

ki
(t) < ε2.

Hence, it follows that

dS 2
ki

(t)

dt
≤ α2Φ2(t)(Ĩ1 + ε1 + Ĩ2 + ε2) − (d + β2)S 2

ki
(t). (3.6)

Then we set a new function, Q2
ki

(t), which satisfies

Q2
ki

(0) = S 2
ki

(0) = 0,
dQ2

ki
(t)

dt
= α2Φ̃2(t)(Ĩ1 + ε1 + Ĩ2 + ε2) − (d + β2)Q2

ki
(t),

where

Φ̃2(t) =

∑n
i=1 θ (ki) Z (ki) Q2

ki
(t)

〈k〉
.

Similarly, construct a Lyapunov function

V2(t) =
1
〈k〉

n∑
i=1

θ (ki) Z (ki) Q2
ki

(t).
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Then, one has

dV2(t)
dt

=
1
〈k〉

n∑
i=1

θ (ki) Z (ki) [α2Φ̃2(t)(Ĩ1 + ε1 + Ĩ2 + ε2) − (d + β2)Q2
ki

(t)]

= Φ̃2(t)(β2 + d)[
1
〈k〉

n∑
i=1

θ (ki) Z (ki)α2(Ĩ1 + ε1 + Ĩ2 + ε2)
β2 + d

− 1]

= Φ̃2(t)(β2 + d)[
α2( b1

d+µ1
+ b2

d+µ2
)
∑n

i=1 θ(ki)Z(ki)

〈k〉(β2 + d)

+
1
〈k〉

n∑
i=1

θ (ki) Z (ki)α2(ε1 + ε2)
β2 + d

− 1]

= Φ̃2(t)(β2 + d)[R02 +
1
〈k〉

n∑
i=1

θ (ki) Z (ki)α2(ε1 + ε2)
β2 + d

− 1].

Since R02 < 1 and the definition of ε1 and ε2, select small enough ε1 and ε2. So we can obtain that
dV2(t)

dt ≤ 0. Similarly, we construct a small enough ε3 > 0, for t → +∞ , 0 < S 1
ki

(t) < ε3, 0 < S 2
ki

(t) < ε3.
Hence,

dI1
ki

(t)

dt
≥ b1 − [(α1 + α2)

∑n
i=1 θ (ki) Z (ki) ε3

〈k〉
+ µ1 + d]I1

ki
(t).

Then,

inf I1
ki

(t) ≤
b1

(α1 + α2)
∑n

i=1 θ(ki)Z(ki)ε3

〈k〉 + µ1 + d
= Ĩ1.

Set ε3 → 0, so it follows inf I1
ki

(t) ≤ b1
µ1+d = sup T 1

ki
(t) for t → +∞. Hence, E∗0 is globally asymptotically

stable if R0 < 1. �

Lemma 3.4. If R01 < 1 and R02 > 1, the positive-equilibrium solution of model (2.1) satisfies S 1
ki

(t) =

S 1∗
1ki

= Φ1(t) = Φ∗1 = 0 when t → +∞,

S 2∗
1ki

=
α2(I1∗

1ki
+ I2∗

1ki
)Φ∗2

β2 + d
→ β2 + d =

α2(I1∗
1ki

+ I2∗
1ki

)Φ∗2
S 2∗

1ki

=
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α2(I1∗
1ki

+ I2∗
1ki

). (3.7)

Proof. From the definition of Φ1(t), there is

Φ̇1(t) ≤
1
〈k〉

n∑
i=1

θ(ki)Z(ki)[α1I1
ki

(t)Φ1(t) − (β1 + d)S 1
ki

(t)]

≤
1
〈k〉

n∑
i=1

θ(ki)Z(ki)[
α1b1Φ1(t)
µ1 + d

− (β1 + d)S 1
ki

(t)]

= Φ1(t)(β1 + d)(R01 − 1) < 0.

which means that (3.7) holds based on reference [32]. �

Theorem 3.5. The positive-equilibrium solution E∗1 of model (2.1) is globally asymptotically stable if
R01 < 1 and R02 > 1.
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Proof. Construct the Lyapunov V3(t) as

V3(t) =
1

2〈k〉

n∑
i=1

1
I1∗
1ki

θ(ki)Z(ki)(I1
ki

(t) − I1∗
1ki

)2 +

(
Φ2(t) − Φ∗2 − Φ∗2 ln

(
Φ2(t)
Φ∗2

))
+

1
2〈k〉

n∑
i=1

1
I2∗
1ki

θ(ki)Z(ki)(I2
ki

(t) − I2∗
1ki

)2.

According to Lemma 3.4, it follows that

dV3(t)
dt

=
1
〈k〉

n∑
i=1

1
I1∗
1ki

θ (ki) Z (ki)
(
I1
ki

(t) − I1∗
1ki

)
İ1
ki

(t) +
Φ2(t) − Φ∗2

Φ2(t)
Φ̇2(t)

+
1
〈k〉

n∑
i=1

1
I2∗
1ki

θ (ki) Z (ki)
(
I2
ki

(t) − I2∗
1ki

)
İ2
ki

(t)

= f1 + f2 + f3,

where

f1 =
1
〈k〉

n∑
i=1

1
I1∗
1ki

θ (ki) Z (ki)
(
I1
ki

(t) − I1∗
1ki

)
[α2I1∗

1ki
Φ∗2 + (µ1 + d)I1∗

1ki

−α2I1
ki

(t)Φ2(t) − (µ1 + d)I1
ki

(t)]

=
1
〈k〉

n∑
i=1

−
1

I1∗
1ki

θ (ki) Z (ki)
(
I1
ki

(t) − I1∗
1ki

)
[(µ1 + d)(I1

ki
(t) − I1∗

1ki
)

+α2Ik1
i (t)Φ2(t) − α2I2∗

1ki
Φ2(t) + α2I2∗

1ki
Φ2(t) − α2I2∗

1ki
Φ∗2]

=
1
〈k〉

n∑
i=1

[−
1

I1∗
1ki

θ (ki) Z (ki) (α2Φ2(t) + µ1 + d)
(
I1
ki

(t) − I1∗
1ki

)2

−θ(ki)Z(ki)α2(Φ2(t) − Φ∗2)(I1
ki

(t) − I1∗
1ki

)],

f2 =
1
〈k〉

n∑
i=1

1
I2∗
1ki

θ (ki) Z (ki)
(
I2
ki

(t) − I2∗
1ki

)
(b2 − α2I2

ki
(t)Φ2

−(µ2 + d)Ik2
i (t))

=
1
〈k〉

n∑
i=1

[−
1

I2∗
1ki

θ (ki) Z (ki) (α2Φ2(t) + µ2 + d)
(
I2
ki

(t) − I2∗
1ki

)2

−θ(ki)Z(ki)α2(Φ2(t) − Φ∗2)(I2
ki

(t) − I2∗
1ki

)],

f3 = (Φ2(t) − Φ∗2)[
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α2(I1
ki

(t) + I2
ki

(t)) − (β2 + d)]

= (Φ2(t) − Φ∗2)[
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α2(I1
ki

(t) + I2
ki

(t))

−
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α2(I1∗
1ki

+ I2∗
1ki

)].
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Hence, one further has

dV3(t)
dt

=
1
〈k〉

n∑
i=1

[−
1

I1∗
1ki

θ (ki) Z (ki) (α2Φ2(t) + µ1 + d)
(
I1
ki

(t) − I1∗
1ki

)2

−
1

I2∗
1ki

θ (ki) Z (ki) (α2Φ2(t) + µ2 + d)
(
I2
ki

(t) − I2∗
1ki

)2
]

≤ 0.

Therefore, we can conclude that the positive-equilibrium solution E∗1 of model (2.1) is globally
asymptotically stable if R01 < 1 and R02 > 1. �

Lemma 3.6. If R01 > 1 and R02 > 1, when t → +∞, the positive-equilibrium solution of model (2.1)
satisfies

β1 + d =
α1I1∗

2ki
Φ∗1

S 1∗
2ki

− α2Φ
∗
2 =

1
〈k〉

n∑
i=1

α1θ(ki)Z(ki)I1∗
2ki
− α2Φ

∗
2,

and

β2 + d =
α2(I1∗

2ki
+ I2∗

2ki
+ S 1∗

2ki
)Φ∗2

S 2∗
2ki

=
1
〈k〉

n∑
i=1

α2θ(ki)Z(ki)(I1∗
2ki

+ I2∗
2ki

+ S 1∗
2ki

).

Theorem 3.7. The positive-equilibrium solution E∗1 of model (2.1) is globally asymptotically stable if
R01 > 1 and R02 > 1.

Proof. Construct the Lyapunov V4(t) as

V4(t) =
1

2〈k〉

n∑
i=1

1
I1∗
2ki

θ(ki)Z(ki)(I1
ki

(t) − I1∗
2ki

)2

+
1

2〈k〉

n∑
i=1

1
I2∗
2ki

θ(ki)Z(ki)(I2
ki

(t) − I2∗
2ki

)2

+

(
Φ1(t) − Φ∗1 − Φ∗1 ln

(
Φ1(t)
Φ∗1

))
+

(
Φ2(t) − Φ∗2 − Φ∗2 ln

(
Φ2(t)
Φ∗2

))
.

Then, based on Lemma 3.6, it yields that

dV4(t)
dt

=
1
〈k〉

n∑
i=1

1
I1∗
2ki

θ (ki) Z (ki)
(
I1
ki

(t) − I1∗
2ki

)
İ1
ki

(t) +
Φ1(t) − Φ∗1

Φ1(t)
Φ̇1(t)

+
1
〈k〉

n∑
i=1

1
I2∗
2ki

θ (ki) Z (ki)
(
I2
ki

(t) − I2∗
2ki

)
İ2
ki

(t) +
Φ2(t) − Φ∗2

Φ2(t)
Φ̇2(t)

= g1 + g2 + g3 + g4,

where

g1 =
1
〈k〉

n∑
i=1

1
I1∗
2ki

θ (ki) Z (ki)
(
I1
ki

(t) − I1∗
2ki

)
[α2I1∗

2ki
Φ∗2 + α1I1∗

2ki
Φ∗1

+(µ1 + d)I1∗
2ki
− α2I1

ki
(t)Φ2(t) − α1I1

ki
(t)Φ1(t) − (µ1 + d)I1

ki
(t)]

AIMS Mathematics Volume 9, Issue 9, 24018–24038.



24031

= −
1
〈k〉

n∑
i=1

1
I1∗
2ki

θ (ki) Z (ki) (α1Φ1(t) + α2Φ2(t) + µ1 + d)
(
I1
ki

(t) − I1∗
2ki

)2

−
1
〈k〉

n∑
i=1

θ(ki)Z(ki)[α2(Φ2(t) − Φ∗2) + α1(Φ1(t) − Φ∗1)](I1
ki

(t) − I1∗
2ki

),

g2 =
1
〈k〉

n∑
i=1

−
1

I2∗
2ki

θ (ki) Z (ki) (α2Φ2(t) + µ2 + d)
(
I2
ki

(t) − I2∗
2ki

)2

−
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α2(Φ2(t) − Φ∗2)(I2
ki

(t) − I2∗
2ki

),

g3 = (Φ1(t) − Φ∗1)
1

Φ1(t)
1
〈k〉

n∑
i=1

θ(ki)Z(ki)[α1I1
ki

(t)Φ1(t) − α2S 1
ki

(t)Φ2(t)

−(β1 + d)S 1
ki

(t)]

= (Φ1(t) − Φ∗1)[
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α1I1
ki

(t) −
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α1I1∗
2ki

+α2Φ
∗
2 − α2Φ2(t)]

=
1
〈k〉

n∑
i=1

θ(ki)Z(ki)α1(I1
ki

(t) − I1∗
1ki

)(Φ1(t) − Φ∗1)

−α2(Φ2(t) − Φ∗2)(Φ1(t) − Φ∗1),

g4 = (Φ2(t) − Φ∗2)
1

Φ2(t)
1
〈k〉

n∑
i=1

θ(ki)Z(ki)[α2(I1
ki

(t) + I2
ki

(t) + S 1
ki

(t))Φ2(t)

−(β2 + d)S 2
ki

(t)]

= (Φ2(t) − Φ∗2)
1
〈k〉

n∑
i=1

α2θ(ki)Z(ki)[(I1
ki

(t) − I1∗
2ki

) + (I2
ki

(t) − I2∗
2ki

)]

+(Φ2(t) − Φ∗2)α2(Φ1(t) − Φ∗1).

Further, one has

dV4(t)
dt

= −
1
〈k〉

n∑
i=1

1
I1∗
2ki

θ (ki) Z (ki) (α1Φ1(t) + α2Φ2(t) + µ1 + d)
(
I1
ki

(t) − I1∗
2ki

)2

−
1
〈k〉

n∑
i=1

1
I2∗
2ki

θ (ki) Z (ki) (α2Φ2(t) + µ2 + d)
(
I2
ki

(t) − I2∗
2ki

)2

≤ 0.

Therefore, we can conclude that the positive-equilibrium solution E∗2 of model (2.1) is globally
asymptotically stable if R01 > 1 and R02 > 1. �

Remark 2. In fact, the basic reproduction number R0 of model (2.1) is determined by the values of R01

and R02, which means that there exist more situations of rumor existence (see Theorem 3.1). Notedly,
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rumor spreaders S 1(t) and S 2(t) will be extinct with R0 < 1 (see Theorem 3.2), but the spreading of
rumors is more complex when R0 > 1. Hence, to further explore its dynamics, Lyapunov function
indirect and direct methods are used to analyze local asymptotically stability (see Theorem 3.2) and
global asymptotically stability (see Theorems 3.3, 3.5, and 3.7), respectively.

4. Numerical examples

In this section, we use numerical simulation to analyze the dynamic characteristics of the proposed
rumor propagation model.

Combined with practical problems and existing results [8, 33, 34], the initial state of a rumor-
spreading network typically comprises a predominant number of ignorant individuals, a small group
of spreaders, and an even smaller contingent of removers in general. Furthermore, depending on
the specific assumptions made regarding the model’s context, it is often observed that the population
of spreaders (Group-2) is more substantial than initially anticipated. Drawing on the insights from
reference [23], suppose that the network obeys power law distribution, and choose ki = i, i =

1, 2, · · · , 200, and Z(ki) =
k−2

i
1.6399 , so it satisfies that

∑n
i=1 Z(ki) = 1. Hence, it is easy to obtain that

the average degree 〈k〉 = 3.5844. As is mentioned above (see Remark 1), θ(ki) = kp
i /(1 + kq

i ), and select
p = 0.5, q = 0.5. Moreover, to further demonstrate the effect of the parameters (see Figures 2–5),
choose the following series of initial values for the model (2.1): I1

ki
(0) = 0.3 + ki

3200 , I2
ki

(0) = 0.4 + ki
3200 ,

S 1
ki

(0) = 0.1− ki
3200 , S 2

ki
(0) = 0.15− ki

6400 , R1
ki

(0) = 0.03− ki
6400 , R2

ki
(0) = 0.02− ki

6400 , ki = i, i = 1, 2, · · · , 200.

4.1. Stability of zero-equilibrium solution

Combined with Theorem 3.3 and the actual problem, choose α1 = 0.6, α2 = 0.5, b1 = 0.005, b2 =

0.005, d = 0.01, µ1 = 0.005, µ2 = 0.005, β1 = 0.05 and β2 = 0.05. By simple calculation, it can
deduce that R0 ≈ 0.873 < 1. From Theorem 3.3, we can know that the zero-equilibrium solution E∗0 of
model (2.1) is globally asymptotically stable if R0 < 1. It is shown in Figure 2, which takes k = 50 as
an example.

Figure 2. The stability of zero-equilibrium solution E0 with R0 < 1 and k = 50.

Moreover, Figure 3 shows the dynamic state at all degrees from 1 to 200. From Figure 3, we
can easily detect that I1

ki
(t) tends to b1

µ1+d = 1
3 and I2

ki
(t) tends to b2

µ2+d = 1
3 , which is consistent

with the conditions of Theorem 3.3. It also shows that the zero-equilibrium solution E0 is globally
asymptotically stable for any k ∈ [1, 200].
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(a) (b)

Figure 3. The stability of zero-equilibrium solution E0 with R0 < 1 and k ∈ [1, 200].

4.2. Stability of positive-equilibrium solution

To further explore the effect of language usage variations on the multi-lingual rumor spreading, the
following different parameters are selected with actual and empirical results [23,34], and two cases are
explored based on Theorems 3.5 and 3.7 as follows:

Case 1. Stability of positive-equilibrium solution for R01 < 1 and R02 > 1.

Choose α1 = 0.4, α2 = 0.72, b1 = 0.01, b2 = 0.01, d = 0.02, µ1 = 0.01, µ2 = 0.01, β1 = 0.03, β2 =

0.02, and it yields R01 ≈ 0.3250 < 1, R02 ≈ 1.4624 > 1. Figure 4 depicts that positive equilibrium E∗1
is globally asymptotically stable for k ∈ [1, 200]. Notedly, S 1

ki
(t) tends to 0 rapidly, and S 2

ki
(t) remains

prevalent thereafter.

Case 2. Stability of positive-equilibrium solution for R01 > 1 and R02 > 1.

Choose α1 = 0.55, α2 = 0.25, b1 = 0.003, b2 = 0.003, d = 0.006, µ1 = 0.002, µ2 = 0.002, β1 =

0.0028, β2 = 0.005. Then, it derives that R01 ≈ 2.856 > 1 and R02 ≈ 2.007 > 1. Figure 5 shows that
positive-equilibrium solution E∗2 is globally asymptotically stable for any k ∈ [1, 200], and two cases
of rumors are rare but still prevalent as time goes by.
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Figure 4. The stability of positive-equilibrium solution E∗1 with R01 < 1 and R02 > 1.

Figure 5. The stability of positive-equilibrium solution E∗2 with R01 > 1 and R02 > 1.

Remark 3. Note that the stability of the zero-equilibrium solution and positive-equilibrium solutions
of the model (2.1) is discussed, respectively. When R0 < 1, the system has a zero-equilibrium
solution, and the rumor gradually disappears (see Figure 3). However, when the system has a positive-
equilibrium solution, its stability is more complex. When R01 < 1 and R02 > 1, the rumor propagated
in language 1 disappears, while the rumor propagated in Language-2 still prevalent (see Figure 4).
Conversely, when R01 > 1 and R02 > 1, rumors propagated in both languages continue to exist over
time (see Figure 5). Therefore, the study on the propagation of rumors in a multilingual environment
holds significant research value.

4.3. Sensitivity analysis

To further analyze the different factors contribution to the rumor spreading, a sensitivity analysis
is further shown here [35]. The normalized forward sensitivity index of a variable u depends
differentiably on a parameter p. It is defined as:

γu
p :=

∂u
∂p
×

u
p
.

Next, in terms of the uncertainty of the basic reproductive number, we choose the parameter values
from Section 4.1. Since the value R0 is related to R01,R02, we need to perform their sensitivity analyses,
respectively. Here, we only show its results for R02 due to their similarity (see Table 2).
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Table 2. Sensitivity index of R01 to parameter values of model (2.1).

Parameter Sensitivity index
〈k〉 −1.000
α1 0
α2 +1.000
bi +0.500
β1 0
β2 −0.833
µi −0.167
d −1.333

From Table 2, it is evident that a 1% reduction in the leaving rate 〈k〉 leads to a 1% increase in
R02, while a 1% reduction in β2 results in a 0.833% increase in R02. Conversely, a 1% reduction in the
incoming rate bi(i = 1, 2) decreases R02 by 0.5%. Additionally, increasing µi(i = 1, 2) impacts rumor
spreading, further reducing R02.

Remark 4. In summary, various effective strategies can be employed to decrease R02, such as
enhancing the leaving rate d, regulating the transmission rate among individuals, etc. These measures
can be implemented through network consensus monitoring, educational campaigns, and other
interventions. However, some specific control strategies are not proposed in the model, and an optimal
solution to suppress rumours is also not provided here. Therefore, we will carry out an in-depth study
on this aspect in the future.

5. Conclusions

The dynamical behaviors of the multilingual rumor propagation 2I2S2R model have been analyzed
under heterogeneous networks. The basic reproduction number by the next-generation matrix method
has been calculated, and the stability has been explored in different cases. Moreover, numerical
simulations have been provided to further show the dynamic characteristics of the model. However,
the research background presented in this paper is somewhat idealized and does not adequately address
several critical real-world factors, including time delays, stochastic phenomena, and the influence of
government surveillance. To enhance the robustness of our findings, in future research, we aim to
develop a more comprehensive multilingual rumor propagation model that reflects the complexities of
real-world scenarios. This will enable us to engage in a more in-depth discussion regarding the control
mechanisms associated with the suppression and elimination of rumors.
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