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1. Introduction

In this paper, all graphs considered are simple, finite and connected. Consider a graph
G = (V(G), E(G)), where V(G) = {v1, v2, . . . , vn} is the vertex set and E(G) is the edge set. The
neighborhood NG(v) of v ∈ V(G) is the set of vertices adjacent to v. The degree dv of a vertex v is the
number of elements in the set NG(v). The length of the shortest path connecting two vertices, u and v,
is known as the distance dG(u, v) between them. The vertices of G index the distance matrix
D(G) = (duv) of G, where duv = dG(u, v). Since D(G) is a real symmetric matrix, the eigenvalues
ψ1 ≥ ψ2 ≥ · · · ≥ ψn of D(G) are all real and they are referred to as the distance eigenvalues of G. The
distance spectral radius of G is the largest eigenvalue ψ1 of D(G) and the distance spectrum of G is
the multiset of all the eigenvalues of D(G). The distance energy of D(G) is defined as

DE(G) =
n∑

i=1

|ψi|.

The distance spectrum and the distance energy of G have been thoroughly investigated thus far; for
further information on their history and development, see [5,6,13–15,22,30–32,34] and the references
therein.
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For a Hermitian matrix M, the inertia of M is a triplet (e1(M), e2(M), e3(M)), where e1(M), e2(M)
and e3(M) are the number of positive, zero and negative eigenvalues of M, respectively. Let R be a
commutative ring with identity different from one. If we can locate v , 0 ∈ R such that u · v = 0, then
u , 0 ∈ R is known as the zero divisor of R. The set of all non-zero zero divisors of R is denoted by
Z∗(R). The Γ(R) is said to be a zero divisor graph if a, b ∈ V(Γ(R)) = Z∗(R) and (a, b) ∈ E(Γ(R)) if
and only if a . b = 0.

In recent years, the zero divisor graph has received a great deal of interest. When Beck [7] first
introduced the zero divisor graphs of commutative rings in 1988, he considered the set of vertices as
zero divisors including 0. Later, Anderson and Livingston [2] modified the definition of zero divisor
graphs and considered only non-zero zero divisors as vertices. Young [33] was the first to discuss the
adjacency eigenvalues of zero divisor graphs. In [18, 19], the spectral theory was developed further. A
number of topological indices as well as the energy and the Laplacian energy of zero divisor
graphs along with their corresponding line graphs of commutative rings were provided by Singh and
Bhat [28, 29]. For more literature on zero divisor graphs, see [1, 3, 11, 17, 20, 24, 25, 27] and the
references cited therein. For notations/terminology, the readers are referred to [9, 12, 21].

The rest of the paper is organized as follows. In Section 2, we discuss the distance spectrum of
Γ(Zt[x]/⟨x4⟩), Γ(Zt2[x]/⟨x2⟩) and Γ(Ft[u]/⟨u3⟩), respectively. We also find the inertia of the distance
matrices of the said graphs. In Section 3, we give the sharp bounds for the distance energy of these
graphs while providing the closed formula for the distance energy of Γ(Ft[u]/⟨u3⟩).

2. Distance spectrum of zero divisor graphs

A factor ring is formed by the set of all cosets R/I = {I + a; a ∈ R}, where I is the ideal of R.
Consider Zn[x] = {anxn + · · · + a1x + a0|ai ∈ Zn} to be a polynomial of a commutative ring.

We start by considering the finite commutative ring Zt[x]/⟨x4⟩, where t is any prime. Then,
Γ(Zt[x]/⟨x4⟩) is a zero divisor graph with (t3 − 1) zero divisors of (Zt[x]/⟨x4⟩)/{0} considered to be
vertices and 1

2 (t − 1)(3t3 − t2 − 2t − 2) edges. This graph structure was originally defined by Johnson
and Sankar in [16] and was modified with typo correction by Rather in [23]. For the sake of
completeness, we write the details of this graph structure. The vertex set of Γ(Zt[x]/⟨x4⟩) can be
written as

D =
{
ax3|a = 1, 2, . . . , (t − 1) and t ∤ a

}
,

E =
{
bx3 + ax2|a, b = 1, 2, . . . , (t − 1) and t ∤ {a, b}

}
,

F =
{
cx3 + bx2 + ax|a, b, c = 1, 2, . . . , (t − 1) and t ∤ {a, b, c}

}
.

It is clear to see that D =
{
x3, 2x3, 3x3, . . . , (t − 2)x3, (t − 1)x3

}
and hence |D| = t − 1. Likewise,

|E| = t(t − 1) and the cardinality of F is t(t2 − t). Further, for any two elements say aix3, a jx3 in D, we
obtain

(aix3) · (a jx3) = aia jx6 ≡ 0 mod x4.

Every element of D is therefore adjacent to every other element that is contained inside D. Thus, they
form a clique of cardinality t − 1. Now, if bix3 + a jx2, b jx3 + aix2 ∈ E, we see that

(bix3 + a jx2) · (b jx3 + aix2) = bib jx6 + (biai + b ja j)x5 + (aia j)x4 ≡ 0 mod x4.
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This shows that a clique of size t2 − t is formed by the vertices in E, meaning that every vertex in E is
connected to every other vertex in E. Again for cix3+bix2+aix ∈ F and c jx3+b jx2+a jx ∈ F, we have

(cix3 + bix2 + aix) · (c jx3 + b jx2 + a jx)
= cic jx6 + (bic j + b jci)x5 + (aic j + bib j + cia j)x4 + (aib j + bia j)x3 + aia jx2

. 0 mod x4.

Therefore, the vertices in F form an independent set of cardinality t3 − t2 because they are not adjacent
to each other. Again, for aix3 ∈ D and bix3 + a jx2 ∈ E, we see that

(aix3) · (bix3 + a jx2) = biaix6 + aia jx5 ≡ 0 mod x4.

Every vertex in D is therefore connected to every vertex in E. Similarly, if aix3 ∈ D and cix3 + bix2 +

a jx ∈ F, we have

(aix3) · (cix3 + bix2 + a jx) = ciaix6 + biaix5 + aia jx4 ≡ 0 mod x4.

This means that every vertex in D is adjacent to every vertex in F. Finally, if bix3 + aix2 ∈ E and
c jx3 + b jx2 + a jx ∈ F, then

(bix3 + aix2) · (c jx3 + b jx2 + a jx) = bic jx6 + (aic j + bib j)x5 + (aib j + bia j)x4 + aia jx3 . 0 mod x4.

As a result, it can be concluded that no vertex in F is adjacent to any of the vertices in E. This gives
us the structure of Γ(Zt[x]/⟨x4⟩) completely. We use an example (the same as described in [16]) to
demonstrate this method.

Example 1. For R � Z3[x]/⟨x4⟩, the vertex set of G � Γ
(
Z3[x]/⟨x4⟩

)
is as follows

D = {x3, 2x3},

E = {x2, 2x2, x3 + x2, x3 + 2x2, 2x3 + x2, 2x3 + 2x2},

F = {x, 2x, x2 + x, x2 + 2x, 2x2 + x, 2x2 + 2x, x3 + x, x3 + 2x, 2x3 + x, 2x3 + 2x,

x3 + x2 + x, x3 + x2 + 2x, x3 + 2x2 + x, x3 + 2x2 + 2x, 2x3 + x2 + x, 2x3 + x2 + 2x,

2x3 + 2x2 + x, 2x3 + 2x2 + 2x}.

(2.1)

Figure 1 displays the graphical representation of G. It can be seen that the two vertices in D have
degree 25 and are dominating vertices (that is, adjacent to all vertices). In E, the degree of each vertex
is 7, and in F, it is 2.

Figure 1. Γ
(
Z3[x]/⟨x4⟩

)
.
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We now examine the distance spectrum of Γ(Zt[x]/⟨x4⟩), but first we need to mention some known
results.

For α = 0 in Proposition 11 of [10], the following conclusions are drawn.

Lemma 1. [10] Suppose that G is a connected graph of order n and S is a subset of the vertex set
V(G) such that NG(x) = NG(y) for any x, y ∈ S , where |S | = t. Then

(i) If S is an independent set, then −2 is an eigenvalue of D(G) with multiplicity at least t − 1.
(ii) If S is a clique, then −1 is an eigenvalue of D(G) with multiplicity at least t − 1.

The distance spectrum of the zero divisor graph of Zt[x]/⟨x4⟩ is provided by the following theorem.

Theorem 1. Consider a zero divisor graph G � Γ(Zt[x]/⟨x4⟩) with any prime t. Then the distance
spectrum of G consists of the eigenvalues −1 and −2 having multiplicities t2 − 3 and t3 − t2 − 1,
respectively. The remaining distance eigenvalues of G can be obtained as the zeros of the following
polynomial

λ3 − λ2(2t3 − t2 − 5) − λ(2t5 − 5t4 + 8t3 − 2t2 − 8) + t6 − 5t5 + 8t4 − 7t3 + t2 + 4.

Proof. We label the vertices of G from the elements in D, then the elements in E and finally in F.
According to this vertex labelling, the distance matrix of G is given by

D(G) =


J(t−1) − I(t−1) J(t−1)×(t2−t) J(t−1)×(t3−t2)

J(t2−t)×(t−1) J(t2−t) − I(t2−t) 2
(
J(t2−t)×(t3−t2)

)
J(t3−t2)×(t−1) 2

(
J(t3−t2)×(t2−t)

)
2
(
J(t3−t2) − I(t3−t2)

)
 . (2.2)

Here, I is the identity matrix and J is the matrix whose each entry is 1. Given that a clique of size t−1 is
formed by the vertices in D and that each of these vertices of D has the same neighbors, the hypothesis
of Lemma 1 is satisfied. Consequently, G has a distance eigenvalue of −1 having multiplicity of t − 2,
and the corresponding eigenvectors are(

− 1, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t−3

, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t

)
,
(
− 1, 0, 1, 0, 0, . . . , 0︸      ︷︷      ︸

t−4

, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2

)
,

...(
− 1, 0, 0, . . . , 0︸      ︷︷      ︸

t−4

,−1, 0, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t

)
,
(
− 1, 0, 0, . . . , 0︸      ︷︷      ︸

t−3

, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t

)
.

With the similar idea, the vertices in E form a clique and satisfy the hypothesis of Lemma 1, so it
follows that −1 is the distance eigenvalue of G having multiplicity t2−t−1. The associated eigenvectors
of the distance eigenvalue −1 are(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

,−1, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t−2

, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2

)
,
(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

,−1, 0, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t−3

, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2

)
,

...(
0, 0, . . . , 0︸      ︷︷      ︸

t−1

,−1, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t−3

, 1, 0, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2

)
,
(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

,−1, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t−2

, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2

)
.
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Hence, −1 is the distance eigenvalue of G, where the multiplicity of −1 is t2 − t − 1 + t − 2 = t2 − 3.
Moreover, it can be observed from the structure of the zero divisor graph that the vertices of F constitute
an independent set, where each of these vertices of F has the same neighbors. Hence, using Lemma 1,
it can be seen that −2 is the distance eigenvalue of G having multiplicity t3−t2−1 and its corresponding
eigenvectors are(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t

,−1, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2−2

)
,
(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t

,−1, 0, 1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2−3

)
,

...(
0, 0, . . . , 0︸      ︷︷      ︸

t−1

, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t

,−1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2−3

, 1, 0
)
,
(

0, 0, . . . , 0︸      ︷︷      ︸
t−1

, 0, 0, . . . , 0︸      ︷︷      ︸
t2−t

,−1, 0, 0, . . . , 0︸      ︷︷      ︸
t3−t2−2

, 1
)
.

Consequently, this method gives us t3 − t2 − 1 + t2 − 3 = t3 − 4 distance eigenvalues. Next, we have
to look for the other three remaining eigenvalues of D(G). For i = 1, 2, 3, . . . , t3 − 1, consider X to be
the eigenvector of D(G), where xi = X(vi). Hence, it can be deduced (refer to [9]) that each component
of X that corresponds to a vertex in D is equal to x1, components of X that correspond to vertices in
E are equal to x2 and components of X that correspond to vertices in F are denoted by x3. Thus, with
X =

(
x1, x1, . . . , x1︸         ︷︷         ︸

t−1

, x2, x2, . . . , x2︸         ︷︷         ︸
t2−t

, x3, x3, . . . , x3︸         ︷︷         ︸
t3−t2

)T
, the eigenequation D(G)X = λX gives us

λx1 = x1 + x1 + · · · + x1︸                ︷︷                ︸
t−2

+ x2 + x2 + · · · + x2︸                ︷︷                ︸
t2−t

+ x3 + x3 + · · · + x3︸                ︷︷                ︸
t3−t2

λx2 = x1 + x1 + · · · + x1︸                ︷︷                ︸
t−1

+ x2 + x2 + · · · + x2︸                ︷︷                ︸
t2−t−1

+2 ·
(

x3 + x3 + · · · + x3︸                ︷︷                ︸
t3−t2

)
λx3 = x1 + x1 + · · · + x1︸                ︷︷                ︸

t−1

+2 ·
(

x2 + x2 + · · · + x2︸                ︷︷                ︸
t2−t

)
+ 2 ·

(
x3 + x3 + · · · + x3︸                ︷︷                ︸

t3−t2−1

)
.

The coefficient matrix of the right hand side of the above system of equations is

P =


t − 2 t2 − t t3 − t2

t − 1 t2 − t − 1 2(t3 − t2)
t − 1 2(t2 − t) 2(t3 − t2 − 1)

 . (2.3)

From (2.3), we obtain the characteristic polynomial of P as follows

f (λ) = λ3 − λ2(2t3 − t2 − 5) − λ(2t5 − 5t4 + 8t3 − 2t2 − 8) + t6

− 5t5 + 8t4 − 7t3 + t2 + 4.
(2.4)

The zeros of the polynomial f (λ) are the remaining three distance eigenvalues of G. □

Since the zeros of f (λ) cannot be explicitly found, so we will approximate them with the help of
intermediate value theorem. Let λ1 ≥ λ2 ≥ λ3 be the zeros of (2.4), then with the manual calculations,
we have

f (t3 − 1) = t4(t + 1)(t4 − 5t2 + 6t − 3) > 0,
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f (t4 − 2) = −t2(t − 1)2(t8 − 2t5 + 2t3 + 3t2 + 3t + 1) < 0,
f (−1) = −t3(t − 1)3 < 0,

f (t − 2) = t4(t − 1)2 > 0,
f (−t2) = (t − 1)2(4t4 + 5t3 − 5t2 − 8t − 4) > 0,
f (−t) = −(t − 1)2(3t4 − 6t3 + 2t2 + 4) < 0.

Thus, with the above observation and intermediate value theorem, it follows that

λ1 ∈ (t3 − 1, t4 − 2), λ2 ∈ (−1, t − 2) and λ3 ∈ (−t2,−t).

Based on the above theorem and observation, Theorem 1 gives us the following result.

Corollary 1. The inertia of D(Γ(Zt[x]/⟨x4⟩)) is

(1, 0, t3 − 2) if λ2 < 0,
(2, 0, t3 − 3) if λ2 > 0.

Next, we consider the finite commutative ring Zt2[x]/⟨x2⟩, where t ≥ 3 is any prime. Then, the zero
divisor graph G � Γ(Zt2[x]/⟨x2⟩) of order (t3 − 1) and size 1

2 (2t5 − 2t4 − t3 − t2 + 2) can be obtained by
the following procedure, see [26].

Here,

V(G) =
{
t, 2t, . . . , (t − 1)t, x, 2x, 3x, . . . , (t2 − 1)x, x + t, x + 2t, . . . , x + (t − 1)t,

2x + t, 2x + 2t, . . . , 2x + (t − 1)t, . . . , (t2 − 1)x + t, (t2 − 1)x + 2t, . . . ,

(t2 − 1)x + (t − 1)t
}
.

Now, we divide the vertex set as follows

D =
{
btx|b = 1, 2, . . . , (t − 1) and t ∤ b

}
,

E =
{
bt, ax, btx + bt|b = 1, 2, . . . , (t − 1), a = 1, 2, . . . , (t2 − 1) and t ∤ a

}
,

F =
{
ax + bt|b = 1, 2, . . . , (t − 1), a = 1, 2, . . . , (t2 − 1) and t ∤ b, a

}
.

Clearly |D| = (t − 1), |E| = 2t(t − 1) and |F| = t(t − 1)2. Additionally, E and F are subdivided by

E1 =
{
ax|a = 1, 2, . . . , (t2 − 1)

}
,

=⇒ |E1| = t(t − 1),

E2 =
{
bt, btx + bt|b = 1, 2, . . . , (t − 1)

}
,

=⇒ |E2| = t(t − 1),

F1 =
{
ax + t, ax + t(t − 1)|a = 1, 2, . . . , (t2 − 1)

}
,

=⇒ |F1| = t(t − 1),

F2 =
{
ax + 2t, ax + t(t − 2)|a = 1, 2, . . . , (t2 − 1)

}
,

=⇒ |F2| = t(t − 1),
...
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Ft−1 =
{
ax + t(t − 1), ax + t(t + 1)|a = 1, 2, . . . , (t2 − 1)

}
,

=⇒ |Ft−1| = t(t − 1).

Here, we made some slight corrections to the subdivision of the set F (for more details, see [26]). It is
clear to see that if bitx, b jtx ∈ D =⇒ (bitx)(b jtx) = bib jt2x2 ≡ 0 mod x2, then all of the vertices in D
are adjacent to one another and if bitx ∈ D, b jt, a jx, b jtx+b jt ∈ E =⇒ bib jt2x ≡ 0 mod t2, bia jtx2 ≡ 0
mod x2, bib jt2x2+bib jt2x ≡ 0 mod t2, subsequently each vertex in D is connected to each vertex in E.
Finally, if bitx ∈ D, a jx + b jt ∈ F =⇒ (bitx)(a jx + b jt) = bia jtx2 + bib jt2x ≡ 0 mod x2 or mod t2,
consequently each vertex in D is adjacent to each vertex in F.

Furthermore, if aix, a jx ∈ E1 =⇒ (aix)(a jx) = aia jx2 ≡ 0 mod x2, then all vertices in E1 are
adjacent to one another. The same is true for E2. However, if aix ∈ E1, b jt ∈ E2 =⇒ (aix)(b jt) =
aib jtx . 0 mod x2, therefore there isn’t a vertex in E1 that is adjacent to a vertex in E2.

Last, if aix+ t, a jx+ t(t − 1) ∈ F1 =⇒ (aix+ t)(a jx+ t(t − 1)) = aia jx2 + (ai + a j)t2x+ t2(t − 1) ≡ 0
mod x2 or mod t2, then aix+ t is adjacent to a jx+ t(t− 1) in F1 but no two aix+ t or a jx+ t(t− 1) has
zero product by modulo x2 or t2 in F1. The same is true for F2, F3, . . . , Ft−1.

An illustration (pictorial representation) of the above construction for Zt2[x]/⟨x2⟩ with t = 3 is given
as below.

Figure 2. The zero divisor graph of Z9[x]/⟨x2⟩.

Now, we will give the distance spectrum of Γ(Zt2[x]/⟨x2⟩) in the following result.

Theorem 2. Consider a zero divisor graph G � Γ(Zt2[x]/⟨x2⟩) with any prime t ≥ 3. Then the distance
spectrum of G consists of the eigenvalues −1, −2 and t2− t−2 with multiplicities 2t2− t−4, t3−2t2+1
and t − 2, respectively. The other distance eigenvalues of G are −(t2 − t + 1) and the zeros of the
polynomial given below

λ3 − λ2(t3 + 2t2 − 2t − 5) − λ(5t5 − 18t4 + 21t3 + 3t2 − 8t − 8) + (2t6 − 14t5 + 33t4 − 30t3 + 7t + 4).

Proof. Beginning with the vertices in D, we label the vertices in E1, E2, F1, F2, . . . , Ft−1 respectively.
According to this vertex labelling, the distance matrix of G is given by
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D(G) =



J(t−1) − I(t−1) J(t−1)×(t2−t) J(t−1)×(t2−t) A14 A15 . . . A1(t+2)

J(t2−t)×(t−1) J(t2−t) − I(t2−t) 2
(
J(t2−t)×(t2−t)

)
A24 A25 . . . A2(t+2)

J(t2−t)×(t−1) 2
(
J(t2−t)×(t2−t)

)
J(t2−t) − I(t2−t) A34 A35 . . . A3(t+2)

J(t2−t)×(t−1) 2
(
J(t2−t)×(t2−t)

)
2
(
J(t2−t)×(t2−t)

)
A44 A45 . . . A4(t+2)

J(t2−t)×(t−1) 2
(
J(t2−t)×(t2−t)

)
2
(
J(t2−t)×(t2−t)

)
A54 A55 . . . A5(t+2)

...
...

...
...

...
. . .

...

J(t2−t)×(t−1) 2
(
J(t2−t)×(t2−t)

)
2
(
J(t2−t)×(t2−t)

)
A(t+2)4 A(t+2)5 . . . A(t+2)(t+2)


.

Here, I is the identity matrix, J is the matrix whose each entry is 1, A1 j = J(t−1)×(t2−t), for j = 4, 5, . . . , t+
2, Aii = 2(J(t2−t) − I(t2−t)), for i = 4, 5, . . . , t + 2, Ai j = 2

(
J(t2−t)×(t2−t)

)
, for i = 2, 3, and j = 4, 5, . . . , t + 2,

Ai j = J(t2−t)×(t2−t), i = 4, 5, . . . , t + 2, j = 4, 5, . . . , t + 2 except i , j.
Given that a clique of size t − 1 (t2 − t) is formed by the vertices of D (E1 and E2) in G and

that each of these vertices of D (E1 and E2) has the same neighbors, the hypothesis of Lemma 1 is
satisfied. Hence, with the similar analysis as in Theorem 1, the distance spectrum of G comprises of
the eigenvalue −1 having multiplicity 2(t2 − t − 1) + t − 2 = 2t2 − t − 4. Also, the elements in F1

(F2, F3, . . . , Ft−1) form an independent set, with each vertex in F1 (F2, F3 . . . , Ft−1) having the same
neighbourhood. Lemma 1 thus indicates that −2 is the eigenvalue of D(G), where the multiplicity of −2
is (t−1)(t2−t−1) = t3−2t2+1. Hence, with this method, we have obtained t3−2t2+1+2t2−t−4 = t3−t−3
distance eigenvalues.

Next, with eigenvector

X =
(

x1, . . . , x1︸     ︷︷     ︸
t−1

, x2, . . . , x2︸     ︷︷     ︸
t2−t

, x3, . . . , x3︸     ︷︷     ︸
t2−t

, x4, . . . , x4︸     ︷︷     ︸
t2−t

, . . . , xt+2, . . . , xt+2︸         ︷︷         ︸
t2−t

)T
,

the coefficient matrix of the eigenequation D(G)X = λX is

P =



t − 2 t2 − t t2 − t t2 − t t2 − t . . . t2 − t
t − 1 t2 − t − 1 2(t2 − t) 2(t2 − t) 2(t2 − t) . . . 2(t2 − t)
t − 1 2(t2 − t) t2 − t − 1 2(t2 − t) 2(t2 − t) . . . 2(t2 − t)
t − 1 2(t2 − t) 2(t2 − t) 2(t2 − t − 1) t2 − t . . . t2 − t
t − 1 2(t2 − t) 2(t2 − t) t2 − t 2(t2 − t − 1) . . . t2 − t
...

...
...

...
...

. . .
...

t − 1 2(t2 − t) 2(t2 − t) t2 − t t2 − t . . . 2(t2 − t − 1)


t+2

. (2.5)

It is easy to verify that t2 − t − 2 is the eigenvalue of P having multiplicity t − 2 and corresponding

eigenvectors are Xi =
(
0, 0, 0,−1, xi1, xi2, . . . xi(t−2)

)T where xi j =

1 if i = j

0 if i , j
, for j = 1, 2, . . . , t − 2

and i = 1, 2, . . . , t − 2. The other four distance eigenvalues of G are the eigenvalues of the following
matrix

P′ =


t − 2 t2 − t t2 − t (t − 1)(t2 − t)
t − 1 t2 − t − 1 2(t2 − t) 2(t − 1)(t2 − t)
t − 1 2(t2 − t) t2 − t − 1 2(t − 1)(t2 − t)
t − 1 2(t2 − t) 2(t2 − t) t3 − t2 − 2

 . (2.6)
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From (2.6), we obtain the characteristic polynomial of P′ as follows

(λ + t2 − t + 1)
(
λ3 − λ2(t3 + 2t2 − 2t − 5) − λ(5t5 − 18t4 + 21t3 + 3t2 − 8t − 8)

+ (2t6 − 14t5 + 33t4 − 30t3 + 7t + 4)
)
.

It is clear that −(t2 − t + 1) is a zero of the above polynomial. The following polynomial gives the
remaining three distance eigenvalues of G

g(λ) = λ3 − λ2(t3 + 2t2 − 2t − 5) − λ(5t5 − 18t4 + 21t3 + 3t2 − 8t − 8)+
(2t6 − 14t5 + 33t4 − 30t3 + 7t + 4).

(2.7)

□

Next, we approximate the zeros of g(λ) given in Eq (2.7). Let λ1 ≥ λ2 ≥ λ3 be the zeros of (2.7),
then it is easy to verify the following

g(t2 − 2) = −t(2t + 1)(t − 1)2(3t3 − 5t2 + 2t + 1) < 0,
g(t4 − 2) = t(t − 1)2(t9 + t8 − t7 − 6t6 + 6t5 + t4 + 3t3 + t2 − 4t − 1) > 0,

g(−1) = t(t − 1)2(2t3 − 5t2 + 3t + 1) > 0,
g(t − 2) = −t(t − 1)2(3t3 − 7t2 + 5t + 1) < 0,

g(−t3) = −(t − 1)2(2t7 + t6 + 16t5 + 3t4 + t3 − 26t2 − 15t − 4) < 0,
g(−t) = (t − 1)2(7t4 − 19t3 + 7t2 + 7t + 4) > 0.

Thus, by intermediate value theorem, it follows that λ1 ∈ (t2−2, t4−2), λ2 ∈ (−1, t−2) and λ3 ∈ (−t3,−t).
Based on the above theorem and observation, we have the following consequence of Theorem 2.

Corollary 2. The inertia of D(Γ(Zt2[x]/⟨x2⟩)) is

(t − 1, 0, t3 − t) if λ2 < 0,
(t, 0, t3 − t − 1) if λ2 > 0.

Let t be an odd prime. The ring Ft[u]/⟨u3⟩ is defined as a characteristic t ring subject to restrictions
u3 = 0. The ring isomorphism Ft[u]/⟨u3⟩ � Ft + uFt + u2Ft is obvious to see. An element a + ub + u2c
is unit if and only if a , 0.

Now, we will discuss the zero divisor graph Γ(Ft[u]/⟨u3⟩) of order (t2−1) and size 1
2 (2t3−3t2− t+2)

which can be obtained by the following procedure, see [4].
The vertex set V(Γ(Ft[u]/⟨u3⟩)) = D ∪ E ∪ F, where

D =
{
xu|x ∈ F∗t

}
,

=⇒ |D| = (t − 1),

E =
{
xu2|x ∈ F∗t

}
,

=⇒ |E| = (t − 1),

F =
{
xu + yu2|x, y ∈ F∗t

}
,

=⇒ |F| = (t − 1)2.

As u3 = 0, every vertex of D is adjacent with every vertex of E, every vertex of E is adjacent with
every vertex of F and any two distinct vertices of E are adjacent.
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Example 2. For t = 3, the vertex set of Γ(F3[u]/⟨u3⟩) is given as

D = {u, 2u},

E = {u2, 2u2},

F = {u + u2, 2u + 2u2, u + 2u2, 2u + u2}.

(2.8)

The diagram of Γ(F3[u]/⟨u3⟩) is shown in Figure 3, where the number of vertices is 8 and the number
of edges is 13.

Figure 3. Zero divisor graph of F3[u]/⟨u3⟩.

Now, we will give the distance spectrum of Γ(Ft[u]/⟨u3⟩) in the following result.

Theorem 3. Consider a zero divisor graph G � Γ(Ft[u]/⟨u3⟩) with odd prime t. Then the distance
spectrum of G consists of the eigenvalues −1 and −2 having multiplicities t−2 and t2−t−2, respectively.
The remaining distance eigenvalues of G can be obtained as the zeros of the following

−(λ + 2)(λ2 − 2t2λ + tλ + 4λ + t3 − 4t2 + t + 4),

which are −2 and 1
2

(
2t2 − t − 4 ±

√
t
√

4t3 − 8t2 + t + 4
)
.

Proof. We label the vertices of G from the elements in D, then the elements in E and finally in C.
According to this vertex labelling, the distance matrix of G is given by

D(G) =


2
(
J(t−1) − I(t−1)

)
J(t−1) 2J(t−1)×(t−1)2

J(t−1) J(t−1) − I(t−1) J(t−1)×(t−1)2

2J(t−1)2×(t−1) J(t−1)2×(t−1) 2
(
J(t−1)2 − I(t−1)2

)
 , (2.9)

where I is the identity matrix and J is the matrix whose each entry is 1.
Given that an independent set of size t − 1 is formed by the vertices of D and that each of these

vertices of D has the same neighborhood, the hypothesis of Lemma 1 is satisfied. Consequently, G has
a distance eigenvalue of −2 having multiplicity t − 2. Moreover, it can be observed from the structure
of the zero divisor graph that the vertices in E form a clique and satisfy the hypothesis of Lemma 1,
so it follows that −1 is a distance eigenvalue of G having multiplicity t − 2. With the similar idea, the
vertices in F constitute an independent set, with each vertex having the same neighborhood. Hence, it
follows from Lemma 1 that −2 is the distance eigenvalue of G having multiplicity t2 − 2t. Therefore,
the distance eigenvalue −2 of G has multiplicity t2−2t+ t−2 = t2− t−2. Following the same procedure
as Theorem 1, we can find the corresponding eigenvectors.
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Consequently, we have obtained t2 − t − 2 + t − 2 = t2 − 4 distance eigenvalues using this method.
Next, we have to look for the other three remaining eigenvalues of D(G). For i = 1, 2, 3, . . . , t2 − 1,
consider X to be the eigenvector of D(G), where xi = X(vi). Hence, it can be deduced (refer to [9])
that each component of X that corresponds to a vertex in D is denoted by x1, components of X that
correspond to vertices in E are equal to x2 and the components of X that correspond to vertices in
F are denoted by x3. Thus, with X =

(
x1, x1, . . . , x1︸         ︷︷         ︸

t−1

, x2, x2, . . . , x2︸         ︷︷         ︸
t−1

, x3, x3, . . . , x3︸         ︷︷         ︸
(t−1)2

)T
, the eigenequation

D(G)X = λX gives us

λx1 = 2 ·
(

x1 + x1 + · · · + x1︸                ︷︷                ︸
t−2

)
+ x2 + x2 + · · · + x2︸                ︷︷                ︸

t−1

+2 ·
(

x3 + x3 + · · · + x3︸                ︷︷                ︸
(t−1)2

)
λx2 = x1 + x1 + · · · + x1︸                ︷︷                ︸

t−1

+ x2 + x2 + · · · + x2︸                ︷︷                ︸
t−2

+ x3 + x3 + · · · + x3︸                ︷︷                ︸
(t−1)2

λx3 = 2 ·
(

x1 + x1 + · · · + x1︸                ︷︷                ︸
t−1

)
+ x2 + x2 + · · · + x2︸                ︷︷                ︸

t−1

+2 ·
(

x3 + x3 + · · · + x3︸                ︷︷                ︸
t2−2t

)
.

The coefficient matrix of the right hand side of the above system of equations is

P =


2(t − 2) t − 1 2(t − 1)2

t − 1 t − 2 (t − 1)2

2(t − 1) t − 1 2(t2 − 2t)

 . (2.10)

From (2.10), we obtain the characteristic polynomial of P as follows

h(λ) = −(λ + 2)(λ2 − 2t2λ + tλ + 4λ + t3 − 4t2 + t + 4). (2.11)

The zeros of the polynomial h(λ) are the remaining three distance eigenvalues of G. It is clear that
λ1 = −2, λ2 =

1
2

(
2t2 − t − 4 +

√
t
√

4t3 − 8t2 + t + 4
)

and λ3 =
1
2

(
2t2 − t − 4 −

√
t
√

4t3 − 8t2 + t + 4
)

are
the three zeros of the above polynomial. □

Based on the above theorem, we have the following consequence of Theorem 3.

Corollary 3. The inertia of D(Γ(Ft[u]/⟨u3⟩)) is

(1, 0, t2 − 2) if λ3 < 0,
(2, 0, t2 − 3) if λ3 > 0.

3. Distance energy of zero divisor graphs

From Theorem 1, the distance spectrum of G � Γ(Zt[x]/⟨x4⟩) consists of the eigenvalue −1 with
multiplicity t2 − 3, −2 with multiplicity t3 − t2 − 1 and the eigenvalues of P given in (2.3). The
eigenvalues of P lie in the intervals

λ1 ∈ (t3 − 1, t4 − 2), λ2 ∈ (−1, t − 2) and λ3 ∈ (−t2,−t).

By definition of the distance energy, we have

DE(G) = t2 − 3 + 2(t3 − t2 − 1) + |λ1| + |λ2| + |λ3| = 2t3 − t2 − 5 + E(P), (3.1)
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where E(P) is the energy of P. With the above calculations of λi’s, we get the following bounds for the
distance energy of G

DE(G) ≤ 2t3 − t2 − 5 + t4 − 2 = t4 + 2t3 − t2 − 7

and

DE(G) ≥ 2t3 − t2 − 5 + t3 − 1 = 3t3 − t2 − 6.

Next, we establish more general sharp bounds for the distance energy of the said graph.
Consider the set of positive real numbers { f1, f2, f3, . . . , fs}. We define Πn to be the average of

products of n-element subset of { f1, f2, f3, . . . , fs}, that is

Π1 =
f1 + f2 + f3 + · · · + fs

s
,

Π2 =
1

s(s−1)
2

(
f1 f2 + f1 f3 + · · · + f1 fs + f2 f3 + · · · + fs−1 fs

)
,

...

Πs = f1 f2 . . . fs.

The Maclaurin symmetric mean inequality [8] establishes a relationship among Πi’s as follows

Π1 ≥ Π
1
2
2 ≥ Π

1
3
3 ≥ · · · ≥ Π

1
s
s , (3.2)

with equalities holding if and only if f1 = f2 = · · · = fs.

Now, from (3.1), we have

DE(G) =
n∑

i=1

|λi| = 2t3 − t2 − 5 + E(P). (3.3)

We will find bounds for E(P). Using Maclaurin inequality (3.2) on the set{
|λ1(P)|, |λ2(P)|, |λ3(P)|

}
,

we have(
|λ1(P)| + |λ2(P)| + |λ3(P)|

3

)2

≥
1

3(3−1)
2

(
|λ1(P)||λ2(P)| + |λ1(P)||λ3(P)| + |λ2(P)||λ3(P)|

)
, (3.4)

that is, (
|λ1(P)| + |λ2(P)| + |λ3(P)|

)2
≥ 3

(
|λ1(P)||λ2(P)| + |λ1(P)||λ3(P)| + |λ2(P)||λ3(P)|

)
=

3
2

( 3∑
i=1

|λi(P)|
)2
−

3∑
i=1

λ2
i (P)

 ,
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that is, (
E(P)

)2
=

 3∑
i=1

|λi(P)|

2

≤ 3
3∑

i=1

λ2
i (P) = 3 · tr(P2),

where tr(P2) is the trace of P2. From (2.3), the trace of P2 is

tr(P2) = 4t6 − 9t4 − 4t3 + 6t2 + 9.

When we substitute it in the above expression, we get

E(P) ≤
√

3 · tr(P2) =
√

3(4t6 − 9t4 − 4t3 + 6t2 + 9).

Thus by (3.3), we get

DE(G) ≤ 2t3 − t2 − 5 +
√

12t6 − 27t4 − 12t3 + 18t2 + 27,

where the equality holds if and only if the equality holds in (3.4), that is, |λ1(P)| = |λ2(P)| = |λ3(P)|.
Further, the second inequality of (3.2) gives

1
3(3−1)

2

(
|λ1(P)||λ2(P)| + |λ1(P)||λ3(P)| + |λ2(P)||λ3(P)|

)
≥

(
|λ1(P)||λ2(P)||λ3(P)|

) 2
3
,

that is equivalent to

2
(
|λ1(P)||λ2(P)| + |λ1(P)||λ3(P)| + |λ2(P)||λ3(P)|

)
≥ 6

(
|λ1(P)||λ2(P)||λ3(P)|

) 2
3
,

that is,
(|λ1(P)| + |λ2(P)| + |λ3(P)|)2

−
(
|λ1(P)|2 + |λ2(P)|2 + |λ3(P)|2

)
≥ 6|det(P)|

2
3 ,

that is,

E(P) =
3∑

i=1

|λi(P)| ≥
√

tr(P2) + 6|det(P)|
2
3 . (3.5)

From (2.3), the determinant of P is det(P) = −t6 + 5t5 − 8t4 + 7t3 − t2 − 4. Therefore, from (3.3), we
have

DE(G) ≥ 2t3 − t2 − 5 +
√

4t6 − 9t4 − 4t3 + 6t2 + 9 + 6| − t6 + 5t5 − 8t4 + 7t3 − t2 − 4|
2
3 .

Equality holds if and only if |λ1(P)| = |λ2(P)| = |λ3(P)|.
We make the above observation precise in the following result.

Theorem 4. Consider a zero divisor graph G � Γ(Zt[x]/⟨x4⟩) with any prime t. Then

DE(G) ≥ 2t3 − t2 − 5 +
√

4t6 − 9t4 − 4t3 + 6t2 + 9 + 6| − t6 + 5t5 − 8t4 + 7t3 − t2 − 4|
2
3

and
DE(G) ≤ 2t3 − t2 − 5 +

√
12t6 − 27t4 − 12t3 + 18t2 + 27,

where equality holds if and only if |λ1(P)| = |λ2(P)| = |λ3(P)|.
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Next, from Theorem 2, the distance spectrum of G � Γ(Zt2[x]/⟨x2⟩) consists of the eigenvalue −1
with multiplicity 2t2 − t − 4, −2 with multiplicity t3 − 2t2 + 1, t2 − t − 2 with multiplicity t − 2 and the
eigenvalues of P′ given in (2.6). The spectrum of P′ consists of −(t2 − t + 1) and the three eigenvalues
which lie in the intervals

λ1 ∈ (t2 − 2, t4 − 2), λ2 ∈ (−1, t − 2) and λ3 ∈ (−t3,−t).

By definition of the distance energy, we have

DE(G) = 2t2 − t − 4 + 2(t3 − 2t2 + 1) + (t − 2)(t2 − t − 2) + t2 − t + 1 + |λ1| + |λ2| + |λ3|

= 3t3 − 4t2 − 2t + 3 + |λ1| + |λ2| + |λ3|.
(3.6)

With the above calculations of λi’s, we get the following bounds for the distance energy of G

DE(G) ≤ 3t3 − 4t2 − 2t + 3 + t4 − 2 = t4 + 3t3 − 4t2 − 2t + 1

and

DE(G) ≥ 3t3 − 4t2 − 2t + 3 + t2 − 2 = 3t3 − 3t2 − 2t + 1.

To establish more general sharp bounds for the distance energy of Γ(Zt2[x]/⟨x2⟩), from (3.6), we have

DE(G) =
n∑

i=1

|λi| = 3t3 − 5t2 − t + 2 + E(P′). (3.7)

Now, we will determine bounds for E(P′). Using Maclaurin inequality (3.2) on the set{
|λ1(P′)|, |λ2(P′)|, |λ3(P′)|, |λ4(P′)|

}
,

we have(
|λ1(P′)| + |λ2(P′)| + |λ3(P′)| + |λ4(P′)|

4

)2

≥
1
6

(
|λ1(P′)||λ2(P′)| + |λ1(P′)||λ3(P′)| + · · · + |λ3(P′)||λ4(P′)|

)
,

(3.8)
that is,(
|λ1(P′)| + |λ2(P′)| + |λ3(P′)| + |λ4(P′)|

)2
≥

8
3

(
|λ1(P′)||λ2(P′)| + |λ1(P′)||λ3(P′)| + · · · + |λ3(P′)||λ4(P′)|

)
=

4
3

( 4∑
i=1

|λi(P′)|
)2
−

4∑
i=1

λ2
i (P′)

 ,
that is, (

E(P′)
)2
=

 4∑
i=1

|λi(P′)|

2

≤ 4
4∑

i=1

λ2
i (P′) = 4 · tr(P′)2.

Here, tr(P′)2 denotes the trace of (P′)2. Now, (2.6) gives the trace of (P′)2 as follows

tr(P′)2 = t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10.
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When we substitute it in the above expression, we get

E(P′) ≤ 2
√

tr(P′)2 = 2
√

t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10.

So, (3.7) gives

DE(G) = 3t3 − 5t2 − t + 2 + E(P′)

≤ 3t3 − 5t2 − t + 2 + 2
√

t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10,

where the equality holds if and only if equality holds in (3.8), that is, |λ1(P′)| = |λ2(P′)| = |λ3(P′)|.
Now, similar to (3.5), we have

E(P′) =
4∑

i=1

|λi(P′)| ≥
√

tr(P′)2 + 12|det(P′)|
2
3 .

From (2.6), the determinant of P′ is det(P′) = 2t8 − 16t7 + 49t6 − 77t5 + 63t4 − 23t3 − 3t2 + 3t + 4.
Therefore, from (3.7), we have

DE(G) ≥ 3t3 − 5t2 − t + 2 +
√

t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10 + 12|det(P′)|
2
3 .

Equality holds if and only if |λ1(P′)| = |λ2(P′)| = |λ3(P′)|.
Similar to Theorem 4, we have the following result for G � Γ(Zt2[x]/⟨x2⟩).

Theorem 5. Consider a zero divisor graph G � Γ(Zt2[x]/⟨x2⟩) with any prime t ≥ 3. Then

DE(G) ≥ 3t3 − 5t2 − t + 2 +
√

t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10 + 12|det(P′)|
2
3

and
DE(G) ≤ 3t3 − 5t2 − t + 2 + 2

√
t6 + 14t5 − 35t4 + 22t3 − 7t2 + 2t + 10,

where equality holds if and only if |λ1(P′)| = |λ2(P′)| = |λ3(P′)|. Also, det(P′) = 2t8 − 16t7 + 49t6 −

77t5 + 63t4 − 23t3 − 3t2 + 3t + 4.

The last result gives the closed formula for the distance energy of Γ(Ft[u]/⟨u3⟩).

Theorem 6. Consider a zero divisor graph G � Γ(Ft[u]/⟨u3⟩) with odd prime t. Then

DE(G) =

2t2 − t − 4 +
√

t
√

4t3 − 8t2 + t + 4, if t < 5,
4t2 − 2t − 8, if t ≥ 5.

Proof. From Theorem 3, the result is evident. □

4. Conclusions

In this paper, we discussed the distance spectrum of zero divisor graphs like Γ(Zt[x]/⟨x4⟩) with any
prime t, Γ(Zt2[x]/⟨x2⟩) with any prime t ≥ 3 and Γ(Ft[u]/⟨u3⟩) with any odd prime t, where Zt is an
integer modulo ring and Ft is a field. We also presented the formulas for the inertia of the distance
matrices of the aforementioned graphs. Furthermore, we provide the closed formula for the distance
energy of Γ(Ft[u]/⟨u3⟩) while giving the sharp bounds for the distance energy of Γ(Zt[x]/⟨x4⟩) and
Γ(Zt2[x]/⟨x2⟩). As for future work, we suggest finding the distance spectrum and the distance energy
for the zero divisor graph Γ(Zst[x]/⟨x2⟩) with any prime 2 < s < t (for more details, see [26]).
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