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Abstract: In this paper, we studied the AA-iterative algorithm for finding fixed points of the class of
nonlinear generalized (α, β)-nonexpansive mappings. First, we proved weak convergence and then
proved several strong convergence results of the scheme in a ground setting of uniformly convex
Banach spaces. We gave a few numerical examples of generalized (α, β)-nonexpansive mappings to
illustrate the major outcomes. One example was constructed over a subset of a real line while the
other one was on the two dimensional space with a taxicab norm. We considered both these examples
in our numerical computations to show that our iterative algorithm was more effective in the rate of
convergence corresponding to other fixed point algorithms of the literature. Some 2D and 3D graphs
were obtained that supported graphically our results and claims. As applications of our major results,
we solved a class of fractional differential equations, 2D Voltera differential equation, and a convex
minimization problem. Our findings improved and extended the corresponding results of the current
literature.
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1. Introduction

Mathematicians are always interested in finding the solutions of nonlinear problems but some
problems may not be approached by analytical methods to solve such problems, though the fixed
theory plays a key role [1]. In this area, two major directions for research: One is for the existence
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of fixed points, and to establish a broad class of mappings and conditions; and the other is to define
iterative processes to find those fixed points.

A prominent result of fixed point theory is due to the famous functional analysis founder Banach [2].
This prominent result provides the fixed point (FP) existence for a special class of nonlinear operators
called contractions and comes up with an iterative approach to approximate the FP using an algorithm
called the Picard iterative algorithm. By retaining the convergence property and by weaking the
contraction hypothesis, the researchers attempted to generalize Banach’s contraction.

Nonexpansive mappings are generalizations of contraction mappings. A selfmap η on a nonempty
subset E of a Banach space B(from now to onward B will represent Banach space) is called
nonexpansive, if for all x, y ∈ E and||η(x) − η(y)|| ≤ ||x − y|| holds. If there is atleast one FP for η,
then we will denote and define the set of all FPs of η by F(η) = {x : η(x) = x}. If η is nonexpansive
and F(η) is nonempty, and for all x ∈ E and p ∈ F(η), the inequaltiy ||η(x) − p|| ≤ ||x − p|| holds, and
we regard such a selfmap as a quasi-nonexpansive on E [3]. The nonexpansive selfmap η of E has a
FP when the domain of the map is convex bounded and closed in any provided reflexive Banach space
B [4]. The existence of FPs for nonexpansive maps were also studied by Browder [5] and Göhde [6],
who obtain a result similar to the result in [4].

Suzuki [7] introduced a weaker notion for nonexpansive mappings known as Condition(C). A
selfmap η on subest E of B is regarded as mappings with Condition (C), if for any pair of points,x, y ∈ E
whenever 1

2 ||x−η(x)|| ≤ ||x−y||, then ||η(x)−η(y)|| ≤ ||x−y|| holds. The class of mappings introduced by
Suzuki [7] was a significant advancement because these mappings effectively extended the concept of
nonexpansive nonlinear operators in a novel and straightforward manner. It is also important that the
class of mappings that are enriched with the Condition(C) are also called as Suzuki’s generalized
nonexpansive mapping. Although Suzuki mappings with fixed points are quasi-nonexpansive and
hence these mappings are not general than the class of quasi-nonexpansive maps. For proving that
the Suzuki mappings properly includes nonlinear nonexpansive maps, some examples are constructed
in [7, 8] and other papers.

Aoyama and Koshaka [9] introduced the class of α-nonexpansive maps in 2011, which are described
as follows: Let E be a subset of B. A selfmap η on E is said to be α-nonexpansive, if α ∈ [0, 1) can be
found such that the following inequality holds for each pair of x, y ∈ E.

‖η(x) − η(y)‖2 ≤ α‖x − η(y)‖2 + α‖y − η(x)‖2 + (1 − 2α)‖x − y‖2.

Clearly, for α = 0, we have again nonexpainsive mapping i-e., every nonexpansive mapping is
a α-nonexpansive but the converse is not valid. For α > 0 an example in [9], which reveals the
discountitnuity for α-nonexpansive mappings, and shows the fact that the class of α-nonexpanisve
mappings is vast than the class of nonexpansive mappings. For more details, see [10].

In 2017, Pant and Shukla [11] studied a new type of extension of nonlinear nonexpansive maps in
Banach spaces and suggested the concept of generalized α-nonexpansive maps: The selfmap η will be
called a generalized α-nonexpansive whenever one has

1
2
‖x − η(x)‖ ≤ ‖x − y‖

then,
‖η(x) − η(y)‖ ≤ α‖x − η(y)‖ + α‖y − η(x)‖ + (1 − 2α)‖x − y‖,
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for any choice of x, y ∈ E and a real number α, which is fixed and 0 ≤ α < 1.
In other words, the class of generalized α-nonexpansive mappings contains nonexpansive mappings;

however, the opposite is not true [11]. It is evident that for α = 0, the generalized α-nonexpansive
mapping again becomes Suzuki’s nonexpainsive mapping. In the context of Banach space, numerous
mathematicians have attempted to approximate the FP of generalized α-nonexapnsive mappings [12].

In 2019, Pant and Pandey [13] studied a new type of extension of nonlinear nonexpansive maps
in Banach spaces and suggested the concept of β-nonexpansive maps: The selfmap η will be called a
Reich-Suzuki nonexpansive whenever one has

1
2
‖x − η(x)‖ ≤ ‖x − y‖

then,
‖η(x) − η(y)‖ ≤ β‖x − η(x)‖ + β‖y − η(y)‖ + (1 − 2β)‖x − y‖,

for any choice of x, y ∈ E and a real number β, which is fixed and 0 ≤ β < 1.
Clearly, for β = 0, the β-Reich-Suzuki nonexpansive mapping becomes Suzuki’s nonexpansive

mapping i-e., every Suzuki map can be regarded as a Reich-Suzuki map but the converse is not
true [13].

In 2020, Ullah et al. [14] enriched the study of nonexpansive mappings with a novel class of
generalized mappings: The selfmap η will be called a generalized (α, β)-nonexpansive provided that

1
2
‖x − η(x)‖ ≤ ‖x − y‖

then,

‖η(x) − η(y)‖ ≤ α‖x − η(y)‖ + α‖y − η(x)‖ + β‖x − η(x)‖ + β‖y − η(y)‖ + (1 − 2α − 2β)‖x − y‖,

for any choice of x, y ∈ E and real numbers α, β which are fixed and 0 ≤ α, β < 1 and α + β ≤ 1.
The authors in [14] compared this new class of maps with the already existing classes of mappings

given above. More study on these mappings were carried out in [14, 15], which further explored the
importance of these mappings.

Numerous iterative algorithms for numerical solutions have been studied by various authors, with
their applications extending to a wide range of applied sciences problems [16, 17]. Banach result [2]
shows that for any contraction in a complete spaces, the fixed point is essentially the limit point for the
Picard algorithm. The iterative sequence {xn} can be produced using Picard iterations as:x1 ∈ E,

xn+1 = η(xn), for n ∈ N.
(1.1)

The Picard algorithm generates the above sequence, which converges to the fixed point of contractive
mapping but not of nonexpansive mapping in general.

Mann [18] presented an iterative approach to approximate FPs for nonexpansive mappings. For an
appropriate sequence {σn} in (0, 1), the sequence {xn} obtained by Mann is:x1 ∈ E,

xn+1 = (1 − σn)xn + σnη(xn), for n ∈ N.
(1.2)
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If η is pseudo-contractive mapping, the Mann algorithm fails to converge the FP of η. Ishikawa [19]
overcomes this problem by defining a two-steps iterative algorithm. For two appropriate sequences
{σn} and {λn} in (0, 1), then the sequence {xn} obtained by the Ishikawa algorithm is given as:

x1 ∈ E,

xn+1 = (1 − σn)xn + σnη(yn),
yn = (1 − λn)xn + λnη(xn), for n ∈ N.

(1.3)

Noor [20], the pioneer of three-steps iterative algorithms, introduced a three-steps iteration process
in 2000, which is faster than Ishikawa’s two-steps iterative algorithm. For an arbitrary x1 in E and for
three sequences of real numbers {σn}, {λn}, and {ξn} in (0, 1), then the sequence {xn} obtained by this
algorithm is given as: 

xn+1 = (1 − σn)xn + σnη(yn),
yn = (1 − λn)xn + λnη(zn),
zn = (1 − ξn)xn + ξnη(xn), n ∈ N.

(1.4)

In 2007, Agarwal [21] introduced the following iterative algorithm:
x1 ∈ E,

xn+1 = (1 − σn)η(xn) + σnη(yn),
yn = (1 − λn)xn + λnη(xn), n ∈ N.

(1.5)

where, {σn} and {λn} are sequences in (0, 1).
Abbas and Nazir [22] come with another three-step iterative algorithm in 2014. For an arbitrary

x1 in E and for three sequences of real numbers {σn}, {λn}, and {ξn} in (0, 1), then the sequence {xn}

obtained by them is given as: 
xn+1 = (1 − σn)η(yn) + σnη(zn),
yn = (1 − λn)η(xn) + λnη(zn),
zn = (1 − ξn)xn + ξnη(xn), n ∈ N.

(1.6)

Thakur et al. [8] proposed another three-step iterative algorithm in 2016. For an arbitrary {x1} in E
and for three sequences of real numbers {σn}, {λn}, and {ξn} in (0, 1), then the sequence {xn} obtained
by Thukar is given as: 

xn+1 = (1 − σn)η(zn) + σnη(yn),
yn = (1 − λn)zn + λnη(zn),
zn = (1 − ξn)xn + ξnxn, n ∈ N.

(1.7)

Ullah and Arshad [23] introduced a new iterative algorithm in 2018 known as M-Iteration. For an
arbitrary sequence x1 in E and for appropriate sequence of real number {σn} in (0, 1), then the sequence
{xn} obatained by the M-Iterative algorithm is:

xn+1 = η(yn),
yn = η(zn),
zn = (1 − σn)xn + σnη(xn), n ∈ N.

(1.8)
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Ullah et al. [24] proposed a new iterative algorithm in 2022 known as the KF-Iteration. For an
arbitrary x1 in E and for two appropriate sequences of real number {σn} and {ξn} in (0, 1), then the
sequence {xn} obatained by the KF-Iterative algorithm is:

xn+1 = η((1 − σn)η(xn) + σnη(yn)),
yn = η(zn),
zn = η((1 − λn)xn + λnη(xn)), n ∈ N.

(1.9)

In 2022, Abbas et al. [25] proposed the AA-Iterative algorithm. For the class of contractive
mappings and enhanced contractive mappings, the AA-Iterative algorithm converges faster than the
approaches outlined before. For an arbitrary x1 in E and for three sequences of real numbers {σn}, {λn},
and {ξn} in (0, 1), then the sequence {xn} obtained with the help of the AA-iterative algorithm is given
as: 

xn+1 = η(yn)
yn = η((1 − σn)η(hn) + σnη(zn),
zn = η((1 − λn)hn + λnη(hn)),
hn = (1 − ξn)xn + ξnη(xn), n ∈ N.

(1.10)

In 2019, Ali et al. [26] proved the convergence results for Suzuki’s-type generalized nonexpansive
mappings. To approximate the FP of a more generalized nonexpansive mapping as fast as possible
is of great interest of mathematicians due to the theoratical and practical applications of fixed point
theory in nonlinear equations. Motivated by [14, 15, 25–27], we will prove some weak and strong
convergence theorems using the AA-Iterative algorithm (1.10) for the class of generalized(α, β)-
nonexpasive mappings in uniformly convex Banach space B.

2. Preliminaries

The following concepts are needed in the main outcome.

Definition 2.1. [28] Suppose B represents a norm space which satisfies the condition: For each
selected ε in the interval (0, 2], one has a real number namely 0 < δ < ∞ such that ‖v − s‖ ≥ ε; then,
for each v, s ∈ B satisfying ‖v‖ ≤ 1, ‖s‖ ≤ 1, it follows that

‖
v + s

2
‖ ≤ 1 − δ.

If any norm space B satisfying the above condition, we call it a uniformly convex norm space.

Definition 2.2. [29] For a given norm space B, we say that B is endowed with the has Opial Property
whenever for any sequence {sn} in the space B if it is weakly convergent to v, it is the case that;

lim sup
n→∞

‖sn − v‖ < lim sup
n→∞

‖sn − u‖, for any choice of u ∈ B,

where v , u.
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Definition 2.3. [30] Take a point, namely s, in a norm space B and assume that {sn} is a bounded
sequence composed of points of B. Consider the functional.

Υ(s, sn) = lim sup
n→∞

‖s − sn‖.

• Then, the asymptotic radius, which we denote here as Υ(E, {sn}), shows that E is any subset of B it
reads as follows:

Υ(E, {sn}) = inf{Υ(s, {sn}) : s ∈ E}.

• Similarly, the asymptotic center is denoted by A(E, {xn}) and reads as follows:

A(E, {sn}) = {s ∈ E : Υ(s, {sn}) = Υ(E, {sn}).

• In the case when B is Banach space and uniformly convex, then the asymptotic center admits a unique
point.

Definition 2.4. [29] Suppose E , ∅ be a closed convex subset of Banach space B then, the mapping
η : E → B is demiclosed, if for every {xn} ∈ E which converge weakly to some x0 ∈ E and the strong
convergence of sequence {η(xn)} to y0 ∈ B =⇒ η(x0) = y0.

Definition 2.5. [31] Assume that E , ∅ is a subset in a norm space B. The map η : E → E is
called map with condition (I) whenever one has a funtion Υ : [0,∞) → [0,∞) such that Υ(0) = 0 and
Υ(t) > 0,∀ t > 0, one has

d(s, ηs) ≥ Υ(d(s, F(η))),∀s ∈ B,

here , d(s, F(η) = inf{d(s, p) : p ∈ F(η)}.

The following proposition is due to Ullah et al. [14].

Proposition 2.6. For a selfmap η over the nonempty closed convex subset E of B, then the following
results can be obtained directly:

a. The Suzuki nonexpansiveness of η leads us to the fact that η is nonexpansive on the set E.
b. The generalized nonexpansiveness of η leads us to the fact that η is α-nonexpansive on the set E.
c. The generalized nonexpansiveness of η leads us to the fact that η is β-Reich-Suzuki nonexpansive

on the set E.

Lemma 2.7. [14] Any generalized (α, β)- nonexpansive selfmap η on any subset namely E of a norm
space B form a quasi-nonexpansive map on E.

Lemma 2.8. [14] The fixed point set associated with a (α, β)- nonexpansive selfmap η is always closed
in the setting of Banach space.

Lemma 2.9. [14] Any generalized (α, β)- nonexpansive selfmap η on any subset namely E of a norm
space B satisfies the following:

‖v − ηs‖ ≤
(
3 + α + β

1 − α − β

)
‖v − ηs‖ + ‖v − s‖,

for any choice of v, s ∈ E.
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Lemma 2.10. [14] Assume that η denotes any map that is essentially defined on a closed subset E
of any given complete norm space B. Suppose E is endowed with the Opial Property and the map is
generalized (α, β)-nonexpansive on the set E. Consider {sn} as being convergent to any element s ∈ B
in the weak sense with lim

n→∞
‖η(sn) − sn‖ = 0. In this case, (I − η) is demiclosed at zero, i.e., ηs = s.

Lemma 2.11. [32] (Property of uniform convexity) For Banach space B, which is uniformly convex,
and take any sequence 0 < ζt < 1,∀t ∈ N. Consider {xt} and {yt} that form two sequences of elements
of B satisfying lim sup

t→∞
‖xt‖, lim sup

t→∞
‖yt‖ ≤ ρ, and lim sup

t→∞
‖ζtxt + (1 − ζt)yt‖ = ρ where ρ is a positive

constant. Eventually, it follows that lim
t→∞
‖xt − yt‖ = 0.

3. Weak and strong convergence results

In recent years, we note that different iterative methods are used for the fixed point construction
of nonlinear maps. This section proposes new fixed point results for the faster iterative scheme (1.10)
under mild conditions in a Banach space context. In all the major results, we write simply B for a
unifomly convex Banach space. We consider the following result to start the section.

Lemma 3.1. Define a selfmap η on any subset E that is closed and convex in B. If η forms a
generalized (α, β)-nonexpansive map having nonempty fixed point F(η), then, for the sequence of
iterations in (1.10), we have lim

n→∞
‖xn − p‖, which exists by taking any point p in the set F(η).

Proof. Taking any point, namely p ∈ F(η), and suppose s ∈ E, then according to Lemma 2.7, η is
quasi-nonexpansive on the set E, that is,

‖ηs − p‖ ≤ ‖s − p‖.

Therefore, keeping the above fact in mind, it follows from (1.10) that

‖hn − p‖ = ‖(1 − ξn)xn + ξnη(xn) − p‖

≤ (1 − ξn)‖xn − p‖ + ξn‖η(xn) − p‖. (3.1)

From the generalized (α, β)-nonexpansiveness and nonexpansiveness of η, one has

‖η(xn) − p‖ ≤ ‖η(xn) − η(p)‖
≤ α‖p − η(xn)‖ + α‖xn − η(p)‖ + β‖p − η(p)‖ + β‖xn − η(xn)‖

+(1 − 2α − 2β)‖xn − p‖

≤ α‖p − η(xn)‖ + α‖xn − p‖ + β‖xn − η(xn)‖
+(1 − 2α − 2β)‖xn − p‖

≤ α‖p − xn‖ + α‖xn − p‖ + β‖xn − p‖ + β‖p − η(xn)‖
+(1 − 2α − 2β)‖xn − p‖

≤ ‖xn − p‖. (3.2)

Keeping in mind (3.2) and (3.1), one concludes that

‖hn − p‖ ≤ (1 − ξn)‖xn − p‖ + ξn‖xn − p‖
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≤ ‖xn − p‖. (3.3)

If cn = (1 − λn)hn + λnη(hn), we have

‖zn − p‖ = ‖η(cn) − p‖. (3.4)

Now,

‖η(cn) − η(p)‖ ≤ α‖p − η(cn)‖ + α‖cn − p‖ + β‖p − η(p)‖ + β‖cn − η(cn)‖
+(1 − 2α − 2β)‖cn − p‖

≤ ‖cn − p‖. (3.5)

Now, by using cn = (1 − λn)hn + λnη(hn), we have

‖cn − p‖ = ‖(1 − λn)hn + λnη(hn) − p‖

≤ (1 − λn)‖hn − p‖ + λn‖η(hn) − p‖. (3.6)

Now,

‖η(hn) − p‖ ≤ α‖p − η(hn)‖ + α‖hn − p‖ + β‖p − η(p)‖ + β‖hn − η(hn)‖
+(1 − 2α − 2β)‖hn − p‖

≤ ‖hn − p‖. (3.7)

Now, by using (3.3) and (3.7) in (3.6), we have

‖cn − p‖ ≤ ‖xn − p‖. (3.8)

It follows from (3.4), (3.5), and (3.8)

‖zn − p‖ ≤ ‖xn − p‖. (3.9)

Now, by taking dn = (1 − σn)η(hn) + σnη(zn), we have

‖yn − p‖ = ‖η(dn) − p‖

= ‖η(dn) − η(p)‖
≤ α‖p − η(dn)‖ + α‖dn − η(p)‖ + β‖p − η(p)‖ + β‖dn − η(dn)‖

+(1 − 2α − 2β)‖dn − p‖

≤ ‖dn − p‖. (3.10)

Now,

‖dn − p‖ = ‖(1 − σn)η(hn) + σnη(zn) − p‖

≤ (1 − σn)‖η(hn) − p‖ + σn‖η(zn) − p‖. (3.11)

Thus,

‖η(zn) − p‖ = ‖η(zn) − η(p)‖
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≤ α‖p − η(zn)‖ + α‖zn − η(p)‖ + β‖p − η(p)‖ + β‖zn − η(zn)‖
+(1 − 2α − 2β)‖zn − p‖

≤ ‖zn − p‖. (3.12)

Hence, by using (3.7), (3.12) in (3.11), we have

‖dn − p‖ ≤ (1 − σn)‖hn − p‖ + σn‖zn − p‖. (3.13)

By (3.3), (3.9), and (3.13), we obtain

‖dn − p‖ ≤ ‖xn − p‖. (3.14)

It follows from (3.10) and (3.13)
‖yn − p‖ ≤ ‖xn − p‖. (3.15)

Now,

‖xn+1 − p‖ = ‖η(yn) − p‖

= ‖η(yn) − η(p)‖
≤ α‖p − η(yn)‖ + α‖yn − η(p)‖ + β‖p − η(p)‖ + β‖yn − η(yn)‖

+(1 − 2α − 2β)‖yn − p‖

≤ ‖yn − p‖. (3.16)

Using (3.9) in (3.16), one has
‖xn+1 − p‖ ≤ ‖xn − p‖.

Eventually, we see that {‖xn+1 − p‖} has the property that for any p ∈ E, it does not increases and is
bounded. From the basic concept of analysis, we conclude that lim

n→∞
‖xn − p‖ exists. �

Lemma 3.2. Define a selfmap η on any subset E that is closed and convex in B. If η forms a generalized
(α, β)-nonexpansive map having fixed point F(η). Then, for the sequence of iterations in (1.10), we
have lim

n→∞
‖ηxn − xn‖ = 0 if and only if F(η) is nonempty in E.

Proof. If F(η) contains at-least one element, then we can assume that p is a point of F(η). It
immediately follows from 3.1 that lim

n→∞
‖xn − p‖ exists, and the sequence of iterations {xn} is essentially

bounded in E. Thus, we can assume that

lim
n→∞
‖xn − p‖ = κ. (3.17)

From (3.9), (3.12), and (3.15), we have

lim sup
n→∞

‖hn − p‖ ≤ lim sup
n→∞

‖xn − p‖ ≤ κ, (3.18)

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖xn − p‖ ≤ κ, (3.19)

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖xn − p‖ ≤ κ. (3.20)
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It follows from (3.2) that we have

‖η(xn) − p‖ = ‖η(xn) − η(p)‖ ≤ κ
=⇒ lim sup

n→∞
‖η(xn) − p‖ ≤ κ. (3.21)

So,
‖xn+1 − p‖ = ‖η(yn) − η(p)‖ ≤ ‖yn − p‖. (3.22)

Considering limit on (3.22) as follows, we have

κ ≤ lim inf
n→∞

‖yn − p‖. (3.23)

It follows from (3.20) and (3.23), that

lim inf
n→∞

‖yn − p‖ = κ. (3.24)

Regarding (3.22), (3.10), (3.11), and (3.12), one has

‖xn+1 − p‖ ≤ ‖yn − p‖ ≤ ‖η(zn) − p‖ ≤ ‖zn − p‖. (3.25)

Considering limit on (3.25) as follows, we have

κ ≤ lim inf
n→∞

‖zn − p‖. (3.26)

By (3.20) and (3.26), we obtain
lim inf

n→∞
‖zn − p‖ = κ.

From (3.25), we have
‖xn+1 − p‖ ≤ ‖η(zn) − p‖ ≤ ‖zn − p‖ ≤ ‖hn − p‖. (3.27)

Considering limit on (3.27) as follows, we have

κ ≤ lim inf
n→∞

‖hn − p‖. (3.28)

By (3.19) and (3.28), we obtain
lim inf

n→∞
‖hn − p‖ = κ.

Morover,

κ ≤ lim
n→∞
‖hn − p‖

= lim
n→∞
‖(1 − ξn)xn + ξnη(xn) − p‖

≤ lim
n→∞

((1 − ξn)‖xn − p‖ + ξn‖η(xn) − p‖)

≤ lim
n→∞

((1 − ξn)‖xn − p‖ + ξn‖xn − p‖)

≤ lim
n→∞
‖xn − p‖

≤ κ.
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Hence,
lim
n→∞
‖(1 − ξn)(xn − p) + ξn(η(xn) − p)‖ = κ. (3.29)

By (3.17), (3.21), (3.29), and Lemma 2.11, we have

lim
n→∞
‖xn − η(xn)‖ = 0.

Conversly, by letting {xn} bounded and lim
n→∞
‖xn−η(xn)‖ = 0, let p ∈ A(E, {xn}), and then by Lemma 2.9,

we have

Υ(η(p), {xn}) = lim sup
n→∞

‖xn − η(xn)‖

≤ lim sup
n→∞

(
3 + α + β

1 − α − β
‖xn − η(xn)‖ + ‖xn − p‖

)
=

(
3 + α + β

1 − α − β

)
lim sup

n→∞
‖xn − η(xn)‖ + lim sup

n→∞
‖xn − p‖

= lim sup
n→∞

‖xn − p‖

= Υ(p, {xn}).

This indicates that η(p) ∈ A(E, {xn}). Since B is uniformly convex Banach space, A(E, {xn}) is a
singleton. Thus, we obtain η(x) = x.

�

Theorem 3.3. Define a selfmap η on any subset E that is closed and convex in B. If η forms a
generalized (α, β)-nonexpansive map having nonempty fixed point F(η), then, for the sequence of
iterations in (1.10), we have {xn}, which is weakly convergent to a FP of η.

Proof. Consider any point p ∈ F(η) so it follows from Lemma 3.1 that lim n→ ∞‖xn − p‖ exists. We
need to establish the fact that {xn} admits one and only one weak subsequential limit in the set F(η). To
show this, we assume that κ1 and κ2 form two different weak limits for the subsequences, namely {xni}

and {xn j} of the given sequence, respectively. It follows now from Lemma 3.2 that lim
n→∞
‖xn−η(xn)‖ = 0.

Similarly, by Lemma 2.10, one can conclude that (I − η) is demiclosed on zero, that is, (I − η)κ1 = 0
and hence η(κ1) = κ1. In the same steps, we can show that η(κ2) = κ2.

Furthermore, we assume that κ1 , κ2. Using Opial Property, we have

lim
n→∞
‖xn − κ1‖ = lim

ni→∞
‖xni − κ1‖

< lim
ni→∞
‖xni − κ2‖

= lim
n→∞
‖xnn − κ2‖

< lim
n j→∞

‖xn j − κ2‖

< lim
n j→∞

‖xn j − κ1‖

= lim
n→∞
‖xn − κ1‖.

(3.30)

This contradicts our suppostion. κ1 = κ2 =⇒ {xn} converges weakly to a p ∈ F(η). �
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Theorem 3.4. Define a selfmap η on any subset E that is closed and convex in B. If η forms a
generalized (α, β)-nonexpansive map having a nonempty fixed point F(η), then, for the sequence of
iterations in (1.10), we have that {xn} is weakly convergent to a FP of η ⇐⇒ lim inf

n→∞
d(xn, F(η)) = 0.

Proof. Notice that if {xn} is convergent to some FP p of η, then it follows that lim inf
n→∞

d(xn, F(η)) = 0,
which proves the result.

On the other hand, consider that lim inf
n→∞

d(xn, F(η)) = 0 and we want to prove that {xn} is convergent
to a FP of η. For this purpose, we notice from Lemma 3.1 that lim

n→∞
‖xn − p‖ = 0 exists even for each

FP p of η. Hence, from the given condition, it follows that lim inf
n→∞

d(xn, F(η)) = 0.
It is the aim to establish that {xn} is a Cauchy sequence in the closed set E. Notice that

lim inf
n→∞

d(xn, F(η)) = 0, which suggests that for all ε > 0 there must be a number no ∈ N with the

property that ∀n ≥ no with d(xn, F(η)) <
ε

2
. If follows that

inf{‖xn − p‖ : p ∈ F(η)} <
ε

2
.

Accordingly, we conclude that inf{‖xn − p‖ : p ∈ F(η)} <
ε

2
. Hence, for any p that forms a FP for η,

one has ‖xno − p‖ <
ε

2
. Thus, for any choice of m, n ≥ no, one has

‖xm+n − xn‖ ≤ ‖xm+n − p‖ + ‖xn − p‖

≤ ‖xmo − p‖ + ‖xno − p‖

= 2‖xno − p‖

≤ ε.

The last conclusion suggests that {xn} forms a Cauchy sequence E. By closeness of E, we can find
an element, namely ` ∈ E, with the fact that lim

n→∞
xn = `. However, we have lim

n→∞
d(xn, F(η)) = 0 =⇒

d(`, F(η)) = 0. This proves that ` ∈ F(η), which completes the proof. �

Theorem 3.5. Define a selfmap η on any subset E that is closed and convex in B. If η forms a
generalized (α, β)-nonexpansive map having a nonempty fixed point F(η), then, for the sequence of
iterations in (1.10), we have that {xn} is weakly convergent to a FP of η if E is compact in B.

Proof. In the view of Lemma 3.2, we have

lim
n→∞
‖xn − η(xn)‖ = 0.

Since E is compact, one has a subsequence {xni} of {xn}, such that xni → p for some p ∈ E. Then, by
Lemma 2.9, we obtained

‖xni − η(p)‖ ≤
(
3 + α + β

1 − α − β

) ∥∥∥xni − η(xni)
∥∥∥ + ‖xni − p‖ ∀i ≥ 1.

By applying the limit, we obtained xni → η(p) as i→ ∞. This shows that η(p) = p, which is p ∈ F(η).
In addition, lim

n→∞
‖xn − p‖ exists by Lemma 3.1. Thus, {xn} → p as n→ ∞. �
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The next result is established using the condition (I).

Theorem 3.6. Define a selfmap η on any subset E that is closed and convex in B. If η forms a
generalized (α, β)-nonexpansive map having a nonempty fixed point F(η), then, for the sequence of
iterations in (1.10), we have that {xn} is weakly convergent to a FP of η if η is endowed with the
condition (I).

Proof. As we already did in Lemma 3.2,

lim
n→∞
‖xn − η(xn)‖ = 0.

From Condition (I) and (3.23), we got

0 ≤ lim
n→∞

Υ(d(xn, F(η))) ≤ lim
n→∞
‖xn − η(xn)‖ = 0,

=⇒ lim
n→∞

Υ(d(xn, F(η))) = 0.

Since, Υ : [0, 1)→ [0, 1) is increasing with Υ(0) = 0,Υ(t) > 0 ∀t > 0, we have

=⇒ lim
n→∞

d(xn, F(η)) = 0.

One can now conclude from 3.4 that the given sequence is convergent to a FP of η. �

4. Examples and compartive study

We aim to construct various numerical examples to test our scheme on the considered class of
mappings. One example is simple and constructed in one-dimensional space, while the other is two-
dimensional. Graphical representations and numerical comparisons clearly show the superior accuracy
of our main outcome.

Example 4.1. Define η : [0,∞)→ [0,∞) by

η(x) =

0, x ∈ [0, 2),
5x
6
, x ∈ [2,∞).

Here, η does not posseses the Condition(C). However, η is generalized α, β-nonexpansive mapping.

Let x =
5
2

and y =
3
2

then η(x) =
25
12

. So,

1
2
|x − η(x)| =

1
2

∣∣∣∣∣52 − 25
12

∣∣∣∣∣ =
1
2

∣∣∣∣∣ 5
12

∣∣∣∣∣ =
5

24
.

Moreover, |x − y| =
∣∣∣∣∣52 − 3

2

∣∣∣∣∣ = 1 =⇒
1
2
|x − η(x)| ≤ |x − y|.

However, |η(x) − η(y)| =
∣∣∣∣∣24
12
− 0

∣∣∣∣∣ =
25
12
, =⇒ |η(x) − η(y)| ≥ |x − y|.

Hence, η does not posses the Condition(C).
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Now, take α =
5

11
and β =

1
22

. Clearly, α + β =
1
2
< 1, which causes the following cases to arise.

Case 1: If x, y ∈ [0, 2), then

5
11
|x − η(y)| +

5
11
|y − η(x)| +

1
22
|x − η(x)| +

1
22
|y − η(y)| ≥ 0 ≥ |η(x) − η(y)|.

Case 2: If y ∈ [0, 2), and x ∈ [0,∞), then we have

5
11
|x − η(y)| +

5
11
|y − η(x)| +

1
22
|x − η(x)| +

1
22
|y − η(y)| =

5
11
|x| +

5
11

∣∣∣∣∣y − 5x
6

∣∣∣∣∣
+

1
22

∣∣∣∣∣x − 5x
6

∣∣∣∣∣ +
1

22
|y|

=
5

11
|x| +

5
11

∣∣∣∣∣y − 5x
6

∣∣∣∣∣
+

1
22

∣∣∣∣∣ x6
∣∣∣∣∣ +

1
22
|y|

≥
5

11

∣∣∣∣∣11
6

x
∣∣∣∣∣

=
5
6
|x| = |η(x) − η(y)|.

Case 3: If x, y ∈ [0, 2), then we have

5
11
|x − η(y)| +

5
11
|y − η(x)| +

1
22
|x − η(x)| +

1
22
|y − η(y)| =

5
11

∣∣∣∣∣x − 5y
6

∣∣∣∣∣ +
5

11

∣∣∣∣∣y − 5x
6

∣∣∣∣∣
+

1
22

∣∣∣∣∣x − 5x
6

∣∣∣∣∣ +
1

22

∣∣∣∣∣y − 5y
6

∣∣∣∣∣
=

5
11

∣∣∣∣∣x − 5y
6

∣∣∣∣∣ +
5

11

∣∣∣∣∣y − 5x
6

∣∣∣∣∣
+

1
22

∣∣∣∣∣ x6
∣∣∣∣∣ +

1
22

∣∣∣∣∣y6
∣∣∣∣∣

≥
5

11

∣∣∣∣∣11
6

x −
11
6

y
∣∣∣∣∣ +

1
132
|x − y|

≥
5
6
|x − y| = |η(x) − η(y)|.

Hence, η is generalized
(

5
11
,

1
22

)
-nonexpansive mapping. However, for x =

5
2

, y =
3
2

, α =
5

11
and

β =
1

22
η is neither generalized

5
11

-nonexpansive nor
1

22
-Reich-Suzuki type map.

Now, we will draw graphs and tables to show that the sequence {xn} of the AA-Iterative
Algorithm (1.10) moves faster to the FP of example 4.1 as compared to the Mann iteration (1.2),
Ishkawa iteration (1.3), S iteration (1.5), Thakur (1.7), and M-iteration (1.8). By assuming αn =

0.50, λn = 0.65 and ξn = 0.85 and by taking the initial guess 10.0, the observations are provided in
Table 1 and Figure 1, which show that AA-Iterative Algorithm (1.10) is faster than mentioned above.
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Table 1. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Ishikawa Mann
1 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000
2 4.329059 6.365741 6.568287 7.881944 8.715278 9.166667
3 1.8740757 4.052266 4.314239 6.212505 7.595607 8.402778
4 0.000000 2.579567 2.833716 4.896662 6.619782 7.702546
5 0.000000 0.000000 1.861266 3.859522 5.769324 7.060667
6 0.000000 0.000000 0.000000 3.042053 5.028126 6.472278
7 0.000000 0.000000 0.000000 2.397730 4.382152 5.932922
8 0.000000 0.000000 0.000000 1.889877 3.819167 5.438512
9 0.000000 0.000000 0.000000 0.000000 3.328510 4.985302
10 0.000000 0.000000 0.000000 0.000000 2.900889 4.569861
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Figure 1. Behaviors of various iterative processes using Example 4.1.

Now, assuming σn = 0.60, λn = 0.43, and ξn = 0.67 and by taking the initial guess 26.0, the
observations are provided in Table 2 and Figure 2.

Table 2. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Ishikawa Mann
1 26.00000 26.00000 26.00000 26.00000 26.00000 26.00000
2 11.55056 16.25000 17.27917 20.73500 22.46833 23.40000
3 5.131364 10.15625 11.48345 16.53616 22.46833 21.06000
4 2.279620 6.347656 7.631707 13.18759 16.77899 18.95400
5 0.000000 3.967285 5.071905 10.51710 14.49985 17.05860
6 0.000000 2.479553 3.370704 8.387389 12.53028 15.35274
7 0.000000 0.000000 2.240113 6.688943 10.82825 13.81747
8 0.000000 0.000000 0.000000 5.334432 9.357416 12.43572
9 0.000000 0.000000 0.000000 4.254210 8.086367 11.19215
10 0.000000 0.000000 0.000000 3.392732 6.987969 10.07293
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Figure 2. Behaviors of various iterative processes using Example 4.1.

Now, assuming σn = 0.89, λn = 0.74, and ξn = 0.17 and by taking the initial guess 13.3, the
observations are provided in Table 3 and Figure 3.

Table 3. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Ishikawa Mann
1 13.30000 13.30000 13.30000 13.30000 13.30000 13.30000
2 5.080648 7.866088 8.222294 9.866753 10.11059 11.32717
3 1.940826 4.652281 5.083167 7.319760 7.686011 9.646970
4 0.000000 2.751523 3.142503 5.430245 5.842863 8.216003
5 0.000000 0.000000 1.942751 4.028488 4.441712 6.997296
6 0.000000 0.000000 0.000000 2.988579 3.376565 5.959364
7 0.000000 0.000000 0.000000 2.217110 2.566846 5.075391
8 0.000000 0.000000 0.000000 0.203231 1.951302 4.322542
9 0.000000 0.000000 0.000000 0.000000 0.214643 3.681365
10 0.000000 0.000000 0.000000 0.000000 0.023610 3.135296

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Number of iterations

V
al
ue
s
of
th
e
se
qu
en
ce Mann

Ishikawa
S
Thakur
M
AA

Figure 3. Behaviors of various iterative processes using Example 4.1.
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Now, assuming σn = 0.71, λn = 0.1, and ξn = 0.3 and by taking the initial guess 7.1, the
observations are provided in Table 4 and Figure 4.

Table 4. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Ishikawa Mann
1 7.100000 7.100000 7.100000 7.100000 7.100000 7.100000
2 3.402968 4.347106 4.872211 5.846653 6.189819 6.259833
3 0.000000 2.661596 3.343442 4.814556 5.396319 5.519086
4 0.000000 0.000000 2.294360 3.964653 4.704541 4.865994
5 0.000000 0.000000 0.000000 3.264782 4.101445 4.290185
6 0.000000 0.000000 0.000000 2.688457 3.575662 3.782513
7 0.000000 0.000000 0.000000 2.213870 3.117282 3.334916
8 0.000000 0.000000 0.000000 1.823060 2.717664 2.940284
9 0.000000 0.000000 0.000000 0.000000 2.369275 2.592351
10 0.000000 0.000000 0.000000 0.000000 2.065547 2.285589
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Figure 4. Behaviors of various iterative processes using Example 4.1.

Now, assuming σn = 0.791, λn = 0.545, and ξn = 0.023 and by taking the initial guess 6.853, the
observations are provided in Table 5 and Figure 5.
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Table 5. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Ishikawa Mann
1 6.853000 6.853000 6.853000 6.853000 6.853000 6.853000
2 3.193283 4.131629 4.417096 5.300515 5.539228 5.949546
3 0.000000 2.490933 2.847035 4.099731 4.477315 5.165198
4 0.000000 0.000000 1.835054 3.170974 3.618980 4.484252
5 0.000000 0.000000 0.000000 2.452618 2.925194 3.893078
6 0.000000 0.000000 0.000000 1.897000 2.364412 3.379841
7 0.000000 0.000000 0.000000 0.000000 1.911136 2.934265
8 0.000000 0.000000 0.000000 0.000000 0.399427 2.547431
9 0.000000 0.000000 0.000000 0.000000 0.083480 2.211595
10 0.000000 0.000000 0.000000 0.000000 0.017447 1.920033
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Figure 5. Behaviors of various iterative processes using Example 4.1.

Example 4.2. Let E = [0, 1]. Consider a mapping η : E × E → E × E defined by

η(x, y) =

( x
2
,

y
4

)
, for any (x, y) ∈ E × E.

We assume that the norm here is taxicab norm. Here, η is generalized (α, β)-nonexpansive mapping.

For (x1, y1) and (x2, y2) in E × E, whenever
1
2
‖(x1, y1) − η(x1, y1)‖ ≤ ‖(x1, y1) − (x2, y2)‖. For α =

1
2

and

β =
1
4

, we have
1
2
‖(x1, y1) − η((x2, y2))‖ +

1
2
‖(x2, y2) − η((x1, y1))‖ +

1
4
‖(x1, y1) − η((x1, y1))‖ +

1
4
‖(x2, y2) − η((x2, y2))‖

=
1
2
‖(x1, y1) − (

x2

2
,

y2

4
)‖ +

1
2
‖(x2, y2) − (

x1

2
,

y1

4
)‖ +

1
4
‖(x1, y1) − (

x1

2
,

y1

4
)‖ +

1
4
‖(x2, y2) − (

x2

2
,

y2

4
)‖

=
1
2
‖(

2x1 − x2

2
,

4y1 − y2

4
)‖ +

1
2
‖(

2x2 − x1

2
,

4y2 − y1

4
)‖ +

1
4
‖(

x1

2
,

3y1

4
)‖ +

1
4
‖(

x2

2
,

3y2

4
)‖

≥
1
2
‖(

x1 − x2

2
,

4y1 − y2

4
)‖ +

1
2
‖(

2x2 − x1

2
,

4y2 − y1

4
)‖ +

1
4
‖(

x1

2
,

3y1

4
)‖ +

1
4
‖(

x2

2
,

3y2

4
)‖

≥
1
4
{‖(

6x1 − 6x2

2
,

10y1 − 10y2

4
)‖ + ‖(

x1 − x2

2
,

3y1 − 3y2

4
)‖)}
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=
1
4
{|

6x1 − 6x2

2
| + |

10y1 − 10y2

4
| + |

x1 − x2

2
| + |

3y1 − 3y2

4
|}

≥
1
4
{|

5x1 − 5x2

2
| + |

7y1 − 7y2

4
| + |

x1 − x2

2
| + |

3y1 − 3y2

4
|}

=
1
4
{‖(

5x1 − 5x2

2
,

7y1 − 7y2

4
)‖ + ‖(

x1 − x2

2
,

3y1 − 3y2

4
)‖

≥
1
4
{‖(

4x1 − 4x2

2
,

4y1 − 4y2

4
)‖}

=
1
4
{|

4x1 − 4x2

2
| + |

4y1 − 4y2

4
)|}

= |
x1 − x2

2
| + |

y1 − y2

4
|

= ‖(
x1 − x2

2
,

y1 − y2

4
)‖

= ‖η(x1, y1) − η(x2, y2)‖.

Now, we will draw graphs and tables to show that the sequence {xn} of the AA-Iterative
Algorithm (1.10) moves faster to FP from example 4.2 as compared to the Mann iteration (1.2), S
iteration (1.5), Thakur (1.7), and M-iteration (1.8). By assuming αn = 0.34, λn = 0.68, and ξn = 0.19
and by taking the initial guess (0.8, 0.8), the observations are provided in Table 6 and Figure 6, which
show that the AA-Iterative Algorithm (1.10) is faster than mentioned above.

Table 6. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Mann
1 (0.8000,0.8000) (0.8000,0.8000) (0.8000,0.8000) (0.8000,0.8000) (0.8000,0.8000)
2 (0.0699,0.0075) (0.1660,0.0372) (0.1769,0.0413) (0.3538,0.1653) (0.6639,0.5959)
3 (0.0061,0.0001) (0.0344,0.0017) (0.0391,0.0021) (0.1564,0.0341) (0.5511,0.4440)
4 (0.0005,0.0000) (0.0071,0.0001) (0.0087,0.0001) (0.0692,0.0071) (0.4574,0.3307)
5 (0.0000,0.0000) (0.0015,0.0000) (0.0019,0.0000) (0.0306,0.0014) (0.3797,0.2464)
6 (0.0000,0.0000) (0.0002,0.0000) (0.0004,0.0000) (0.0135,0.0003) (0.3151, 0.1836)
7 (0.0000,0.0000) (0.0000,0.0000) (0.0001,0.0000) (0.0060,0.0001) (0.2616,0.1368)
8 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0026,0.0000) (0.2171,0.1019)
9 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0012,0.0000) (0.1801,0.0759)
10 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0005,0.0000) (0.1496,0.0566)

Figure 6. Behaviors of various iterative processes using Example 4.2.
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Now, assuming σn = 0.91, λn = 0.55, and ξn = 0.73 and by taking the initial guess (0.36, 0.64), the
observations are provided in Table 7 and Figure 7.

Table 7. Convergence comparison of different algorithms with the AA-Iterative algorithm.

n AA M Thakur S Mann
1 (0.3600,0.6400) (0.3600,0.6400) (0.3600,0.6400) (0.3600,0.6400) (0.3600,0.6400)
2 (0.0120,0.0010) (0.0490,0.0127) (0.0675,0.0249) (0.1350,0.0999) (0.1962,0.2032)
3 (0.0004,0.0000) (0.0067,0.0002) (0.01265,0.0009) (0.0505,0.0156) (0.1069,0.0645)
4 (0.0000,0.0000) (0.0009,0.0000) (0.0024,0.0000) (0.0190,0.0024) (0.0583,0.0205)
5 (0.0000,0.0000) (0.0001,0.0000) (0.0004,0.0000) (0.0071,0.0003) (0.0318,0.0065)
6 (0.0000,0.0000) (0.0000,0.0000) (0.0001,0.0000) (0.0027,0.0001) (0.0173,0.0021)
7 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0010,0.0000) (0.0094,0.0007)
8 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0004,0.0000) (0.0051,0.0002)
9 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0001,0.0000) (0.0028,0.0000)
10 (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0000,0.0000) (0.0015,0.0000)

Figure 7. Behaviors of various iterative processes using Example 4.2.

5. Applications

In this part, we will apply our findings to Fractional differential equations and Convex minimization
problems.

5.1. Application to fractional differential equations

Fractional differential equations (FDEs), unlike traditional integer order differential equations,
involve derivatives of the non-integer order, offering a more accurate description of processes
exhibiting memory and long-range dependencies. FDEs have a powerful mathematical framework
for modeling complex phenomena in various scientific disciplines and is becoming an active field of
interest. In recent years, it has been shown by many authors that the concept of FDEs is an appropriate
way to solve nonlinear problems of mathematical modeling and engineering (see, e.g., [33] and others).
On the one hand, the approximate and exact solutions for these FDEs are comparatively difficult to the
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ordinary differential. The purpose of this is work is to explore the notion of FDEs using the concept of
fixed points and the class of generalized nonexpansive mappings via our AA-iterative algorithm.

Now, to achieve our main objective, we consider a very general class of FDEs of fractional order as
follows: Dζ p(υ) + ϕ(υ, A(υ)) = 0,

h(0) = h(1) = 0.
(5.1)

Here, the notations 1 ≤ ζ ≤ 2, 0 ≤ υ ≤ 1 and eventually Dζ denotes the well-known notion of the
fraction order derivative in the sense of Caputo having order ζ and ϕ as an appropriate function on
[0, 1] × R.

Assume that S is the set of solutions for our Problem (5.1). To establish the main result of our
paper, we need to express the solution as a fixed point of suitable mapping. To do this, we need the
following function known as Green’s function of (5.1) as follows:

G(υ, ν) =


1
Γζ

(υ(1 − ν))(ζ−1) − (υ − ν)(ζ−1)), 0 ≤ ν ≤ υ ≤ 1

υ(1 − ν)(ζ−1)

Γ(ζ)
, 0 ≤ υ ≤ ν ≤ 1.

Now we want obtain the major results of this section.
Accordingly, our main result that proves the convergence of the AA-iteration approach for the given

problem is the following theorem.

Theorem 5.1. Assume that the Banach space B is the space C[0, 1], and η : C[0, 1] → C[0, 1] is a
mapping that reads as follows:

η(h(υ)) =

∫ 1

0
G(υ, ν)ϕ(ν, h(ν))dν, for each h(ν) ∈ C[0, 1].

If

‖ϕ(ν, h(ν)) − ϕ(ν, g(ν))‖ ≤ α‖h(ν) − η(g(ν))‖ + α‖g(ν) − η(h(ν))| + β‖h(ν) − η(h(ν))‖
+ β‖g(ν) − η(g(ν))‖ + (1 − 2α − 2β)‖h(ν) − g(ν)‖.

where α, β ∈ [0, 1) with α+ β ≤ 1. Consequently, the AA-Iterative Algorithm (1.10) converges to some
point of solution set “S” of (5.1) provided that, lim inf

n→∞
d(xn,S) = 0.

Proof. h ∈ C[0, 1] solves (5.1), if and only if it solves

h(υ) =

∫ 1

0
G(υ, ν)ϕ(ν, h(ν))dν.

The aims is to prove that the above selfmap forms a generalized mapping for some α and β. Hence,
selecting any For h, g ∈ C[0, 1] such that 0 ≤ υ ≤ 1, we see that

‖η(h(υ)) − η(g(υ))‖ ≤

∣∣∣∣∣∣
∫ 1

0
G(υ, ν)ϕ(ν, h(ν))dν −

∫ 1

0
G(υ, ν)ϕ(ν, g(ν))dν

∣∣∣∣∣∣
AIMS Mathematics Volume 9, Issue 9, 23724–23751.
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=

∣∣∣∣∣∣
∫ 1

0
G(υ, ν)

[
ϕ(ν, h(ν)) − ϕ(ν, g(ν))

]
dν

∣∣∣∣∣∣
≤

∫ 1

0
G(υ, ν) |ϕ(ν, h(ν)) − ϕ(ν, g(ν))| dν

≤

∫ 1

0
G(υ, ν)(α‖h(ν) − η(g(ν))‖ + α‖g(ν) − η(h(ν))‖ + β‖h(ν) − η(h(ν))‖

β‖g(ν) − η(g(ν))‖ + (1 − 2α − 2β)‖h(ν) − g(ν)‖)dν
≤ (α‖h(ν) − η(g(ν))‖ + α‖g(ν) − η(h(ν))‖ + β‖h(ν) − η(h(ν))‖

β‖g(ν) − η(gν))‖ + (1 − 2α − 2β)‖h(ν) − g(ν)‖)(∫ 1

0
G(υ, ν)dν

)
≤ α‖h(ν) − η(g(ν))‖ + α‖g(ν) − η(h(ν))‖ + β‖h(ν) − η(h(ν))‖ + β‖h(ν) − η(h(ν))‖

+(1 − 2α − 2β)‖h(ν) − g(ν)‖.

Hence, η is generalized (α, β)-nonexpansive mapping. By Theorem 3.4, the sequence obtained by the
AA-iterative algorithm (1.10) converges to the FP of η and to the solution of a given equation. �

5.2. Application to 2D Volterra integral equations

Now, we will solve 2D Volterra integral equations in the setting of generalized (α, β)-nonexpansive
mapping. Instead of other iterative algorithms, we use the AA-Iterative Algorithm to approximate the
solution of following the 2D Volterra integral equation:

h(r, ξ) = κ(r, ξ) +

∫ r

0

∫ ξ

0
Λ1(λ, v, h(λ, v))dλdv

+δ

∫ r

0
Λ2(ξ, v, h(r, v))dv + γ

∫ ξ

0
Λ3(r, λ, h(ξ, λ))dλ (5.2)

for all r, ξλ, v ∈ [0, 1], where h ∈ M ×M, κ : [0, 1] × [0, 1] → R2, Λi(i = 1, 2, 3) : [0, 1] × [0, 1] ×
R2, δ, γ ≥ 0 andM = C[0, 1] is Banach space with the maximum norm

‖τ − u‖∞ = max
ω∈[0,1]

|τ(ω) − u(ω)|,∀τ, u ∈ C[0, 1].

We are now in a position to present a new application of the algorithm we have studied. This result
is obtained under some mild conditions, which are as follows:

Theorem 5.2. Consider Ω as closed convex subset ofM such that η : Ω→ Ω is a map with

η(h(r, ξ)) = κ(r, ξ) +

∫ r

0

∫ ξ

0
Λ1(λ, v, h(λ, v))dλdv

+δ

∫ r

0
Λ2(ξ, v, h(r, v))dv + γ

∫ ξ

0
Λ3(r, λ, h(ξ, λ))dλ.

Assume the following assertions below are true
(A1) the function h :M×M→ R2 is continuous;
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(A2) the function Λi(i = 1, 2, 3) : [0, 1] × [0, 1] × R2 → R2 is continuous and there are the constants
`1, `2, `3 > 0, such that for all τ1, τ2 ∈ R

2

|Λ1(λ, v, τ1(λ, v)) − Λ1(λ, v, τ2(λ, v))| ≥ `1|τ1 − τ2|,

|Λ2(λ, v, τ1(λ, v)) − Λ2(λ, v, τ2(λ, v))| ≥ `2|τ1 − τ2|,

|Λ3(λ, v, τ1(λ, v)) − Λ3(λ, v, τ2(λ, v))| ≥ `3|τ1 − τ2|.

(A3) for δ, γ ≥ 0, `1 + δ`2 + γ`3 ≤ ℘, where ℘ ∈ (0, 1).
Consequently, the AA-Iterative Algorithm (1.10) converges to some point of solution set “S” of (5.2)
provided that, lim inf

n→∞
d(xn,S) = 0.

Proof. Let h, g ∈ M ×M, then

‖h − η(g)‖∞ = max
ω∈[0,1]

|h(r, ξ)(ω) − η(g(r, ξ))|

= max
ω∈[0,1]

∣∣∣∣h(r, ξ)(ω) − κ(r, ξ)(ω) +

∫ r

0

∫ ξ

0
Λ1(λ, v, g(λ, v))dλdv

+δ

∫ r

0
Λ2(ξ, v, g(r, v))dv + γ

∫ ξ

0
Λ3(r, λ, g(ξ, λ))dλ.

∣∣∣∣
≤ max

ω∈[0,1]

{∣∣∣∣h(r, ξ)(ω) − κ(r, ξ)(ω) +

∫ r

0

∫ ξ

0
Λ1(λ, v, h(λ, v))dλdv

−δ

∫ r

0
Λ2(ξ, v, h(r, v))dv + γ

∫ ξ

0
Λ3(r, λ, h(ξ, λ))dλ

∣∣∣∣
+
∣∣∣∣ ∫ r

0

∫ ξ

0
Λ1(λ, v, h(λ, v))dλdv −

∫ r

0

∫ ξ

0
Λ1(λ, v, g(λ, v))dλdv

∣∣∣∣
+δ

∣∣∣∣ ∫ r

0
Λ2(ξ, v, h(r, v))dvδ

∫ r

0
Λ2(ξ, v, g(r, v))dv

∣∣∣∣
+γ

∣∣∣∣ ∫ ξ

0
Λ3(r, λ, h(ξ, λ))dλ −

∫ ξ

0
Λ3(r, λ, g(ξ, λ))dλ

∣∣∣∣}
≤ max

ω∈[0,1]
|h(r, ξ)(τ − η(h(r, ξ))| + `1 max

ω∈[0,1]

∫ r

0

∫ ξ

0
|h(λ, v) − g(λ, v)|dλdv

+δ`2 max
ω∈[0,1]

∫ r

0
|h(λ, v) − g(λ, v)|dv + γ`3 max

ω∈[0,1]

∫ ξ

0
|h(λ, v) − g(λ, v)|dλ

which implies that

‖h − η(g)‖∞ ≤ max
ω∈[0,1]

|h(r, ξ)(τ) − ηh(r, ξ)| + `1 max
ω∈[0,1]

∫ r

0

∫ ξ

0
|h(λ, v) − g(λ, v)|dλdv

+δ`2 max
ω∈[0,1]

∫ r

0
|h(λ, v) − g(λ, v)|dv + γ`3 max

ω∈[0,1]

∫ ξ

0
|h(λ, v) − g(λ, v)|dλ

≤ ‖h − η(g)‖∞ + (`1 + δ`2 + γ`3) max
ω∈[0,1]

|h(λ, v) − g(λ, v)|

≤ ‖h − η(g)‖∞ + ℘‖h − g‖∞
≤ ‖h − η(g)‖∞ + ‖h − g‖∞.
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Hence, by Lemma 2.9, η is generalized (α, β)-nonexpansive mapping becuase it satisfies ‖x − η(y)‖ ≤(
3+α+β

1−α−β

)
‖x − η(x)‖ + ‖x − y‖ for

(
3+α+β

1−α−β

)
= 1. As all conditions for Lemma 3.2 are satisfied, the AA-

iteration converges to the solution. �

5.3. Application to the convex minimization problem

In this section, we are concerned with finding a solution to the convex minimization problem using
the AA-Iterative algorithm (1.10). Assume g : C → R, where C is closed and a convex subset of a real
Hilbert spaceH , and g is a convex mapping. Consider the convex minimization problem

min
x∈C

g(x). (5.3)

Assmue that PC : H → C is a projection map and g is a Fréchet differentiable. Consider that ∇g
represents a gradient of g. It is obvious that ẏ ∈ C solves (5.3) if it solves the variational inequality:

〈∇g(ẏ), x − ẏ〉 ≥ 0,∀x ∈ C (5.4)

that is, ẏ ∈ Ω(C,A). Here, Ω(C,A) = {y ∈ C : 〈Ay, y − x〉 ≥ 0∀x ∈ C} andA : H → H is a nonlinear

operator. Adding more ẏ solves (5.3) if ẏ = PC(ẏ − γ∇g(xn)), where x1 ∈ C and 0 < γ <
2
L2 . To

solve (5.3), the gradient project algorithm is used and is defend by

xn+1 = PC(xn − γ∇g(xn)),

where x0 ∈ C and γ is a step size.

Lemma 5.3. Let η be a generalized (α, β)-nonexpanisve mapping, and if ẏ ∈ F(η) ∩ Ω(C,A), then
η = PC(I − γ∇g) for identinty mapping I.

Proof. Since ẏ ∈ F(η) ∩Ω(C,A), we have ẏ ∈ F(η) and ẏ ∈ Ω(C,A). This implies that

ẏ ∈ F(η) =⇒ η(ẏ) = ẏ. (5.5)

and
ẏ ∈ Ω(C,A) =⇒ ẏ = PC(ẏ − γ∇g(ẏ)) = PC(I − γ∇g)ẏ for identity mapping I. (5.6)

It follows form (5.5) and (5.6)

η(ẏ) = ẏ = PC(I − γ∇g)ẏ for identinty mapping I.

Hence, η = PC(I − γ∇g) for identinty mapping I. �

For an arbitrary {x1} in C and for three sequences of real numbers {σn}, {λn}, and {ξn} in (0, 1),
then the sequence {xn} obtained by the following algorithm converges to the solution of a convex
minimization problem (5.3);

xn+1 = PC(I − γ∇g)yn

yn = PC(I − γ∇g)((1 − σn)PC(I − γ∇g)hn + σnPC(I − γ∇g)zn),
zn = PC(I − γ∇g)((1 − λn)hn + λnPC(I − γ∇g)hn),
hn = (1 − ξn)xn + ξnPC(I − γ∇g)xn, n ∈ N.

(5.7)
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Theorem 5.4. Suppose that the convex minimization problem (5.3) has a solution, then the sequence
obtained by algorithm (5.7) converges weakly to the solution of (5.3).

Proof. By Lemma 5.3 η = PC(I − γ∇g) for identinty mapping I, then the conclusion follows from
Theorem 3.3. �

Theorem 5.5. Suppose that the convex minimization promlem (5.3) has a solution. Then, the sequence
obtained by algorithm (5.7) converges strongly to the solution of (5.3) if lim inf

n→∞
d(xn,Ω)) = 0, where

lim
n→∞

d(xn,Ω) = inf{‖xn − p‖ : p ∈ Ω}.

Proof. The proof follows from Theorem 3.4. �

6. Conclusions and future plan

In this study, we used an AA-iterative algorithm to approximate the FP of generalized (α, β)-
nonexpansive mappings. We proved weak convergence and strong convergence results for mappings
in uniformly convex Banach spaces for generalized (α, β)-nonexpansive. We showed that the AA-
iterative algorithm for generalized (α, β)-nonexpansive mappings converged more quickly than other
existing algorithms, as demonstrated by a numerical example. We proved in the setting of generalized
(α, β)-nonexpansive mappings that the iterative scheme AA can be used to solve fractional differential
equations, the 2D voltera differential equation, and a convex minimization problem.

In the future, we will utilize the AA-iterative algorithm and the results presented in this paper to
find optimal solutions for machine learning problems. We also aim to extend our study to the setting
of multi-valued mappings. Since we used Hilbert and Banach spaces, which are linear spaces, we will
also try to extend the study to the setting of nonlinear CAT(0) and hyperbolic spaces.
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