
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(9): 23837–23858.
DOI: 10.3934/math.20241158
Received: 27 April 2024
Revised: 17 July 2024
Accepted: 29 July 2024
Published: 09 August 2024

Research article

Effective outcome space branch-and-bound algorithm for solving the sum of
affine ratios problem

Yan Shi1, Qunzhen Zheng2,* and Jingben Yin3,*

1 College of Information Engineering, Henan University of Animal Husbandry and Economy,
Zhengzhou 450000, China; wqmshiyan@163.com

2 School of Statistics and Mathematics, Henan Finance University, Zhengzhou 450046, China
3 School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003,

China

* Correspondence: Email: zhengqunzhen123@163.com, jingbenyin@163.com.

Abstract: This paper proposes an efficient method for acquiring the global solution of the sum of
affine ratios problem (SARP) in the reduced outer space. Using equivalence conversions, the original
problem was transformed into an equivalent problem. Then, an affine relaxation problem of the
equivalent problem was constructed by exploiting linearization techniques. Subsequently, an outcome
space branch-and-bound algorithm was proposed, the convergence of the algorithm was proved and the
computational complexity was estimated. Finally, numerical examples were presented to demonstrate
the effectiveness and feasibility of the presented algorithm.

Keywords: fractional programs; global optimization; sum of affine ratios problems; linearization
technique; outcome space branch-and-bound algorithm
Mathematical Subject Classification: 90C32, 90C26

1. Introduction

In this paper, we consider the following sum of affine ratios problem (where SARP is sum of
affine ratios problem):

(SARP):

min H(x) =

p∑
i=1

n∑
j=1

ci j x j+ fi

n∑
j=1

di j x j+gi

,

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b, x ≥ 0} ,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20241158

23838

where A is an m × n order real matrix and b is an m dimension column vector. D , ∅, ci j, di j ∈ R
n, and

fi, gi ∈ R. The denominator of each ratio

n∑
j=1

di jx j + gi , 0

over D. Due to
n∑

j=1

di jx j + gi , 0

and the continuity of the ratio
n∑

j=1
ci jx j + fi

n∑
j=1

di jx j + gi

,

we can obtain that
n∑

j=1

di jx j + gi < 0

or
n∑

j=1

di jx j + gi > 0.

If
n∑

j=1

di jx j + gi < 0,

letting
n∑

j=1
ci jx j + fi

n∑
j=1

di jx j + gi

=

−
(n∑

j=1
ci jx j + fi

)
−
(n∑

j=1
di jx j + gi

) ,
it is obvious that

−
(n∑

j=1

di jx j + gi

)
> 0.

Therefore, without loss of generality, we assume that

n∑
j=1

di jx j + gi > 0

always holds.
The SARP is a specific class of fractional programming problem. It has a wide range of

applications in laminate manufacturing [1, 2], portfolio optimization [3–5], finance and
investment [6], computer vision [7], system engineering [8], information theory [9], material
layout [10, 11], and so on. In addition, it is obvious that the objective function of the SARP is neither

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23839

quasi-convex nor quasi-concave, which is extremely challenging in terms of theory and computation.
Thus, the research on the approach to solve the SARP has both theoretical and practical significance
value.

Up to now, a number of methods have been developed to solve the SARP. On the basis of the
characteristics of the algorithms in each literature, it can be roughly separated into the following
categories: the parametric simplex methods [12, 13], the unified monotonic approach [14], the
interior-point method [15, 16], the image space analysis method [17], the trapezoidal branching
searching algorithm [18], the branch-and-bound algorithms [19–21], and so on. It should be noted that
the algorithms in the above references [19–21] can either only solve special forms of the SARP or the
SARP with fewer variables. Recently, by exploiting equivalent transformation and the characteristics
of general single ratio functions, Jiao and Ma [22] combined the acceleration technique to develop an
efficient outer space rectangular branch-and-bound algorithm. Jiao et al. [23] put forward a practical
algorithm for minimizing the SARP. In the same year, by using the equivalent conversion and
linearization method, Jiao et al. [24] presented an effective branch-and-bound algorithm for the SARP.
Meanwhile, Jiao et al. [25] also designed an image space branch-reduction-bound algorithm for
globally solving the SARP. It should be emphasized that references [23–25] proposed several outer
space branch-and-bound algorithms for the problem (SARP), and the partitioning spaces of these
branch-and-bound algorithms all occur in the p-dimensional outer space. In addition, Pei and
Zhu [26] designed a convex relaxation algorithm for maximizing the sum of the difference of convex
functions ratios problems based on the branch-and-bound framework. Kuno [27] presented a
trapezoidal branch-and-bound algorithm to solve the SARP. Based on the algorithm of Kuno [27],
Shen et al. [28] proposed an accelerating trapezoidal branch-reduction-bound algorithm for globally
solving the sum of linear ratios problems. By constructing the new accelerating technique, Jiao and
Liu [29] developed a branch-reduction-bound algorithm for the sum of quadratic ratios problems.
Especially, the literatures [30, 31] provided for the first time an outer space branch-relaxation-bound
algorithm for generalized linear fractional programming problems and generalized affine multiple
product programming problems, respectively. However, the above-reviewed methods only deal with
some particular forms of the SARP or are difficult to solve the SARP with large-scale variables.
Therefore, it is still necessary to propose a practical efficient algorithm for addressing the general
form of the SARP.

The main purpose of this paper is to design an effective outcome space branch-and-bound
algorithm to globally solve the SARP. Initially, we employ two equivalence conversions to transform
the SARP into an equivalent problem (EP3). Subsequently, we design a linearization technique that is
used to construct the affine relaxation problem (ARP) of the problem (EP3). Based on the ARP and
the branch-and-bound framework, we present an outcome space branch-and-bound algorithm.
Ultimately, the numerical experimental results demonstrate that our algorithm is feasible. In addition,
the branch search process in this paper occurs in the (p − 1)-dimensional outer space, which makes
the computational cost much lower. Compared with other methods that take place in the n-dimension
or p-dimensional space, our method is more efficient. Furthermore, the algorithm is shown to
converge to a global optimal solution of the SARP eventually. Meanwhile, the computational
complexity of the algorithm is deduced in detail.

The overall structure of the study adopts the format of six sections, including this introductory
section. In Section 2, we convert the SARP to an equivalent problem (EP3) and construct its affine

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23840

relaxation programming problem. In Section 3, we design an outcome space branch-and-bound
algorithm for globally solving the SARP, prove the convergence of the algorithm, and derive the
derivation of the computational complexity. In Section 4, a comparison of the numerical experimental
results indicates that the presented algorithm is reliable. Finally, some concluding remarks are given
in Section 5.

2. Equivalence transformation and its affine relaxation programming

2.1. Equivalent transformation

To tackle the SARP globally, we transform the original problem (SARP) into an equivalence
problem as below. For each x ∈ D, let

t =
1

n∑
j=1

dp jx j + gp

and
z j = tx j.

By utilizing the well-known Charnes-Cooper transformation [32], the SARP can be rewritten as
problem (EP1), as shown below.

(EP1) :

min Ĥ(t, z) =

p−1∑
i=1

n∑
j=1

ci jz j+ fit

n∑
j=1

di jz j+git
+

n∑
j=1

cp jz j + fpt,

s.t.
n∑

j=1
dp jz j + gpt = 1,

Az ≤ bt, t ≥ 0, z ≥ 0.

At this time, the index set becomes i ∈ {1, 2, . . . , p − 1}, and let

χ = {(t, z) ∈ Rn+1|

n∑
j=1

dp jz j + gpt = 1, Az ≤ bt, t ≥ 0, z ≥ 0},

where the set χ is non-empty and bounded.
Then we focus on the following equivalence conversion, for each i ∈ {1, 2, . . . , p−1}, by introducing

the variable

si =
1

n∑
j=1

di jz j + git
,

the lower bound

s0
i = min

(t,z)∈χ

1
n∑

j=1
di jz j + git

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23841

and upper bound

s0
i = max

(t,z)∈χ

1
n∑

j=1
di jz j + git

can be calculated, and we can obtain the initial rectangle

S 0 = [s0, s0],

where
s0 = (s0

1, s
0
2, . . . , s

0
p−1)

and
s0
= (s0

1, s
0
2, . . . , s

0
p−1).

Further, the problem (EP1) can be reduced into the problem (EP2) by the variable si as follows:

(EP2) :

min Φ(s, t, z) =

p−1∑
i=1

si

(n∑
j=1

ci jz j + fit
)
+

n∑
j=1

cp jz j + fpt,

s.t. si =
1

n∑
j=1

di jz j+git
, i = 1, . . . , p − 1,

(t, z) ∈ χ, s ∈ S 0.

Remark 1. If (t∗, z∗) is a global optimal solution of the problem (EP1), then (s∗, t∗, z∗) is a global
optimal solution of the problem (EP2) with

s∗i =
1

n∑
j=1

di jz∗j + git∗
, i = 1, 2, . . . , p − 1.

Conversely, if (s∗, t∗, z∗) is a global optimal solution of the problem (EP2), then (t∗, z∗) is a global
optimal solution of the problem (EP1). In addition, the global optimal value of the problems (EP1),
(EP2), and (SARP) are equal.

Based on
n∑

j=1

di jz j + git , 0,

the problem (EP2) can be rewritten as the following equivalent form:

(EP3) :

minΦ(s, t, z) =

p−1∑
i=1

si

(n∑
j=1

ci jz j + fit
)
+

n∑
j=1

cp jz j + fpt

s.t. si

(n∑
j=1

di jz j + git
)
= 1, i = 1, · · · , p − 1,

(t, z) ∈ χ, s ∈ S 0.

Define S to be S 0 or a sub-rectangle of S 0, where

S = [s, s] ⊆ [s0, s0], s = (s1, s2, . . . , sp−1) ≥ s0

and
s = (s1, s2, . . . , sp−1) ≤ s0.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23842

2.2. Affine relaxation programming

For any S ⊆ S 0, we construct the affine relaxation programming problem of the problem (EP3) over
S as follows:

First, investigating the objective function, we can follow that

p−1∑
i=1

si

(n∑
j=1

ci jz j + fit
)
≥

p−1∑
i=1

(n∑
j=1,ci j>0

ci jsiz j +
n∑

j=1,ci j<0
ci jsiz j

)
+

p−1∑
i=1, fi>0

fisit +
p−1∑

i=1, fi<0
fisit. (1)

Hence, we reformulate the objective function of the problem (EP3) as

ΦR(s, t, z) =
p−1∑
i=1

(n∑
j=1,ci j>0

ci jsiz j +

n∑
j=1,ci j<0

ci jsiz j

)
+

p−1∑
i=1, fi>0

fisit +
p−1∑

i=1, fi<0

fisit +
n∑

j=1

cp jz j + fpt.

Next, investigating the constrained function, for any i ∈ {1, 2, · · · , p − 1}, s ∈ S ⊆ S 0, define

Ψi(si, t, z) = si

(n∑
j=1

di jz j + git
)

=

n∑
j=1

di jsiz j + gisit,

Gi =

{
gisi, if gi > 0,
gisi, if gi < 0,

Gi =

{
gisi, if gi < 0,
gisi, if gi > 0,

and

Ψi(si, si, t, z) =
n∑

j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git, (2)

Ψi(si, si, t, z) =
n∑

j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git. (3)

Clearly, for any i ∈ {1, 2, . . . , p − 1}, we have that

Ψi(si, si, t, z) ≤ Ψi(si, t, z) ≤ Ψi(si, si, t, z)

always hold.
Integrating (1)–(3), for any i ∈ {1, 2, . . . , p − 1}, the affine relaxation programming problem of the

problem (EP3) over S is constructed as below:

(ARP) :

min ΦR(s, t, z)
s.t. Ψi(si, si, t, z) ≤ 1, i = 1, · · · , p − 1,

Ψi(si, si, t, z) ≥ 1, i = 1, · · · , p − 1,
(t, z) ∈ χ, s ∈ S .

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23843

By the construction process of the ARP, it is obvious that the optimal solution of the ARP provides
a valid lower bound for that of the EP3 over S 0.

Theorem 1. For each i ∈ {1, 2, . . . , p − 1}, we have∣∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)
∣∣∣∣→ 0 and

∣∣∣∣Ψi(si, si, t, z) − Ψi(si, t, z)
∣∣∣∣→ 0 as |si − si| → 0,

where “→” means “approaching”.

Proof. Based on the previous definitions of the functions Ψi(si, si, t, z), Ψi(si, t, z), and Ψi(si, si, t, z), for
any (t, z) ∈ χ, si ∈ [si, si], we have that∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)

∣∣∣ ≤ ∣∣∣Ψi(si, si, t, z) − Ψi(si, si, t, z)
∣∣∣

=

∣∣∣∣∣ n∑
j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git

−

(n∑
j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git
)∣∣∣∣∣

=

n∑
j=1

|di j||si − si|z j + |gi||si − si|t

=|si − si|

(n∑
j=1

|di j|z j + |gi|t
)
.

Since
n∑

j=1
di jz j + git is a bounded function, we have

∣∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)
∣∣∣∣→ 0 as |si − si| → 0.

Similarly, we demonstrate∣∣∣∣Ψi(si, si, t, z) − Ψi(si, t, z)
∣∣∣∣→ 0 as |si − si| → 0,

and the proof of the theorem is accomplished. □

From Theorem 1, it follows that the functions Ψi(si, si, t, z) and Ψi(si, si, t, z) can infinitely
approximate the function Ψi(si, t, z) as |si − si| → 0, which guarantees the global convergence of the
outcome space branch-and-bound algorithm.

3. Algorithm and its computational complexity

An outcome space branch-and-bound method is provided in this part to resolve the SARP based
on the previous ARP. By resolving a series of ARPs over the initial rectangle S 0 or a partitioned sub-
rectangle of S 0, the algorithm is able to acquire a global optimal solution. The simplest standard
rectangle bisection rule, which is provided as follows, is designated in the proposed algorithm.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23844

(1) Let
sk
υ − sk

υ
= max

{
sk

i − sk
i , i = 1, 2, . . . , p − 1

}
and

sk
υ =

lk
υ + uk

υ

2
.

(2) Let
ŝ =
(
sk

1, s
k
2, . . . , s

k
υ−1, s

k
υ, s

k
υ+1, . . . , s

k
p−1

)⊤
.

The rectangle S k is split by the point ŝ into the following two rectangles:

S k1 =

υ−1∏
i=1

[
sk

i , s
k
i

]
×
[
sk
υ
, sk
υ

]
×

p−1∏
i=υ+1

[
sk

i , s
k
i

]
and

S k2 =

υ−1∏
i=1

[
sk

i , s
k
i

]
×
[
sk
υ, s

k
υ

]
×

p−1∏
i=υ+1

[
sk

i , s
k
i

]
.

3.1. Algorithm outline

The steps of the outcome space branch-and-bound algorithm for solving the SARP are described
below:

Algorithm 1. Outcome space branch-and-bound algorithm.
Step 0. Given the convergence error ϵ ≥ 0 and the initial outer space rectangle

S 0 = {s ∈ Rp−1 | s0
i ≤ si ≤ s0

i , i = 1, 2, . . . , p − 1}.

Solve the problem (ARP) over S 0. If the problem (ARP) over S 0 is not feasible, then the problem
(SARP) is not feasible, and the proposed algorithm stops.

Otherwise, we can obtain an optimal solution (ŝ0, t0, z0) and the optimal value LB(S 0) of the problem
(ARP) over S 0. Let

s0
i =

1
n∑

j=1
di jz0

j + git0
, i = 1, 2, . . . , p − 1,

then (s0, t0, z0) is a feasible solution of the problem (EP3). Let

LB0 = LB(S 0)

and
UB0 = Φ(s0, t0, z0).

If
UB0 − LB0 ≤ ϵ,

then the algorithm stops executing, and (s0, t0, z0) and z0

t0 are the global ϵ-optimal solutions of the
problems (EP3) and (SARP), respectively.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23845

Otherwise, denote by the set of all active nodes Θ0 = {S 0}, denote by the set of the initial feasible
point

F = {(s0, t0, z0)},

let k = 0, and proceed to Step 1.
Step 1. Set

UBk = UBk−1.

Using the former branching rule, subdivide S k into two sub-rectangles S k1 and S k2. Let

Q = {S k1, S k2}.

Step 2. For each
S kτ, τ = 1, 2,

solve the problem (ARP) over S kτ. If the problem (ARP) over S k,τ is not feasible, then delete the
rectangle S kτ. Otherwise, we get the optimal solution (ŝ(S kτ), t(S kτ), z(S kτ)) and the optimal value
LB(S kτ) of the problem (ARP) over S kτ.

If
UBk ≤ LB(S kτ),

then let
Q = Q \ {S kτ}.

Otherwise, let

si(S kτ) =
1

n∑
j=1

di jz j(S kτ) + git(S kτ)
, i = 1, 2, . . . , p − 1,

update the feasible point set by

F = F
⋃
{(s(Ωkτ), t(S kτ), z(S k,τ))},

let
UBk = min{UBk,Φ

(
s(S kτ), t(S kτ), z(S k,τ)

)
},

and denote by the currently best feasible solution (sk, tk, zk), which corresponds to UBk.
Step 3. Set

Θk = (Θk \ S k)
⋃

Q,

update
LBk = min{LB(S) | S ∈ Θk},

and let S k be the sub-rectangle which satisfies

LBk = LB(S k).

Step 4. If
UBk − LBk ≤ ϵ,

then the proposed algorithm stops, and zk

tk and (sk, tk, zk) are the ϵ-global optimal solutions of the
problems (SARP) and (EP3), respectively.

Otherwise, set k = k + 1, and go back to Step 1.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23846

3.2. Convergence analysis

In this subsection, the global convergence of the proposed algorithm is discussed as follows:

Theorem 2. If Algorithm 1 ceases finite iterations, then the proposed algorithm will produce a globally
optimal solution to the SARP. Otherwise, Algorithm 1 fails to terminate within a finite number of
iterations, and it will produce an infinite sequence {xk} such that any accumulation point will be a
global optimal solution of the SARP.

Proof. If Algorithm 1 ceases within a finite number of iterations, hypothesize that it is ceased at the
kth iteration, denoted LBk as the current best lower bound, and denoted UBk as the current best upper
bound, for any ϵ, and we have that

UBk − LBk < ϵ. (4)

Assume that (sk, tk, zk) is a feasible solution of the problem (EP3) with that

sk
i =

1
n∑

j=1
di jzk

j + gitk
.

Letting υ(EP3) be the global optimal value of the problem (EP3), we can get

Φ(sk, tk, zk) − LBk = UBk − LBk ≤ ϵ (5)

and
LBk ≤ υ(EP3). (6)

However, (sk, tk, zk) is the feasible solution of the problem (EP3), and we can follow that

Φ(sk, tk, zk) ≥ υ(EP3). (7)

By the above inequalities (4)–(7), we can get

υ(EP3) ≤ Φ(sk, tk, zk) ≤ LBk + ϵ ≤ υ(EP3) + ϵ.

Therefore, (sk, tk, zk) is an ϵ-global optimum solution of the problem (EP3), and

xk =
zk

tk

is an ϵ-global optimum solution of the SARP.
If Algorithm 1 fails to terminate within a finite number of iterations, then it will produce an infinite

feasible solution sequence {xk} of the SARP and an infinite feasible solution sequence (sk, tk, zk) of the
problem (EP3) with

sk
i =

1
n∑

j=1
di jzk

j + gitk
.

Letting (t∗, z∗) be an accumulation point of the sequence {(tk, zk)}, we can get

lim
k→∞

(tk, zk) = (t∗, z∗).

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23847

By the continuity of the function

si =
1

n∑
j=1

di jz j + git
, i ∈ {1, 2, · · · , p − 1},

we can get that
1

n∑
j=1

di jz∗j + git∗
= lim

k→∞

1
n∑

j=1
di jzk

j + gitk
= lim

k→∞
sk

i = s∗i .

Thus, (s∗, t∗, z∗) is a feasible solution of the problem (EP3).
Since

{
LBk

}
is a monotonic non-decreasing bounded sequence, we get that

LBk = Φ
R(sk, tk, zk)

and
LBk ≤ υ(EP3),

and also since {UBk} is a non-increasing and bounded sequence, we get that

UBk = Φ(sk, tk, zk)

and
UBk ≥ υ(EP3).

So, we have
LBk = Φ

R(sk, tk, zk) ≤ υ(EP3) ≤ Φ(sk, tk, zk) = UBk.

Hence, from the termination condition of the algorithm, taking the limit on both side of the above
inequalities, we get

lim
k→∞

LBk = υ(EP3) = lim
k→∞
Φ(sk, tk, zk) = Φ(s∗, t∗, z∗) = lim

k→∞
UBk.

Thus, the accumulation point (s∗, t∗, z∗) of the sequence (sk, tk, zk) is a global optimal solution of the
problem (EP3). At the same time, the accumulation point x∗ of the sequence {xk} with

xk =
zk

tk

is a global optimal solution of the SARP, and the proof is complete. □

Remark 2. The algorithm proposed in this paper is a rectangular branch-and-bound global
optimization algorithm. As is well-known, based on the convergence theory of branch-and-bound
global optimization algorithms [33], the exhaustiveness of the branching process and the
approximation of upper and lower bounds indicate that the proposed rectangular branch-and-bound
global optimization algorithm must be convergent.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23848

3.3. Computational complexity of the algorithm

Further, to examine the maximum number of iterations of Algorithm 1, we derive the computational
complexity of Algorithm 1. First, we define the size Υ of the rectangle S as

Υ(S) = max{si − si | i = 1, 2, · · · , p − 1}.

Theorem 3. Given a termination error ϵ > 0, if there exists a rectangle S formed by the proposed
algorithm at the kth iteration satisfying

Υ(S) ≤
ϵ

(p − 1)ω
,

then we have that
UBk − LB(S) ≤ ϵ,

where LB(S) is the optimal value of the ARP over S , and UBk is the currently known best upper bound
of the optimum value of the problem (EP3).

Proof. Without losing generality, suppose that (tk, zk) is the optimal solution of the ARP over S , and
let

sk
i =

1
n∑

j=1
di jzk

j + gitk
, i = 1, 2, . . . , p − 1.

Then (sk, tk, zk) is a feasible solution to the problem (EP3). By the method of updating the upper bound
and lower bound, and the construction process of the ARP, we have that

Φ(sk, tk, zk) ≥ UBk ≥ LB(S) = ΦR(sk, yk, zk).

By the definition of the size Υ(S) of the rectangle S and

Υ(S) ≤
ϵ

(p − 1)ω
,

it follows that

UBk − LB(S) ≤ Φ(sk, tk, zk) − ΦR(sk, tk, zk)

=

∣∣∣∣∣ p−1∑
i=1

sk
i

(n∑
j=1

ci jzk
j + fitk

)
+

n∑
j=1

cp jzk
j + fptk

−
[p−1∑

i=1

(n∑
j=1,ci j>0

ci jsiz
k
j +

n∑
j=1,ci j<0

ci js
k
i z

k
j +

n∑
j=1, fi>0

fisit
k +

n∑
j=1, fi<0

fisitk +

n∑
j=1

cp jzk
j + fptk

)]∣∣∣∣∣
=

∣∣∣∣∣ p−1∑
i=1

(si − si)
n∑

j=1,ci j>0

ci jzk
j +

p−1∑
i=1

(si − si)
n∑

j=1,ci j<0

ci jzk
j +

p−1∑
i=1, fi>0

(si − si) fitk +

p−1∑
i=1, fi<0

(si − si) fitk
∣∣∣∣∣

≤

p−1∑
i=1

(si − si) ×
(n∑

j=1

|ci j|zk
j +

n∑
i=1

| fi|tk
)

≤ (p − 1)ωΥ(S)
≤ ϵ.

The proof of Theorem 3 is complete. □

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23849

Then we can examine the maximum iterations of Algorithm 1, see the following Theorem 4:

Theorem 4. Given the convergent tolerance ϵ ∈ (0, 1), Algorithm 1 can acquire a global optimal
solution of the SARP at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations.

Proof. In general, we assume that the sub-rectangle S is selected for partitioning in Algorithm 1 at
each iteration. After k · (p − 1) iterations, we can follow that

Υ(S) ≤
1
2kΥ(S 0).

Based on the former proof of Theorem 3, if

1
2kΥ(S 0) ≤

ϵ

(p − 1)ω
,

i.e.,

k ≥ log2
(p − 1)ωΥ(S 0)

ϵ
,

we can follow that
UBk − LB(S) ≤ ϵ.

Therefore, after at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations, we can get

0 ≤ Φ(sk, tk, zk) − Φ(s∗, t∗, z∗)
≤ Φ(sk, tk, zk) − LB(S)
= UBk − LB(S)
≤ ϵ,

where (s∗, t∗, z∗) is the optimal solution of the problem (EP3), and (sk, tk, zk) is the best currently know
feasible solution for the problem (EP3). This implies that (sk, tk, zk) is an ϵ-global optimal solution of
the problem (EP3) when Algorithm 1 terminates. At the same time, we can follow that zk

tk is an ϵ-global
optimal solution of the SARP, and we complete the proof. □

Remark 3. From the above complexity analysis of the algorithm in Theorem 4, letting

Γ = (p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
,

the running time of Algorithm 1 is bounded by

2(Γ − 1) × T (m + 2p + 1, n + 1)

for finding an ϵ-global optimal solution of the SARP, where T (m+2p+1, n+1) denotes the time taken
to solve a linear programming problem with n + 1 variables and m + 2p + 1 linear constraints.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23850

4. Numerical experiments

In this section, we numerically compare Algorithm 1 with some known extant branch-and-bound
algorithms. All tests were implemented in MATLAB R2018a and run on a microcomputer with
Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz processor and 8 GB RAM. For all test problems, we
provide their computational results. The maximum time limit was set to 10000s for all algorithms.

First of all, some small-size certainty examples (see the Appendix Examples 1–12) were tested
with Algorithm 1 for comparison with the known extant algorithms [14, 21, 34–40], and a numerical
comparison between some existing algorithms and Algorithm 1 on Examples 1–12 were reported in
Table 1 with the given convergence tolerance, where some notations have been used for column
headers: Opt. val.: global optimal value; Iter.: number of iterations of the algorithm; Time: the CPU
execution time of the algorithm in seconds.

Table 1. Numerical comparison between some existing algorithms and Algorithm 1 on test
Examples 1–12.

No. Algorithms Opt. val. Optimal solution Iter. Time ϵ

1 Algorithm 1 -4.83976 (0.1117, 2.3603) 16 0.254 10−2

Benson [34] -4.84151 (0.1000, 2.3750) 4 0.190 10−2

Jiao and Liu [39] -4.84151 (0.1000, 2.3750) 200 4.257 10−2

2 Algorithm 1 -2.47143 (1.0000, 0.0000, 0.0000) 11 0.192 10−2

Shen et al. [35] -2.47143 (1.0000, 0.0000, 0.0000) 2 0.015 10−2

Jiao and Liu [39] -2.47124 (1.0001, 0.0000, 0.0001) 54 1.135 10−2

3 Algorithm 1 -1.90000 (0.0000, 3.3333, 0.0000) 424 6.907 10−6

Shen and Wang [36] -1.90000 (0.0000, 3.3333, 0.0000) 8 0.926 10−6

4 Algorithm 1 1.62318 (0.0000, 0.2841) 39 0.566 10−2

Jiao and Liu [39] 1.62319 (0.0000, 0.2861) 93 2.485 10−2

5 Algorithm 1 2.86190 (5.0000, 0.0000, 0.0000) 199 2.776 10−3

Jiao and Liu [39] 2.86241 (4.8302, 0.0000, 0.0666) 4008 128.0 10−3

Shen and Lu [37] 2.86191 (5.0000, 0.0000, 0.0000) 16 0.125 10−3

Gao and Jin [38] 2.86190 (5.0000, 0.0000, 0.0000) 12 28.29 10−3

6 Algorithm 1 -4.09070 (1.1111, 0.0000, 0.0000) 28 0.359 10−2

Jiao and Liu [39] -4.09062 (1.1106, 0.0000, 0.0015) 619 16.62 10−2

Shen and Lu [37] -4.08741 (1.0715, 0.0000, 0.0000) 17 3.251 10−2

7 Algorithm 1 3.71092 (0.0000, 1.6667, 0.0000) 89 1.124 10−4

Jiao and Liu [39] 3.71093 (0.0000, 1.6667, 0.0000) 2747 94.64 10−4

Gao and Jin [38] 3.7087 (0.0000, 1.6667, 0.0000) 5 4.190 10−4

8 Algorithm 1 -3.00225 (0.0000, 2.8455, 0.0000) 36 0.566 10−2

Jiao and Liu [39] -3.00292 (0.0000, 3.3333, 0.0000) 1072 31.746 10−2

9 Algorithm 1 4.91267 (1.5015, 1.5024) 30 0.422 10−3

Shen and Lu [37] 4.91259 (1.5000, 1.5000) 56 1.087 10−3

10 Algorithm 1 -4.09070 (1.1111, 0.0000, 0.0000) 33 0.492 10−2

Jiao et al. [40] -4.09070 (1.1111, 0.0000, 0.0000) 2 0.008 10−6

Jiao and Liu [39] -4.09065 (1.1109, 0.0000, 0.0005) 977 32.41 10−6

11 Algorithm 1 3.29167 (3.0000, 4.0000) 138 1.902 10−6

Shen and Wang [36] 3.29167 (3.0000, 4.0000) 9 0.489 10−6

12 Algorithm 1 4.42857 (5.0000, 0.0000, 0.0000) 67 0.931 10−4

Jiao and Liu [39] 4.42794 (4.9930, 0.0000, 0.0000) 128 4.213 10−4

Shi [21] 4.42857 (5.0000, 0.0000, 0.0000) 58 2.968 10−4

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23851

From the numerical results in Table 1, for Examples 2, 5, 6, 10 and 12, we can follow that
Algorithm 1 can obtain the better global optimal solutions and optimal values than the existing
algorithms of Jiao and Liu [39] and Shen and Lu [37]. Algorithm 1 performs better than the method
of Jiao and Liu [39] for finding the optimal solution in less time and fewer iterations. Therefore, in
terms of test Examples 1–12, their experimental results verify that Algorithm 1 is valid and feasible.

Next, we chose two large-scale test problems generated randomly to verify the proposed algorithm
further, see Problems 1 and 2 for details. With the given approximation error ϵ = 10−2, we first tested
Problem 1 with large-size variables, numerical comparisons among Algorithm 1, the algorithm of Jiao
and Liu [39], and the algorithm of Li et al. [41], which are reported in Table 2.

Table 2. Numerical comparisons among Algorithm 1, the algorithm of Jiao and Liu [39],
and the algorithm of Li et al. [41] on Problem 1.

(p,m, n) Algorithms
Iter. Time

min. ave. max. min. ave. max.
(2,100,1000) Jiao and Liu [39] 34 111.5 342 6.78 22.82 71.53

Li et al. [41] 9 21.8 30 2.21 4.03 5.46
Algorithm 1 6 14.8 23 1.56 2.73 3.41

(2,100,3000) Jiao and Liu [39] 55 99.8 159 82.16 147.45 235.12
Li et al. [41] 9 23.4 27 11.26 18.12 24.12
Algorithm 1 6 12.4 19 11.23 17.89 23.45

(2,100,5000) Jiao and Liu [39] 41 83.9 152 171.34 339.68 618.89
Li et al. [41] 12 18.1 30 56.56 75.24 96.18
Algorithm 1 8 12.3 25 38.51 50.45 68.32

(2,100,7000) Jiao and Liu [39] 49 78.7 124 392.12 634.51 987.42
Li et al. [41] 10 16.9 27 99.84 126.53 185.62
Algorithm 1 7 11.7 21 68.87 89.45 129.23

(2,100,10000) Jiao and Liu [39] 13 73.1 129 230.12 1188.43 2145.25
Li et al. [41] 12 18.5 25 241.56 289.25 324.56
Algorithm 1 8 12.8 17 166.56 204.43 245.52

(3,100,1000) Jiao and Liu [39] 215 814.4 1756 43.12 175.68 398.53
Li et al. [41] 75 309.4 628 10.89 40.53 72.47
Algorithm 1 53 238.2 465 7.45 28.54 48.98

(3,100,3000) Jiao and Liu [39] * * * * * *
Li et al. [41] 92 257.8 378 123.56 254.58 367.92
Algorithm 1 63 198.8 296 81.47 187.45 284.32

(3,100,5000) Jiao and Liu [39] * * * * * *
Li et al. [41] 75 273.8 512 278.56 625.48 985.26
Algorithm 1 54 191.7 348 208.45 452.78 712.45

(3,100,7000) Jiao and Liu [39] * * * * * *
Li et al. [41] 89 243.5 325 645.38 1201.48 1572.48
Algorithm 1 61 163.4 242 439.43 805.39 1168.71

(3,100,10000) Jiao and Liu [39] * * * * * *
Li et al. [41] 130 249.8 426 1580.22 2678.56 4582.58
Algorithm 1 89 165.2 287 1087.24 1786.13 3090.56

(4,100,1000) Jiao and Liu [39] * * * * * *
Li et al. [41] 485 3436.6 9856 46.53 323.23 1169.14
Algorithm 1 317 2332.8 7279 43.62 278.85 985.93

In Tables 2 and 3, Avg.Iter denotes the average number of iterations of the algorithm, Avg.Time

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23852

denotes the average execution CPU time of the algorithm in seconds, “∗” denotes the situation that the
proposed algorithm failed to terminate in 10000s for some of the arbitrary 50 independently generated
test examples. For random Problems 1 and 2, we solved 50 independently generated test instances and
recorded their average results among these 50 tests, and we highlighted in bold the winner of average
results in numerical comparisons.

Table 3. Numerical comparisons between Algorithm 1 and the algorithm of Li et al. [41] on
Problem 2.

(p,m, n) Algorithms
Iter. Time

min. ave. max. min. ave. max.
(10,100,300) Li et al. [41] 9 13.6 19 5.28 8.87 12.7

Algorithm 1 7 9.8 15 4.12 6.45 10.2
(10,100,400) Li et al. [41] 10 16 25 6.90 12.65 20.66

Algorithm 1 8 12.8 19 5.61 9.68 16.92
(10,100,500) Li et al. [41] 10 17.4 30 8.07 15.89 26.52

Algorithm 1 9 14.2 26 6.45 12.75 21.45
(15,100,400) Li et al. [41] 50 121.6 201 46.78 118.75 201.66

Algorithm 1 38 95.6 189 39.98 95.68 179.85
(15,100,500) Li et al. [41] 49 118.1 258 54.57 137.92 303.49

Algorithm 1 41 98.7 202 41.38 99.56 201.24
(20,100,300) Li et al. [41] 157 321.2 861 126.19 255.46 694.20

Algorithm 1 118 278.6 598 89.16 202.46 587.45
(20,100,400) Li et al. [41] 99 399.9 1134 99.06 425.77 1199.2

Algorithm 1 87 312.7 985 87.45 364.10 950.26

Problem 1. (Li et al. [41])
min

p∑
i=1

c̄⊤i x + f̄i

d̄⊤i x + ḡi
,

s.t. Āx ≤ b̄,
x ≥ 0,

where c̄i ∈ R
n, d̄i ∈ R

n, Ā ∈ Rm×n, b̄ ∈ Rm, f̄i ∈ R, ḡi ∈ R, i = 1, 2, . . . , p; each element of c̄i, d̄i, and Ā is
randomly generated from the interval [0, 10]; each element of b̄ is equal to 10, and each element of f̄i

and ḡi is randomly generated from the interval [0, 1].

Problem 2. (Li et al. [41])
min

p∑
i=1

n∑
j=1
γ̃i jx j + ξ̃i

n∑
j=1
δ̃i jx j + η̃i

,

s.t. Ãx ≤ b̃, x ≥ 0,

where γ̃i j, ξ̃i, δ̃i j, η̃i ∈ R, i = 1, 2, . . . , p, j = 1, 2, . . . , n; Ã ∈ Rm×n, b̃ ∈ Rm; all γ̃i j and δ̃i j are randomly
generated from [−0.1, 0.1]; all elements of Ã are randomly generated from [0.01, 1]; all elements of b̃

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23853

are equal to 10; and all ξ̃i and η̃i satisfy
n∑

j=1

γ̃i jx j + ξ̃i > 0

and
n∑

j=1

δ̃i jx j + η̃i > 0.

From the results in Table 2, for Problem 1 with the large-size number of variables, we first get the
observation that the algorithm proposed in Jiao and Liu [39] is more time-consuming than Algorithm 1.
Especially, when p = 3, m = 100, n = 3000; p = 3, m = 100, n = 5000; p = 3, m = 100, n = 7000;
p = 3, m = 100, n = 10000; p = 4, m = 100, n = 1000; the algorithm of Jiao & Liu [39] failed to solve
all 50 independently generated instances in 10000s, but Algorithm 1 can obtain the global optimal
solution of test Problem 1 with higher computational efficiency. Second, the computational efficiency
of Algorithm 1 is superior to the algorithm of Li et al. [41] in all cases.

From the numerical comparisons for Problem 2 in Table 3, the computational efficiency of
Algorithm 1 is superior to the algorithm of Li et al. [41] in all cases.

From the numerical comparisons in Tables 1–3, we can get that Algorithm 1 can globally solve the
sum of affine ratios problem to obtain their global optimal solutions and optimal values with higher
computational efficiency.

5. Conclusions

This paper studies the sum of affine ratios problem and presents an outcome space branch-and-
bound algorithm. In this algorithm, we proposed a novel linearization technique for constructing the
affine relaxation problem of the equivalent problem. Moreover, the computational complexity of the
algorithm is analyzed, and the maximum number of iterations of the algorithm is derived. Algorithm 1
can find an ϵ-global optimal solution in at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations. Numerical comparisons show the effectiveness and superiority of Algorithm 1. Future work
will extend Algorithm 1 to solve the sum of nonlinear ratios problem.

Author contributions

Yan Shi: formal analysis, investigation, resources, methodology, writing-original draft, validation,
and data curation; Qunzhen Zheng: formal analysis, invesigation, writing-review & editing, software,
data curation, conceptualization, supervision, project administration; Jingben Yin: project
administration, methodology, validation, and formal funding acquisition. All authors have read and
agreed to the published version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23854

Acknowledgments

This paper is supported by the Key Scientific and Technological Research Projects in Henan
Province (202102210147, 192102210114).

Conflict of interest

The authors declare no conflicts of interest.

References

1. J. Majhi, R. Janardan, J. Schwerdt, M. Smid, P. Gupta, Minimizing support structures and
trapped area in two-dimensional layered manufacturing, Comput. Geom., 12 (1999), 241–267.
https://doi.org/10.1016/S0925-7721(99)00003-6

2. J. Majhi, R. Janardan, M. Smid, P. Gupta, On some geometric optimization problems in
layered manufacturing, Comput. Geom., 12 (1999), 219–239. https://doi.org/10.1016/S0925-
7721(99)00002-4

3. H. Konno, M. Inori, Bond portfolio optimization by bilinear fractional programming, J. Oper. Res.
Soc. Jpn., 32 (1989), 143–158. https://doi.org/10.15807/jorsj.32.143

4. C. S. Colantoni, R. P. Manes, A. Whinston, Programming, profit rates and pricing decisions,
Account. Rev., 44 (1969), 467–481.

5. H. Konno, H. Watanabe, Bond portfolio optimization problems and their applications to index
tracking: a partial optimization approach, J. Oper. Res. Soc. Jpn., 39 (1996), 295–306.
https://doi.org/10.15807/jorsj.39.295

6. I. M. Stancu-Minasian, Fractional programming theory, methods and applications, Kluwer
Academic Publishers, 1997. https://doi.org/10.1007/978-94-009-0035-6

7. E. B. Bajalinov, Linear-fractional programming theory, methods, applications and software,
Springer Science and Business Media, 2003. https://doi.org/10.1007/978-1-4419-9174-4

8. I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019),
2125–2169. https://doi.org/10.1080/02331934.2019.1632250

9. B. Sawik, Downside risk approach for multi-objective portfolio optimization, In: D. Klatte,
L. Hans-Jakob, K. Schmedders, Operations research proceedings 2011, Springer Science and
Business Media, 2012. https://doi.org/10.1007/978-3-642-29210-1 31

10. V. Milenkovic, K. Daniels, Z. Li, Placement and compaction of nonconvex polygons for clothing
manufacture, Memorial University of Newfoundland, 1992.

11. E. M. Arkin, Y. J. Chiang, M. Held, J. S. B. Mitchell, V. Sacristan, S. S. Skiena, et al., On minimum-
area hulls, Algorithmica, 21 (1998), 119–136. https://doi.org/10.1007/PL00009204

12. A. Charnes, W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9
(1962), 181–186. https://doi.org/10.1002/nav.3800090303

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

http://dx.doi.org/https://doi.org/10.1016/S0925-7721(99)00003-6
http://dx.doi.org/https://doi.org/10.1016/S0925-7721(99)00002-4
http://dx.doi.org/https://doi.org/10.1016/S0925-7721(99)00002-4
http://dx.doi.org/https://doi.org/10.15807/jorsj.32.143
http://dx.doi.org/https://doi.org/10.15807/jorsj.39.295
http://dx.doi.org/https://doi.org/10.1007/978-94-009-0035-6
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-9174-4
http://dx.doi.org/https://doi.org/10.1080/02331934.2019.1632250
http://dx.doi.org/https://doi.org/10.1007/978-3-642-29210-1_31
http://dx.doi.org/https://doi.org/10.1007/PL00009204
http://dx.doi.org/https://doi.org/10.1002/nav.3800090303

23855

13. H. Konno, Y. Yajima, T. Matsui, Parametric simplex algorithms for solving a special
class of nonconvex minimization problems, J. Global Optim., 1 (1991), 65–81.
https://doi.org/10.1007/BF00120666

14. N. T. H. Phuong, H. Tuy, A unified monotonic approach to generalized linear fractional
programming, J. Global Optim., 26 (2003), 229–259. https://doi.org/10.1023/A:1023274721632

15. Y. E. Nesterov, A. S. Nemirovskii, An interior-point method for generalized linear-fractional
programming, Math. Program., 69 (1995), 177–204. https://doi.org/10.1007/BF01585557

16. R. W. Freund, F. Jarre, Solving the sum-of-ratios problem by an interior-point method, J. Global
Optim., 19 (2001), 83–102. https://doi.org/10.1023/A:1008316327038

17. E. F. James, W. P. Susan, Image space analysis of generalized fractional programs, J. Global
Optim., 4 (1994), 63–88. https://doi.org/10.1007/BF01096535

18. T. Kuno, A revision of the trapezoidal branch-and-bound algorithm for linear sum-of-ratios
problem, J. Global Optim., 33 (2005), 215–234. https://doi.org/10.1007/s10898-004-1952-z

19. H. Jiao, A branch and bound algorithm for globally solving a class of nonconvex programming
problems, Nonlinear Anal., 70 (2009), 1113–1123. https://doi.org/10.1016/j.na.2008.02.005

20. K. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming: theory and algorithms, John
Wiley & Sons, Inc., 2006. https://doi.org/10.1002/0471787779

21. Y. Shi, Global optimization for sum of ratios problems, MA thesis, Henan Normal University, 2011.

22. H. Jiao, J. Ma, An efficient algorithm and complexity result for solving the sum
of general affine ratios problem, Chaos Solitons Fract., 164 (2022), 112701.
https://doi.org/10.1016/j.chaos.2022.112701

23. H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing
the sum of affine fractional functions, Optimization, 72 (2023), 1577–1607.
https://doi.org/10.1080/02331934.2022.2032051

24. H. Jiao, J. Ma, P. Shen, Y. Qiu, Effective algorithm and computational complexity for
solving sum of linear ratios problem, J. Ind. Manage. Optim., 19 (2023), 4410–4427.
https://doi.org/10.3934/jimo.2022135

25. H. Jiao, Y. Shang, Image space branch-reduction-bound algorithm for globally solving the sum of
affine ratios problem, J. Comput. Math., 2024. https://doi.org/10.4208/jcm.2203-m2021-0085

26. Y. Pei, D. Zhu, Global optimization method for maximizing the sum of difference of
convex functions ratios over nonconvex region, J. Appl. Math. Comput., 41 (2013), 153–169.
https://doi.org/10.1007/s12190-012-0602-8

27. T. Kuno, A revision of the trapezoidal branch-and-bound algorithm for linear sum-of-ratios
problems, J. Global Optim., 33 (2005), 215–234. https://doi.org/10.1007/s10898-004-1952-z

28. P. P. Shen, W. M. Li, Y. C. Liang, Branch-reduction-bound algorithm for linear sum-of-ratios
fractional programs, Pac. J. Optim., 11 (2015), 79–99.

29. H. Jiao, S. Liu, Range division and compression algorithm for quadratically constrained sum of
quadratic ratios, Comput. Appl. Math., 36 (2017), 225–247. https://doi.org/10.1007/s40314-015-
0224-5

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

http://dx.doi.org/https://doi.org/10.1007/BF00120666
http://dx.doi.org/https://doi.org/10.1023/A:1023274721632
http://dx.doi.org/https://doi.org/10.1007/BF01585557
http://dx.doi.org/https://doi.org/10.1023/A:1008316327038
http://dx.doi.org/https://doi.org/10.1007/BF01096535
http://dx.doi.org/https://doi.org/10.1007/s10898-004-1952-z
http://dx.doi.org/https://doi.org/10.1016/j.na.2008.02.005
http://dx.doi.org/https://doi.org/10.1002/0471787779
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112701
http://dx.doi.org/https://doi.org/10.1080/02331934.2022.2032051
http://dx.doi.org/https://doi.org/10.3934/jimo.2022135
http://dx.doi.org/https://doi.org/10.4208/jcm.2203-m2021-0085
http://dx.doi.org/https://doi.org/10.1007/s12190-012-0602-8
http://dx.doi.org/https://doi.org/10.1007/s10898-004-1952-z
http://dx.doi.org/https://doi.org/10.1007/s40314-015-0224-5
http://dx.doi.org/https://doi.org/10.1007/s40314-015-0224-5

23856

30. H. Jiao, B. Li, W. Yang, A criterion-space branch-reduction-bound algorithm for
solving generalized multiplicative problems, J. Global Optim., 89 (2024), 597–632.
https://doi.org/10.1007/s10898-023-01358-w

31. H. Jiao, B. Li, Y. Shang, An outer space approach to tackle generalized affine fractional program
problems, J. Optim. Theory Appl., 201 (2024), 1–35. https://doi.org/10.1007/s10957-023-02368-0

32. A. Charnes, W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Log. Q., 9
(1962), 181–186. https://doi.org/10.1002/nav.3800150308

33. R. Horst, H. Tuy, Global optimization, deterministic approaches, Springer-Verlag, 1990.
https://doi.org/10.1007/978-3-662-02598-7

34. H. P. Benson, A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios
problem, Eur. J. Oper. Res., 182 (2007), 597–611. https://doi.org/10.1016/j.ejor.2006.08.036

35. P. Shen, B. Huang, L. Wang, Range division and linearization algorithm for a class
of linear ratios optimization problems, J. Comput. Appl. Math., 350 (2019), 324–342.
https://doi.org/10.1016/j.cam.2018.10.038

36. P. P. Shen, C. F. Wang, Global optimization for sum of linear ratios problem with coefficients, Appl.
Math. Comput., 176 (2006), 219–229. https://doi.org/10.1016/j.amc.2005.09.047

37. P. P. Shen, T. Lu, Regional division and reduction algorithm for minimizing the sum of linear
fractional functions, J. Inequal. Appl., 2018 (2018), 63. https://doi.org/10.1186/s13660-018-1651-
9

38. Y. Gao, S. Jin, A global optimization algorithm for sum of linear ratios problem, J. Appl. Math.,
2013, 276245. https://doi.org/10.1155/2013/276245

39. H. W. Jiao, S. Y. Liu, A practicable branch and bound algorithm for sum of linear ratios problem,
Eur. J. Oper. Res., 243 (2015), 723–730. https://doi.org/10.1016/j.ejor.2015.01.039

40. H. Jiao, S. Liu, J. Yin, Y. Zhao, Outcome space range reduction method for global optimization of
sum of affine ratios problem, Open Math., 14 (2016), 736–746. https://doi.org/10.1515/math-2016-
0058

41. H. Li, L. Wang, Y. Zhao, Global optimization algorithm for a class of linear ratios optimization
problem, AIMS Math., 9 (2024), 16376–16391. https://doi.org/10.3934/math.2024793

Appendix

Test Examples 1–12 are given as follows:

Example 1. (Benson [34])

min f (x) = −3.333x1−3x2−1
1.666x1+x2+1 +

−4x1−3x2−1
x1+x2+1 ,

s.t. 5x1 + 4x2 ≤ 10,
−x1 ≤ −0.1,
−x2 ≤ −0.1,
−2x1 − x2 ≤ −2,
x1, x2 ≥ 0.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

http://dx.doi.org/https://doi.org/10.1007/s10898-023-01358-w
http://dx.doi.org/https://doi.org/10.1007/s10957-023-02368-0
http://dx.doi.org/https://doi.org/10.1002/nav.3800150308
http://dx.doi.org/https://doi.org/10.1007/978-3-662-02598-7
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2006.08.036
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.10.038
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.09.047
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1651-9
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1651-9
http://dx.doi.org/https://doi.org/10.1155/2013/276245
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.01.039
http://dx.doi.org/https://doi.org/10.1515/math-2016-0058
http://dx.doi.org/https://doi.org/10.1515/math-2016-0058
http://dx.doi.org/https://doi.org/10.3934/math.2024793

23857

Example 2. (Phuong and Tuy [14] and Shen et al. [35])

max 3x1+x2−2x3+0.8
2x1−x2+x3

+ 4x1−2x2+x3
7x1+3x2−x3

,

s.t. x1 + x2 − x3 ≤ 1,
−x1 + x2 − x3 ≤ −1,
12x1 + 5x2 + 12x3 ≤ 34.8,
12x1 + 12x2 + 7x3 ≤ 29.1,
−6x1 + x2 + x3 ≤ −4.1.

Example 3. (Shen et al. [35], Shen and Wang [36])
max 3x1+4x2+50

3x1+5x2+4x3+50 −
3x1+5x2+3x3+50
5x1+5x2+4x3+50 −

x1+2x2+4x3+50
5x2+4x3+50 −

4x1+3x2+3x3+50
3x2+3x3+50 ,

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 4. (Shen et al. [35])
min −x1+2x2+2

3x1−4x2+5 +
4x1−3x2+4
−2x1+x2+3 ,

s . t . x1 + x2 ≤ 1.5,
x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 5. (Shen and Lu [36], Gao and Jin [38])

min 3x1+5x2+3x3+50
3x1+4x2+5x3+50 +

3x1+4x2+50
4x1+3x2+2x3+50 +

4x1+2x2+4x3+50
5x1+4x2+3x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

Example 6. (Shen and Lu [37])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 7. (Shen and Lu [37], Gao and Jin [38])

min 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+4x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

23858

Example 8. (Shen and Lu [37])
max 3x1+5x2+3x3+50

3x1+4x2+5x3+50 +
3x1+4x2+50

4x1+3x2+2x3+50 +
4x1+2x2+4x3+50
5x1+4x2+3x3+50 ,

s . t . 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 9. (Shen and Lu [37], Gao and Jin [38])
min 37x1+73x2+13

13x1+13x2+13 +
63x1−18x2+39
13x1+26x2+13 ,

s . t . 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 10. (Jiao and Liu [39], Jiao et al. [40], Shen Wang [36])

max 4x1+3x2+3x3+50
3x2+2x3+50 + 3x1+4x2+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 11. (Shen and Wang [36], Shi [21])
max 37x1+73x2+13

13x1+13x2+13 +
63x1−18x2+39
−13x1−26x2−13 +

13x1+13x2+13
63x1−18x2+39 +

13x1+26x2+13
−37x2−73x3−13 ,

s . t . 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 12. (Shi [21])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 23837–23858.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Equivalence transformation and its affine relaxation programming
	Equivalent transformation
	Affine relaxation programming

	Algorithm and its computational complexity
	Algorithm outline
	Convergence analysis
	Computational complexity of the algorithm

	Numerical experiments
	Conclusions

