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1. Introduction

In this paper, we consider the following sum of affine ratios problem (where SARP is sum of
affine ratios problem):

(SARP):


min H(x) =

p∑
i=1

n∑
j=1

ci j x j+ fi

n∑
j=1

di j x j+gi

,

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b, x ≥ 0} ,
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where A is an m × n order real matrix and b is an m dimension column vector. D , ∅, ci j, di j ∈ R
n, and

fi, gi ∈ R. The denominator of each ratio

n∑
j=1

di jx j + gi , 0

over D. Due to
n∑

j=1

di jx j + gi , 0

and the continuity of the ratio
n∑

j=1
ci jx j + fi

n∑
j=1

di jx j + gi

,

we can obtain that
n∑

j=1

di jx j + gi < 0

or
n∑

j=1

di jx j + gi > 0.

If
n∑

j=1

di jx j + gi < 0,

letting
n∑

j=1
ci jx j + fi

n∑
j=1

di jx j + gi

=

−
( n∑

j=1
ci jx j + fi

)
−
( n∑

j=1
di jx j + gi

) ,
it is obvious that

−
( n∑

j=1

di jx j + gi

)
> 0.

Therefore, without loss of generality, we assume that

n∑
j=1

di jx j + gi > 0

always holds.
The SARP is a specific class of fractional programming problem. It has a wide range of

applications in laminate manufacturing [1, 2], portfolio optimization [3–5], finance and
investment [6], computer vision [7], system engineering [8], information theory [9], material
layout [10, 11], and so on. In addition, it is obvious that the objective function of the SARP is neither
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quasi-convex nor quasi-concave, which is extremely challenging in terms of theory and computation.
Thus, the research on the approach to solve the SARP has both theoretical and practical significance
value.

Up to now, a number of methods have been developed to solve the SARP. On the basis of the
characteristics of the algorithms in each literature, it can be roughly separated into the following
categories: the parametric simplex methods [12, 13], the unified monotonic approach [14], the
interior-point method [15, 16], the image space analysis method [17], the trapezoidal branching
searching algorithm [18], the branch-and-bound algorithms [19–21], and so on. It should be noted that
the algorithms in the above references [19–21] can either only solve special forms of the SARP or the
SARP with fewer variables. Recently, by exploiting equivalent transformation and the characteristics
of general single ratio functions, Jiao and Ma [22] combined the acceleration technique to develop an
efficient outer space rectangular branch-and-bound algorithm. Jiao et al. [23] put forward a practical
algorithm for minimizing the SARP. In the same year, by using the equivalent conversion and
linearization method, Jiao et al. [24] presented an effective branch-and-bound algorithm for the SARP.
Meanwhile, Jiao et al. [25] also designed an image space branch-reduction-bound algorithm for
globally solving the SARP. It should be emphasized that references [23–25] proposed several outer
space branch-and-bound algorithms for the problem (SARP), and the partitioning spaces of these
branch-and-bound algorithms all occur in the p-dimensional outer space. In addition, Pei and
Zhu [26] designed a convex relaxation algorithm for maximizing the sum of the difference of convex
functions ratios problems based on the branch-and-bound framework. Kuno [27] presented a
trapezoidal branch-and-bound algorithm to solve the SARP. Based on the algorithm of Kuno [27],
Shen et al. [28] proposed an accelerating trapezoidal branch-reduction-bound algorithm for globally
solving the sum of linear ratios problems. By constructing the new accelerating technique, Jiao and
Liu [29] developed a branch-reduction-bound algorithm for the sum of quadratic ratios problems.
Especially, the literatures [30, 31] provided for the first time an outer space branch-relaxation-bound
algorithm for generalized linear fractional programming problems and generalized affine multiple
product programming problems, respectively. However, the above-reviewed methods only deal with
some particular forms of the SARP or are difficult to solve the SARP with large-scale variables.
Therefore, it is still necessary to propose a practical efficient algorithm for addressing the general
form of the SARP.

The main purpose of this paper is to design an effective outcome space branch-and-bound
algorithm to globally solve the SARP. Initially, we employ two equivalence conversions to transform
the SARP into an equivalent problem (EP3). Subsequently, we design a linearization technique that is
used to construct the affine relaxation problem (ARP) of the problem (EP3). Based on the ARP and
the branch-and-bound framework, we present an outcome space branch-and-bound algorithm.
Ultimately, the numerical experimental results demonstrate that our algorithm is feasible. In addition,
the branch search process in this paper occurs in the (p − 1)-dimensional outer space, which makes
the computational cost much lower. Compared with other methods that take place in the n-dimension
or p-dimensional space, our method is more efficient. Furthermore, the algorithm is shown to
converge to a global optimal solution of the SARP eventually. Meanwhile, the computational
complexity of the algorithm is deduced in detail.

The overall structure of the study adopts the format of six sections, including this introductory
section. In Section 2, we convert the SARP to an equivalent problem (EP3) and construct its affine
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relaxation programming problem. In Section 3, we design an outcome space branch-and-bound
algorithm for globally solving the SARP, prove the convergence of the algorithm, and derive the
derivation of the computational complexity. In Section 4, a comparison of the numerical experimental
results indicates that the presented algorithm is reliable. Finally, some concluding remarks are given
in Section 5.

2. Equivalence transformation and its affine relaxation programming

2.1. Equivalent transformation

To tackle the SARP globally, we transform the original problem (SARP) into an equivalence
problem as below. For each x ∈ D, let

t =
1

n∑
j=1

dp jx j + gp

and
z j = tx j.

By utilizing the well-known Charnes-Cooper transformation [32], the SARP can be rewritten as
problem (EP1), as shown below.

(EP1) :


min Ĥ(t, z) =

p−1∑
i=1

n∑
j=1

ci jz j+ fit

n∑
j=1

di jz j+git
+

n∑
j=1

cp jz j + fpt,

s.t.
n∑

j=1
dp jz j + gpt = 1,

Az ≤ bt, t ≥ 0, z ≥ 0.

At this time, the index set becomes i ∈ {1, 2, . . . , p − 1}, and let

χ = {(t, z) ∈ Rn+1|

n∑
j=1

dp jz j + gpt = 1, Az ≤ bt, t ≥ 0, z ≥ 0},

where the set χ is non-empty and bounded.
Then we focus on the following equivalence conversion, for each i ∈ {1, 2, . . . , p−1}, by introducing

the variable

si =
1

n∑
j=1

di jz j + git
,

the lower bound

s0
i = min

(t,z)∈χ

1
n∑

j=1
di jz j + git
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and upper bound

s0
i = max

(t,z)∈χ

1
n∑

j=1
di jz j + git

can be calculated, and we can obtain the initial rectangle

S 0 = [s0, s0],

where
s0 = (s0

1, s
0
2, . . . , s

0
p−1)

and
s0
= (s0

1, s
0
2, . . . , s

0
p−1).

Further, the problem (EP1) can be reduced into the problem (EP2) by the variable si as follows:

(EP2) :


min Φ(s, t, z) =

p−1∑
i=1

si

( n∑
j=1

ci jz j + fit
)
+

n∑
j=1

cp jz j + fpt,

s.t. si =
1

n∑
j=1

di jz j+git
, i = 1, . . . , p − 1,

(t, z) ∈ χ, s ∈ S 0.

Remark 1. If (t∗, z∗) is a global optimal solution of the problem (EP1), then (s∗, t∗, z∗) is a global
optimal solution of the problem (EP2) with

s∗i =
1

n∑
j=1

di jz∗j + git∗
, i = 1, 2, . . . , p − 1.

Conversely, if (s∗, t∗, z∗) is a global optimal solution of the problem (EP2), then (t∗, z∗) is a global
optimal solution of the problem (EP1). In addition, the global optimal value of the problems (EP1),
(EP2), and (SARP) are equal.

Based on
n∑

j=1

di jz j + git , 0,

the problem (EP2) can be rewritten as the following equivalent form:

(EP3) :


minΦ(s, t, z) =

p−1∑
i=1

si

( n∑
j=1

ci jz j + fit
)
+

n∑
j=1

cp jz j + fpt

s.t. si

( n∑
j=1

di jz j + git
)
= 1, i = 1, · · · , p − 1,

(t, z) ∈ χ, s ∈ S 0.

Define S to be S 0 or a sub-rectangle of S 0, where

S = [s, s] ⊆ [s0, s0], s = (s1, s2, . . . , sp−1) ≥ s0

and
s = (s1, s2, . . . , sp−1) ≤ s0.
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2.2. Affine relaxation programming

For any S ⊆ S 0, we construct the affine relaxation programming problem of the problem (EP3) over
S as follows:

First, investigating the objective function, we can follow that

p−1∑
i=1

si

( n∑
j=1

ci jz j + fit
)
≥

p−1∑
i=1

( n∑
j=1,ci j>0

ci jsiz j +
n∑

j=1,ci j<0
ci jsiz j

)
+

p−1∑
i=1, fi>0

fisit +
p−1∑

i=1, fi<0
fisit. (1)

Hence, we reformulate the objective function of the problem (EP3) as

ΦR(s, t, z) =
p−1∑
i=1

( n∑
j=1,ci j>0

ci jsiz j +

n∑
j=1,ci j<0

ci jsiz j

)
+

p−1∑
i=1, fi>0

fisit +
p−1∑

i=1, fi<0

fisit +
n∑

j=1

cp jz j + fpt.

Next, investigating the constrained function, for any i ∈ {1, 2, · · · , p − 1}, s ∈ S ⊆ S 0, define

Ψi(si, t, z) = si

( n∑
j=1

di jz j + git
)

=

n∑
j=1

di jsiz j + gisit,

Gi =

{
gisi, if gi > 0,
gisi, if gi < 0,

Gi =

{
gisi, if gi < 0,
gisi, if gi > 0,

and

Ψi(si, si, t, z) =
n∑

j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git, (2)

Ψi(si, si, t, z) =
n∑

j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git. (3)

Clearly, for any i ∈ {1, 2, . . . , p − 1}, we have that

Ψi(si, si, t, z) ≤ Ψi(si, t, z) ≤ Ψi(si, si, t, z)

always hold.
Integrating (1)–(3), for any i ∈ {1, 2, . . . , p − 1}, the affine relaxation programming problem of the

problem (EP3) over S is constructed as below:

(ARP) :


min ΦR(s, t, z)
s.t. Ψi(si, si, t, z) ≤ 1, i = 1, · · · , p − 1,

Ψi(si, si, t, z) ≥ 1, i = 1, · · · , p − 1,
(t, z) ∈ χ, s ∈ S .
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By the construction process of the ARP, it is obvious that the optimal solution of the ARP provides
a valid lower bound for that of the EP3 over S 0.

Theorem 1. For each i ∈ {1, 2, . . . , p − 1}, we have∣∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)
∣∣∣∣→ 0 and

∣∣∣∣Ψi(si, si, t, z) − Ψi(si, t, z)
∣∣∣∣→ 0 as |si − si| → 0,

where “→” means “approaching”.

Proof. Based on the previous definitions of the functions Ψi(si, si, t, z), Ψi(si, t, z), and Ψi(si, si, t, z), for
any (t, z) ∈ χ, si ∈ [si, si], we have that∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)

∣∣∣ ≤ ∣∣∣Ψi(si, si, t, z) − Ψi(si, si, t, z)
∣∣∣

=

∣∣∣∣∣ n∑
j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git

−

( n∑
j=1,di j>0

di jsiz j +

n∑
j=1,di j<0

di jsiz j +Git
)∣∣∣∣∣

=

n∑
j=1

|di j||si − si|z j + |gi||si − si|t

=|si − si|

( n∑
j=1

|di j|z j + |gi|t
)
.

Since
n∑

j=1
di jz j + git is a bounded function, we have

∣∣∣∣Ψi(si, t, z) − Ψi(si, si, t, z)
∣∣∣∣→ 0 as |si − si| → 0.

Similarly, we demonstrate∣∣∣∣Ψi(si, si, t, z) − Ψi(si, t, z)
∣∣∣∣→ 0 as |si − si| → 0,

and the proof of the theorem is accomplished. □

From Theorem 1, it follows that the functions Ψi(si, si, t, z) and Ψi(si, si, t, z) can infinitely
approximate the function Ψi(si, t, z) as |si − si| → 0, which guarantees the global convergence of the
outcome space branch-and-bound algorithm.

3. Algorithm and its computational complexity

An outcome space branch-and-bound method is provided in this part to resolve the SARP based
on the previous ARP. By resolving a series of ARPs over the initial rectangle S 0 or a partitioned sub-
rectangle of S 0, the algorithm is able to acquire a global optimal solution. The simplest standard
rectangle bisection rule, which is provided as follows, is designated in the proposed algorithm.
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(1) Let
sk
υ − sk

υ
= max

{
sk

i − sk
i , i = 1, 2, . . . , p − 1

}
and

sk
υ =

lk
υ + uk

υ

2
.

(2) Let
ŝ =
(
sk

1, s
k
2, . . . , s

k
υ−1, s

k
υ, s

k
υ+1, . . . , s

k
p−1

)⊤
.

The rectangle S k is split by the point ŝ into the following two rectangles:

S k1 =

υ−1∏
i=1

[
sk

i , s
k
i

]
×
[
sk
υ
, sk
υ

]
×

p−1∏
i=υ+1

[
sk

i , s
k
i

]
and

S k2 =

υ−1∏
i=1

[
sk

i , s
k
i

]
×
[
sk
υ, s

k
υ

]
×

p−1∏
i=υ+1

[
sk

i , s
k
i

]
.

3.1. Algorithm outline

The steps of the outcome space branch-and-bound algorithm for solving the SARP are described
below:

Algorithm 1. Outcome space branch-and-bound algorithm.
Step 0. Given the convergence error ϵ ≥ 0 and the initial outer space rectangle

S 0 = {s ∈ Rp−1 | s0
i ≤ si ≤ s0

i , i = 1, 2, . . . , p − 1}.

Solve the problem (ARP) over S 0. If the problem (ARP) over S 0 is not feasible, then the problem
(SARP) is not feasible, and the proposed algorithm stops.

Otherwise, we can obtain an optimal solution (ŝ0, t0, z0) and the optimal value LB(S 0) of the problem
(ARP) over S 0. Let

s0
i =

1
n∑

j=1
di jz0

j + git0
, i = 1, 2, . . . , p − 1,

then (s0, t0, z0) is a feasible solution of the problem (EP3). Let

LB0 = LB(S 0)

and
UB0 = Φ(s0, t0, z0).

If
UB0 − LB0 ≤ ϵ,

then the algorithm stops executing, and (s0, t0, z0) and z0

t0 are the global ϵ-optimal solutions of the
problems (EP3) and (SARP), respectively.
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Otherwise, denote by the set of all active nodes Θ0 = {S 0}, denote by the set of the initial feasible
point

F = {(s0, t0, z0)},

let k = 0, and proceed to Step 1.
Step 1. Set

UBk = UBk−1.

Using the former branching rule, subdivide S k into two sub-rectangles S k1 and S k2. Let

Q = {S k1, S k2}.

Step 2. For each
S kτ, τ = 1, 2,

solve the problem (ARP) over S kτ. If the problem (ARP) over S k,τ is not feasible, then delete the
rectangle S kτ. Otherwise, we get the optimal solution (ŝ(S kτ), t(S kτ), z(S kτ)) and the optimal value
LB(S kτ) of the problem (ARP) over S kτ.

If
UBk ≤ LB(S kτ),

then let
Q = Q \ {S kτ}.

Otherwise, let

si(S kτ) =
1

n∑
j=1

di jz j(S kτ) + git(S kτ)
, i = 1, 2, . . . , p − 1,

update the feasible point set by

F = F
⋃
{(s(Ωkτ), t(S kτ), z(S k,τ))},

let
UBk = min{UBk,Φ

(
s(S kτ), t(S kτ), z(S k,τ)

)
},

and denote by the currently best feasible solution (sk, tk, zk), which corresponds to UBk.
Step 3. Set

Θk = (Θk \ S k)
⋃

Q,

update
LBk = min{LB(S ) | S ∈ Θk},

and let S k be the sub-rectangle which satisfies

LBk = LB(S k).

Step 4. If
UBk − LBk ≤ ϵ,

then the proposed algorithm stops, and zk

tk and (sk, tk, zk) are the ϵ-global optimal solutions of the
problems (SARP) and (EP3), respectively.

Otherwise, set k = k + 1, and go back to Step 1.
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3.2. Convergence analysis

In this subsection, the global convergence of the proposed algorithm is discussed as follows:

Theorem 2. If Algorithm 1 ceases finite iterations, then the proposed algorithm will produce a globally
optimal solution to the SARP. Otherwise, Algorithm 1 fails to terminate within a finite number of
iterations, and it will produce an infinite sequence {xk} such that any accumulation point will be a
global optimal solution of the SARP.

Proof. If Algorithm 1 ceases within a finite number of iterations, hypothesize that it is ceased at the
kth iteration, denoted LBk as the current best lower bound, and denoted UBk as the current best upper
bound, for any ϵ, and we have that

UBk − LBk < ϵ. (4)

Assume that (sk, tk, zk) is a feasible solution of the problem (EP3) with that

sk
i =

1
n∑

j=1
di jzk

j + gitk
.

Letting υ(EP3) be the global optimal value of the problem (EP3), we can get

Φ(sk, tk, zk) − LBk = UBk − LBk ≤ ϵ (5)

and
LBk ≤ υ(EP3). (6)

However, (sk, tk, zk) is the feasible solution of the problem (EP3), and we can follow that

Φ(sk, tk, zk) ≥ υ(EP3). (7)

By the above inequalities (4)–(7), we can get

υ(EP3) ≤ Φ(sk, tk, zk) ≤ LBk + ϵ ≤ υ(EP3) + ϵ.

Therefore, (sk, tk, zk) is an ϵ-global optimum solution of the problem (EP3), and

xk =
zk

tk

is an ϵ-global optimum solution of the SARP.
If Algorithm 1 fails to terminate within a finite number of iterations, then it will produce an infinite

feasible solution sequence {xk} of the SARP and an infinite feasible solution sequence (sk, tk, zk) of the
problem (EP3) with

sk
i =

1
n∑

j=1
di jzk

j + gitk
.

Letting (t∗, z∗) be an accumulation point of the sequence {(tk, zk)}, we can get

lim
k→∞

(tk, zk) = (t∗, z∗).
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By the continuity of the function

si =
1

n∑
j=1

di jz j + git
, i ∈ {1, 2, · · · , p − 1},

we can get that
1

n∑
j=1

di jz∗j + git∗
= lim

k→∞

1
n∑

j=1
di jzk

j + gitk
= lim

k→∞
sk

i = s∗i .

Thus, (s∗, t∗, z∗) is a feasible solution of the problem (EP3).
Since

{
LBk

}
is a monotonic non-decreasing bounded sequence, we get that

LBk = Φ
R(sk, tk, zk)

and
LBk ≤ υ(EP3),

and also since {UBk} is a non-increasing and bounded sequence, we get that

UBk = Φ(sk, tk, zk)

and
UBk ≥ υ(EP3).

So, we have
LBk = Φ

R(sk, tk, zk) ≤ υ(EP3) ≤ Φ(sk, tk, zk) = UBk.

Hence, from the termination condition of the algorithm, taking the limit on both side of the above
inequalities, we get

lim
k→∞

LBk = υ(EP3) = lim
k→∞
Φ(sk, tk, zk) = Φ(s∗, t∗, z∗) = lim

k→∞
UBk.

Thus, the accumulation point (s∗, t∗, z∗) of the sequence (sk, tk, zk) is a global optimal solution of the
problem (EP3). At the same time, the accumulation point x∗ of the sequence {xk} with

xk =
zk

tk

is a global optimal solution of the SARP, and the proof is complete. □

Remark 2. The algorithm proposed in this paper is a rectangular branch-and-bound global
optimization algorithm. As is well-known, based on the convergence theory of branch-and-bound
global optimization algorithms [33], the exhaustiveness of the branching process and the
approximation of upper and lower bounds indicate that the proposed rectangular branch-and-bound
global optimization algorithm must be convergent.
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3.3. Computational complexity of the algorithm

Further, to examine the maximum number of iterations of Algorithm 1, we derive the computational
complexity of Algorithm 1. First, we define the size Υ of the rectangle S as

Υ(S ) = max{si − si | i = 1, 2, · · · , p − 1}.

Theorem 3. Given a termination error ϵ > 0, if there exists a rectangle S formed by the proposed
algorithm at the kth iteration satisfying

Υ(S ) ≤
ϵ

(p − 1)ω
,

then we have that
UBk − LB(S ) ≤ ϵ,

where LB(S ) is the optimal value of the ARP over S , and UBk is the currently known best upper bound
of the optimum value of the problem (EP3).

Proof. Without losing generality, suppose that (tk, zk) is the optimal solution of the ARP over S , and
let

sk
i =

1
n∑

j=1
di jzk

j + gitk
, i = 1, 2, . . . , p − 1.

Then (sk, tk, zk) is a feasible solution to the problem (EP3). By the method of updating the upper bound
and lower bound, and the construction process of the ARP, we have that

Φ(sk, tk, zk) ≥ UBk ≥ LB(S ) = ΦR(sk, yk, zk).

By the definition of the size Υ(S ) of the rectangle S and

Υ(S ) ≤
ϵ

(p − 1)ω
,

it follows that

UBk − LB(S ) ≤ Φ(sk, tk, zk) − ΦR(sk, tk, zk)

=

∣∣∣∣∣ p−1∑
i=1

sk
i

( n∑
j=1

ci jzk
j + fitk

)
+

n∑
j=1

cp jzk
j + fptk

−
[ p−1∑

i=1

( n∑
j=1,ci j>0

ci jsiz
k
j +

n∑
j=1,ci j<0

ci js
k
i z

k
j +

n∑
j=1, fi>0

fisit
k +

n∑
j=1, fi<0

fisitk +

n∑
j=1

cp jzk
j + fptk

)]∣∣∣∣∣
=

∣∣∣∣∣ p−1∑
i=1

(si − si)
n∑

j=1,ci j>0

ci jzk
j +

p−1∑
i=1

(si − si)
n∑

j=1,ci j<0

ci jzk
j +

p−1∑
i=1, fi>0

(si − si) fitk +

p−1∑
i=1, fi<0

(si − si) fitk
∣∣∣∣∣

≤

p−1∑
i=1

(si − si) ×
( n∑

j=1

|ci j|zk
j +

n∑
i=1

| fi|tk
)

≤ (p − 1)ωΥ(S )
≤ ϵ.

The proof of Theorem 3 is complete. □
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Then we can examine the maximum iterations of Algorithm 1, see the following Theorem 4:

Theorem 4. Given the convergent tolerance ϵ ∈ (0, 1), Algorithm 1 can acquire a global optimal
solution of the SARP at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations.

Proof. In general, we assume that the sub-rectangle S is selected for partitioning in Algorithm 1 at
each iteration. After k · (p − 1) iterations, we can follow that

Υ(S ) ≤
1
2kΥ(S 0).

Based on the former proof of Theorem 3, if

1
2kΥ(S 0) ≤

ϵ

(p − 1)ω
,

i.e.,

k ≥ log2
(p − 1)ωΥ(S 0)

ϵ
,

we can follow that
UBk − LB(S ) ≤ ϵ.

Therefore, after at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations, we can get

0 ≤ Φ(sk, tk, zk) − Φ(s∗, t∗, z∗)
≤ Φ(sk, tk, zk) − LB(S )
= UBk − LB(S )
≤ ϵ,

where (s∗, t∗, z∗) is the optimal solution of the problem (EP3), and (sk, tk, zk) is the best currently know
feasible solution for the problem (EP3). This implies that (sk, tk, zk) is an ϵ-global optimal solution of
the problem (EP3) when Algorithm 1 terminates. At the same time, we can follow that zk

tk is an ϵ-global
optimal solution of the SARP, and we complete the proof. □

Remark 3. From the above complexity analysis of the algorithm in Theorem 4, letting

Γ = (p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
,

the running time of Algorithm 1 is bounded by

2(Γ − 1) × T (m + 2p + 1, n + 1)

for finding an ϵ-global optimal solution of the SARP, where T (m+2p+1, n+1) denotes the time taken
to solve a linear programming problem with n + 1 variables and m + 2p + 1 linear constraints.
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4. Numerical experiments

In this section, we numerically compare Algorithm 1 with some known extant branch-and-bound
algorithms. All tests were implemented in MATLAB R2018a and run on a microcomputer with
Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz processor and 8 GB RAM. For all test problems, we
provide their computational results. The maximum time limit was set to 10000s for all algorithms.

First of all, some small-size certainty examples (see the Appendix Examples 1–12) were tested
with Algorithm 1 for comparison with the known extant algorithms [14, 21, 34–40], and a numerical
comparison between some existing algorithms and Algorithm 1 on Examples 1–12 were reported in
Table 1 with the given convergence tolerance, where some notations have been used for column
headers: Opt. val.: global optimal value; Iter.: number of iterations of the algorithm; Time: the CPU
execution time of the algorithm in seconds.

Table 1. Numerical comparison between some existing algorithms and Algorithm 1 on test
Examples 1–12.

No. Algorithms Opt. val. Optimal solution Iter. Time ϵ

1 Algorithm 1 -4.83976 (0.1117, 2.3603) 16 0.254 10−2

Benson [34] -4.84151 (0.1000, 2.3750) 4 0.190 10−2

Jiao and Liu [39] -4.84151 (0.1000, 2.3750) 200 4.257 10−2

2 Algorithm 1 -2.47143 (1.0000, 0.0000, 0.0000) 11 0.192 10−2

Shen et al. [35] -2.47143 (1.0000, 0.0000, 0.0000) 2 0.015 10−2

Jiao and Liu [39] -2.47124 (1.0001, 0.0000, 0.0001) 54 1.135 10−2

3 Algorithm 1 -1.90000 (0.0000, 3.3333, 0.0000) 424 6.907 10−6

Shen and Wang [36] -1.90000 (0.0000, 3.3333, 0.0000) 8 0.926 10−6

4 Algorithm 1 1.62318 (0.0000, 0.2841) 39 0.566 10−2

Jiao and Liu [39] 1.62319 (0.0000, 0.2861) 93 2.485 10−2

5 Algorithm 1 2.86190 (5.0000, 0.0000, 0.0000) 199 2.776 10−3

Jiao and Liu [39] 2.86241 (4.8302, 0.0000, 0.0666) 4008 128.0 10−3

Shen and Lu [37] 2.86191 (5.0000, 0.0000, 0.0000) 16 0.125 10−3

Gao and Jin [38] 2.86190 (5.0000, 0.0000, 0.0000) 12 28.29 10−3

6 Algorithm 1 -4.09070 (1.1111, 0.0000, 0.0000) 28 0.359 10−2

Jiao and Liu [39] -4.09062 (1.1106, 0.0000, 0.0015) 619 16.62 10−2

Shen and Lu [37] -4.08741 (1.0715, 0.0000, 0.0000) 17 3.251 10−2

7 Algorithm 1 3.71092 (0.0000, 1.6667, 0.0000) 89 1.124 10−4

Jiao and Liu [39] 3.71093 (0.0000, 1.6667, 0.0000) 2747 94.64 10−4

Gao and Jin [38] 3.7087 (0.0000, 1.6667, 0.0000) 5 4.190 10−4

8 Algorithm 1 -3.00225 (0.0000, 2.8455, 0.0000) 36 0.566 10−2

Jiao and Liu [39] -3.00292 (0.0000, 3.3333, 0.0000) 1072 31.746 10−2

9 Algorithm 1 4.91267 (1.5015, 1.5024) 30 0.422 10−3

Shen and Lu [37] 4.91259 (1.5000, 1.5000) 56 1.087 10−3

10 Algorithm 1 -4.09070 (1.1111, 0.0000, 0.0000) 33 0.492 10−2

Jiao et al. [40] -4.09070 (1.1111, 0.0000, 0.0000) 2 0.008 10−6

Jiao and Liu [39] -4.09065 (1.1109, 0.0000, 0.0005) 977 32.41 10−6

11 Algorithm 1 3.29167 (3.0000, 4.0000) 138 1.902 10−6

Shen and Wang [36] 3.29167 (3.0000, 4.0000) 9 0.489 10−6

12 Algorithm 1 4.42857 (5.0000, 0.0000, 0.0000) 67 0.931 10−4

Jiao and Liu [39] 4.42794 (4.9930, 0.0000, 0.0000) 128 4.213 10−4

Shi [21] 4.42857 (5.0000, 0.0000, 0.0000) 58 2.968 10−4
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From the numerical results in Table 1, for Examples 2, 5, 6, 10 and 12, we can follow that
Algorithm 1 can obtain the better global optimal solutions and optimal values than the existing
algorithms of Jiao and Liu [39] and Shen and Lu [37]. Algorithm 1 performs better than the method
of Jiao and Liu [39] for finding the optimal solution in less time and fewer iterations. Therefore, in
terms of test Examples 1–12, their experimental results verify that Algorithm 1 is valid and feasible.

Next, we chose two large-scale test problems generated randomly to verify the proposed algorithm
further, see Problems 1 and 2 for details. With the given approximation error ϵ = 10−2, we first tested
Problem 1 with large-size variables, numerical comparisons among Algorithm 1, the algorithm of Jiao
and Liu [39], and the algorithm of Li et al. [41], which are reported in Table 2.

Table 2. Numerical comparisons among Algorithm 1, the algorithm of Jiao and Liu [39],
and the algorithm of Li et al. [41] on Problem 1.

(p,m, n) Algorithms
Iter. Time

min. ave. max. min. ave. max.
(2,100,1000) Jiao and Liu [39] 34 111.5 342 6.78 22.82 71.53

Li et al. [41] 9 21.8 30 2.21 4.03 5.46
Algorithm 1 6 14.8 23 1.56 2.73 3.41

(2,100,3000) Jiao and Liu [39] 55 99.8 159 82.16 147.45 235.12
Li et al. [41] 9 23.4 27 11.26 18.12 24.12
Algorithm 1 6 12.4 19 11.23 17.89 23.45

(2,100,5000) Jiao and Liu [39] 41 83.9 152 171.34 339.68 618.89
Li et al. [41] 12 18.1 30 56.56 75.24 96.18
Algorithm 1 8 12.3 25 38.51 50.45 68.32

(2,100,7000) Jiao and Liu [39] 49 78.7 124 392.12 634.51 987.42
Li et al. [41] 10 16.9 27 99.84 126.53 185.62
Algorithm 1 7 11.7 21 68.87 89.45 129.23

(2,100,10000) Jiao and Liu [39] 13 73.1 129 230.12 1188.43 2145.25
Li et al. [41] 12 18.5 25 241.56 289.25 324.56
Algorithm 1 8 12.8 17 166.56 204.43 245.52

(3,100,1000) Jiao and Liu [39] 215 814.4 1756 43.12 175.68 398.53
Li et al. [41] 75 309.4 628 10.89 40.53 72.47
Algorithm 1 53 238.2 465 7.45 28.54 48.98

(3,100,3000) Jiao and Liu [39] * * * * * *
Li et al. [41] 92 257.8 378 123.56 254.58 367.92
Algorithm 1 63 198.8 296 81.47 187.45 284.32

(3,100,5000) Jiao and Liu [39] * * * * * *
Li et al. [41] 75 273.8 512 278.56 625.48 985.26
Algorithm 1 54 191.7 348 208.45 452.78 712.45

(3,100,7000) Jiao and Liu [39] * * * * * *
Li et al. [41] 89 243.5 325 645.38 1201.48 1572.48
Algorithm 1 61 163.4 242 439.43 805.39 1168.71

(3,100,10000) Jiao and Liu [39] * * * * * *
Li et al. [41] 130 249.8 426 1580.22 2678.56 4582.58
Algorithm 1 89 165.2 287 1087.24 1786.13 3090.56

(4,100,1000) Jiao and Liu [39] * * * * * *
Li et al. [41] 485 3436.6 9856 46.53 323.23 1169.14
Algorithm 1 317 2332.8 7279 43.62 278.85 985.93

In Tables 2 and 3, Avg.Iter denotes the average number of iterations of the algorithm, Avg.Time
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denotes the average execution CPU time of the algorithm in seconds, “∗” denotes the situation that the
proposed algorithm failed to terminate in 10000s for some of the arbitrary 50 independently generated
test examples. For random Problems 1 and 2, we solved 50 independently generated test instances and
recorded their average results among these 50 tests, and we highlighted in bold the winner of average
results in numerical comparisons.

Table 3. Numerical comparisons between Algorithm 1 and the algorithm of Li et al. [41] on
Problem 2.

(p,m, n) Algorithms
Iter. Time

min. ave. max. min. ave. max.
(10,100,300) Li et al. [41] 9 13.6 19 5.28 8.87 12.7

Algorithm 1 7 9.8 15 4.12 6.45 10.2
(10,100,400) Li et al. [41] 10 16 25 6.90 12.65 20.66

Algorithm 1 8 12.8 19 5.61 9.68 16.92
(10,100,500) Li et al. [41] 10 17.4 30 8.07 15.89 26.52

Algorithm 1 9 14.2 26 6.45 12.75 21.45
(15,100,400) Li et al. [41] 50 121.6 201 46.78 118.75 201.66

Algorithm 1 38 95.6 189 39.98 95.68 179.85
(15,100,500) Li et al. [41] 49 118.1 258 54.57 137.92 303.49

Algorithm 1 41 98.7 202 41.38 99.56 201.24
(20,100,300) Li et al. [41] 157 321.2 861 126.19 255.46 694.20

Algorithm 1 118 278.6 598 89.16 202.46 587.45
(20,100,400) Li et al. [41] 99 399.9 1134 99.06 425.77 1199.2

Algorithm 1 87 312.7 985 87.45 364.10 950.26

Problem 1. (Li et al. [41]) 
min

p∑
i=1

c̄⊤i x + f̄i

d̄⊤i x + ḡi
,

s.t. Āx ≤ b̄,
x ≥ 0,

where c̄i ∈ R
n, d̄i ∈ R

n, Ā ∈ Rm×n, b̄ ∈ Rm, f̄i ∈ R, ḡi ∈ R, i = 1, 2, . . . , p; each element of c̄i, d̄i, and Ā is
randomly generated from the interval [0, 10]; each element of b̄ is equal to 10, and each element of f̄i

and ḡi is randomly generated from the interval [0, 1].

Problem 2. (Li et al. [41]) 
min

p∑
i=1

n∑
j=1
γ̃i jx j + ξ̃i

n∑
j=1
δ̃i jx j + η̃i

,

s.t. Ãx ≤ b̃, x ≥ 0,

where γ̃i j, ξ̃i, δ̃i j, η̃i ∈ R, i = 1, 2, . . . , p, j = 1, 2, . . . , n; Ã ∈ Rm×n, b̃ ∈ Rm; all γ̃i j and δ̃i j are randomly
generated from [−0.1, 0.1]; all elements of Ã are randomly generated from [0.01, 1]; all elements of b̃
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are equal to 10; and all ξ̃i and η̃i satisfy
n∑

j=1

γ̃i jx j + ξ̃i > 0

and
n∑

j=1

δ̃i jx j + η̃i > 0.

From the results in Table 2, for Problem 1 with the large-size number of variables, we first get the
observation that the algorithm proposed in Jiao and Liu [39] is more time-consuming than Algorithm 1.
Especially, when p = 3, m = 100, n = 3000; p = 3, m = 100, n = 5000; p = 3, m = 100, n = 7000;
p = 3, m = 100, n = 10000; p = 4, m = 100, n = 1000; the algorithm of Jiao & Liu [39] failed to solve
all 50 independently generated instances in 10000s, but Algorithm 1 can obtain the global optimal
solution of test Problem 1 with higher computational efficiency. Second, the computational efficiency
of Algorithm 1 is superior to the algorithm of Li et al. [41] in all cases.

From the numerical comparisons for Problem 2 in Table 3, the computational efficiency of
Algorithm 1 is superior to the algorithm of Li et al. [41] in all cases.

From the numerical comparisons in Tables 1–3, we can get that Algorithm 1 can globally solve the
sum of affine ratios problem to obtain their global optimal solutions and optimal values with higher
computational efficiency.

5. Conclusions

This paper studies the sum of affine ratios problem and presents an outcome space branch-and-
bound algorithm. In this algorithm, we proposed a novel linearization technique for constructing the
affine relaxation problem of the equivalent problem. Moreover, the computational complexity of the
algorithm is analyzed, and the maximum number of iterations of the algorithm is derived. Algorithm 1
can find an ϵ-global optimal solution in at most

(p − 1) ·
[
log2

(p − 1)ωΥ(S 0)
ϵ

]
iterations. Numerical comparisons show the effectiveness and superiority of Algorithm 1. Future work
will extend Algorithm 1 to solve the sum of nonlinear ratios problem.
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Appendix

Test Examples 1–12 are given as follows:

Example 1. (Benson [34]) 

min f (x) = −3.333x1−3x2−1
1.666x1+x2+1 +

−4x1−3x2−1
x1+x2+1 ,

s.t. 5x1 + 4x2 ≤ 10,
−x1 ≤ −0.1,
−x2 ≤ −0.1,
−2x1 − x2 ≤ −2,
x1, x2 ≥ 0.
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Example 2. (Phuong and Tuy [14] and Shen et al. [35])

max 3x1+x2−2x3+0.8
2x1−x2+x3

+ 4x1−2x2+x3
7x1+3x2−x3

,

s.t. x1 + x2 − x3 ≤ 1,
−x1 + x2 − x3 ≤ −1,
12x1 + 5x2 + 12x3 ≤ 34.8,
12x1 + 12x2 + 7x3 ≤ 29.1,
−6x1 + x2 + x3 ≤ −4.1.

Example 3. (Shen et al. [35], Shen and Wang [36])
max 3x1+4x2+50

3x1+5x2+4x3+50 −
3x1+5x2+3x3+50
5x1+5x2+4x3+50 −

x1+2x2+4x3+50
5x2+4x3+50 −

4x1+3x2+3x3+50
3x2+3x3+50 ,

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 4. (Shen et al. [35]) 
min −x1+2x2+2

3x1−4x2+5 +
4x1−3x2+4
−2x1+x2+3 ,

s . t . x1 + x2 ≤ 1.5,
x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 5. (Shen and Lu [36], Gao and Jin [38])

min 3x1+5x2+3x3+50
3x1+4x2+5x3+50 +

3x1+4x2+50
4x1+3x2+2x3+50 +

4x1+2x2+4x3+50
5x1+4x2+3x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

Example 6. (Shen and Lu [37])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 7. (Shen and Lu [37], Gao and Jin [38])

min 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+4x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.
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Example 8. (Shen and Lu [37])
max 3x1+5x2+3x3+50

3x1+4x2+5x3+50 +
3x1+4x2+50

4x1+3x2+2x3+50 +
4x1+2x2+4x3+50
5x1+4x2+3x3+50 ,

s . t . 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 9. (Shen and Lu [37], Gao and Jin [38])
min 37x1+73x2+13

13x1+13x2+13 +
63x1−18x2+39
13x1+26x2+13 ,

s . t . 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 10. (Jiao and Liu [39], Jiao et al. [40], Shen Wang [36])

max 4x1+3x2+3x3+50
3x2+2x3+50 + 3x1+4x2+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 11. (Shen and Wang [36], Shi [21])
max 37x1+73x2+13

13x1+13x2+13 +
63x1−18x2+39
−13x1−26x2−13 +

13x1+13x2+13
63x1−18x2+39 +

13x1+26x2+13
−37x2−73x3−13 ,

s . t . 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 12. (Shi [21])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 +
x1+2x2+5x3+50
x1+5x2+5x3+50 +

x1+2x2+4x3+50
5x2+4x3+50 ,

s . t . 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.
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