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Abstract: Nonlinear optimal control problems governed by variable-order fractional integro-
differential equations constitute an important subgroup of optimal control problems. This group
of problems is often difficult or impossible to solve analytically because of the variable-order
fractional derivatives and fractional integrals. In this article, we utilized the expansion of Lagrange
polynomials in terms of Chebyshev polynomials and the power series of Chebyshev polynomials to
find an approximate solution with high accuracy. Subsequently, by employing collocation points, the
problem was transformed into a nonlinear programming problem. In addition, variable-order fractional
derivatives in the Caputo sense were represented by a new operational matrix, and an operational matrix
represented fractional integrals. As a result, the mentioned integro-differential optimal control problem
becomes a nonlinear programming problem that can be easily solved with the repetitive optimization
method. In the end, the proposed method is illustrated by numerical examples that demonstrate its
efficiency and accuracy.
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1. Introduction

In recent decades, fractional calculus has been employed as a powerful tool to describe many
engineering and physical phenomena [1,3,4,6,16]. A new concept that has been introduced recently is a
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variable-order fractional operator, which is an extension of classical fractional calculus that can vary in
terms of time, place, or any other variable. These types of operators are of considerable importance due
to their memory property, allowing many scientific problems to be modeled using differential equations
based on these operators [5]. Therefore, it is important to find the approximate solution to variable-
order fractional differential equations (VOFDEs). In the variable-order fractional optimal control
problems (VOFOCPs), the VOFDEs are considered as the dynamic system of problems, which can
be defined according to different definitions of fractional derivatives, with the the Riemann-Liouville
and Caputo derivatives being the most important ones. In [7], the fractional-order Bessel wavelets
were used by Dehestani et al. to solve optimal control problems under variable-order fractional
dynamical systems. They proposed a collocation method and used pseudo-operational matrices of
variable-order fractional derivatives, and dual operational matrices to solve the problem. In [10],
Heydari and Avazzadeh used the Legendre wavelets to solve VOFOCPs. Then, using the operational
matrix of the Riemann-Liouville fractional integration and the Legendre wavelet properties, they turned
the performance index into a nonlinear algebraic equation and the dynamic system into a system of
algebraic equations. Heydari [8] solved a class of VOFOCPs by introducing cardinal Chebyshev
polynomials and obtaining their operational matrix corresponding to the Atangana-Baleanu-Caputo
derivative.

In recent years, numerical techniques have been developed to propose approximate solutions
for variable-order fractional integro-differential equations (VOFIDEs). As shown in [9], Heydari
presented a method for computing nonlinear fractional quadratic integral equation solutions based
on Chebyshev cardinal wavelets and a new operational matrix of variable-order fractional integration
derived for the mentioned basis functions. Substituting the mentioned expansion into the intended
problem results in a system of nonlinear algebraic equations. In [12], by applying piecewise integral
quadratic spline interpolation to the estimation of fractional integral operators with variable order, new
discretization techniques were proposed. In [13], using the second kind of Chebyshev polynomials,
differential operational matrices, and integral operational matrices were derived. After adopting the
collocation points, the original equation can be transformed into an algebraic system by combining
two types of operational matrices. However, no studies have been published in the area of solving
the optimal control (OC) problems governed by VOFIDEs. In this article, we attempt to find an
approximate solution to such problems for the first time. We first solve these problems by using
the collocation spectral method and a different definition of Lagrange polynomial, which is based on
Chebyshev polynomials. By substituting the power series of the Chebyshev-modified polynomials, we
then transform the dynamic system into a system of algebraic equations. By accurately calculating
the fractional integral and derivative of the power series at collocation points, we can calculate the
derivative matrix with precision. Also, we approximate the integral objective function using the Gauss
quadrature rules.

The structure of the paper is as follows. In Section 2, some necessary preliminaries are given. A
statement of the problem is presented in Section 3. In Section 4, a Chebyshev pseudo-spectral approach
is given to solve the OC problem of VOFIDEs. Also, we present a convergence analysis for the method.
In Section 5, some numerical examples are given to show the efficiency of the method. Finally, the
conclusions and suggestions are presented in Section 6.
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2. Some preliminaries

2.1. Fractional calculus

In this section, we present some basic definitions and mathematical preliminaries related to the
fixed-order and variable-order fractional derivatives (see [2]).

Definition 2.1. Let χ(.) be defined on the interval [0,T f ]. The left and right Riemann-Liouville
fractional integrals of fixed-order µ > 0 are denoted by 0Iµτχ(τ) and τI

µ
T f
χ(τ), respectively, and

defined by

0Iµτχ(τ) =
1
Γ(µ)

τ∫
0

(τ − η)µ−1χ(η)dη, 0 < τ ≤ T f , (2.1)

τI
µ
T f
χ(τ) =

1
Γ(µ)

T f∫
τ

(η − τ)µ−1χ(η)dη, 0 ≤ τ < T f . (2.2)

Definition 2.2. Consider χ(.) a function defined on interval [0,T f ]. The left and right Riemann-
Liouville fractional derivatives of fixed-order 0 < µ < 1 are denoted by 0Dµτχ(τ) and τD

µ
T f
χ(τ),

respectively, and defined by

0Dµτχ(τ) =
1

Γ(1 − µ)
d
dτ

τ∫
0

(τ − η)−µχ(η)dη τ > 0, (2.3)

τD
µ
T f
χ(τ) =

(−1)
Γ(1 − µ)

d
dτ

T f∫
τ

(η − τ)−µχ(η)dη, τ < T f . (2.4)

Definition 2.3. Let us suppose that function χ(.) is defined on the finite interval [0,T f ]. The left and
right Caputo fractional derivatives of χ(.) of fixed-order 0 < µ < 1 are denoted by C

0 Dµτχ(τ) and
C
τDµT f

χ(τ), respectively, and defined by

C
0 Dµτχ(τ) =

1
Γ(1 − µ)

τ∫
0

(τ − η)−µχ′(η)dη, 0 ≤ τ < T f , (2.5)

C
T f

DµT f
χ(τ) =

(−1)
Γ(1 − µ)

T f∫
τ

(η − τ)−µχ′(η)dη, 0 < τ ≤ T f . (2.6)

We now present the basic concepts of variable-order fractional calculus and take the fractional order
in the derivative and integral as a continuous function on (0,T f ). First, we introduce the generalization
of a fixed-order fractional integral called the variable-order Riemann-Liouville integral.

Definition 2.4. Assuming that the continuously differentiable function χ is defined on (0,T f ). The left
and right Riemann-Liouville fractional integrals of order µ(τ) are defined as follows:

0Iµ(τ)τ χ(τ) =

τ∫
0

1
Γ(µ(τ))

(τ − η)µ(τ)−1χ(η)dη, τ > 0, (2.7)
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and

τI
µ(τ)
T f
χ(τ) =

T f∫
τ

1
Γ(µ(τ))

(η − τ)µ(τ)−1χ(η)dη, τ < T f . (2.8)

Definition 2.5. Consider χ : [0,T f ] → R as a continuously differentiable function and suppose µ :
[0,T f ]→ [0, 1] is a given function.

(1) The type I left and right Caputo variable-order fractional derivatives (VOFDs) of χ(τ) of order
µ(.), respectively, are defined by

C
0 Dµ(τ)τ χ(τ) =

1
Γ(1 − µ(τ))

d
dτ

τ∫
0

(τ − η)−µ(τ)[χ(η) − χ(0)]dη, (2.9)

C
T f

Dµ(τ)τ χ(τ) =
−1

Γ(1 − µ(τ))
d
dτ

T f∫
τ

(η − τ)−µ(τ)[χ(η) − χ(T f )]dη. (2.10)

(2) The type II left and right Caputo VOFDs of χ(τ) of order µ(.), respectively, are given by

C
T f
Dµ(τ)τ χ(τ) =

d
dτ

 1
Γ(1 − µ(τ))

τ∫
0

(τ − η)−µ(τ)[χ(η) − χ(0)]dη

 , (2.11)

C
T f
Dµ(τ)τ χ(τ) =

d
dτ

 −1
Γ(1 − µ(τ))

T f∫
τ

(η − τ)−µ(τ)[χ(η) − χ(T f )]dη

 . (2.12)

(3) The type III left and right Caputo VOFDs of χ(τ) of order µ(τ), respectively, are defined by

C
0D
µ(τ)
τ χ(τ) =

1
Γ(1 − µ(τ))

τ∫
0

(τ − η)−µ(τ)χ′(η)dη, (2.13)

C
τD
µ(τ)
T f
χ(τ) =

−1
Γ(1 − µ(τ))

T f∫
τ

(η − τ)−µ(τ)χ′(η)dη. (2.14)

Lemma 2.1. Let χ(τ) = (τ − a)β for τ ∈ [a, b] where β > 0. Then,

C
aD
µ(τ)
τ χ(τ) =


Γ(β + 1)

Γ(β − µ(τ) + 1)
(τ − a)β−µ(τ), β ≥ 1,

0, β < 1.
(2.15)

aIτµ(τ)χ(τ) =
Γ(β + 1)

Γ(β + µ(τ) + 1)
(τ − a)β+µ(τ). (2.16)

In this paper, we will focus on the type III Caputo VOFDs.
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2.2. The shifted Chebyshev polynomials

We consider a special case of the Jacobi polynomials-Chebyshev polynomials (of the first kind),
T̃n(t), which are proportional to Jacobi polynomials J−

1
2 ,−

1
2

n and are orthogonal with respect to the

weight function ω(t) =
(
1 − t2

)− 1
2 .

The three-term recurrence relation for the Chebyshev polynomial reads

T̃n+1(t) = 2τT̃n(t) − T̃n−1(t), n ≥ 1,

T̃0(t) = 1, T̃1(t) = t, − 1 ≤ t ≤ 1.

For practical use of Chebyshev polynomials on the interval of interest [0,T f ], it is necessary to change
the defining domain by means of the following substitution:

τ = (
T f

2
)(t + 1), 0 ≤ τ ≤ T f , − 1 ≤ t ≤ 1.

So, the shifted Chebyshev polynomials S Tn(τ) on [0,T f ] are obtained as follows:

S Tn(τ) = T̃n(
2

T f
τ − 1), 0 ≤ τ ≤ T f , n = 1, 2, ...

The orthogonality condition for these shifted polynomials is

∫ T f

0

S Tn(τ)S Tm(τ)√
1 −
(

2τ
T f
− 1
)2 dτ =


πT f

4 , if n = m = 1, 2, . . . ,
πT f

2 , if n = m = 0,
0, if n , m.

(2.17)

Shifted Chebyshev polynomials can be analytically written as follows:

S Tn(τ) =
n∑

p=0

bp,nτ
p, n = 0, 1, 2, ...,

bp,n = (−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T f
p . (2.18)

3. The statement of problem

In this paper, we consider the following OC problem of VOFIDE:

Minimize L(χ, υ) =

T f∫
0

f (τ, χ(τ), υ(τ)), (3.1)

subject to

C
0D
µ1(τ)
τ χ(τ) + 0Iµ2(τ)

τ χ(τ) = g(τ, χ(τ), υ(τ)),
χ(0) = χ0,

(3.2)

where χ0 ∈ R is given, f : R × Rn × Rm → R, and g : R × Rn × Rm → R are continuous functions,
χ(τ) and υ(τ) are the state and control variables, respectively, µ1, µ2 : [0,T f ] → [0, 1] are two given
continuous functions, C

0D
µ1(τ)
τ is the type III Caputo VOFD operator, and 0Iµ2(τ)

τ is the left Riemann-
Liouville fractional integral.
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4. Numerical treatment of the OC problem of VOFIDE

In this section, we try to get an approximate solution to the optimal control problem (3.1)-(3.2). In
subsection 4.1, we discuss the implementation of the method and present a new method for calculating
the derivative and integral matrices. Also, we present a convergence analysis for the suggested method.

4.1. The Chebyshev pseudo-spectral (CPS) method

For interpolating in the CPS method, the following Lagrange polynomials are utilized:

h j(τ) =
N∏

i=0
i, j

τ − τi

τ j − τi
=

2
Nµ j

N∑
n=0

S T n

(
τ j

)
µn

S T n(τ), j = 0, 1, 2, . . . ,N, 0 ≤ τ ≤ T f , (4.1)

where

µ j =

2, j = 0,N,
1, 1 ≤ j ≤ N − 1,

τ j =
T f

2 (t j + 1) and t j = cos(
π j
N

), j = 0, 1, 2, ...,N, are roots of (1 − t2)T̃N(t).
The Lagrange polynomials have the useful property of the delta Kronecker, i.e.,

h j(τk) = δ jk =

1, j = k,

0, j , k.
(4.2)

Now, we approximate the variables of problem (3.1)-(3.2) in terms of the Lagrange functions
as follows:

χ(τ) ≃ χN(τ) =
N∑

j=0

χ̄ jh j(τ). (4.3)

Also, we have

C
0 Dµ1(τ)
τ χ(τ) ≃

N∑
j=0

χ̄ j
C
0 Dµ1(τ)
τ h j(τ), 0Iµ2(τ)

τ χ(τ) ≃
N∑

j=0

χ̄ j 0Iµ2(τ)
τ h j(τ). (4.4)

Moreover, we approximate the control variable as

υ(τ) ≃ υN(τ) =
N∑

j=0

ῡ jh j(τ), (4.5)

where χ̄ = (χ̄1, χ̄2, ..., χ̄N) and ῡ = (ῡ1, ῡ2, ..., ῡN) are unknown coefficients. By applying the
interpolation property of the Lagrange polynomial, we get

χ(τk) ≃ χ̄k, υ(τk) ≃ ῡk. (4.6)

Now, by relations (4.1) and (4.3), we have

χ(τ) ≃ χN(τ) =
N∑

j=0

χ̄ j
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

S Tn(τ).
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Also, with the help of the Chebyshev polynomial analytical form shown in relation (2.18) in the
previous section, we will have

χ(τ) ≃ χN(τ) =
N∑

j=0

χ̄ j
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

n∑
p=0

(−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T p
f

τp. (4.7)

By applying Lemma 2.1 on the above relation, we reach the following relation, which is the result of
the fractional derivative and integral effect on the power function:

C
0 Dµ1(τ)
τ χ(τ) ≃C

0 Dµ1(τ)
τ χN(τ)

=

N∑
j=0

χ̄ j
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

( n∑
p=0

(−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T p
f

Γ(p + 1)
Γ(p + 1 − µ1(τ))

τp−µ1(τ)
)
,

(4.8)

0Iµ2(τ)
τ χ(τ) ≃0Iµ2(τ)

τ χN(τ)

=

N∑
j=0

χ̄ j
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

( n∑
p=0

(−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T p
f

Γ(p + 1)
Γ(p + 1 + µ2(τ))

τp+µ2(τ)
)
.

(4.9)

Lemma 4.1. Suppose q : [−1, 1] → R is a continuous function. The following integral approximation
is referred to as the Chebyshev-Gauss-Lobatto (CGL) quadrature rule:

1∫
−1

q(τ)dτ ≃
N∑

j=0

ω̄ jq(τ j), (4.10)

where τ j = cos( N− j
N π), j = 0, 1, ...,N are roots of

(
1 − τ2

)
d
dτ T̃N(τ) and T̃N(τ) = cos(Ncos−1(τ)) is the

Chebyshev polynomial of order N and ω̄ j =
√

1 − τ2
j
π

c̃ jN
, j = 0, 1, ...,N are the quadrature weights of

the numerical approximation (4.10), where c̃0 = c̃N = 2, c̃ j = 1 for j = 1, ...,N − 1.

Now, using relations (4.6), (4.8) and (4.9) and the above lemma, we reach the following discrete
system, which can be solved by optimization methods:

Minimize LN(χ̄, ῡ) =
N∑

j=0

ω j f (τ j, χ̄ j, ῡ j), (4.11)

subject to


N∑

j=0
χ̄ j

(
D{µ1}

k j + I{µ2}

k j

)
= g(τk, χ̄k, ῡk), k = 1, 2, ...,N,

χ̄0 = χ0,

(4.12)

where

D{µ1}

k j =
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

n∑
p=0

(−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T p
f

Γ(p + 1)
Γ(p + 1 − µ1(τk))

τk
p−µ1(τk), (4.13)

I{µ2}

k j =
2

Nµ j

N∑
n=0

S Tn(τ j)
µn

n∑
p=0

(−1)n−p n(n + p − 1)!22p

(n − p)!(2p)!T p
f

Γ(p + 1)
Γ(p + 1 + µ2(τk))

τk
p+µ2(τk). (4.14)
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Here, χ̄ = (χ̄0, χ̄1, ..., χ̄N) and ῡ = (ῡ0, ῡ1, ..., ῡN) are unknown coefficients and µ j = 2 for j = 0,N
and µ j = 1 for j = 1, 2, ...,N − 1. Also, ω j =

T f

2 ω̃ j. Note that there is a new technique to calculate
operation matrices of variable-order fractional derivatives and integrals. First, we rewrite the Lagrange
polynomial as follows:

h j(τ) =
N∏

i = 0
i , j

τ − τi

τ j − τi
=

N∑
p=0

ηp j(τ − τ0)p, j = 0, 1, 2, ...,N, 0 ≤ τ ≤ T,

where ηp j are unknown coefficients that are determined as below. Using the delta Kronecker
property (4.2), we get

h j(τk) =
N∑

p=0

ηp j(τk − τ0)p = δk j, j = 0, 1, ...,N, k = 0, 1, 2, ...,N.

In matrix form, the above relation can be expressed as follows:

Aη j = δ j, j = 0, 1, 2, ...,N,

where

A =


1 0 0 0
1 (τ1 − τ0) · · · (τ1 − τ0)N

...
... · · ·

...

1 τN − τ0 · · · (τN − τ0)N

 , η j =


η0 j

η1 j
...

ηN j

 , δ j =


δ j0

δ j1
...

δ jN

 .
According to (4.2) and the invertibility of matrix A

η j = (A−1)( j), ηp j = (A−1)(p+1)( j+1),

finally,

h j(τ) =
N∑

p=0

(A−1)(p+1)( j+1)(τ − τ0)p. (4.15)

Therefore, the components of the operational matrix of derivative can be obtained as follows:

C
0 Dµ1(τ)
τ h j(τ) =

N∑
p=0

(A−1)(p+1)( j+1)
C
0 Dµ1(τ)
τ (τ − τ0)p

=

N∑
p=0

(A−1)(p+1)( j+1)
Γ(p + 1)

Γ(p + 1 − µ1(τ))
(τ − τ0)p−µ1(τ),

(4.16)

and

0Iµ2(τ)
τ h j(τ) =

N∑
p=0

(A−1)(p+1)( j+1)
Γ(p + 1)

Γ(p + 1 + µ2(τ))
(τ − τ0)p+µ2(τ). (4.17)
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According to (4.16) and (4.17), we get

D{µ1}

k j =

N∑
p=0

(A−1)(p+1)( j+1)
Γ(p + 1)

Γ(p + 1 − µ1(τk))
(τk − τ0)p−µ1(τk), (4.18)

and

I{µ2}

k j =

N∑
p=0

(A−1)(p+1)( j+1)
Γ(p + 1)

Γ(p + 1 + µ2(τk))
(τk − τ0)p+µ2(τk). (4.19)

4.2. Convergence of the method

Here, we show the convergence of the method by applying an assumption.
We assume that the OC problem (3.1)-(3.2) has a Lagrange interpolating polynomial based on the

shifted Chebyshev-Gauss-Lobatto (SCGL) points, which uniformly converges to it.

Theorem 4.1. Assume that {
(
χ̄∗j, v̄

∗
j)
}N

j=0 is an optimal solution of (4.11)-(4.12) and define X̄N(τ) =
N∑

j=0
χ̄∗jh j(τ) and ŪN(τ) =

N∑
j=0
ῡ∗jh j(τ) on [0,T f ]. Also, assume {

(
X̄N(.), ŪN(.)

)
}∞N=N0

uniformly converges

to
(
χ̄(.), ῡ(.)

)
such that χ̄(.) and ῡ(.) are continuously differentiable and C

0D
µ1(τ)
τ χ̄(.) and 0I

µ2(τ)
τ χ̄(.) are in

C((0,T f ]). Then,
(
X̄(.), Ū(.)

)
is an optimal solution for the main OC problem of VOFIDE (3.1)-(3.2).

Proof. We first show that
(
X̄(.), Ū(.)

)
is a feasible solution for the problem (3.1)-(3.2). Suppose that

τ ∈ (0,T f ] is given. Since shifted CGL points {τk}
N
k=0 with N → ∞ is dense on [0,T f ], there exists a

subsequence
{
τk j

}∞
j=0

such that lim j→∞ k j = ∞ and lim j→∞ τk j = τ. By continuity of functions g(., ., .) ,
C
0D
µ1(τ)
τ χ̄(.) and 0I

µ2(τ)
τ χ̄(.), we get

C
0D
µ1(τ)
τ X̄(τ) + 0I

µ2(τ)
τ X̄(τ) − g

(
τ, X̄(τ), Ū(τ)

)
= lim

N→∞
lim
j→∞

(
C
0D
µ1(τk j )
τ X̄N(τk j) + 0I

µ2(τ)
τk j

X̄N(τ) − g
(
τk j , X̄N(τk j), ŪN(τk j)

))
= 0.

Also, for the initial condition,

X̄(0) − X0 = lim
N→∞

(
X̄N(0) − X0

)
= 0.

Now, we want to show that
(
X̄(.), Ū(.)

)
is an optimal solution for the problem (3.1)-(3.2). By objective

function (4.11), we define

LN(χ̄∗, ῡ∗) =
N∑

k=0

ωk f (τk, χ̄
∗
k, ῡ
∗
k). (4.20)

Also, by objective functional (3.1) and replacing continuous function q(.) in relation (4.10) with
f (., X̄(.), Ū(.)), we gain

L(X̄(.), Ū(.)) =

T f∫
0

f
(
τ, X̄(τ), Ū(τ)

)
dτ = lim

N→∞

N∑
k=0

ωk f
(
τk, X̄(τk), Ū(τk)

)
. (4.21)
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Moreover, since
N∑

k=0
ωk = T f and

(
X̄N(.), ŪN(.)

)
is uniformly convergent to

(
X̄(.), Ū(.)

)
, we get

lim
N→∞

∥∥∥∥∥ N∑
k=0

ωk

(
f
(
τk, X̄(τk), Ū(τk)

)
− f
(
τk,

N∑
j=0

χ̄∗jh j(τk),
N∑

j=0

ῡ∗jh j(τk)
))∥∥∥∥∥
∞

≤L1 lim
N→∞

N∑
k=0

ωk

(
∥X̄(τk) −

N∑
j=0

χ̄∗jh j(τk)∥∞ + ∥Ū(τk) −
N∑

j=0

ῡ∗jh j(τk)∥∞
)

=L1 lim
N→∞

N∑
k=0

ωk

(
∥X̄(τk) − X̄N(τk)∥∞ + ∥Ū(τk) − ŪN(τk)∥∞

)
≤L1T f lim

N→∞

(
∥X̄(.) − X̄N(.)∥∞ + ∥Ū(.) − ŪN(.)∥∞

)
= 0,

(4.22)

where L1 > 0 is the Lipschitz constant of continuously differentiable function f (., ., .). Thus, by (4.20)–
(4.22), we gain

L(X̄(.), Ū(.)) =

T f∫
0

f
(
τ, X̄(τ), Ū(τ)

)
dτ

= lim
N→∞

( N∑
k=0

ωk f
(
τk,

N∑
j=0

χ̄∗jh j(τk),
N∑

j=0

ῡ∗jh j(τk)
)

+

N∑
k=0

ωk

[
f
(
τk, X̄(τk), Ū(τk)

)
− f
(
τk,

N∑
j=0

χ̄∗jh j(τk),
N∑

j=0

ῡ∗jh j(τk)
)])

= lim
N→∞

N∑
k=0

ωk f
(
τk,

N∑
j=0

χ̄∗jh j(τk),
N∑

j=0

ῡ∗jh j(τk)
)

= lim
N→∞

LN(χ̄∗, ῡ∗).

Hence,
L(X̄(.), Ū(.)) = lim

N→∞
LN(χ̄∗, ῡ∗). (4.23)

On the other hand, for any optimal solution
(
X∗(.),U∗(.)

)
of problem (3.1)-(3.2), there exists a

corresponding sequence {
(
χ∗j, υ

∗
j
)
}∞i=0 such that

lim
N→∞
∥X∗(.) −

N∑
j=0

χ∗jh j(.)∥∞ = lim
N→∞
∥U∗(.) −

N∑
j=0

υ∗jh j(.)∥∞ = 0.

Since
(
X∗(.),U∗(.)

)
satisfies the constraint (3.2), sequence {

(
χ∗j, υ

∗
j
)
}Nj=0 with N → ∞ satisfies

constraint (4.12). Similar to the relation (4.23) and the process of achieving it, we can conclude

L(X∗(.),U∗(.)) = lim
N→∞

LN(χ∗, υ∗), (4.24)
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where χ∗ = (χ∗0, χ
∗
1, ..., χ

∗
N) and υ∗ = (υ∗0, υ

∗
1, ..., υ

∗
N). By relations (4.23) and (4.24), and optimality of

pairs
(
χ̄∗, ν̄∗

)
and
(
X∗(.),U∗(.)

)
, we achieve

L(X∗(.),U∗(.)) ≤ L(X̄(.), Ū(τ)) = lim
N→∞

LN(χ̄, ν̄) ≤ lim
N→∞

LN(χ∗, υ∗) = L(X∗(.),U∗(.)), (4.25)

which tends to L(X∗(.),U∗(.)) = L(X̄(.), Ū(.)). Thus, (X̄(.), Ū(.)) is an optimal solution for the OC
problem (3.1)-(3.2). □

5. Numerical examples

In this section, some examples are shown to depict the efficiency and practicability of the devised
approximation method. MATLAB has been used for all examples. The absolute errors are computed as

Eχ(τ) = |χ(τ) − χN(τ)| , (5.1)

and
Eυ(τ) = |υ(τ) − υN(τ)| , (5.2)

where pairs (χ, υ) and (χN , υN) are the exact and approximate solutions, respectively. We should also
point out that the CPU time for program running in solving the discussed problems in all examples,
requires less than 3 seconds for N=5.

Example 5.1. Consider the OC problem

Minimize L =

1∫
0

[
(χ(τ) − τ3)2

+ (υ(τ) − τ − 1)2
]
dτ

under the variable-order fractional dynamical system

C
0 Dτµ1(τ)χ(τ) + 0Iτµ2(τ)χ(τ) = Γ(4) ∗ χ(τ)

[
τ−µ1(τ)

Γ(4 − µ1(τ))
+

τµ2(τ)

Γ(4 + µ2(τ))

]
+ υ(τ) − τ − 1,

and the initial condition is given by χ(0) = 0, so that the optimal solutions are

χ∗(τ) = τ3, υ∗(τ) = τ + 1, L∗ = 0.

Now, we solve the above problem for the following orders:{
µ1

1(τ) = 1 − 0.4e−τ,
µ1

2(τ) = 1 − 0.5e−τ,

{
µ2

1(τ) = 0.95 − 0.35 sin(πτ),
µ2

2(τ) = 0.95 − 0.25 sin(πτ),{
µ3

1(τ) = 0.75 + 0.2 sin(10τ),
µ3

2(τ) = 0.75 + 0.2 sin(50τ),

{
µ4

1(τ) = 0.25 + 0.2τ2,

µ4
2(τ) = 0.25 + 0.5τ2.

In Figure 1, we present the results obtained using the proposed technique as well as the exact
solution for υ(τ) and χ(τ) when N = 5. Using the presented technique, Figure 2 shows the absolute
errors for υ(τ) and χ(τ) at various µi

1(τ) and µi
2(τ), i = 1, 2, 3, 4, and N = 5. The approximate values
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of the performance index L with different µi
1(τ) and µi

2(τ), i = 1, 2, 3, 4, and N = 5 are reported in
Table 1. As the figures show, numerical solutions agree well with exact solutions when compared with
the numerical results.
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Figure 1. The result received for χ(τ) and υ(τ) with µ1(τ) = 1 − 0.4 exp(−τ), µ2(τ) =
1 − 0.5 exp(−τ) when N = 5 in Example 5.1.
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Figure 2. The absolute errors of χ(τ), υ(τ) for various orders µi
1(τ) and µi

2(τ), i = 1, 2, 3, 4
with N = 5 in Example 5.1.

Table 1. The approximate values of L for µi
1(τ), µi

2(τ), i = 1, 2, 3, 4, where N = 5 in
Example 5.1.

µ1
1(τ), µ1

2(τ) µ2
1(τ), µ2

2(τ) µ3
1(τ), µ3

2(τ) µ4
1(τ), µ4

2(τ)
L 2.618331e-13 2.943066e-14 6.639050e-13 1.257254e-13
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Example 5.2. Consider the OC problem

Minimize L =

1∫
0

(χ(τ) − τ2)2
+ (υ(τ) + τ4 −

2τ2−µ1(τ)

Γ(3 − µ1(τ))
)
2dτ,

subject to the dynamical system

C
0 Dτµ1(τ)χ(τ) + 0Iτµ2(τ)χ(τ) = τ2χ(τ) + υ(τ) +

2τ2+µ2(τ)

Γ(3 + µ2(τ))
, χ(0) = 0.

The optimal value for the performance index is L∗ = 0, which is obtained by

χ∗(τ) = τ2, υ∗(τ) = −τ4 +
2τ2−µ1(τ)

Γ(3 − µ1(τ))
.

This problem is solved by the proposed method with N = 5 for the following variable orders:{
µ1

1(τ) = 0.25 + 0.2 sin(2πτ),
µ1

2(τ) = 0.25 + 0.2 sin(πτ),

{
µ2

1(τ) = 0.15 + 0.15 |τ − 1| sin(τ),
µ2

2(τ) = 0.55 + 0.15 |τ − 1| sin(τ),{
µ3

1(τ) = 1 − 0.67e−τ,
µ3

2(τ) = 1 − 0.47e−τ,

{
µ4

1(τ) = 0.45
√
τ,

µ4
2(τ) = 0.35

√
τ.

Figure 3 illustrates the behavior of the numerical solutions with N = 5 for state and control variables
χ(τ), υ(τ) for the above-mentioned µ1

1(τ), µ1
2(τ). The absolute errors obtained by the suggested method

in the state variable and control variable are reported in Figure 4. Table 2 contains the performance
index with N = 5 for the variant (µi

1(τ), µi
2(τ)), i = 1, 2, 3, 4. In all these, it is evident that the proposed

method yields numerical solutions that are highly accurate for all cases of orders of derivatives and
integrals.
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Figure 3. The result received for χ(τ) and υ(τ) with µ1(τ) = 0.25 + 0.2sin(2πτ), µ2(τ) =
0.25 + 0.2sin(πτ) when N = 5 in Example 5.2.
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Figure 4. The absolute errors of obtained χ(τ) and υ(τ) for various orders µi
1(τ) and µi

2(τ),
i = 1, 2, 3, 4 with N = 5 in Example 5.2.

Table 2. The approximate values of L for µi
1(τ), µi

2(τ), i = 1, 2, 3, 4, where N = 5 for
Example 5.2.

µ1
1(τ), µ1

2(τ) µ2
1(τ), µ2

2(τ) µ3
1(τ), µ3

2(τ) µ4
1(τ), µ4

2(τ)
L 6.467053e-15 4.948704e-13 1.587644e-13 4.199681e-15

Example 5.3. Another OC problem of VOFIDE is as follows:

Minimize L =

1∫
0

[
(χ(τ) − τ2)2

+ (υ(τ) − 2τ − sin(τ))2
]
dτ,

under the constraint
C
0 Dτµ1(τ)χ(τ) + 0Iτµ2(τ)χ(τ)

=υ(τ) + 2χ(τ)
[
τ−µ1(τ)

Γ(3 − µ1(τ))
+

τµ2(τ)

Γ(3 + µ2(τ))

]
− 2τ − sin(τ), χ(0) = 0. (5.3)

The solutions χ(τ) = τ2 and υ(τ) = 2τ + sin(τ) minimize the performance index L and L∗ = 0.
Using the method described in this paper, we are able to solve this problem for different variable
orders (µi

1(τ), µi
2(τ)), i = 1, 2, 3, 4. The fractional orders used are as follows:{

µ1
1(τ) = 0.15 + 0.25 sin(τ),
µ1

2(τ) = 0.15 + 0.35 sin(τ),

{
µ2

1(τ) = 1 − 0.7e−2τ,

µ2
2(τ) = 1 − 0.8e−2τ,{

µ3
1(τ) = 0.2 + 0.7τ5,

µ3
2(τ) = 0.2 + 0.7τ8,

 µ4
1(τ) = 0.5 + cos2(τ)eτ

2

40 ,

µ4
2(τ) = 0.7 + cos2(τ)eτ

2

20 .

(5.4)

Considering Table 3 and Figures 5 and 6, it is evident that the proposed method achieves numerical
solution with high accuracy.
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Table 3. The approximate values of L for µi
1(τ), µi

2(τ), i = 1, 2, 3, 4 where N = 5 for
Example 5.3.

µ1
1(τ), µ1

2(τ) µ2
1(τ), µ2

2(τ) µ3
1(τ), µ3

2(τ) µ4
1(τ), µ4

2(τ)
L 1.323914e-13 7.560300e-14 8.074596e-13 1.127018e-13
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Figure 5. The result received for χ(τ) and υ(τ) with µ1(τ) = 0.15 + 0.25sin(τ), µ2(τ) =
0.15 + 0.35sin(τ) when N = 5 in Example 5.3.
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Figure 6. The absolute errors of χ(τ), υ(τ) for various µi
1(τ), µi

2(τ), i = 1, 2, 3, 4 with N = 5
in Example 5.3.

Example 5.4. In this example, we consider an optimal control problem of the energy for a fractional
RLC series electrical circuit. We solve this problem by using our method. This problem can be
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formulated as the following fractional form (where R = 1(Ω), L = 1(H) and C = 1(F)):

Minimize L =

T∫
0

υ2(t)dt, (5.5)

subject to C
0 Dµ1(t)

t χ(t) + 0Iµ2(t)
t χ(t) = −χ(t) + υ(t), (5.6)

χ(0) = χ0, χ(T ) = χT , (5.7)

where state χ and control υ are the current and voltage in the RLC circuit, respectively. Note that if
µ1(t) = µ2(t) = 1, then Eq (5.6) can be written as the following equivalent form:

χ̇(t) +
∫ t

0
χ(τ)dτ = − χ(t) + υ(t), (5.8)

which is the Kirchhoff’s voltage law. Note that the integro-differential equation (5.8) has been
discussed and analyzed by many researchers, for example, see relation (8.3) in [15]. Also, in
relation (29) in [15], the fractional form of (5.8), i.e., integro-differential equation (5.6), was introduced
and studied. Some other fractional form of a RLC electrical circuit can be seen in relation (1.3) in [14]
and relation (9) in [11]. In fact, fractional derivatives and integrals play an important role in the
modeling of electrical circuits that contain super resistants, super capacitors, and super inductors [17].
Moreover, fractional models provide a more efficient description and representation of real electrical
systems. However, the goal of solving the minimum energy problem (5.5)-(5.7), is to move an electrical
initial current χ(0) = χ0 by a voltage in minimum energy to a desired final state χ(T ) = χT . We assume
χ0 = 1 (ampere), χT = 0.25 (ampere) and T = 1 (second) and solve problem (5.5)-(5.7) for different
µ1(t) and µ2(t). The obtained optimal solutions are shown in Figures 7 and 8 for N = 5. Also, the
obtained minimum energy L for different cases is given in Tables 4 and 5.
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Figure 7. The obtained optimal solutions for fixed derivative orders µ1 and µ2 in Example 5.4.
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Figure 8. The obtained optimal solutions for variable derivative orders µ1(t) and µ2(t) in
Example 5.4.

Table 4. The obtained approximate energy L for Example 5.4 where derivative orders are
fixed.

N = 5 µ1 = µ2 = 0.94 µ1 = µ2 = 0.96 µ1 = µ2 = 0.98 µ1 = µ2 = 1
L 0.094177 0.078091 0.060905 0.043829

Table 5. The obtained approximate energy L for Example 5.4 where derivative orders are
variable.

µ1 = µ2

N = 5 0.95 + 0.01e−t 0.95 + 0.03e−t 0.95 + 0.05e−t 1
L 0.080426 0.068278 0.055853 0.043829

It can be seen that when µ1(t) and µ2(t) tend to 1, the obtained optimal state (current) and optimal
control (voltage) go to the corresponding optimal solution with µ1(t) = µ2(t) = 1. This issue, regarding
the obtained optimal value for the performance index L, can also be seen in the tables, which confirms
the correctness of proposed method to solve this practical problem. Further, we can conclude that in
fractional RLC model (0 < µ1, µ2 < 1), more total energy (that is, L) is needed to bring the current in
the circuit from an initial state to the desired state in a certain time compared with the real RLC model
(µ1 = µ2 = 1).
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6. Conclusions

In this paper, we investigated an approach in order to solve a nonlinear optimal control problem
involving variable-order fractional integro-differential equations as the dynamic system. Pseudo-
spectral collocation is the basis of this method. At first, by using the expansion of Lagrange
polynomials in terms of Chebyshev polynomials and the power series of them, the problem was
converted into an nonlinear programming problem, which was easier to solve. Then, variable-order
fractional derivatives in the Caputo sense were represented by a new operational matrix, and fractional
integrals were represented by an operational matrix. With the suggested method, the optimal control
problem of the variable-order fractional integro-differential equation could easily be solved. Using the
numerical results, we could see that the approximate and exact solutions are in good agreement and
the method is efficient and accurate as well.
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