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Acronyms Nomenclature
IID independent and identically distributed
IFR increasing failure rate
DFR decreasing failure rate
ILR increasing likelihood rate
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1. Introduction

Spacings play a crucial role in both reliability theory and statistics. They underpin nearly all well-
known measures of dispersion, including sample variance, sample range, and Gini’s mean difference,
which are functions of sample spacings. The term “interval analysis”, now known as spacings,
was first introduced by Sukhatme in his seminal paper [1]. Since then, the study of spacings has
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captivated statisticians, particularly following Greenwood’s influential 1946 paper presented to the
Royal Statistical Society, where he proposed that “it is at least worth considering whether by a
study of the distribution of intervals the statistician can give the epidemiologist any help”. For more
comprehensive results on the early stages of spacings, interested readers are referred to [2–9]. These
references provide detailed studies on the construction of spacings, their applications, the limiting
distributions of spacing functions, and stochastic comparisons of various spacings. For a class of
goodness-of-fit tests based symmetrically on spacings, Rao et al. [10] established that a goodness-of-
fit test based on m-spacings (Dm

i:n ≡ Wi+m−1:n − Wi−1:n, m ≥ 2) is always asymptotically superior to
its analogue based on simple spacings (m = 1). Hence, the stochastic properties as well as the log-
convexity (concavity) of m-spacings and generalized spacings (Di, j:n ≡ W j:n − Wi:n, 0 ≤ i < j ≤ n)
were investigated by Misra, Hu, and Alimohammadi et al., see [11–14] for more. Recently, Zhang
and Balakrishnan et al. [15–17] proposed the concept of conditional spacings based on the residual
lifetimes of surviving components in a failed k-out-of-n system, and the stochastic properties of
the conditional spacings of independently heteroexponentially distributed series-failure systems and
independent and identically distributed (IID) failure-coherent systems are also explored in detail.
To study the lifetime behavior of the k-out-of-n systems before failure, many scholars [18, 19] have
investigated the conditional random variable RLS k,n,t ≡ (Wn−k+1:n − t | Wn−k:n = t). That is, for the given
condition that there are n − k failures at time t, the residual life of the k-out-of-n system. However,
in practice, the exact time at which a component fails in a system is difficult to observe, and only the
number of components failing in the system at time t is easy to observe. Therefore, Bairamov et al.
in [20] were the first to study the reliability and stochastic properties of the conditional order statistic
(Wk:n − t | Wl:n > t). Since then, many researchers have used conditional order statistics as a tool
to investigate the residual life and conditional distribution of systems, enhancing the understanding
of system reliability and lifetime distribution. For detailed discussions, see [21–23]. The primary
motivation of this article is to address the inadequacy of existing spacing theories for studying used
(but not necessarily failed) k-out-of-n systems due to changes in the lifetime distribution of components
compared to new systems. To broaden the applicability of spacing theories, we introduce the condition
S n(t) = s, which links the spacings formed by the remaining lifetimes of surviving components in
used k-out-of-n systems (termed as conditional spacings U t

i:n|s ) to the system’s operating time t and the
number of failed components s. This adjustment broadens the applicability of the stochastic properties
of spacing theories to used k-out-of-n systems. Specifically, generalized conditional spacings facilitate
the analysis of the remaining lifetimes of non-failed components over a given period, which is essential
for predicting system life and developing maintenance plans. Additionally, generalized conditional
spacings are significant in statistical inference, including Bayesian inference and empirical distribution
estimation. They provide additional statistical information, enhancing the precision of estimation and
hypothesis testing [24].

Given a k-out-of-n system consisting of n IID components, let Wi represent the lifetime of the ith
component for i ∈ {1, 2, · · · , n}, and let Wi:n denote the ith smallest order statistic of W1,W2, · · ·Wn. To
preserve the state of the data at time t for the used k-out-of-n system, we define the statistic S n(t), which
represents the number of observations in the sample {W1,W2, · · ·Wn} that do not exceed the running
time t of the k-out-of-n system. Clearly, S n(t) ≤ n − k + 1. For s + 1 ≤ i < j ≤ n, let

U t
i, j:n|s ≡

(
W j:n −Wi:n | S n(t) = s

)
, U∗,ti, j:n|s ≡ (n − i)

(
W j:n −Wi:n | S n(t) = s

)
, (1.1)
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be the corresponding generalized conditional spacings and generalized normal conditional spacings
based on the residual life of n − s components in the used k-out-of-n system that are still alive at time
t. In particular, when j = i + 1, we use the shorthand U t

i, j:n|s and U∗,ti, j:n|s for U t
i:n|s and U∗,ti:n|s, respectively,

i.e.,

U t
i:n|s ≡ (Wi+1:n −Wi:n | S n(t) = s) , U∗,ti:n|s ≡ (n − i) (Wi+1:n −Wi:n | S n(t) = s) , (1.2)

to represent the corresponding conditional spacings and normalized conditional spacings in the used
k-out-of-n system. If we assume that n components are placed on test at time 0, then U t

i:n|s may be
regarded as the conditional differences between consecutive observations, while U∗,ti:n|s represents the
total test time observed between Wi+1:n and Wi:n under the condition that s components have already
failed.

This paper focuses on the stochastic properties of generalized conditional spacings and generalized
normal conditional spacings. The rest of this paper is organized as follows. In Section 2, we
review some definitions as well as lemmas. In Section 3, we obtain some stochastic order results
for generalized conditional spacings and generalized normal conditional spacings.

2. Definitions and preliminaries

In the following definitions, let the cumulative distribution functions of the random variables R and L
be FR(x) and FL(x), the probability density functions be fR(x) and fL(x), and denote their corresponding
survival functions by F̄R(x) = 1 − FR(x) and F̄L(x) = 1 − FL(x).

Definition 2.1. The random variable R is said to be smaller than L in the following ways:
(a) stochastic order (denoted by R ≤st L) if F̄R(x) ≤ F̄L(x) for all x;
(b) hazard(failure) rate order (denoted by R ≤hr L) if F̄R(x)/F̄L(x) is decreasing in x;
(c) likelihood ratio order (denoted by R ≤lr L) if fL(x)/ fR(x) is increasing in the union of their

supports;
(d) up shifted likelihood ratio order (denoted by R ≤lr↑ L), if fL(x)/ fR(x + t) is increasing in x ≥ 0

for all t ≥ 0;
(e) down shifted likelihood ratio order (denoted by R ≤lr↓ L), if fL(x + t)/ fR(x) is increasing in x ≥ 0

for all t ≥ 0;
(f) dispersive order (denoted by R ≤disp L), if F−1

R (β) − F−1
R (α) ≤ F−1

L (β) − F−1
L (α), whenever 0 <

α ≤ β < 1, where F−1
R (·) and F−1

L (·) denote the right-continuous inverse functions of FR(·) and FL(·).

It is well known that the relationship between these orderings is as shown below, see [25, 26] for
details.

R ≤lr L =⇒ R ≤hr L =⇒ R ≤st L.

For convenience, we sometimes write FR(·) ≤∗ FL(·) or F̄R(·) ≤∗ F̄L(·) instead of R ≤∗ L, where ≤∗
is one of the above stochastic orders.

Definition 2.2. The random variable R(or FR(·)) is said to be:
(a) IFR (increasing failure rate) if F̄R(·) is logconcave;
(b) DFR (decreasing failure rate) if F̄R(·) is logconvex;
(c) ILR (increasing likelihood rate) if fR(·) is logconcave;
(d) DLR (decreasing likelihood rate) if fR(·) is logconvex.
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Obviously, ILR⇒ IFR and DLR⇒ DFR. For more details on these concepts, see [27, 28].
For the concise proof of theorems, we introduce some lemmas.

Lemma 2.1. [26] Let W1, · · · ,Wn be IID random variables. Then, Wi:n ≤lr Wp:m whenever p ≥ i and
p − i ≥ m − n.

Remark 2.1. If W1 strengthens to ILR, then the result of Lemma 2.1 can be strengthened to Wi:n ≤lr↑

Wp:m. But, using DLR instead of ILR, the result Wi:n ≤lr↓ Wp:m does not necessarily hold.

Let Bα,β(·) denote the cumulative distribution function of a beta distribution with parameters α ≥ 0
and β ≥ 0 with the probability density function

bα,β(µ) =
Γ(α + β)
Γ(α)Γ(β)

µα−1(1 − µ)β−1, 0 ≤ µ ≤ 1. (2.1)

Then, the cumulative distribution function and survival function of the ith order statistic Wi:n can be
written as Pr(Wi:n ≤ x) = Bi,n−i+1(F(x)) and Pr(Wi:n > x) = Bn−i+1,i(F̄(x)), respectively.

Lemma 2.2. [29] (a) If R ≤hr L, then Ri:n ≤hr Lp:m whenever p ≥ i and p − i ≥ m − n.
(b) If R ≤hr L, then Bα,β(F̄R(·)) ≤hr Bp,q(F̄L(·)) for all non-negative integers α, β, p, q such that α ≥ p
and β ≤ q.

Remark 2.2. By replacing all instances of ≤hr with ≤lr↑ in Lemma 2.2, the lemma still holds, as
confirmed by [26].

Lemma 2.3. [11] If F is DFR(IFR), then FU
t1 ≤hr (≥hr)FU

t2 for t1 ≤ t2.

Lemma 2.4. [30] Let R and L be independent random variables. Then, R ≤lr L if and only if
E[g(L,R)] ≥ E[g(R, L)] for all g ∈ Glr, where Glr = {g|g(x, y) ≥ g(y, x) whenever x ≥ y}.

Throughout this paper, we shall be assuming that all distributions under study are absolutely
continuous with common support (0,∞) and use the terms decreasing and increasing to denote non-
increasing and non-decreasing, respectively.

3. Main results

We start by defining some symbols that will be used in the following theorems. Let W1, · · · ,Wn

be nonnegative independent random variables with the identical distribution as W, and W1:n ≤ W2:n ≤

· · ·Wn:n denote the corresponding order statistics. Let Zi:n−s be the ith order statistics of independent
random variables Z1, · · · ,Zn−s, which have the same distribution as Z ≡ (W − t|W > t). Denote the
distribution functions of random variables W and Z as F(·) and FU

t (·), density functions f (·) and f U
t (·),

and survival functions F̄(·) and F̄U
t (·), respectively. It is easy to check that FU

t (·) =
F(t+·)−F(t)

F̄(t) . For other
random variables, such as T , we use FT (·) for the cumulative distribution function of T , F̄T (·) for the
survival function of T , and fT (·) for the probability density function of T as general notations.

Below we give the survival functions of U t
i, j:n|s and U∗,ti:n|s introduced by Eq (1.1).

Theorem 3.1. For s + 1 ≤ i < j ≤ n, any x > 0, the survival function of U t
i, j:n|s is

Pr(U t
i, j:n|s > x) = E

[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x))

]
,

where E(·) is the expectation of a random variable and Bn− j+1, j−i(·) denotes a cumulative distribution
function of the beta distribution, see Eq (2.1).
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Proof. For s + 1 ≤ i < j ≤ n and any x > 0,

F̄U t
i, j:n|s

(x) = Pr(U t
i, j:n|s > x)

= Pr
(
W j:n −Wi:n > x | S n(t) = s

)
= Pr

(
Z j−s:n−s − Zi−s:n−s > x

)
=

∫ +∞

0
Pr

(
Z j−s:n−s − Zi−s:n−s > x | Zi−s:n−s = y

)
dFZi−s:n−s(y).

Recall that the conditional distribution of Z j−s:n−s − Zi−s:n−s given Zi−s:n−s = y is the same as the
unconditional distribution of the ( j − i)th order statistic of a random sample of size n − i from the
distribution FU

t+y(·).

F̄U t
i, j:n|s

(x) =

∫ +∞

0
Bn− j+1, j−i(F̄U

t+y(x))dFZi−s:n−s(y), ∀x ≥ 0

= E
[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x))

]
.

Remark 3.1. From Theorem 3.1 it is easy to obtain that the survival function of generalized normal
conditional spacing U∗,ti:n|s is Pr(U∗,ti:n|s > x) = E

[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
( x

n−i ))
]

.

In the following, we will perform some stochastic comparisons among generalized conditional
spacings.

Theorem 3.2. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being a DFR
distribution, for ∀ t1 ≤ t2, p − h ≥ i − s and q − j ≥ p − i ≥ m − n. Then,

U t1
i, j:n|s ≤st U t2

p,q:m|h.

Proof. As shown in the above theorem, we can obtain that

F̄U t1
i, j:n|s

(x) =

∫ +∞

0
Bn− j+1, j−i(F̄U

t1+y(x))dFZi−s:n−s(y), ∀x ≥ 0,

F̄U t2
p,q:m|h

(x) =

∫ +∞

0
Bm−q+1,q−p(F̄U

t2+y(x))dFZp−h:m−h(y), ∀x ≥ 0.

Since the parameters satisfy q − j ≥ p − i ≥ m − n, by Lemma 2.2(b),

Bn− j+1, j−i(F̄U
t2+y(·)) ≤hr Bm−q+1,q−p(F̄U

t2+y(·)).

Since the hazard rate order implies the usual stochastic order, we have

F̄U t2
p,q:m|h

(x) ≥
∫ +∞

0
Bn− j+1, j−i(F̄U

t2+y(x))dFZp−h:m−h(y), ∀x ≥ 0.

By Lemmas 2.3 and 2.2(b), the function Bn− j+1, j−i(F̄U
y (x)) is increasing in y for each x. Hence,

F̄U t2
p,q:m|h

(x) ≥
∫ +∞

0
Bn− j+1, j−i(F̄U

t1+y(x))dFZi−s:n−s(y) = F̄U t1
i, j:n|s

(x), ∀x ≥ 0,
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since Lemma 2.1 implies Zi−s:n−s ≤lr Zp−h:m−h and hence Zi−s:n−s ≤st Zp−h:m−h for ∀ t1 ≤ t2, p − h ≥ i − s,
and p − i ≥ m − n. We get the required result.

For two random variables, we typically compare their expectations and variances to measure their
stochastic properties. However, sometimes the comparison based solely on expectations and variances
is insufficient, and in some cases expectations and variances may not even exist. Therefore, utilizing
stochastic orders allows for a more comprehensive and detailed comparison of certain stochastic
properties of random variables. Roughly speaking, U t1

i, j:n|s ≤st U t2
p,q:m|h says that U t1

i, j:n|s is less likely
than U t2

p,q:m|h to take on large values, where “large” means any value greater than x, and that this is the
case for all x,s. In risk management, stochastic orders enable the comparison of different risk profiles.
They help in determining which of the two risks is greater (or smaller) in a stochastic sense, aiding in
better risk assessment and mitigation strategies.

Remark 3.2. The corner labels in Theorem 3.2 have many constraints, but the conclusion holds when
the conditions take an equal sign. For ease of application, we list some special cases.

(1) If p ≥ i, then U t
i,i+m:n|s ≤st U t

p,p+m:n|s(Conditional m-spacings).
(2) If q ≥ j, then U t

i, j:n|s ≤st U t
i,q:n|s.

(3) If n ≥ m, then U t
i, j:n|s ≤st U t

i, j:m|s.
(4) If s ≥ h, then U t

i, j:n|s ≤st U t
i, j:n|h.

(5) If t1 ≤ t2, then U t1
i, j:n|s ≤st U t2

i, j:n|s.

Example 3.1. Suppose a k-out-of-n system with n components whose lifetimes are IID follows the first
Pareto distribution, i.e., f (x) = 1

x2 , (x ≥ 1). Then, W1 is clearly DFR. From Theorem 3.1, we can
obtain generalized conditional spacings and survival functions, respectively.

U t
3,6:6|1 = (W6:6 −W3:6 | S 6(t) = 1) , F̄U t

3,6:6|1
(x) =

∫ +∞

0

20t4y
(t + y)6 · [1 −

x3

(t + x + y)3 ]dy,

U t
3,5:5|2 = (W5:5 −W3:5 | S 5(t) = 2) , F̄U t

3,5:5|2
(x) =

∫ +∞

0

3t3

(t + y)3 ·
t + 2x + y

(t + x + y)2 dy,

U t
2,5:6|1 = (W5:6 −W2:6 | S 6(t) = 1) , F̄U t

2,5:6|1
(x) =

∫ +∞

0

5t5

(t + y)6 · [1 −
x3(4t + x + 4y)

(t + x + y)4 ]dy,

U t
3,5:6|1 = (W5:6 −W3:6 | S 6(t) = 1) , F̄U t

3,5:6|1
(x) =

∫ +∞

0

20t4y(t + 3x + y)
(t + x + y)3(t + y)4 dy,

U t
3,5:6|2 = (W5:6 −W3:6 | S 6(t) = 2) , F̄U t

3,5:6|2
(x) =

∫ +∞

0

4t4(t + 3x + y)
(t + x + y)3(t + y)3 dy.

Suppose t = 1, we can obtain the curves g1(x) = F̄U1
3,6:6|1

(x), g2(x) = F̄U1
3,5:5|2

(x), g3(x) = F̄U1
2,5:6|1

(x),
g4(x) = F̄U1

3,5:6|1
(x), and g5(x) = F̄U1

3,5:6|2
(x) as shown in Figure 1. From the positional relationships of

the function curves, we can determine conclusions corresponding to Remark 3.2:
(1) U1

2,5:6|1 ≤st U1
3,6:6|1,

(2) U1
3,5:6|1 ≤st U1

3,6:6|1,

(3) U1
3,5:6|2 ≤st U1

3,5:5|2,

(4) U1
3,5:6|2 ≤st U1

3,5:6|1.
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Figure 1. g3(x) ≤ g1(x), g4(x) ≤ g1(x), g5(x) ≤ g2(x),g5(x) ≤ g4(x).

For t = 2, we can obtain the curves gt=2
2 (x) = F̄U2

3,5:5|2
(x) and gt=2

5 (x) = F̄U2
3,5:6|2

(x) as shown in
Figure 2. Based on the positional relationship of the function curves, we can determine that the
conclusion corresponding to Remark 3.2: (5) U1

3,5:5|2 ≤st U2
3,5:5|2 and U1

3,5:6|2 ≤st U2
3,5:6|2.

Figure 2. g2(x) ≤ gt=2
2 (x), g5(x) ≤ gt=2

5 (x).

Theorem 3.3. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being a
DFR(IFR) distribution, for s ≥ h. Then,

U t
i, j:n|s ≤hr (≥hr)U t

i, j:n|h.
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Proof. By Theorem 3.1, the survival functions of U t
i, j:n|s and U t

i, j:n|h can be obtained as follows:

F̄U t
i, j:n|s

(x) = E
[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x))

]
,

F̄U t
i, j:n|h

(x) = E
[
Bn− j+1, j−i(F̄U

t+Zi−h:n−h
(x))

]
.

The conclusion U t
i, j:n|s ≤hr U t

i, j:n|h to be proved is equivalent to proving

E
[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x1))

]
E

[
Bn− j+1, j−i(F̄U

t+Zi−h:n−h
(x1))

] ≥ E
[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x2))

]
E

[
Bn− j+1, j−i(F̄U

t+Zi−h:n−h
(x2))

] , f or 0 < x1 ≤ x2. (3.1)

Since F is DFR, by Lemmas 2.3 and 2.2(b) one obtains Bn− j+1, j−i(F̄U
y1

) ≤hr Bn− j+1, j−i(F̄U
y2

) for y1 ≤ y2.
Hence, g(y2, y1) = Bn− j+1, j−i(F̄U

y1
(x1)) · Bn− j+1, j−i(F̄U

y2
(x2)) ∈ Glr for x1 ≤ x2.

By Lemma 2.1, Zi−s:n−s ≤lr Zi−h:n−h for s ≥ h. So, applying Lemma 2.4 yields that, for x1 ≤ x2,

E
[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x1))

]
· E

[
Bn− j+1, j−i(F̄U

t+Zi−h:n−h
(x2))

]
≥E

[
Bn− j+1, j−i(F̄U

t+Zi−h:n−h
(x1))

]
· E

[
Bn− j+1, j−i(F̄U

t+Zi−s:n−s
(x2))

]
.

That is, inequality (3.1) holds, so that the proof of Theorem 3.3 is completed.
R ≤hr L is defined as F̄R(x)/F̄L(x) being a reduced function of x, which is equivalent to fR(x)

F̄R(x) ≥
fL(x)
F̄L(x) .

The hazard rate of R can alternatively be expressed as

r(x) =
fR(x)
F̄R(x)

= lim
∆x→0

Pr(x < R ≤ x + ∆x | R > x)
∆x

.

From the limit of the above equation, the hazard rate r(x) can be thought of as the intensity of failure
of a device, with a random lifetime R, at time x. U t

i, j:n|s ≤hr U t
i, j:n|h provide insights into the aging

properties of systems or components. They help determine whether one system tends to fail more
quickly or slowly compared to another over time.

In particular, when j = i+1, the following result on conditional spacings holds. The proof is similar
to that of Theorem 3.3 so it is omitted.

Theorem 3.4. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being a
DFR(IFR) distribution. Then, U t

i:n|s ≤hr (≥hr)U t
(i+1):(n+1)|s for fixed i ∈ {s + 1, s + 2, · · · , n − 1}.

If the conditional IFR in Theorem 3.3 is enhanced to ILR, the following stronger conclusion can be
obtained.

Theorem 3.5. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being an ILR
distribution, for ∀ t1 ≤ t2, s ≥ h. Then,

U t1
i, j:n|s ≥hr U t2

i, j:n|h.

Proof. Using the conclusions of Remarks 2.1 and 2.2, Theorem 3.5 can be proved using a similar proof
procedure to that of Theorem 3.3.
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Remark 3.3. If DLR is used in Theorem 3.5 instead of ILR, it is still open whether the inverse partial
order conclusion holds. Under the conditions of Theorem 3.5, it is easy to obtain

U t2
i, j:n|s

≥hr

(3) &&
U t1

i, j:n|s ≥hr U t2
i, j:n|h ⇐⇒ U t1

i, j:n|s

≥hr

(1)

99

≥hr

(2)

%%

U t2
i, j:n|h.

U t1
i, j:n|h

≥hr

(4) 88

Example 3.2. Suppose a parallel system has six components whose lifetimes are IID follows the
Gamma distribution, i.e., f (x) = xe−x, (x ≥ 0). Then W is clearly ILR. By definition U t

i, j:n|s ≡(
W j:n −Wi:n | S n(t) = s

)
, and we have

U t
3,5:6|2 = (W5:6 −W3:6 | S 6(t) = 2) , U t

3,5:6|1 = (W4:4 −W2:4 | S 6(t) = 1) .

From Theorem 3.1, we can calculate the survival functions

F̄U t
3,5:6|2

(x) =

∫ +∞

0

4(1 + t + x + y)(1 + t + y)(t + y)
(1 + t)4e2x+4y · [3 −

2(1 + t + x + y)
(1 + t + y)ex ]dy,

F̄U t
3,5:6|1

(x) =

∫ +∞

0

20(1 + t + x + y)2(1 + t + y)(t + y)
(1 + t)4e2x+4y [3 −

2(1 + t + x + y)
(1 + t + y)ex ][1 −

1 + t + y
(1 + t)ey ]dy.

To determine the hazard rate relationship of U1
3,5:6|2, U2

3,5:6|2, U1
3,5:6|1 and U2

3,5:6|1, let

g6(x) =
F̄U2

3,5:6|2
(x)

F̄U1
3,5:6|2

(x)
, g7(x) =

F̄U1
3,5:6|1

(x)

F̄U1
3,5:6|2

(x)
, g8(x) =

F̄U2
3,5:6|1

(x)

F̄U2
3,5:6|2

(x)
, g9(x) =

F̄U2
3,5:6|1

(x)

F̄U1
3,5:6|1

(x)
,

and draw their curves as shown in Figure 3.

Figure 3. Curve monotonically decreasing.
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From the monotonicity of curves in Figure 3, which corresponds to the conclusion of Remark 3.3,
(1)

U1
3,5:6|2 ≥hr U2

3,5:6|2.

(2)
U1

3,5:6|2 ≥hr U1
3,5:6|1.

(3)
U2

3,5:6|2 ≥hr U2
3,5:6|1.

(4)
U1

3,5:6|1 ≥hr U2
3,5:6|1.

When j = i + 1, we have the following hazard rate order relation for between generalized normal
condition spacings.

Theorem 3.6. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being a DFR
distribution. Then, for fixed t > 0,

U∗,ti:n|s ≤hr U∗,t(i+1):n|s, i ∈ {s + 1, s + 2, · · · , n − 2}.

Proof. For j = i + 1, we further simplify the survival function of U t
i:n|s .

F̄U t
i:n|s

(x) = Pr (Wi+1:n −Wi:n > x | S n(t) = s)

=

∫ +∞

0
Pr (Zi−s+1:n−s − Zi−s:n−s > x | Zi−s:n−s = y) dFZi−s:n−s(y)

=

(
n − s
i − s

) ∫ +∞

0
[F̄U

t (y + x)]n−i(i − s)[FU
t (y)]i−s−1 f U

t (y)dy

=

(
n − s
i − s

) ∫ +∞

0
[F̄U

t (y + x)]n−idFZi−s,i−s(y)

=

(
n − s
i − s

)
E[F̄U

t (Zi−s,i−s + x)]n−i. (3.2)

From Remark 3.1, the survival functions of U∗,ti:n|s and U∗,t(i+1):n|s are obtained as

F̄U∗,ti:n|s
(x) =

(
n − s
i − s

)
E[F̄U

t (Zi−s,i−s +
x

n − i
)]n−i,

F̄U∗,t(i+1):n|s
(x) =

(
n − s

i − s + 1

)
E[F̄U

t (Zi−s+1,i−s+1 +
x

n − i − 1
)]n−i−1.

The conclusion U∗,ti:n|s ≤hr U∗,t(i+1):n|s to be proved is equivalent to proving

E[F̄U
t (Zi−s,i−s + x1

n−i )]
n−i

E[F̄U
t (Zi−s+1,i−s+1 + x1

n−i−1 )]n−i−1
≥

E[F̄U
t (Zi−s,i−s + x2

n−i )]
n−i

E[F̄U
t (Zi−s+1,i−s+1 + x2

n−i−1 )]n−i−1
, f or 0 < x1 ≤ x2. (3.3)

Let M(x, y) = [F̄U
t (y + x

n−i−1 )]n−i−1, N(x, y) = [F̄U
t (y + x

n−i )]
n−i, for 0 < x1 ≤ x2, 0 < y1 ≤ y2, 0 <

x, 0 < y. Then:
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(a) M(x,y2)
N(x,y1) is increasing in x.

(b) N(x,y2)
N(x,y1) is increasing in x.

(c) M(x,y)
N(x,y) is increasing in y.

Next the conclusion (a) is verified.

ln
(

M(x, y2)
N(x, y1)

)
= (n − i − 1)lnF̄U

t (
x

n − i − 1
+ y2) − (n − i)lnF̄U

t (
x

n − i
+ y1).

Calculate the partial derivatives of the above equation with respect to x, and then get the right-hand
side of the following equation to be non-negative, based on the DFR property of W1.

∂

∂x
ln

(
M(x, y2)
N(x, y1)

)
= −

f U
t ( x

n−i−1 + y2)

F̄U
t ( x

n−i−1 + y2)
+

f U
t ( x

n−i + y1)

F̄U
t ( x

n−i + y1)
≥ 0.

Thus, for 0 < y1 ≤ y2, M(x,y2)
N(x,y1) is increasing in x. Conclusions (b) and (c) are verified in a similar way,

so they are omitted.
From (a) and (c), M(x2,y2)

N(x2,y2) −
M(x1,y1)
N(x1,y1) ≥

M(x1,y2)
N(x1,y2) −

M(x2,y1)
N(x2,y1) and M(x2,y2)

N(x2,y2) −
M(x1,y1)
N(x1,y1) ≥ 0.

From (b), N(x2, y2) · N(x1, y1) ≥ N(x1, y2) · N(x2, y1). Consequently,

M(x2, y2)N(x1, y1) − M(x1, y1)N(x2, y2) ≥ M(x1, y2)N(x2, y1) − M(x2, y1)N(x1, y2). (3.4)

By the fact that the random variables Zi−s,i−s and Zi−s+1,i−s+1 are independent, and from inequality (3.4)
and Zi−s,i−s ≤lr Zi−s+1,i−s+1, it follows that

E
[
N(x2,Zi−s,i−s)M(x1,Zi−s+1,i−s+1)

]
− E

[
N(x1,Zi−s,i−s)M(x2,Zi−s+1,i−s+1)

]
=

∫ ∫
y1≤y2

[N(x2, y1)M(x1, y2) − N(x1, y1)M(x2, y2)]h(y1, y2)dy1dy2

+

∫ ∫
y1>y2

[N(x2, y1)M(x1, y2) − N(x1, y1)M(x2, y2)]h(y1, y2)dy1dy2

=

∫ ∫
y1≤y2

[N(x2, y1)M(x1, y2) − N(x1, y1)M(x2, y2)]h(y1, y2)dy1dy2

+

∫ ∫
y1<y2

[N(x2, y2)M(x1, y1) − N(x1, y2)M(x2, y1)]h(y2, y1)dy2dy1

(Note that here N(x2, y1)M(x1, y2) − N(x1, y1)M(x2, y2) ≤ 0)

≤

∫ ∫
y1≤y2

[N(x2, y1)M(x1, y2) − N(x1, y1)M(x2, y2)

+N(x2, y2)M(x1, y1) − N(x1, y2)M(x2, y1)]h(y2, y1)dy1dy2 ≤ 0,

where h(·, ·) denotes the joint density function of Zi−s,i−s and Zi−s+1,i−s+1. This implies that
inequality (3.3) holds, so the proof of Theorem 3.6 is complete.

Remark 3.4. Under the assumptions of Theorem 3.6, we further have

U∗,ti:(n+1)|s ≤hr U∗,ti:n|s ≤hr U∗,t(i+1):(n+1)|s, i ∈ {s + 1, s + 2, · · · , n − 1}.
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Proof. Similar to the calculation of Eq (3.2), the survival functions of U∗,ti:n|s, U∗,ti:(n+1)|s, and U∗,t(i+1):(n+1)|s
can be respectively obtained as follows:

F̄U∗,ti:n|s
(x) =

(
n − s
i − s

)
E[F̄U

t (Zi−s,i−s +
x

n − i
)]n−i,

F̄U∗,ti:(n+1)|s
(x) =

(
n − s + 1

i − s

)
E[F̄U

t (Zi−s,i−s +
x

n − i + 1
)]n−i+1,

F̄U∗,t(i+1):(n+1)|s
(x) =

(
n − s + 1
i − s + 1

)
E[F̄U

t (Zi−s+1,i−s+1 +
x

n − i
)]n−i.

The conclusion U∗,ti:(n+1)|s ≤hr U∗,ti:n|s to be proved is equivalent to proving

E[F̄U
t (Zi−s,i−s + x1

n−i+1 )]n−i+1

E[F̄U
t (Zi−s,i−s + x1

n−i )]
n−i

≥
E[F̄U

t (Zi−s,i−s + x2
n−i+1 )]n−i+1

E[F̄U
t (Zi−s,i−s + x2

n−i )]
n−i

, f or 0 < x1 ≤ x2. (3.5)

The conclusion U∗,ti:n|s ≤hr U∗,t(i+1):(n+1)|s to be proved is equivalent to proving

E[F̄U
t (Zi−s,i−s + x1

n−i )]
n−i

E[F̄U
t (Zi−s+1,i−s+1 + x1

n−i )]
n−i
≥

E[F̄U
t (Zi−s,i−s + x2

n−i )]
n−i

E[F̄U
t (Zi−s+1,i−s+1 + x2

n−i )]
n−i
, f or 0 < x1 ≤ x2. (3.6)

By a process similar to that used to prove inequality (3.3), it follows that inequalities (3.5) and (3.6)
hold. Thus, the proof is complete.

Since W1 is DFR if and only if Z = (W1 − t|W1 > t) is DFR, the following results are easily obtained
according to Kochar and Kirmani [4].

Theorem 3.7. Let W1, · · · ,Wn be IID component lifetimes of a k-out-of-n system with W1 being a DFR
distribution. Then:

(1) U t
i:n|s ≤disp U t

i+1:n|s for i ∈ {s + 1, · · · , n − 2};
(2) Var(U t

i:n|s) ≤ Var(U t
i+1:n|s) for i ∈ {s + 1, · · · , n − 2};

(3) U t
i:n+1|s ≤disp U t

i:n|s for i ∈ {s + 1, · · · , n − 1};
(4) Var(U t

i:n+1|s) ≤ Var(U t
i:n|s) for i ∈ {s + 1, · · · , n − 1},

where Var(·) is the variance of a random variable.

4. Conclusions and perspectives

The number of components that fail and the cumulative operating time of the system are closely
related to the remaining life of the used k-out-of-n system. Inspired by this, this paper presents the
concepts of generalized conditional spacings and generalized normal conditional spacings based on
the used k-out-of-n systems, which incorporate the factors of system operating time and number of
faulty components. First, survival functions of generalized conditional spacings are obtained. Then,
the stochastic order U t1

i, j:n|s ≤st U t2
p,q:m|h( ∀ t1 ≤ t2, p − h ≥ i − s, and q − j ≥ p − i ≥ m − n) and

the hazard rate order U t
i, j:n|s ≤hr U t

i, j:n|h(s ≥ h) are obtained when the parent distribution of component
lifetimes is DFR. In particular, when j = i + 1, the hazard rate ordinal relations U t

i:n|s ≤hr U t
(i+1):(n+1)|s

and U∗,ti:n|s ≤hr U∗,t(i+1):n|s are obtained. Moreover, U t1
i, j:n|s ≥hr U t2

i, j:n|h(∀ t1 ≤ t2, s ≥ h) is obtained when the
parent distribution family is strengthened to ILR.
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To simplify the problem, we assumed that the components are independent and identically
distributed. However, in practice, the failure of one component can affect the lifetimes of the remaining
components to varying degrees. Therefore, future research could consider the following issues. First,
investigate the stochastic properties of conditional spacings formed by sequential order statistics.
Second, explore the properties of conditional spacings by incorporating the system’s structure and
the positions of the failed components. Finally, it is worth noting the replacement of the DFR
in Theorems 3.2 and 3.6 by the IFR, and it is still open whether the reverse partial order of the
corresponding conclusion holds.
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