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Abstract: With the advent of quantum computing, traditional cryptography algorithms are at risk of 

being broken. Post-quantum encryption algorithms, developed to include mathematical challenges to 

make it impossible for quantum computers to solve problems, are constantly being updated to ensure 

that sensitive information is protected from potential threats. In this study, a hybrid examination of a 

(p,q)-Bernstein-type polynomial, which is an argument that can be used for encryption algorithms 

with a post-quantum approach, was made from a mathematical and cryptography perspective. In 

addition, we have aimed to present a new useful operator that approximates functions and can be 

used in cases where it is not possible to work with functions in the fields of technology, medicine, 

and engineering. Based on this idea, a new version of the (p,q)-Bernstein-Schurer operator was 

introduced in our study on a variable interval and the convergence rate was calculated with two 

different methods. At the same time, the applications of the theoretical situation in the study were 

presented with the help of visual illustrations and tables related to the approach. Additionally, our 

operator satisfied the statistical-type Korovkin theorem and is suitable for variable interval 

approximation. This is the first paper to study the statistical convergence properties of 

(p,q)-Bernstein-Schurer operators defined on a variable bounded interval, to obtain special matrices 

with the help of (p,q)-basis functions, and to give an application of (p,q)-type operators for encrypted 

image transmission. 
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1. Introduction 

In the digital world where we need to communicate and transfer information more and more, we 

have to protect the information we want to transfer, our personal data, and our interests from the 

dangerous actions of malicious people [1]. The elements of communication are sender, receiver, 

messages, channels, flashbacks, codes, encoding and decoding, noise, and status [2]. In today’s 

rapidly advancing technology, security has become an issue that needs to be evaluated separately in 

order to protect data from external threats during storage and transmission. The way to protect data 

from destruction and prevent unauthorized access is encryption. Encryption is used for transmitted 

data or plaintext to produce data or password text, whereas decryption is used to regenerate the 

original data from the password text through the secret key shared between the receiver and the 

transmitter. The information security practice, known as cryptology, is related to protecting data 

integrity, ensuring confidentiality and authentication [3]. Cryptology, which for centuries has focused 

on the codes used for secret communication, today encompasses much more: Cryptology today deals 

with techniques for exchanging secret keys, mechanisms for ensuring data integrity, protocols for 

authentication, digital coin, electronic elections, and more. Modern cryptography involves the study 

of complex computational and mathematical techniques for protecting digital information and 

systems against enemy attacks [4]. 

Ensuring data security requires a complex and multidimensional approach. For this, precautions 

such as encryption of data and using strong authentication methods should be taken. Along with the 

studies carried out to prevent information loss, to cope with the noise problem and the need for 

excessive memory, research to prevent security vulnerabilities continues at a great pace, both 

theoretically and experimentally. Following the initiation of research on post-quantum cryptography 

by the National Institute of Standards and Technology in 2012, global studies began in 2016 to 

establish standards for post-quantum encryption. As of 2017, the National Institute of Standards and 

Technology has published 69 draft algorithms using four main mathematical methods: lattice-based 

algorithms, code-based algorithms, algorithms based on multivariate polynomials, and hash-based 

signature algorithms [5]. 

Polynomials are used in many fields other than mathematics. For example, in [6], the energy 

compression performance of several different signal decomposition techniques for AR(l) signal 

sources, where a set of specific sample points of the square function of the desired size was 

approximately found using Bernstein polynomials, was mentioned. In [7], a steering law called range 

polynomial guidance is presented for the pulse angle control problem by shaping the viewing light 

angle with relative range by applying a polynomial shaping method. 

Polynomials are used as a cryptographic tool in important issues such as protecting information 

and the secure transfer of images. An example is [8], where classical Bernstein polynomials were 

used. In that study, which aimed to ensure secure transmission of the image with the public key 

cryptographic technique with the help of the Bernstein polynomial, the original image was 

compressed using the Bernstein image. The compressed image was decrypted by the receiver using a 

cryptographic algorithm, and the decrypted image was decompressed to recover the main image. 

Polynomials are used in many sub-branches of mathematics. One of these is approximation 

theory. This theory, which is of great importance for applied fields, has recently been an area where 

researchers have worked extensively. Bernstein operators, Szasz operators, Schurer operators, etc., 

are among the important operators used in approximation research. In addition, studies [9–11] can be 
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used as examples of different operators defined. 

The beginning of the operators in approximation theory is based on the Bernstein polynomial. 

Bernstein introduced a polynomial sequence named after him in [12]. Bernstein polynomials have 

many uses such as statistics, numerical analysis, and mechanical components. After the introduction 

of quantum and post-quantum ideas into many fields, the application of q-calculus and (p,q) has 

made important contributions to the development of approximation theory, applied mathematics, and 

engineering. With the development of q-analysis, many operators have been defined. For example, q 

generalization of a Bernstein-type operator is given in [13]. Although q-Bernstein polynomials and 

classical Bernstein polynomials are similar in terms of some properties, their convergence properties 

are different from each other. The convergence properties of q-Bernstein polynomials vary depending 

on whether q is in the range (0,1) or not. Some of the studies carried out today involve the (p,q) 

versions of the operators as important study subjects, as in [14]. 

Mursaleen et al., in [15], gave the structure of (p,q)-Bernstein operators. For (p,q)-Bernstein 

operators, whether the operator is convergent or not depends on the range in which p and q are 

defined. Many different generalizations have been made about this operator. For example, a 

modification of the two-dimensional Bernstein-Stancu operator is studied in [16]. Karahan and Izgi 

gave a modification of this operator and Cevik examined this modification on a certain interval in 

[17,18], respectively. 

On the other hand, Schurer defined a new operator in [19]. Cai and Zhou examined the 

important features of the Kantorovich-type Bernstein-Stancu-Schurer operator in [20]. Then, q- and 

(p,q)-Bernstein analogues of these operators were introduced in [21,22]. Many different 

modifications of the Schurer operator have been defined in the sense of q and then (p,q), e.g., [23,24]. 

The appear of the concept of statistical convergence has enabled important studies to be carried out 

in many sub-branches of functional analysis. [25] After the transfer of statistical convergence theory 

to approximation theory, it was investigated whether existing or newly defined operators in the 

literature would approximate statistical convergence [26]. Important properties on the variable range 

of one- and two-variable operator generalization were also examined in [27]. 

After summarizing the literature on approximation theory, before moving on to the requirements 

for the use of polynomials in cryptology, we will discuss image transmission, which is one of the 

data types for which different encryption algorithms are used. The most important problem in the use 

of wireless transmission of images, especially in the fields of the defense industry and the transfer of 

personal information to those concerned, is security. The data transmitted by wireless communication 

can be copied by espionage and unwanted malicious people and can reveal negative situations. In the 

Russia-Ukraine war, where UAVs were widely used, it was seen that the aforementioned situations 

were experienced and the side that gained superiority on the frontline in this way changed instantly. 

Because UAV systems communicate wirelessly with the ground control station and transmit real-time 

images, the above-mentioned situations occur if the security of the UAV platforms is not developed 

to resist electronic attacks. For this reason, war technologies are sometimes prepared before the war, 

and sometimes, as in this war, they are developed and made more effective in line with the needs 

during the war. Different encryption algorithms are used to prevent security problems during the 

transmission of images, and as technology develops, efforts to prevent the decrypt ability of ciphers 

cover the development of new methods or the strengthening of existing ciphers. 

For this purpose, efficient image encryption algorithms that consume minimum power and work 

fast, along with expressions with mathematical difficulty, should be utilized. Since the 2000s, many 
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mathematical concepts such as matrices, modular arithmetic, and polynomials have been used in 

encryption algorithms as the security of encryption methods is mostly based on the solution of 

mathematical problems. Without the use of quantum computers, there was no algorithm that worked 

in polynomial time to solve problems such as factorization and discrete logarithms. After quantum 

concepts are utilized, many problems that cannot be solved in polynomial time are transformed into 

ones that can be solved in polynomial time. 

When determining an image encryption method, security, format suitability, time, and suitability 

for compression should be taken into account. For this reason, we consider the compression of the 

original image with the help of a sequence of polynomials using the polynomial image we define. 

Taking advantage of the difficulties of post-quantum numbers, the defined operator is based on the 

method described in [8], which uses the classical Bernstein polynomial for image transmission. 

The contributions of this study to the literature can be presented as follows: 

• The study contains important approximation properties of the (p,q)-Bernstein-Schurer operator 

on a variable bounded interval. 

• Since the defined basis functions provide De Casteljau steps, a mathematical argument is 

presented for model validation and simulation studies that can be performed using Bezier curves 

such as designing air vehicle airfoil curves and route planning of unmanned aerial vehicles with 

the help of mathematical modeling. 

• This work includes a cryptological algorithm based on (p,q)-Bernstein-Schurer functions that 

we define for the security of images that need to be protected during transmission between 

wireless communication devices, which is of great importance for local control, smart object 

design. 

• The image transfer algorithm given in [8] using the classical Bernstein algorithm is modified 

with the innovations brought by the operator we defined with the aim of increasing the security 

so that the password cannot be decrypted by third parties thanks to the difficult calculations of 

(p, q)-numbers. 

• As the defined operator has statistical approximation properties, it is a good reference for 

researchers who study different types of approximation. 

In this study, considering the rapid developments in technology, medicine, and engineering, it is 

our aim to define and make available a new operator approaching functions, which can be used in 

situations where it is not possible to work with some functions in these areas. This study was created 

in order to fill the relevant gap in the literature as an intersection of (p,q)-operators and mobilization 

of the working interval. In our work, we give a new modification of (p,q)-Bernstein-Schurer-type 

operators inspired by [16–19,22–24,26]. We examinate the convergence properties and give moments 

of this operator. Also, important examples are given to support the theoretical information visually 

and numerically. Then, it is shown that the defined operator is suitable for statistical convergence by 

showing that it satisfies the Korovkin-type theorem. In Section 4, the (p,q)-Bernstein-Schurer basis 

functions that provide some properties used in De Casteljau algorithms are introduced and various 

equations are presented. In Section 5, matrix implementations of the defined basis functions are 

given, taking into account the applications of matrices in decision-making and cryptology. In the 6th 

part of the study, which includes cryptological data, an algorithm is given to encrypt the image for 

secure transmission and decrypt it by the receiver with the help of the (p,q)-operator, which we 

defined based on the method applied in [8] for the classical Bernstein operator. 
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2. Materials and methods 

Now, we remind the reader of some definitions of (p,q)-analysis, which is worked in [28–30]. For 

all 𝑝, 𝑞 > 0, [𝑠]𝑝𝑞 are defined by 

[𝑠]𝑝𝑞 =

{
 
 

 
 

𝑝𝑠−𝑞𝑠

𝑝−𝑞
,      if 𝑝 ≠ 𝑞 ≠ 1;

1−𝑞𝑠

1−𝑞
 ,      if 𝑝 = 1;            

      𝑠   ,      if 𝑝 = 𝑞 = 1.

                        (1) 

[𝑠]𝑝𝑞! and [
𝑠
ⱴ
]
𝑝𝑞

 are defined as follows: 

[𝑠]𝑝𝑞! =  {
[𝑠]𝑝𝑞[𝑠 − 1]𝑝𝑞⋯[1]𝑝𝑞  , 𝑖𝑓 𝑠 ≥ 1

                      1                       , 𝑖𝑓 𝑠 = 0
                    (2) 

[
𝑠
ⱴ
]
𝑝𝑞
=

[𝑠]𝑝𝑞!

[𝑠−ⱴ]𝑝𝑞![ⱴ]𝑝𝑞!
 .                             (3) 

For 𝑚 > 0, (𝑧 − 𝑡)𝑝𝑞
𝑚  is defined as 

(𝑧 − 𝑡)𝑝𝑞
𝑚 = ∏ (𝑝𝑟𝑧 − 𝑞𝑟𝑡)𝑚−1

𝑟=0 = (𝑧 − 𝑡)(𝑝𝑧 − 𝑞𝑡)   × (𝑝2𝑧 − 𝑞2𝑡)⋯ (𝑝𝑚−1𝑧 − 𝑞𝑚−1𝑡).  (4) 

For 𝑚 ≤ 0, ∏ (𝑝𝑟𝑧 − 𝑞𝑟𝑡)𝑚−1
𝑟=0 = 0. In this study, for 𝑛 = 0, 0𝑛 ≔ 1 is taken. This section 

contains definitions and lemmas as a preparation for the main section. We introduce our new operators 

and the relevant equations are given by applying the operator to the test functions. Here, we define the 

next operator on 𝐶 [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
]. 

Definition 1. Let 𝑝 > 𝑞, 𝑝, 𝑞 ∈ (0,1] and 0 ≤ 𝑥 ≤
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
 . For every 𝑓 ∈ 𝐶 [0,

[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], the new 

type (p,q)-Bernstein-Schurer operators are defined by 

𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥): =

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

∑ 𝑀𝑠(𝑥)
𝑠+𝜂
𝑘=0 × 𝑓 (

𝑝𝑠+𝜂−𝑘[𝑘]𝑝𝑞[1+𝑠]𝑝𝑞

[𝑠]𝑝𝑞[2+𝑠]𝑝𝑞
).           (5) 

Here, 

𝑀𝑠(𝑥): = [
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠+2]𝑝𝑞

[𝑠+1]𝑝𝑞
)
𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 𝑥𝑘)∏ (𝑝𝑡
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
− 𝑞𝑡𝑥)

𝑠+𝜂−𝑘−1
𝑡=0 .       (6) 

Lemma 1. Let 𝑝 > 𝑞, 𝑓 ∈ 𝐶 [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], and 𝑝, 𝑞 ∈ (0,1]. 𝐿̃𝑠

(𝑝,𝑞)(𝑓; 𝑥) is positive and linear. 

Lemma 2. For 1 ≥ 𝑝 > 𝑞 > 0, 𝑥 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], 

i. 𝐿̃𝑠
(𝑝,𝑞)(1; 𝑥) = 1,                                  (7) 
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ii. 𝐿̃𝑠
(𝑝,𝑞)(𝑦; 𝑥) = 𝑥

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
,                             (8) 

iii.  𝐿̃𝑠
(𝑝,𝑞)(𝑦2; 𝑥) =

[𝑠+𝜂]𝑝𝑞[𝑠+𝜂−1]𝑝𝑞

[𝑠]𝑝𝑞
2 𝑞𝑥2 +

[𝑠+𝜂]𝑝𝑞[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞[𝑠]𝑝𝑞
2 𝑝𝑠+𝜂−1𝑥.           (9) 

Proof. i. Actually, by the definition of 𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥), 

𝐿̃𝑠
(𝑝,𝑞)(1; 𝑥) =

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

∑𝑀𝑠(𝑥)

𝑠+𝜂

𝑘=0

 

=
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

∑((
[𝑠 + 2]𝑝,𝑞
[𝑠 + 1]𝑝,𝑞

)

𝑠+𝜂

[
𝑠 + 𝜂
𝑘

]
𝑝,𝑞
𝑝
𝑘(𝑘−1)

2 𝑥𝑘 ∏ (𝑝𝑡
[𝑠 + 1]𝑝,𝑞
[𝑠 + 2]𝑝,𝑞

− 𝑞𝑡𝑥)

𝑠+𝜂−𝑘−1

𝑡=0

)

𝑠+𝜂

𝑘=0

 

So we get 𝐿̃𝑠
(𝑝,𝑞)(1; 𝑥) = 1. 

ii. From the definition of the operators, we have 

𝐿̃𝑠
(𝑝,𝑞)(𝑦; 𝑥) =

1

𝑝
(𝜂+𝑠)(𝑠−1+𝜂)

2

×∑((
[𝑠 + 1]𝑝𝑞

[𝑠 + 2]𝑝𝑞[𝑠]𝑝𝑞
[𝑘]𝑝𝑞𝑝

𝑠+𝜂−𝑘)𝑀𝑠(𝑥))

𝑠+𝜂

𝑘=0

 

= (
𝑝𝑠+𝜂[𝑠 + 𝜂]𝑝𝑞

𝑝
(𝜂−1+𝑠)

2
(𝜂+𝑠)[𝑠]𝑝𝑞

(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂−1

)∑(𝑝−𝑘 [
𝑠 + 𝜂 − 1

𝑘
]
𝑝𝑞
[𝑘]𝑝𝑞𝑥

𝑘𝑝
(𝑘−1)𝑘

2

𝑠+𝜂

𝑘=0

 

× ∏ (𝑝𝑡
[1 + 𝑠]𝑝𝑞
[2 + 𝑠]𝑝𝑞

− 𝑞𝑡𝑥)

−𝑘+𝑠+𝜂−1

𝑡=0

) 

= 𝑥
[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

. 

iii. 𝐿̃𝑠
(𝑝,𝑞)(𝑦2; 𝑥) =

𝑝2(𝑠+𝜂)[𝑠+𝜂]𝑝𝑞

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2 [𝑠]𝑝𝑞
2
(
[𝑠+2]𝑝𝑞

[𝑠+1]𝑝𝑞
)
𝑠+𝜂−2

 

× ∑ ([
𝑠 + 𝜂 − 1

𝑘
]
𝑝𝑞
[1 + 𝑘]𝑝𝑞𝑝

(𝑘+1)(𝑘−4)

2 𝑥𝑘+1

𝑠+𝜂−1

𝑘=0

 

× ∏ (𝑝𝑡
[1 + 𝑠]𝑝𝑞
[2 + 𝑠]𝑝𝑞

− 𝑞𝑡𝑥)

−𝑘+𝜂+𝑠−2

𝑡=0

). 

From [1 + 𝑢]𝑝𝑞 = 𝑝
𝑢 + [𝑢]𝑝𝑞𝑞, we have 



23818 

AIMS Mathematics  Volume x, Issue x, 1–X Page. 

𝐿̃𝑠
(𝑝,𝑞)(𝑦2; 𝑥) =

𝑥𝑝2(𝜂+𝑠−1)[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

2
𝑝
(𝜂−1+𝑠)(𝑠+𝜂−2)

2
[1 + 𝑠]𝑝𝑞
[2 + 𝑠]𝑝𝑞

 

+
𝑝2(𝑠+𝜂)𝑞[𝑠 + 𝜂]𝑝𝑞[𝑠 + 𝜂 − 1]𝑝𝑞

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2 [𝑠]𝑝𝑞
2

(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂−2

∑ ([
𝑠 + 𝜂 − 2

𝑘
]
𝑝𝑞

𝑠+𝜂−2

𝑘=0

 

× 𝑝
(𝑘+2)

2
(𝑘−3)𝑥𝑘+2 (

[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑥)

𝑠+𝜂−𝑘−3

) 

=
[𝜂 + 𝑠]𝑝𝑞
[𝑠]𝑝𝑞

𝑞𝑥2
[𝑠 + 𝜂 − 1]𝑝𝑞

[𝑠]𝑝𝑞
+
[𝑠 + 1]𝑝𝑞[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

2 [𝑠 + 2]𝑝𝑞
𝑝𝑠+𝜂−1𝑥. 

Now, from these equations, we can give important theorems about the operators. We will show 

that the operator we defined in this section satisfies the Korovkin theorem. The applicability of the 

operator is shown by giving the graphs of the approach. 

Remark 1. Let 1 ≥ 𝑝𝑠 ≥ 𝑞𝑠 > 0 and 

𝑙𝑖𝑚
𝑠→∞

𝑝𝑠 = 𝑙𝑖𝑚
𝑠→∞

𝑞𝑠 = 1.                             (10) 

Then, the following equalities hold: 

lim
𝑠→∞

𝑝𝑠
𝑠

[𝑠]𝑝𝑠𝑞𝑠
= 0, lim

𝑠→∞

𝑞𝑠[𝑠+𝜂−1]𝑝𝑠𝑞𝑠
[𝑠]𝑝𝑠𝑞𝑠

= 1.                  (11) 

Theorem 1. Let lim
𝑠→∞

𝑝𝑠 = lim
𝑠→∞

𝑞𝑠 = 1 with 1 ≥ 𝑝𝑠 ≥ 𝑞𝑠 > 0. In this case, 𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑓, 𝑥) uniformly 

converges to 𝑓 on Ă ≔ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], i.e., for every 𝑓 ∈ 𝐶(𝐴̆), 

𝑙𝑖𝑚
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)‖

𝐶(𝐴̆)
= 0.                      (12) 

Proof. From the Korovkin theorem, it is enough to prove the next properties 

lim
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(𝑦𝜇; 𝑥) − 𝑥𝜇‖

𝐶(𝐴̆)
= 0. 

Since 

lim
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(1; 𝑥) − 1‖

𝐶(𝐴̆)
= 0,                         (13) 

we can see that for 𝜇 = 1,2 

lim
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(𝑦𝜇; 𝑥) − 𝑥𝜇‖

𝐶(𝐴̆)
= 0.                       (14) 
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For 0 < 𝑞𝑠 < 𝑝𝑠 ≤ 1, using 

lim
𝑠→∞

[𝑠+𝜂]𝑝𝑠𝑞𝑠
[𝑠]𝑝𝑠𝑞𝑠

= lim
𝑠→∞

[−1+𝑠+𝜂]𝑝𝑠𝑞𝑠
[𝑠]𝑝𝑠𝑞𝑠

𝑞𝑠 = 1,                    (15) 

we get 

lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦; 𝑥) − 𝑥‖

𝐶(𝐴̆)
≤ lim

𝑠→∞
‖(−1 +

[𝑠+𝜂]𝑝𝑠𝑞𝑠
[𝑠]𝑝𝑠𝑞𝑠

)
[𝑠+1]𝑝𝑠𝑞𝑠
[𝑠+2]𝑝𝑠𝑞𝑠

‖
𝐶(𝐴̆)

= 0,      (16) 

lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦2; 𝑥) − 𝑥2‖

𝐶(𝐴̆)
≤ lim

𝑠→∞
‖(
[𝑠 + 𝜂]𝑝𝑠𝑞𝑠[𝑠 + 𝜂 − 1]𝑝𝑠𝑞𝑠

[𝑠]𝑝𝑠𝑞𝑠
2

𝑞𝑠)‖
𝐶(𝐴̆)

 

+lim
𝑠→∞

‖(
[𝑠 + 1]𝑝𝑠𝑞𝑠
[𝑠 + 2]𝑝𝑠𝑞𝑠

)

2

‖

𝐶(𝐴̆)

+ lim
𝑠→∞

‖(
[𝑠 + 𝜂]𝑝𝑠𝑞𝑠
[𝑠]𝑝𝑠𝑞𝑠

2
𝑝𝑠+𝜂−1 − 1)(

[𝑠 + 1]𝑝𝑠𝑞𝑠
[𝑠 + 2]𝑝𝑠𝑞𝑠

)

2

‖

𝐶(𝐴̆)

= 0.        

Example 1. Let 𝑓(𝑥) = 2𝑥3 ((𝑒𝑠𝑖𝑛 (𝑥+1))
2
− (𝑒𝑐𝑜𝑠 (2𝑥

2))) . We are given the graphs of the 

approximation of the function (blue) using different p and q values (see Figure 1). 

 

Figure 1. Approximation by operators for (p, q = 0.99, 0.70), (p, q = 0.99, 0.85), and (p, 

q = 0.99, 0.97), respectively. 

The algorithm prepared with the Maple program, which gives the operator's approach to some 

𝑛 values, is presented below. 

restart; 

with(plots): 

> f:=x->4*(x^3)*((exp(sin(x+1))^2)-exp(cos(2*x^2)))/2: 

> q:=0.7: p:=0.99:  

> m:=17: eta:=3: 

> int1:=((p)^k-(q)^k)/(p-q):  

> int4:=((p)^n-(q)^n)/(p-q): 
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> int2:=(((p)^(n+1))-((q)^(n+1)))/(p-q): 

> int3:=(((p)^(n+2))-((q)^(n+2)))/(p-q): 

> M:=Product((p^t)*(int2/int3)-((q^t)*x),t=0..(n+eta-k-1)): 

> for n from 1 to m do 

> L[n](f,x):=(1/(p^((n+eta)*((n+eta-1)/2))))*sum(f((((int2) 

*(int1))*p^(n+eta-k))/((int3)*(int4))) *evalf(simplify(sum(((p^(n+eta-i+1)) 

>-(q^(n+eta-i+1)))/(p-q), i=0..k)))*(p^((k*(k-1))/2)) 

*(x^k)*M*((int3/int2)^(n+eta)),k=0..n+eta); 

>end do: 

M1:=plot(f(x),x=0.09..0.18,y=0..2,color=blue, style=point, 

symbol=diamond, numpoints=380,symbolsize=8): 

> M2:=plot(L[2](f,x),x=0.09..0.18,y=0..2,color=green, style=point, 

symbol=circle, numpoints=380,symbolsize=8): 

> M3:=plot(L[3](f,x),x=0.09..0.18,y=0..2,color=red,style=point, 

symbol=circle, numpoints=380,symbolsize=8): 

> M4:=plot(L[4](f,x),x=0.09..0.18,y=0..2,color=black, style=point, 

symbol=circle, numpoints=380,symbolsize=8): 

> M5:=plot(L[5](f,x),x=0.09..0.18,y=0..2,color=cyan, style=point, 

symbol=circle, numpoints=380,symbolsize=7): 

> M6:=plot(L[8](f,x),x=0.09..0.18,y=0..2, color=magenta, style=point, 

symbol=circle, numpoints=380,symbolsize=8): 

> display([M1,M2,M3,M4,M5,M6]);                                                     

The second example, which gives the operator's approach to the 𝑔 function for some different 

values of p and q, is as follows: 

Example 2. Let 𝑔(𝑥) =
𝑥2−1

5𝑐𝑜𝑠(𝑥3+1)+4𝑠𝑖𝑛(𝑥3+1)+90
. We are given the graphs of the approximation of 

the function (blue) using different p and q values (see Figure 2). 

 

Figure 2. Approximation by operators for (p, q = 0.95, 0.75), (p, q = 0.89, 0.82), and (p, 

q = 0.79, 0.76), respectively. 
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Lemma 3. The following formulas are obtained for the moments. 

𝑖. 𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)0; 𝑥) = 1,                             (17) 

𝑖𝑖. 𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)1; 𝑥) = 𝑥

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
− 𝑥,                         (18) 

𝑖𝑖𝑖.  𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)2; 𝑥) = (

𝑞[𝑠 + 𝜂]𝑝𝑞[𝑠 + 𝜂 − 1]𝑝𝑞
[𝑠]𝑝𝑞

2
) 𝑥2 + (1 −

2[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

) 𝑥2 

+
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
2 𝑝𝑠+𝜂−1𝑥.                                    (19) 

Proof. From Lemma 2, 

i. 𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)0; 𝑥) = 1. 

If (𝑦 − 𝑥) is substituted in the operator, we obtain the following 

ii. 𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)1; 𝑥) = (

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
− 1) 𝑥. 

iii. From equations valid for 𝐿̃𝑠
(𝑝,𝑞)(𝑦2; 𝑥) and 𝐿̃𝑠

(𝑝,𝑞)(𝑦; 𝑥), 

𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)2; 𝑥) = 𝑥2 +  𝐿̃𝑠

(𝑝,𝑞)(𝑦2; 𝑥) − 2𝑥𝐿̃𝑠
(𝑝,𝑞)(𝑦; 𝑥) 

= (
𝑞[𝑠 + 𝜂]𝑝𝑞[𝑠 + 𝜂 − 1]𝑝𝑞

[𝑠]𝑝𝑞
2

−
2[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

+ 1)𝑥2 +
[𝑠 + 𝜂]𝑝𝑞[𝑠 + 1]𝑝𝑞
[𝑠]𝑝𝑞

2 [𝑠 + 2]𝑝𝑞
𝑝𝑠+𝜂−1𝑥.                  

3. Results 

Let 𝑥1, 𝑥2 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
]. The modulus of continuity is given by 

𝑤(𝑓, 𝛿) = sup
|𝑥1−𝑥2| ≤𝛿

|𝑓(𝑥1) − 𝑓(𝑥2)|.                       (20) 

For 𝜎 ∈ (0,1], 𝑀 > 0 and 𝑥1, 𝑥2 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], then 𝑓 ∈ 𝐿𝑖𝑝𝑀(𝜎) if 

|𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝑀|𝑡 − 𝑥|
𝜎 .                         (21) 

From the definitions in the literature (e.g., [22]), we can give the following theorems. 

Theorem 2. Let 𝑓 ∈ 𝐶 [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], and in this case 

|𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)| ≤ (

[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
+ 1)𝜔(𝑓; 𝛿𝑠),               (22) 



23822 

AIMS Mathematics  Volume x, Issue x, 1–X Page. 

where 𝛿𝑠 = (
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
) (

[𝑠+𝜂]𝑝𝑞[𝑠+𝜂−1]𝑝𝑞

[𝑠]𝑝𝑞
2 𝑞 +

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
2 𝑝𝑠+𝜂−1 −

2[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
+ 1)

1

2
. 

Proof. From the definition of 𝑤(𝑓, 𝛿), the following inequality, 

|𝑓(𝑦) − 𝑓(𝑥)| ≤ (1 +
|𝑦−𝑥|

𝛿𝑠
)𝜔(𝑓; 𝛿𝑠),                      (23) 

can be written. Applying the operator to this inequality and using linearity properties, we get 

|𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)| ≤ (1 +

1

𝛿𝑠
𝐿̃𝑠
(𝑝,𝑞)(|𝑦 − 𝑥|; 𝑥))𝜔(𝑓; 𝛿𝑠). 

From the Cauchy-Schwarz inequality, we have 

|𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)| ≤ (1 +

1

𝛿𝑠
√𝐿̃𝑠

(𝑝,𝑞)((𝑦 − 𝑥)2; 𝑥))𝜔(𝑓; 𝛿𝑠).           (24) 

If 𝐿̃𝑠
(𝑝,𝑞)((𝑦 − 𝑥)2; 𝑥) from Lemma 2 is substituted in the last inequality with the selection of the 

(𝑞𝑠) satisfying the conditions in Remark 1, 

‖𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)‖

𝐶[0,
[𝑠+1]𝑝𝑞
[𝑠+2]𝑝𝑞

]
≤ (1 +

1

𝛿𝑠
√𝐿̃𝑠

(𝑝,𝑞)((𝑦 − 𝑥)2; 𝑥))𝜔(𝑓; 𝛿𝑠) 

≤ (
1

𝛿𝑠
(
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

𝛿𝑠) + 1) × 𝜔(𝑓; 𝛿𝑠) 

is obtained. In this last inequality, if we choose 

𝛿𝑠 = (
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)(
[𝑠 + 𝜂]𝑝,𝑞[𝑠 + 𝜂 − 1]𝑝𝑞

[𝑠]𝑝𝑞
2

𝑞 +
[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

2
𝑝𝑠+𝜂−1 −

2[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

+ 1)

1

2

, 

then 

|𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)| ≤ (1 +

[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)𝜔(𝑓; 𝛿𝑠) 

is found. 

The numerical calculations of error bounded to the functions are given in Table 1 below. 
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Table 1. The error bound of function 𝑓 and 𝑔. 

𝑠 Error bound for 𝑓 𝑠 Error bound for 𝑔 

10 0.5713948672 10 0.2023919644 

102 0.00687324736 102 0.03644928772 

103 0.01388441546 103 0.03862481462 

104 0.01388446384 104 0.03862482420 

105 0.01388503849 105 0.03862321282 

106 0.01394821027 106 0.03861813728 

107 0.01443107879 107 0.03856046586 

108 0.02076262260 108 0.03698847304 

109 0.06986735306 109 0.03130302222 

Example 3. The error bound of the functions for 𝑥 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
] , 𝑓(𝑥) =

1

3
𝑒𝑥𝑝(𝑥3 + 1), 𝑞 =

0.97, 𝑝 = 0.99, 𝜂 = 3, and 𝑔(𝑥) = 𝑠𝑖𝑛 (
1

3
) + (𝑥2 + 1), 𝑞 = 0.94, 𝑝 = 0.98, 𝜂 = 5. 

Theorem 3. Let 𝑓 ∈ 𝐿𝑖𝑝𝑀(𝜎), 0 < 𝑞𝑠 < 𝑝𝑠 ≤ 1. In this case, we have the following inequality, 

|𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝑀(𝛿𝑠)

𝜎

2 .                     (25) 

Proof. The proof can be done easily using Lemma 3.  

Now, let us examine whether this operator, which we define on a variable-bounded interval and 

test its suitability for the classical convergence method, is a suitable operator for statistical 

convergence. 

In this section, we employed the following methodology and algorithm, which must be followed 

to illustrate the approximation of a linear positive operator, as can be seen from the literature (see, e.g., 

[31]): 

1) Assume that 𝐶(𝐴̆) is the space of all continuous functions in the interval [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], and first get 

all functions from 𝐶(𝐴̆). 

2) Determine the properties that the sequences (𝑝𝑠)  and (𝑞𝑠)  must satisfy in order to achieve 

convergence. 

3) Implement the new type (p,q)-Bernstein-Schurer operators defined by (5) on continuous functions. 

4) Compute ancillary results for test functions (1, 𝑡, 𝑡2) using the Korovkin theorem, which shows the 

existence of a positive linear operator. 

5) Determine the statistical limits to find convergence in a statistical sense through (5). 

The next algorithm gives us a method to select the function from 𝐶(𝐴̆) depending on our needs. 

 

 

 



23824 

AIMS Mathematics  Volume x, Issue x, 1–X Page. 

Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see by the following theorem that, Korovkin type theorem is also valid in the case of statistical 

convergence. 

Theorem 4. Let |𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝑤(𝑓, |𝑦 − 𝑥|) and for 0 < 𝑞𝑠 < 𝑝𝑠 < 1, lim
𝑠→∞

𝑝𝑠 = lim
𝑠→∞

𝑞𝑠 = 1. 

Also for 𝑐, 𝑑 ∈ (0,1], lim
𝑠→∞

𝑝𝑠
𝑠 = 𝑐,   lim

𝑠→∞
𝑞𝑠
𝑠 = 𝑑, and lim

𝑠→∞
[𝑠]𝑝𝑠 𝑞𝑠 = ∞. In this case, for all 𝑓 on 

𝐶(𝐴̆), 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑓; 𝑥) − 𝑓(𝑥)‖

 𝐶(𝐴̆)
= 0.                (26) 

Proof. Using 𝐿̃𝑠
(𝑝,𝑞)(1; 𝑥) = 1, we get 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(1; 𝑥) − 1‖

 𝐶(𝐴̆)
= 0. 

Input all functions 𝑓 ∈ 𝐶(𝐴̆) 

Input the operator 𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) 

 

Enter the values of p and q 

Bring the consequences of the 

test functions together. 

 

Determine the statistical limit 

using the results obtained for the 

test functions. 
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Similarly, using 𝐿̃𝑠
(𝑝,𝑞)(𝑦; 𝑥) = 𝑥

[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
, we have 

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦; 𝑥) − 𝑥‖

𝐶(𝐴̆)
= ‖−𝑥 + [𝑠 + 𝜂]𝑝𝑞

𝑥

[𝑠]𝑝𝑞
‖. 

For a given 𝜀 > 0, we define the next sets: 

𝑌1 = {𝑠: ‖𝐿̃𝑠(𝑡; 𝑥) − 𝑥‖ ≥ 𝜀}, 𝑌2 = {𝑠: 
−[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

+ 1 ≥ 𝜀}. 

Then, if we use 𝛿 {𝑘 ≤ 𝑠: 
−[𝑠+𝜂]𝑝𝑞

[𝑠]𝑝𝑞
+ 1 ≥ 𝜀}, we get 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦; 𝑥) − 𝑥‖

𝐶(𝐴̆)
= 0. 

Now, we show 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦2; 𝑥) − 𝑥2‖

𝐶(𝐴̆)
= 0. 

‖𝐿̃𝑠
(𝑝𝑠,𝑞𝑠)(𝑦2; 𝑥) − 𝑥2‖

𝐶(𝐴̆)
= (

[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

[−1 + 𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

𝑞 − 1)𝑥2 

+
[𝑠 + 1]𝑝𝑞
[2 + 𝑠]𝑝𝑞

𝑝𝑎+𝜂−1𝑥
[𝑠 + 𝜂]𝑝𝑞
[𝑠]2𝑝𝑞

. 

Here, we take 

𝐵𝑠 = −1 +
[−1 + 𝑠 + 𝜂]𝑝𝑞

[𝑠]𝑝𝑞
𝑞
[𝑠 + 𝜂]𝑝𝑞
[𝑠]𝑝𝑞

, 𝑢𝑠 =
[𝑠 + 𝜂]𝑝𝑞
[𝑠]2𝑝𝑞

+
[1 + 𝑠]𝑝𝑞
[𝑠 + 2]𝑝𝑞

𝑝𝑠+𝜂−1, 

And then, 𝑠𝑡 − lim
𝑠→∞

𝐵𝑠 = 𝑠𝑡 − lim
𝑠→∞

𝑢𝑠 = 0. 

For given 𝜀 > 0, we define the next sets: 

𝑀1 = {𝑠: ‖𝐿̃𝑠(𝑦
2; 𝑥) − 𝑥2‖ ≥ 𝜀},𝑀2 = {𝑠: 𝐵𝑠 ≥

𝜀

2
} ,𝑀3 = {𝑠: 𝑢𝑠 ≥

𝜀

2
}. 

Using 𝑀1 ⊆ 𝑀2 ∪𝑀3, we get 

𝛿{𝑘 ≤ 𝑠: ‖𝐿̃𝑠(𝑦
2; 𝑥) − 𝑥2‖  ≥ 𝜀} ≤ 𝛿 {𝑘 ≤ 𝑠: 𝐵𝑠 ≥

𝜀

2
} + 𝛿 {𝑘 ≤ 𝑠: 𝑢𝑠 ≥

𝜀

2
}. 

Then we have 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(𝑦2; 𝑥) − 𝑥2‖

𝐶(𝐴̆)
= 0. 
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So, for all 𝑓 ∈ 𝐶 [0,
[1+𝑠]𝑝𝑞

[𝑠+2]𝑝𝑞
], 

𝑠𝑡 − lim
𝑠→∞

‖𝐿̃𝑠
(𝑝,𝑞)(𝑓; 𝑥) − 𝑓(𝑥)‖

𝐶(𝐴̆)
= 0. 

4. New type (p,q)-Bernstein-Schurer functions 

Definition 2. For 𝑝 > 𝑞 , 𝑝, 𝑞 ∈ (0,1],  and 0 ≤ 𝑢 ≤
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
 ,  the new type (p,q)- 

Bernstein-Schurer functions are defined by 

𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (𝑢): =

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

𝑀𝑠(𝑢),                        (27) 

where 

𝑀𝑠(𝑢): = [
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 𝑢𝑘) ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑡𝑢)

𝑠+𝜂−𝑘−1

𝑡=0

. 

Theorem 5. The new type (p,q)-Bernstein-Schurer functions have the following properties on 

[0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
]: 

i. Non-Negativity: For 𝑘 = 0,1, … , 𝑠 + 𝜂  and 𝑢 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
] , 𝐿̃𝑠+𝜂,𝑘

(𝑝,𝑞) (𝑢) ≥ 0. 

ii. Partition of Unity: For all 𝑢 ∈ [0,
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
], ∑ 𝐿̃𝑠+𝜂,𝑘

(𝑝,𝑞) (𝑢)
𝑠+𝜂
𝑘=0 = 1. 

iii. End-Point Property: 𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (0) = 0 and 𝐿̃𝑠+𝜂,𝑘

(𝑝,𝑞)
(
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
) = 0. 

Proof. The property i. is easily obtained from the definition. 

ii. ∑ 𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (𝑢)

𝑠+𝜂
𝑘=0 = ∑

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

𝑠+𝜂
𝑘=0 𝑀𝑠(𝑢) 

=
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

∑[
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂𝑠+𝜂

𝑘=0

(𝑝
𝑘(𝑘−1)

2 𝑢𝑘) ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑡𝑢)

𝑠+𝜂−𝑘−1

𝑡=0

= 1. 

iii. 𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (0) =

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

𝑀𝑠(0) 

=
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

[
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 0𝑘) ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑡0)

𝑠+𝜂−𝑘−1

𝑡=0

 

=
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

[
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 0𝑘) ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)

𝑠+𝜂−𝑘−1

𝑡=0

. 
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So, we get 𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (0) = 0. 

On the other hand, 

𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞)

(
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

) =
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

[
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 (
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)

𝑘

) 

× ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)

𝑠+𝜂−𝑘−1

𝑡=0

 

=
1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

[
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 (
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

)

𝑘

) 

× (
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
)
𝑠+𝜂−𝑘−1

∏ (𝑝𝑡 − 𝑞𝑡)
𝑠+𝜂−𝑘−1
𝑡=0 . 

Here, if 𝑡 = 0, 𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞)

(
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
) = 0, and if 𝑡 ≠ 0 and 𝑝 = 𝑞, then 𝐿̃𝑠+𝜂,𝑘

(𝑝,𝑞)
(
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
) = 0. 

Lemma 4. Some (p,q)-Bernstein-Schurer polynomials according to their degrees are calculated as 

follows: 

𝐿̃0,0
(𝑝,𝑞)(𝑢) = 𝐿̃0,1

(𝑝,𝑞)(𝑢) = 𝐿̃0,2
(𝑝,𝑞)(𝑢) = ⋯ = 0, 

𝐿̃1,2
(𝑝,𝑞)(𝑢) = 𝐿̃1,3

(𝑝,𝑞)(𝑢) = 𝐿̃1,4
(𝑝,𝑞)(𝑢) = ⋯ = 0, 

𝐿̃1,1
(𝑝,𝑞)(𝑢) = 𝐿̃2,2

(𝑝,𝑞)(𝑢) = 𝐿̃3,3
(𝑝,𝑞)(𝑢) = ⋯ = 0, 

𝐿̃1,0
(𝑝,𝑞)(𝑢) = (

[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)(
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑢), 

𝐿̃2,0
(𝑝,𝑞)(𝑢) =

1

𝑝
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

2

(
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑢)(𝑝
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑢). 

5. Some special matrix applications 

In this section, considering that matrices also have applications in areas such as 

decision-making processes and cryptology, some important matrices have been constructed using (p, 

q)-Bernstein basis functions and made available to researchers. Let 𝑝 > 𝑞, 𝑝, 𝑞 ∈ (0,1], and 0 ≤

𝑢 ≤
[𝑠+1]𝑝𝑞

[𝑠+2]𝑝𝑞
. Various applications can be made regarding the (𝑝, 𝑞) version of some special matrices 

using the (p, q)-operators and polynomials we defined in this section. 
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For 𝑎𝑠
𝑝,𝑞
= (

[𝑠+2]𝑝𝑞

[𝑠+1]𝑝𝑞
)
𝑠+𝜂

, we write two (p,q)-Rhaly-type matrices ℜ𝑎𝑠
𝑝,𝑞 , ℜ̃𝑎𝑠

𝑝,𝑞: 

ℜ𝑎𝑠
𝑝,𝑞 =

(

 
 
𝑎1
𝑝,𝑞

𝑎2
𝑝,𝑞

𝑎3
𝑝,𝑞

0      0 ⋯
𝑎2
𝑝,𝑞

 0 ⋯ 

   𝑎3
𝑝,𝑞

𝑎3
𝑝,𝑞

⋯       

⋮ ⋮         ⋮  ⋱ )

 
 
=

(

 
 
 
 
 
 
       (

[3]𝑝𝑞
[2]𝑝𝑞

)

1+𝜂

         0                      0           …

       (
[4]𝑝𝑞
[3]𝑝𝑞

)

2+𝜂

 (
[4]𝑝𝑞
[3]𝑝𝑞

)

2+𝜂

           0          ⋱

       (
[5]𝑝𝑞
[4]𝑝𝑞

)

3+𝜂

 (
[5]𝑝𝑞
[4]𝑝𝑞

)

3+𝜂

 (
[5]𝑝𝑞
[4]𝑝𝑞

)

3+𝜂

  ⋱

          ⋮                    ⋮                         ⋮                   )

 
 
 
 
 
 

 

and 

ℜ̃𝑎𝑠
𝑝,𝑞 =

(

 
 
 
 

𝑎1
𝑝,𝑞

 0        0     …

𝑎2
𝑝,𝑞

[2]𝑝𝑞

𝑎1
𝑝,𝑞

[2]𝑝𝑞
  0      ⋯

  
𝑎3
𝑝,𝑞

[3]𝑝𝑞
⋮

     
𝑎2
𝑝,𝑞

[3]𝑝𝑞
⋮

𝑎1
𝑝,𝑞

[3]𝑝𝑞
⋮

⋯
 ⋱
)

 
 
 
 

 

=

(

 
 
 
 
 
 

                 (
[3]𝑝𝑞
[2]𝑝𝑞

)

1+𝜂

                        0                                 0           …

    
1

[2]𝑝𝑞
(
[4]𝑝𝑞
[3]𝑝𝑞

)

2+𝜂

        
1

[2]𝑝𝑞
 (
[4]𝑝𝑞
[3]𝑝𝑞

)

1+𝜂

                  0        ⋱

               
1

[3]𝑝𝑞
 (
[5]𝑝𝑞
[4]𝑝𝑞

)

3+𝜂

         
1

[3]𝑝𝑞
(
[4]𝑝𝑞
[3]𝑝𝑞

)

2+𝜂

    
1

[3]𝑝𝑞
(
[3]𝑝𝑞
[2]𝑝𝑞

)

1+𝜂

  ⋱

                    ⋮                                          ⋮                                       ⋮                   )

 
 
 
 
 
 

. 

The determinant of the 3 × 3 type ℜ𝑎𝑠
𝑝,𝑞 and ℜ̃𝑎𝑠

𝑝,𝑞 matrices is as follows. 

|ℜ𝑎𝑠
𝑝,𝑞

3×3
| =  (

[5]3𝑝𝑞
[4]𝑝𝑞!

)   (
[5]𝑝𝑞
[2]𝑝𝑞

)

𝜂

, 

|ℜ̃𝑎𝑠
𝑝,𝑞

3×3
| =   

(𝑝2 + 𝑞2)1+𝜂

[3]𝑝𝑞!
(
[3]𝑝𝑞
[2]𝑝𝑞

)

1+𝜂

. 

Using the (p,q)-Bernstein-Schurer polynomials, we can build another terraced-type matrix as 

follows. 
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𝐿̃𝑎𝑠
𝑝,𝑞 =

(

 
 

𝐿̃1,1
(𝑝,𝑞)(𝑢) 0 0             ⋯

𝐿̃2,1
(𝑝,𝑞)(𝑢)

𝐿̃3,1
(𝑝,𝑞)(𝑢)

⋮

𝐿̃2,2
(𝑝,𝑞)(𝑢)

𝐿̃3,2
(𝑝,𝑞)(𝑢)

⋮

0             ⋯

𝐿̃3,3
(𝑝,𝑞)(𝑢) ⋯

⋮            ⋱ )

 
 
=

(

 
 

                 0              0          0          …      

    𝐿̃2,1
(𝑝,𝑞)(𝑢)      0          0         …

    𝐿̃3,1
(𝑝,𝑞)(𝑢) 𝐿̃3,2

(𝑝,𝑞)(𝑢)    0        ⋯

           ⋮                ⋮             ⋮        ⋱ )

 
 

 

Here are a few values of 𝐿̃𝑖,𝑗
(𝑝,𝑞)(𝑢) in the matrix: 

𝐿̃2,1
(𝑝,𝑞)(𝑢) =  

1

𝑝
[
3
1
]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

2

(
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

𝑢 − 𝑞𝑡𝑢2), 

𝐿̃3,1
(𝑝,𝑞)(𝑢) =

1

𝑝3
 [
3
1
]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

3

𝑢3 (
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑢)(𝑝
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑢), 

𝐿̃3,2
(𝑝,𝑞)(𝑢) =

1

𝑝2
 [
3
2
]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

3

𝑢2 (
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑢). 

The determinant of the 3 × 3 type 𝐿̃𝑎𝑠
𝑝,𝑞 matrix is |𝐿𝑎𝑠

𝑝,𝑞

3×3
| = 0. 

Another useful matrix that can be constructed using the above polynomials is as follows. 

𝐿̃̃𝑎𝑠
𝑝,𝑞 =

(

 
 

            1                   0             0     …   

     𝐿̃1,1
(𝑝,𝑞)(𝑢)             1           0      …

    𝐿̃2,1
(𝑝,𝑞)(𝑢)      𝐿̃2,2

(𝑝,𝑞)(𝑢)       1     ⋯

                  ⋮                   ⋮              ⋮      ⋱)

 
 
          

= (

    
      1                       0           0   …
      0                        1           0   …

      𝐿̃2,1
(𝑝,𝑞)(𝑢)               0            1   …  

            ⋮                         ⋮             ⋮       ⋱

) 

Also, the determinant of the 3 × 3 type 𝐿̃̃𝑎𝑠
𝑝,𝑞 matrix is 0. That is |𝐿̃̃𝑎𝑠

𝑝,𝑞

3×3
| = 0. 

6. Secure image transmission and the (p,q)-Bernstein-Schurer polynomial 

In this section, we bring together the Rivest Shamir Adleman (RSA) method, from the literature, 

which we prefer because it is secure depending on the key state being used, and an approach that 

uses polynomials to increase password security. We present a modification of the method in [8] that 

uses polynomials to compress the encrypted image and decrypt it at the receiver to restore the image. 

According to this method, the compressed image is encrypted at the sender’s end and decrypted by 

the receiver using the proposed encryption algorithm. The decrypted image is decompressed to 

recover the master image. The difficulty with the RSA method is that it requires the plaintext to be 
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represented as an integer [8]. To overcome these difficulties and take advantage of the characteristics 

of the method, in our study, we propose a (p,q)-polynomial method that encrypts the plaintext based 

on the polynomial points we define. 

The components of the encryption and decryption process are the algorithm used and the keys. 

A key is a secret numerical data shared in advance between the sender and the receiver, unknown to 

others, and of a certain length for each cryptosystem. Encryption algorithms are called secret-key 

cryptosystems when the keys of the sender and receiver are the same, and public-key cryptosystems 

when the keys are different. In the second method, there are two keys, one public and one private, 

with a mathematical relation between them. The first one used for encryption is publicly available. In 

this study, the Rivest Shamir Adleman (RSA) method, which is one of the public key algorithms, is 

used because of the lower risk of key disclosure and interception. Although it takes longer to be 

decrypted by the recipient, RSA is still the preferred method because the method uses less memory 

for encrypted data and third parties cannot easily crack the password. 

There are many methods to transfer information with minimal loss, and the basic idea is to make 

different changes and complicate the bits of the pixels. In digital systems, information can be 

expressed in the form of a sequence of bits. When converting a decimal number to a binary number, 

the number is divided by 2 until the quotient is less than 2, the remainder is taken from each division, 

and the remainder is written sequentially from left to right, starting from the last division. When 

converting a binary number to a decimal number, the numbers consisting of 0 and 1 are multiplied by 

the power of 2, starting from zero and increasing by one, to be used in order from right to left. The 

results are summed and the decimal number is found. In the binary notation of a number, the leftmost 

digit, which is represented by the largest exponential value in base 2, is the most significant value for 

that number, called the most significant bit (MSB). On the other hand, the rightmost digit of the 

number, which is expressed with the smallest exponential value in base 2, is the least significant 

value (LSB) for that number. Therefore, this indicates that changing the MSB digit of a number in 

binary notation is the largest change that can be made to that number, and changing the LSB digit is 

the smallest change [32]. 

In this section, an approach that uses (p,q)-polynomials to increase password security aims to 

minimize losses and obtain a more detailed image than the classical Bernstein operator. In addition, a 

more secure encryption is achieved by making the operator dependent on p and q variables, similar to 

the increase in security obtained by using multivariate polynomials. 

First of all, we should start by reminding the reader of the notation of the 

(p,q)-Bernstein-Schurer basic functions we defined. 

𝐿̃𝑠+𝜂,𝑘
(𝑝,𝑞) (𝑢) =

1

𝑝
(𝑠+𝜂)(𝑠+𝜂−1)

2

𝑀𝑠(𝑢), where 

𝑀𝑠(𝑢) = [
𝑠 + 𝜂
𝑘

]
𝑝𝑞
(
[𝑠 + 2]𝑝𝑞
[𝑠 + 1]𝑝𝑞

)

𝑠+𝜂

(𝑝
𝑘(𝑘−1)

2 𝑢𝑘) ∏ (𝑝𝑡
[𝑠 + 1]𝑝𝑞
[𝑠 + 2]𝑝𝑞

− 𝑞𝑡𝑢)

𝑠+𝜂−𝑘−1

𝑡=0

. 

(𝑥, 𝑦) coordinates are calculated according to the polynomial degree and the image is obtained for 

(p,q)-Bernstein-Schurer coordinate elements. This method uses the (p,q)-Bernstein-Schurer image to 

squeeze the input image and then the squeezed image is encrypted using a prepared algorithm. At the 

time of compression, the input is partitioned with the help of the (p,q)-Bernstein-Schurer image. This 

algorithm is an adaptation of the algorithm presented in [8] for the classical Bernstein operator to the 
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operator we defined. 

Stage 1: Determine the numbers p and q. Partition the input with the help of the 

(p,q)-Bernstein-Schurer image. 

Stage 2: Select key pairs (Ϗ𝑢, ϗ𝑟), where Ϗ𝑢 is the public key and ϗ𝑟 is the private key. 

Stage 3: Select the hidden reference value Ϗ on the curve based on the (p,q)-Bernstein-Schurer 

polynomial. 

Stage 4: The original text points are considered as pixel values of the squeezed image. 

Stage 5: Let ԗ ≔ (𝑠 + 𝜂)2 + (𝑠 + 𝜂) − 4𝐼 . Determine (Ԗ Ϗ𝑢⁄ )(𝑚𝑜𝑑𝐺𝐹(ԗ)) = æ (perform) 

achieved by the point division formula. 

Using the pixel value Ԗ of the squeezed image, æ = Ԗ+ (𝑠 + 𝜂)(Ϗ𝑢 −Ԗ)(𝑚𝑜𝑑𝐺𝐹(ԗ)). 

Stage 6: For hidden reference value Ϗ,  perform (æ Ϗ⁄ )(𝑚𝑜𝑑𝐺𝐹(ԗ)) = 𝔖  to produce the 

encrypted image where 𝔖 = æ+ (𝑠 + 𝜂)(Ϗ − æ)(𝑚𝑜𝑑𝐺𝐹(ԗ)). 

Stage 7: The encrypted image is sent to the receiving end. 

Stage 8 (decryption): The receiver gets the encrypted image and starts to perform decryption. 

Stage 9: Perform point multiplication on 𝔖 and Ϗ (𝑚𝑜𝑑𝐺𝐹(ԗ)) = æ̃ using the hidden reference 

value Ϗ to be shared between the two sides using any secure key exchange algorithm, Ϗ æ̃ =

((𝑠 + 𝜂)Ϗ − 𝔖) (𝑠 + 𝜂 − 1)⁄ (𝑚𝑜𝑑𝐺𝐹(ԗ)). 

Stage 9: Decryption performs (æ̃ ϗ𝑟⁄ )(𝑚𝑜𝑑𝐺𝐹(ԗ)) = Ԗ , where Ԗ = ɓ̃ + 1/ ((𝑠 + 𝜂)(ϗ𝑟 −

ɓ̃)) (𝑚𝑜𝑑𝐺𝐹(ԗ)). If the receiver uses a suitable private key, this is the pixel value of the compressed 

image. Here, the relationship between Ϗ𝑢  and ϗ𝑟  is ϗ𝑟 = (𝑠 +

𝜂) [((ɓ − (𝑠 + 𝜂)Ϗ𝑢) (1 − (𝑠 + 𝜂))⁄ + (ɓ(1 − (𝑠 + 𝜂)) (𝑠 + 𝜂)⁄ ))] (𝑚𝑜𝑑𝐺𝐹(ԗ)) . When æ , 

æ̃ are substituted in the polynomial, the resulting value is ɓ, ɓ̃, respectively. 

Stage 10: The decrypted image is decompressed to get the parent image. 

7. Discussion 

Cryptology plays a major role in the dynamic development process regarding information 

security. The most important part of cryptography is the data encryption method. Many different 

methods have been developed and are being developed for this purpose. In this paper, we exploit the 

difficulties of (p,q)-numbers and polynomials to reduce the decrypt ability of encryption in order to 

prepare useful material for the data encryption algorithm. 

For this purpose, important approximation results of the (p,q)-operator defined here for the first 

time were given. We defined a modification of the (p,q)-Bernstein-Schurer operators and we saw that 

the choice of p and q was important in order to reveal the approximation. We believe that we have 

brought a useful operator to the literature where the interval is important, since we can achieve the 

goals related to the approach situation that we have set out while defining the operator. The 

advantage of our study compared to many other articles in this field is that it contains numerical 

calculations and visual elements obtained with a mathematical drawing program. 

In the study given in [33], the Kantorovich family of operators was used to process the image 
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with computed tomography in research aimed at facilitating the adaptation of the vessel to heart 

contraction-relaxation movements by increasing the lumen of the vessel, allowing the image to be 

reconstructed and improved. Considering that the two-variable generalizations of the operator we 

have defined will detail the image and enable better imaging, this new operator will be important for 

future studies in the health field. As a note for future researchers, based on the result obtained above 

that the operator gives better approximation graphs when p and q are chosen close to each other, it is 

predicted that similar results will be obtained in the two-dimensional version of the operator. 

In [34], Bezier curves, a concept related to Bernstein polynomials, were used to propose a 

solution to a real-world problem. In this study, important results were presented regarding a 

collision-free arrival at the desired target in multiple drone use. With a similar idea, the results can be 

analyzed with the help of control points and polynomials of appropriate degree by taking into 

account the results of Section 4 in our study to prevent collisions in the process of maximum hover 

performance with minimum energy and reaching the desired target in the use of multiple drones. 

Therefore, our results can be used for potential applications in both medical (diagnostic imaging) 

and strategic security (UAV route determination) areas, where we have presented similar application 

examples. 

Moreover, we defined some special matrices with the help of (p,q)-polynomials obtained from 

the operator. For classical forms of matrices, see, for example, [35] and [36]. These matrices can be 

transferred to different application areas with many algebraic operations in matrix theory. 

In our study, we modified the method in [8], which was developed for classical Bernstein 

polynomials, by using both (p,q)-integers and the Schurer version of polynomials to increase 

password security. With this method, a useful encryption method was presented by reducing the 

processing time and computational complexity. The security of the algorithm has been increased 

through the information shared between the parties with the help of any secure key exchange 

algorithm. 

8. Conclusions 

We have presented a modification of Bernstein-Schurer operators and then calculated the 

moments of those operators. We also gave convergence properties of this generalization. We 

conclude that the approximation properties provided for different modifications of this operator are 

provided for our operator, which we defined to include the right endpoint of the interval. Researchers 

who want to work in this field can produce new operators by combining a different operator with this 

operator or by including a polynomial, thus contributing to the development of approximation theory. 

In addition, researchers in this field can examine different types of convergence for the operators, 

since we have shown that the statistical convergence conditions are met, e.g., [37]. 

As it is known, matrix theory is an important field of mathematics where active studies continue 

and contains important tools for many scientific fields. In this sense, in order to offer a useful and 

dynamic topic to researchers who would be inspired by our work, we included some small 

information from matrix theory, which contains the keys to new important topics. By using the 

special matrices included in the study, many different special matrices can be created with the help of 

(p,q)-polynomials obtained from the operator we defined, and transition can be made to the field 

where these matrices are applied or needed. 

In the last part of our study, we adapted the method in [8] for classical Bernstein polynomials to 
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the Bernstein-Schurer operator by using the properties of (p,q)-integers and polynomials in order to 

increase information security. With this method, the algorithm was made more secure with the help 

of a secure key exchange algorithm, and the decrypt ability of the cipher by third parties is reduced 

due to the difficulties of the sum formula and polynomials. Therefore, based on this study, 

researchers can develop different encryption algorithms by using this operator or different operators 

with useful features. 

This study can be combined with studies such as [38–41], which use different methods and 

include new image encryption algorithms to provide the basic features of a good encryption structure, 

and important studies containing comprehensive cryptological information can be produced. 

As another application of our study, future studies can be prepared on the polynomials related to 

the operator we defined, or special cases of them can be used in order to obtain the approximate 

numerical solution of partial differential equations or kinetic equations, which are important tools of 

joint studies in applied mathematics and physics, e.g., [42,43]. 
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