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* Correspondence: Email: salim.bouzebda@utc.fr.

Abstract: Local polynomial fitting exhibits numerous compelling statistical properties, particularly
within the intricate realm of multivariate analysis. However, as functional data analysis gains
prominence as a dynamic and pertinent field in data science, the exigency arises for the formulation of
a specialized theory tailored to local polynomial fitting. We explored the intricate task of estimating the
regression function operator and its partial derivatives for stationary mixing random processes, denoted
as (Yi, Xi), using local higher-order polynomial fitting. Our key contributions include establishing the
joint asymptotic normality of the estimates for both the regression function and its partial derivatives,
specifically in the context of strongly mixing processes. Additionally, we provide explicit expressions
for the bias and the variance-covariance matrix of the asymptotic distribution. Demonstrating
uniform strong consistency over compact subsets, along with delineating the rates of convergence,
we substantiated these results for both the regression function and its partial derivatives. Importantly,
these findings rooted in reasonably broad conditions that underpinned the underlying models. To
demonstrate practical applicability, we leveraged our results to compute pointwise confidence regions.
Finally, we extended our ideas to the nonparametric conditional distribution, and obtained its limiting
distribution.

Keywords: functional data analysis; Kernel method; local linear estimation method; local polynomial
estimation method; uniform almost complete convergence; normality
Mathematics Subject Classification: 60F05, 60F15, 60F17, 62G07

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20241150


23652

1. Introduction

In recent decades, there has been a growing interest in the statistical study of functional random
variables, which are values in infinite-dimensional spaces. Simply put, functional data analysis
(FDA) typically deals with statistical problems where the data consists of a sample of n functions
x1 = x1(t), . . . , xn = xn(t), defined on a compact interval of the real line [0, 1]. FDA focuses on
statistical issues, often referred to as “inference in stochastic processes”, where sample information
is derived from a partial trajectory (x(t), t ∈ [0,T ]) of a stochastic process ({X(t), t ≥ 0}). In this
context, the duration (T ) of the observation interval acts as the sample size (n). This increasing interest
has brought to light several statistical challenges associated with functional random variables. The
drive to explore this field has been fueled by the increasing availability of high-resolution temporal
and spatial data. This trend is particularly notable in fields such as meteorology, medicine, satellite
imaging, and various other scientific disciplines. Consequently, the statistical modeling of this data,
viewed as stochastic functions, has led to numerous complex theoretical and computational research
questions. To gain a comprehensive understanding of both the theoretical and practical components of
functional data analysis, it is recommended that the reader consult the monographs authored by [13]
for linear models about random variables that assume values in a Hilbert space, and [74] for scalar-on-
function and function-on-function linear models, as well as functional principal component analysis
and parametric discriminant analysis. Ferraty and Vieu [38] primarily concentrated on nonparametric
techniques, particularly kernel-based estimation, for scalar-on-function nonlinear regression models.
These methods were further expanded to encompass classification and discrimination analysis. In
their study, [48] examined the extension of various statistical concepts, including goodness-of-
fit tests, portmanteau tests, and change detection, to the functional data framework. Zhang [91]
conducted a study on the analysis of variance for functional data, while [71] primarily investigated
regression analysis for Gaussian processes. Various semi-parametric models have been explored in
the literature, such as functional single index models [44], projection pursuit models [27], partial
linear models [5], and functional sliced inverse regression [43]. Additional studies on functional data
modeling and analysis have been documented in the following sources: [45, 49, 57, 67] and for recent
references [1, 2, 15, 17–22, 66, 79]. One of the most used estimators is the Nadaraya-Watson [68, 85]
estimator. From a function approximation perspective, the Nadaraya-Watson estimator employs local
constant approximations. As highlighted by the numerical analyst [80], “Through all of scientific
computing runs this common theme: Increase the accuracy at least to second order. What this means is:
Get the linear term right”. In other words, local constant approximations are often inadequate, and local
linear fits are preferable. Local polynomial fitting emerges as an attractive method from both theoretical
and practical standpoints. Local polynomial fitting offers several advantages, as noted in [37]. It adapts
to various design types, including random and fixed designs, highly clustered, and nearly uniform
designs. Moreover, boundary effects are absent: the bias at the boundary remains of the same order
as in the interior, without requiring specific boundary kernels. This is a significant departure from
other existing methods. With local polynomial fitting, no boundary modifications are necessary, which
is particularly beneficial in multidimensional situations where the boundary can involve a substantial
number of data points (see [28,78]). Boundary modifications in higher dimensions pose a considerable
challenge. The pivotal method proposed by [60] involved utilizing local higher-order polynomial
fitting to estimate the function m and its partial derivatives. The author demonstrated mean-square
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convergence and joint asymptotic normality (see also [61]). This research holds significant implications
for estimating widely used ARCH time series. Masry [59] established the strong consistency of the
regression estimator and its partial derivatives up to a fixed total order p, obtaining sharp rates of
almost sure convergence that are uniform over compact sets. In [63], the local polynomial estimation
of regression functions and their derivatives is examined, establishing the joint asymptotic normality
of the relevant estimates for both strongly mixing and ρ-mixing processes. Masry and Mielniczuk [64]
considered the nonparametric estimation of a multivariate regression function and its derivatives for a
regression model with long-range dependent errors. The authors adopted a local linear fitting approach
and established the joint asymptotic distributions for the estimators of the regression function and its
derivatives.

The entire body of literature on functional data is primarily centered around the theme of local
linear estimation. Rachdi et al. [73] innovatively amalgamated the k-Nearest Neighbors method
with the local linear estimation approach to formulate a novel estimator for the regression operator.
This innovative approach was tailored for situations where the regressor adopts a functional form,
and the response variable, though scalar, is subject to random missing observations. On a parallel
note, [7] undertook the task of estimating the conditional density function through the application of
the local linear methodology. Moreover, Chikr-Elmezouar et al. [29] delved into the estimation of the
conditional density and mode when confronted with functional covariates. In the realm of local linear
regression, [8] presented a novel local linear regression estimator and conducted a comprehensive study
of its asymptotic behavior. The work by [9] and [11] introduced a general framework elucidating
the local behavior of the regression operator, refer to [3] for recent references. The foundational
work of [92] established mean-squared convergence and asymptotic normality for the local linear
estimator. Expanding the scope to instances where both the response and explanatory variables
are functionally characterized, [32] devised a nonparametric local linear estimator for the regression
function. The principal objective of the current investigation is to establish a comprehensive framework
for polynomial fitting. The central aim of this paper is to furnish the inaugural comprehensive
theoretical validation for the kernel polynomial estimator. This entails determining the uniform
consistency rate and discerning the asymptotic distribution. Nonetheless, it becomes evident that
addressing this issue transcends a mere amalgamation of ideas from disparate domains. Instead,
intricate mathematical derivations are imperative to contend with the challenges posed by estimators
in our specific context. This necessitates the adept application of techniques rooted in large sample
theory.

The article is structured as follows. Section 2 provides the necessary notation and definitions. The
main results are outlined in Section 3. The asymptotic distribution is discussed in Section 3.1, and its
application to the confidence regions is presented in Section 3.3. The establishment of uniform almost
complete convergence is detailed in Section 3.4. Local linear estimators for the conditional distribution
and their asymptotic normality are presented in Section 4. In Section 5, we summarize the findings and
highlight remaining open issues. All proofs are deferred to Section 6, with a focus on the most crucial
arguments due to the lengthiness of the proofs. Additionally, relevant technical results are provided in
the appendix.
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2. Local polynomial regression

We begin by introducing the necessary notation and definitions for the forthcoming sections.
Specifically, we recall the definition of the strong mixing property. Let F k

i (Z) denote the σ-algebra
generated by {Z j : i ≤ j ≤ k}. The following definition of the strong mixing coefficient is attributed
to [76]. For further details, refer to [24, 75, 82, 83].

Definition 2.1. Let Z = {Zi, i = 1, 2, . . .} be a strictly stationary sequence of random variables. Given
a positive integer n, define

α(n) = sup
{
|P(A ∩ B) − P(A)P(B)| : A ∈ F k

1 (Z) and B ∈ F∞
k+n(Z), k ∈ N∗

}
.

The sequence Z is said to be α-mixing (strong mixing) if the mixing coefficient α(n)→ 0 as n→ ∞.

The α-mixing condition is the weakest among the commonly used mixing conditions and has
numerous practical applications, particularly in economics and finance. For example, several time
series models, such as ARCH, ARMA, GARMA, and stochastic volatility models, satisfy the α-mixing
condition.

Remark 2.2. Asymptotic independence, or “mixing”, of the data-generating process is a common
assumption in statistical learning for time series. For many typical processes, the general forms of
various mixing rates are often assumed to be known, but specific coefficients are not. These mixing
assumptions are rarely tested, and there are no established methods for estimating mixing coefficients
from data. In [65], an estimator for beta-mixing coefficients based on a single stationary sample path
is introduced. Khaleghi and Lugosi [51] propose strongly consistent estimators for the `1 norm of the
sequence of α-mixing and β-mixing coefficients of a stationary ergodic process. These estimators
are subsequently used to develop strongly consistent goodness-of-fit hypothesis tests. Specifically,
Khaleghi and Lugosi [51] develop hypothesis tests to determine whether, under the same summability
assumption, the α-mixing or β-mixing coefficients of a process are upper bounded by a given rate
function.

We consider a sequence {(Xi,Yi) : i ≥ 1} of stationary∗ α−mixing random copies of the random
vector [rv] (X,Y), where X takes its values in some abstract space F and Y in R. Suppose that F is
endowed with a semi-metric d(·, ·)† defining a topology to measure the proximity between two elements
of F and which is disconnected from the definition of X to avoid measurability problems. We will
consider especially the conditional expectation of ψ(Y) given X = x,

r(x) = rψ(x) = E(ψ(Y) | X = x), (2.1)

whenever this regression function is meaningful. Here and elsewhere, ψ(·) denotes a specified
measurable function, which is assumed to be bounded on each compact subinterval of R. Note that we
can write

ψ(Y) = r(X) + ε, with E(ε | X) = 0, E(ε2 | X) = σ2(X).
∗In the case of Hilbert space-valued elements, strict stationarity is not necessarily required; second-order stationarity suffices. A

Hilbert space-valued sequence {Xt}t∈Z is second-order (or weakly) stationary if E ‖Xt‖
2 < ∞, EXt = µ, and E

[
(Xs − µ) ⊗ (Xt − µ)

]
=

E
[
(Xs−t − µ) ⊗ (X0 − µ)

]
for all s, t ∈ Z.

We say that {Xt}t∈Z is strictly stationary if the joint distribution of {Xt1 , . . . , Xtn } is the same as the joint distribution of {Xt1+h, . . . , Xtn+h}

for all t1, . . . , tn ∈ Z, n ≥ 1, and h ≥ 1.
†A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 , x2.
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In this work, we study the problem of nonparametric estimation of the regressor function r(·) using,
for the first time in the functional data, the local polynomial fitting such that the regressor belongs to
an infinite dimensional set. From now on, for the ease of the notation, we set ψ(y) = y. Recall that
in functional statistics, there are several approaches to developing the concept of local linear methods.
For example (see [9]) the linear approximation of r(·) for any z in the neighborhood of x is given by

r(z) = r(x) + bβ(z, x) + o(β(z, x)),

where the quantities a = r(x) and b are estimated by minimizing the following criterion

min
(a,b)∈R2

n∑
i=1

(Yi − a − bβ(Xi, x))2 K(h−1
K δ(x, Xi)), (2.2)

where the locating functions β(·, ·) and δ(·, ·) are defined on (F×F) and map into R, with |δ(·, ·)| = d(·, ·),
where d(·, ·) is a distance metric. The function β refers to the local behavior of our model, while K(·) is a
kernel function, and hK = hK,n is the bandwidth or smoothing parameter of the kernel K(·), controlling
the size of the local neighborhood and the degree of smoothing. The performance of the estimate
depends crucially on the two locating functions, β(·, ·) and δ(·, ·), which are defined on (F × F) and
map into R. These functions satisfy |δ(·, ·)| = d(·, ·), where d(·, ·) is a distance metric. K(·) is a kernel
function, and hK = hK,n is the smoothing parameter of the kernel K(·). To clarify, specific forms for
δ(·, ·) and β(·, ·) can be given. For example, if the functional data are ‘smooth’ curves, one might use
the following family of locating functions:

loc(q)
a (x1, x2) =

∫
θ(t)

(
x(q)

1 (t) − x(q)
2 (t)

)
dt = 〈θ, x(q)

1 − x(q)
2 〉X,

where θ is a function that can be adapted to the data, X is a Hilbert space, and 〈·, ·〉 denotes the
inner product. Choosing β(·, ·) from such a family is motivated by its connection to the following
minimization problem:

ĉ(x) = arg min
c(x)∈Rp+1

n∑
i=1

Yi −

p∑
l=0

cl(x)
〈
θ, X(q)

i − x(q)
〉l

X

2

K
(
h−1 |δ (Xi, x)|

)
,

which can be viewed as a type of ‘local polynomial’ regression approach when considering a functional
explanatory variable. Metrics, or more generally semi-metrics, based on derivatives could also be
suitable for locating one curve relative to another. For example, one might define:

loc(q)
b (x1, x2) =

(∫ (
x(q)

1 (t) − x(q)
2 (t)

)2
dt

)1/2

,

which is a semi-metric. This second family of locating functions is particularly well-suited for δ(·, ·),
as it measures the proximity between two elements of X. Let U be an open subset of a real Banach
space F. If f : U → R is differentiable p + 1 times on U, it can be expanded using Taylor’s formula:

f (x) = f (a) + D f (a) · h +
1
2!

D2 f (a) · h2 + · · · +
1
n!

Dp f (a) · hp + Rp(x),
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with the following expressions for the remainder term Rp(x) :

Rp(x) =
1
p!

Dp+1 f (η) · (x − η)ph Cauchy form of remainder,

Rp(x) =
1

(p + 1)!
Dp+1 f (ξ) · hp+1 Lagrange form of remainder,

Rp(x) =
1
p!

∫ 1

0
Dp+1 f (a + th) · ((1 − t)h)phdt integral form of remainder.

Here a and x must be points of U such that the line segment between a and x lie inside U, h is x − a,
and the points ξ and η lie on the same line segment, strictly between a and x. If we collect the equal
mixed partials (assuming that they are continuous) then

1
k!

Dk f (a) · hk =
∑
|J|=k

1
J!
∂J f
∂xJ hJ,

where J is a multi-index of m components, and each component Ji indicates how many times the
derivative with respect to the i th coordinate should be taken, and the exponent that the ith coordinate
of h should be raised to in the monomial hJ. The multi-index J runs through all combinations such
that J1 + · · · + Jm = |J| = k in the sum. The notation J! means J1! · · · Jm!. Let us specify our setting
as in [11]. Let U be an open subset of F. If f : U → R is p + 1 times differentiable on U, the Taylor
expansion of f around x ∈ U is

f (y) =

p∑
j=0

1
j!

D j f (x)d j(x, y) + Rp(y),

where D j f (x) denote the j th Fréchet derivative of f at x, with x and y being points of U and d(·, ·) the
metric of F. The remainder is given by

Rp(y) =
1
p!

∫ 1

0
Dp+1 f {x + td(x, y)}dp+1(x, y)(1 − t)pdt = o {dp(x, y)} ,

as d(x, y)→ 0; see [26] and [90] for more details. Then, in our setting, by following a similar reasoning
as in [9] and [11], the local polynomial estimator of order p of the regression function denoted by r̂(x)
of r(x) is defined as the first component of the estimate ĉ(x) = (̂c0(x), . . . , ĉp(x)) which is obtained by
the following minimization problem

ĉ(x) = arg min
c(x)∈Rp+1

n∑
i=1

Yi −

p∑
l=0

cl(x)βl(Xi, x)

2

K(h−1
K δ(x, Xi)). (2.3)

Furthermore, the estimator r̂l(x) = l! ĉl(x), where 0 ≤ l ≤ p can be expressed similarly as an estimator
of the existing lth order derivatives of the regression function r(·). Then the estimator r̂l(x) can be
written as

ĉ(x) =
(
>QβWQβ

)−1
>QβW Y, (2.4)

where >Qβ is the matrix defined by
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>Qβ =


1 · · · 1

β(X1, x) · · · β(Xn, x)
... · · ·

...

βp(X1, x) · · · βp(Xn, x)

 , Y => (Y1, . . . ,Yn), and W=diag(K(h−1
k δ(Xi, x))),

where > is the transpose symbol. Let us introduce

un, j =
1

nE(K)

n∑
i=1

(
β(Xi, x)

hK

) j

K(h−1
K (δ(Xi, x)), vn, j =

1
nE(K)

n∑
i=1

(
β(Xi, x)

hK

) j

K(h−1
K (δ(Xi, x))Yi,

Un =


un,0 · · · un,p
...

. . .
...

un,p · · · un,2p

 , and Vn => (vn,0, . . . , vn,p).

Keeping in mind this notation, we have the representation

ĉ(x) = diag(1, h−1
K , h

−2
K , . . . , h

−p
K ) U−1

n Vn.

Interestingly, this class of estimators includes both the classical Nadaraya-Watson estimator, which
minimizes (2.3) when p = 0, and the local linear kernel estimator, which corresponds to p = 1.

3. Main results for the regression operator

Let x (resp. y) be a fixed point in F (resp. ∈ R), and Nx (resp. Ny) denote a fixed neighborhood of x
(resp. y).

3.1. Asymptotic distribution

In the remainder of the paper, we denote the closed ball in F of center x ∈ F and radius h by

B(x, h) := {x′ ∈ F : |δ(x, x′)| ≤ h}.

We define
φx(l1, l2) = P(l2 ≤ δ(X, x) ≤ l1),

where l1 and l2 are two real numbers. To establish the asymptotic behavior of the local polynomial of
our estimator, we need some following assumptions.

(H1) For any u > 0, φx(u) := φx(−u, u) > 0 where lim
u→0

φx(u) = 0.

It is easy to see that
ϕx(u) = P(X ∈ B(x, u)).

When the function |δ(·, ·)| satisfies the conditions of a metric or semi-metric, the expression ϕx(u) can
be understood as the probability of a ball in the set F that is centered at x and has a radius of u.
When the value of u approaches zero, the term “small ball probabilities” is frequently employed in
the field of probability theory, which has been extensively studied (refer to [54] for a comprehensive
summary of this topic in the context of Gaussian processes). The function ϕx(·), which is an extension
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of the small ball probability concept, serves a similar purpose in the functional situation as the density
function does in the finite-dimensional context. In the context of multivariate nonparametric analysis,
it is customary to estimate a specific quantity at a given position using a sufficiently large number of
observations available in the vicinity. One commonly employed method for assuming this nature is to
claim that the density function evaluated at this particular location possesses a strictly positive value. In
the context of infinite dimensions, the absence of a reference measure, such as the Lebesgue measure in
finite dimensions, necessitates the adoption of a similar assumption that does not rely on the concept of
density. The objective of Hypothesis 1 (H1) is to incorporate the functional aspect, indicating that there
are a sufficient number of observations surrounding x, hence justifying the estimation of the regression
operator at the specific point x. The following conditions are needed in our analysis.

(H2) (Xi,Yi)i∈N is an α-mixing sequence and

(i) ∃a > 0, ∃C > 0, ∀n ∈ N, α(n) ≤ C n−a,

(ii) sup
i, j
P((Xi, X j) ∈ B(x, hK) × B(x, hK)) ≤ ψx(hK), where ψx(hK) is such that there exists ε ∈]0, 1]

for which 0 < ψx(hK) = O
(
φ1+ε

x (hK)
)

;

(H3) (i) r(·) and σ(·) are continuous in the neighbourhood of x, which means that r(·) and σ(·) are
both in the set {

f : F→ R, lim
|δ(x′,x)|→0

f
(
x′
)

= f (x)
}
,

and there exists C > 0, such that, almost surely,

sup
i, j
E(|YiY j| | (Xi, X j)) ≤ C < ∞,

(ii) For any k ∈ {1, 2, . . . , p, p + 1}, the quantities Ψ(k)(0) exist, where Ψ(k)(·) denotes the kth
derivative of Ψ(·) defined by Ψ(s) = E(r(X) − r(x) | β(X, x) = s);

(H4) The locating operators β(·, ·) and δ(·, ·) satisfy the following conditions:

(i) ∀z ∈ F, C1|δ(x, z)| ≤ |β(x, z)| ≤ C2|δ(x, z)|;
(ii) sup

v∈B(x,r)
| β(v, x) − δ(x, v) |= o(r);

(H5) The kernel K(·) is a bounded and positive function which is supported within [−1, 1] and for
which the first derivative K′(·) satisfies: K(1) > 0, K′(t) < 0, for t ∈ [−1, 1];

(H6) There exists a positive integer n0 for which

−
1

φx(hK)

∫ 1

−1
φx(zhK , hK)

d
dz

(
z2K(z)

)
dz > C3 > 0 for n > n0,

and

h2
K

∫
B(x,hK )

∫
B(x,hK )

β(u, x)β(t, x)dP(X1,X2)(u, t) = o
(∫

B(x,hK )

∫
B(x,hK )

β2(t, x)β2(u, x) dP(X1,X2)

)
,

where dP(X1,X2) is the cumulative distribution of (X1, X2);
(H7) (i) For a > 1, the function φx(·) satisfies

∃η > 0, C2n
1

1−a ≤ φx(hK) ≤ C1n
1

3−2a−η;
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(ii) The bandwidths hK satisfy

lim
n→∞

hK = 0, lim
n→∞

log n
nφx(hK)

= 0 and ∃β > 0 such that lim
n→∞

nβhK = 0.

Before presenting our result, we need additional notation. In the sequel, we define certain quantities
appearing in the dominant terms of the bias and of the variance in the asymptotic results. For j ∈ {1, 2},
let

M j = K j(1) −
∫ 1

−1
(K j(u))′χx(u)du, (3.1)

where χx(·) is a a function such that

lim
hK→0

φx(−hK, thK)
φx(hK)

= χx(t) for any t ∈ [−1, 1].

For all a > 0, and b > 0, let

N(a, b) = Ka(1) −
∫ 1

−1
(ubKa(u))′χx(u)du. (3.2)

3.2. Comments on the conditions

Assumption (H2-i) requires that the mixing coefficients of the dependent case tend to zero at a
suitably mild rate. Assumption (H2-ii) describes the behavior of the joint distribution of the pair (Xi, X j)
in relation to its marginal distributions, allowing us to present an explicit asymptotic variance term.
Assumption (H3-i) imposes the usual moment condition on the responses and the covariance structure
of the dependent sample, as detailed in [38]. Assumption (H3-ii) specifies the necessary smoothness
condition for the current setting. Assumption (H4) is a standard condition in nonparametric estimation.
Condition (H5) is very usual in nonparametric estimation literature devoted to the functional data
context. Notice that [70] symmetric kernel is not adequate in this context since the random process
d (x, Xi) is positive, therefore we consider K(·) with support [0, 1]. This is a natural generalization of
the assumption usually made on the kernel in the multivariate case where K(·) is supposed to be a
spherically symmetric density function. Assumption (H6) describes the behavior of the bandwidth h
in relation to the small ball probabilities and the kernel function K(·). Assumption (H7-i) is a technical
condition illustrating the relationship between the small ball probability and an arithmetically α-mixing
coefficient, as discussed in [42]. Assumption (H7-ii) is satisfied when hK = n−% and φx(hk) = hϑK ,

provided ϑ > 0 and β < % < 1/ϑ. In the following, we use the notation Z D
= N(µ, σ2) to indicate

that the random variable Z follows a normal distribution with mean µ and variance σ2. The symbol
D
→

denotes convergence in distribution, and
P
→ denotes convergence in probability.

Remark 3.1. According to [40], our methodology is heavily dependent on the distribution function
φ(·). This dependency is evident in our conditions and the convergence rates of our estimate (via
the asymptotic behavior of the quantity nφ(h)). More precisely, the behavior of φ(·) around 0 is of
paramount importance. Consequently, the small ball probabilities of the underlying functional variable
X are crucial. In probability theory, the calculation of P(‖X − x‖ < s) for “small” s (i.e., for s tending
toward zero) and for a fixed x is known as the “small ball problem”. Unfortunately, there are solutions

AIMS Mathematics Volume 9, Issue 9, 23651–23691.



23660

for very few random variables (or processes) X, even when x = 0. In several functional spaces,
taking x , 0 presents formidable obstacles that may be insurmountable. Typically, authors emphasize
Gaussian random variables. We refer you to [54] for a summary of the key findings regarding the
probability of small balls. If X is a Gaussian random element on the separable Banach space E and
x belongs to the reproducing kernel Hilbert space associated with X, then the following well-known
result holds:

P(‖X − x‖ ≤ s) ∼ CxP(‖X‖ ≤ s), as s→ 0.

As far as we know, the results available in the published literature are essentially all of the form

P(‖X − x‖ < s) ∼ cxs−α exp
(
−C/sβ

)
,

where α, β, cx, and C are positive constants, and ‖ · ‖ may be a supremum norm, an Lp norm, or a Besov
norm. The interested reader can refer to [12, 16, 20, 38–40, 79] for further discussion. Notably, the
pioneering book by [38] extensively comments on the links between nonparametric functional statistics,
small-ball probability theory, and the topological structure of the functional space E.

In the following theorem, we present the limiting law.

Theorem 3.2. Assume that the assumptions (H1)–(H7) are satisfied. We have, as n→ ∞,

√
nφx(hK)

diag(1, hK , . . . , h
p
K)


r̂(x) − r(x)

Ψ̂(1)(0) − Ψ(1)(0)
...

Ψ̂(p)(0) − Ψ(p)(0)

 −
hp+1

K

(p + 1)!
Ψ(p+1)(0)S −1U


D
→N(0, σ2(x)S −1VS −1),

where

S =


1 · · ·

N(1, p)
M1

...
. . .

...
N(1, p)

M1
· · ·

N(1, 2p)
M1

 ,
V = diag

(
M2

M2
1

,
N(2, 2)

M2
1

, . . . ,
N(2, 2p)

M2
1

)
,

U =


N(1, p + 1)

M1
...

N(1, 2p + 1)
M1

 ,

where ĉp(x) is a consistent estimator of Ψ(p)(0). Henceforth, we will denote ĉp(x) as Ψ̂(p)(0), and let
r̂(x) = ĉ0(x).

The proof of Theorem 3.2 is postponed until Section 6. To eliminate the bias term, we need the
following additional assumption.
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(H8) Assume that limn→∞ nh2p+2
K φx(hK) = 0.

Corollary 3.3. Assume that the conditions (H1)–(H8) are satisfied. We have, as n→ ∞,

√
nφx(hK)

diag(1, hK · · · h
p
K)


r̂(x) − r(x)

Ψ̂(1)(0) − Ψ(1)(0)
...

Ψ̂(p)(0) − Ψ(p)(0)




D
→N(0, σ2(x)S −1VS −1).

Remark 3.4. To cancel the bias term, we need nh2p+2
K φx(hK) → 0, as n → ∞. Consequently, the

last condition and condition nφx(hK) → ∞ are satisfied as soon as hK = n−ξ, 0 < ξ < 1, with and
φx(hK) = hc

K , for 1
ξ
− (2p − 2) < c < 1

ξ
.

3.3. Application to the confidence regions

A lower α th quantile of the vector Vn is any quantity τnα ∈ Rp+1 satisfying τnα =

inf {ε : P (Vn ≤ ε) ≥ α}, where ε is an infimum over the given set only if there does not exist a ε1 < ε

in Rp+1 such that P (Vn ≤ ε1) ≥ α. We can, without loss of generality, assume P (Vn ≤ τnα) = α.
Since variance matrix Σ(x) = σ2(x)S −1VS −1 is unknown and assumed non-singular, see Corollary 4 of
Appendix 1 of [4], there exists a non-singular matrix C(x) such that

C(x)Σ(x)−1C(x) = Ip+1.

Let us first give a consistent estimate of Σ(x). Making use of the decomposition of χx(t) in (3.1), one
may estimate χx(t) by

χ̂x(t) =
Fx,n,1(−hk, thk)

Fx,n,2(hK)
,

where

Fx,n,1(t, u) =
1
n

n∑
i=1

1{t≤δ(x,Xi)≤u} and Fx,n,2(t) =
1
n

n∑
i=1

1{|δ(x,Xi)|≤t}.

Hence we have the following estimates, for j = 1, 2,

M̂ j = K j(1) −
∫ 1

−1
(K j(u))′χ̂x(u)du. (3.3)

In a similar way, for all a > 0, and b > 0, we have

N̂(a, b) = Ka(1) −
∫ 1

−1
(ubKa(u))′χ̂x(u)du. (3.4)

Hence one can consistently estimate Σ(x) by Σ̂(x) = σ̂2(x)Ŝ −1V̂Ŝ −1, where

Ŝ =


1 · · ·

N̂(1, p)

M̂1
...

. . .
...

N̂(1, p)

M̂1

· · ·
N̂(1, 2p)

M̂1


,
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V = diag

 M̂2

M̂2
1

,
N̂(2, 2)

M̂2
1

, . . . ,
N̂(2, 2p)

M̂2
1

 ,

U =



N̂(1, p + 1)

M̂1
...

N̂(1, 2p + 1)

M̂1


.

For n large enough, we have
Ĉ(x)̂Σ(x)−1Ĉ(x) = Ip+1.

An application of Slutsky with Corollary 3.3 gives the following result.

Corollary 3.5. Assume that the conditions (H1)–(H8) are satisfied. We have, as n→ ∞,

√
nφx(hK)Ĉ(x)

diag(1, hK · · · h
p
K)


r̂(x) − r(x)

Ψ̂(1)(0) − Ψ(1)(0)
...

Ψ̂(p)(0) − Ψ(p)(0)




D
→N(0, Ip+1).

This corollary can be applied directly to the construction of the confidence regions.

3.4. Uniform almost-complete convergence

In this part, we will establish the rate of uniform almost complete convergence over some subset of
F . The following definition is needed.

Definition 3.6. Let ε > 0 be given number. A finite set of points x1, x2, . . . , xN in F is called an ε−net
for S if S ⊂ ∪N

k=1B(xk, ε). The quantity Ψs(ε) = log(Nε(S )), where Ψs(ε) is the minimal number of open
balls in F of radius ε which is necessary to cover S , is called Kolmogorov’s ε−entropy of the set S .

The concept of entropy, introduced by Kolmogorov in the mid-1950s (see [52]), serves as a measure
of set complexity, indicating that high entropy implies a significant amount of information is required
to accurately describe an element within a given tolerance ε. Consequently, the selection of the
topological structure, specifically the choice of the semi-metric, plays a crucial role when examining
asymptotic results that are uniform over a subset S of F . In particular, we subsequently observe that
a well-chosen semi-metric can enhance the concentration of the probability measure for the functional
variable X, while minimizing the ε-entropy of the subset S . Ferraty and Vieu [38] emphasized this
phenomenon of concentration of the probability measure for the functional variable by calculating
small ball probabilities in different standard scenarios (refer to [41]). For readers interested in these
concepts (entropy and small ball probabilities) and/or the utilization of Kolmogorov’s ε-entropy in
dimensionality reduction problems, we recommend referring to [53] or/and [69], respectively. We
establish the uniform almost-complete convergence of our estimator on some subset S F such that:

S F ⊂
N⋃

k=1

B(xk, ιn),
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where xk ∈ F and ιn (resp. dn) is a sequence of positive real numbers. To establish our result, we need
the following hypotheses.

(U1) The hypothesis (H1) satisfies the following condition: there exists a differentiable function φ(·),
such that

∀x ∈ F , 0 < C1 φ(hk) ≤ P(X ∈ B(x, hk) ≤ C2 φ(hk),

and there exists n0 such that for each n < n0

φ′(n) < C,

where φ′(·) represents the first derivative of φ(·) and φ(0) = 0;
(U2) The hypothesis (H2) is satisfied uniformly on x ∈ S F ;
(U3) The function β(·, ·) satisfies (H4) and the following Lipschitz condition, there exists a positive

constant C, for all x1, x2 in F , we have

| β(x, x1) − β(x, x2) |≤ Cd(x1, x2);

(U4) The regression operator r(·) satisfies: there exists a positive constant C and s > 0, such for each
x ∈ F and z ∈ B(x, hK), we have

| r(x) − r(z)) |≤ Cds(x, z);

(U5) The kernel function K(·) satisfies (H5) and is Lipschitzian on [−1, 1];
(U6) In addition to (H7), the Kolmogorov’s ε-entropy of S F satisfies:

(i) ∃n0, ∀n > n0,
log2 n
nφ(h) < ψSF

(
log n

n

)
< nφ(h)

log n .
(ii) ∃λ > 1, such that

∞∑
n=1

exp
{

(1 − λ)ψSF

(
log n

n

)}
=

∞∑
n=1

d1−λ
n < ∞.

3.5. Comments on the conditions

Conditions (U1) and (U2) correspondingly serve as the uniform counterparts of (H1) and (H2).
Assumption (U3), initially introduced and discussed by [9], plays a pivotal role in our methodology,
particularly when computing the leading dominant terms in our asymptotic results. Moreover, (U4)
proves essential for evaluating the bias component of the uniform convergence rates, and (U5) is
a classical requirement in functional estimation within finite or infinite-dimensional spaces, with
examples of kernel functions satisfying this condition available in [38]. The final condition regarding
entropy, (U6), implies that ψSF

(
log n

n

)
= o(nφ(hK)) as n tends to infinity. However, in certain “usual”

scenarios, such as a Hilbert space with a projection semi-metric, one can consider ΨsiF

(
log n

n

)
∼ C log n,

and (H6 i) is fulfilled whenever (log n)2 = O(nφ(h)). For further insights, one may refer to Example 4
in [41].

We are now equipped to state the main result of this section concerning the uniform almost complete
convergence with rate.
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Theorem 3.7. Assume that the assumptions (U1)–(U6) are satisfied. We have as n→ ∞,

sup
x∈SF
‖̂c(x) − c(x)‖F = O(hp+1

K ) + Oa.co.
‡

(
log dn

nφ(hK)

)
,

where
ĉ(x) =

(̂
r(x), hKΨ̂(1)(0), . . . , hp

KΨ̂(p)(0)
)
.

4. The conditional distribution function

In this section, we will establish results analogous to Theorem 3.2 for the local polynomial estimator
of order p of the Cumulative distribution function which we will denote by F̂ x(·). We notice that the
distribution function is expressed in terms of regression depending on the choice of the function ψ(Y)
(see Eq (2.1)). Then if ψy(Y) = 1Y≤y , the distribution function is defined by

∀y ∈ R : F x(y) = P(Y ≤ y|X = x).

The functional local polynomial estimator of F x(y) is based on the minimization, with respect to â =

(̂a0, . . . , âp), of

â = arg min
(a0,...,ap)∈Rp+1

n∑
i=1

L(h−1
L (y − Yi)) −

p∑
l=0

al(x)βl(Xi, x)

2

K(h−1
K δ(x, Xi)), (4.1)

where L(·) is cumulative distribution function and (hL = hL,n) is a sequence of positive real numbers.
In the realm of functional statistics, the estimation of the conditional cumulative distribution function
holds significant importance both theoretically and practically. This is evident in various applications,
such as reliability and survival analysis. Additionally, within the domain of nonparametric statistics,
numerous prediction tools, including conditional density, conditional quantiles, and conditional mode,
play crucial roles. It is worth noting that these considerations apply particularly when p, is equal to 1.
The almost-complete convergence of the estimator F̂ x(·) in the case of p = 1 has been investigated
by [31]. Furthermore, [14] has explored the asymptotic normality of the local linear estimation of the
conditional function in the scenario of independent observations. For the development of our estimator,
we adopt a similar approach as used for the regression operator. Consequently, the local polynomial
estimator of F̂ x(y) can be explicitly expressed as follows:

(F̂ x(y), â1, . . . âp) = diag(1, h−1
K , h

−2
K , . . . , h

−p
K ) A−1

n Bn,

where

An =


Λn,0 · · · Λn,p
...

. . .
...

Λn,p · · · Λn,2p

 , and Bn => (Υn,0, . . . ,Υn,p).

‡Let (un) for n ∈ N be a sequence of real random variables. We say that (un) converges almost-completely (a.co.) toward zero if, and
only if, for all ε > 0,

∑∞
n=1 P (|un| > ε) < ∞. Moreover, we say that the rate of almost-complete convergence of (un) toward zero is of

order vn (with vn → 0), and we write un = Oa.co. (vn) if, and only if, there exists ε > 0 such that
∑∞

n=1 P (|un| > εvn) < ∞. This type of
convergence implies both almost sure convergence and convergence in probability.
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We denote

An, j =
1

nE(K)

n∑
i=1

(
β(Xi, x)

hK

) j

K(h−1
K (δ(Xi, x)),

Υn, j =
1

nE(K)

n∑
i=1

(
β(Xi, x)

hK

) j

K(h−1
K (δ(Xi, x))L(h−1

L (Yi − y)).

4.1. Main results

To establish the asymptotic convergence of F̂ x(y) we need some notation and assumptions. For any
l ∈ {0, 2, . . . , 2p}, we set

ϕl(·, y) =
∂lF ·(y)
∂yl and ψl(s) = E

[
ϕl(X, y) − ϕl(x, y)|β(X, x) = s

]
.

(M1) For any k ∈ {1, . . . , p+1}, the quantities ψ(k)
l (0) exist, where ψ(k)

l (·) denotes the kth order derivative
of ψl(·).

(M2) The kernel K(·) satisfies the assumption (H5) and its first derivative K(1)(·) satisfies:

K2(1) −
∫ 1

−1
(K2(u))′Ψx(u)du > 0.

(M3) The kernel function L(·) is a positive function, symmetric, bounded, integrable, and such that and∫
R

z2pL(z)dz < ∞.

(M4) The coefficients of α-mixing sequence(Xi,Yi)i∈N satisfies (H2) and the following condition,
+∞∑
l=1

lδ(α(l))
1
p < ∞ for some p > 0 and δ > 1

p .

(M5) The function φx(·) satisfies the assumption (H1).
(M6) Let (wn) and (qn) be sequences of positive integers tending to infinity, such that (wn + qn) ≤ n, and

(i) qn = o
(
(n φx(hK))

1
2

)
and lim

n→+∞

(
n

φx(hK)

) 1
2

α(qn) = 0,

(ii) rnqn = o
(
(nφx(hK))

1
2

)
and lim

n→+∞
rn

(
n

φx(hK)

) 1
2

α(qn) = 0, where rn is the largest integer, such

that rn(wn + qn) = O(n).

Theorem 4.1. Under assumptions (M1)–(M6), we have

√
nφx(hK)

diag(1, hK , . . . , h
p
K)


F̂ x(y) − F x(y)
â1 − Ψ

(1)
0 (0)
...

âp − Ψ
(p)
0 (0)

 − Bp
K(x, y) − Bp

L(x, y)


D
→N(0,VLK(x, y)),

where
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Bp
L(x, y) =

p∑
j=0

E(β j
1K1)

h j
KE(K1)

I +

p∑
k=1

p∑
a=1

h2k
L

(2k)!

∫
t2kL′(t)dt Ψ

(a)
k (0)

E(β j+a
1 K1)

h j
KE(K1)

 ,
I =

h2
L

2
ϕ2(x, y)

∫
t2L′(t)dt, . . . ,

h2p
L

(2p)!
ϕ2p(x, y)

∫
t(2p)L′(t)dt

T

,

Bp
K(x, y) =

hp+1
K

(p + 1)!
Ψ

(p+1)
0 (0)S −1U,

VLK(x, y) = F x(y)(1 − F x(y))S −1VS −1.

Remark 4.2. Let x ∈ F be a fixed element, and y ∈ R. If we define ψy(Y) = 1]−∞,y](Y), then the
operator rψ(x) = E(ψy(Y) | X = x) represents the conditional cumulative distribution function (CDF)
of Y given X = x, denoted as F(y | x) = P(Y ≤ y | X = x). This can be estimated as F̃(y | x) := r̂ψ,n(x).
For a given α ∈ (0, 1), the α-th order conditional quantile of the distribution of Y given X = x is defined
as qα(x) = inf{y ∈ R : F(y | x) ≥ α}. If F(· | x) is strictly increasing and continuous in a neighborhood
of qα(x), then F(· | x) has a unique quantile of order α at qα(x), i.e., F(qα(x) | x) = α. In such cases:

qα(x) = F−1(α | x) = inf{y ∈ R : F(y | x) ≥ α},

which is uniquely estimated by q̂n,α(x) = F̃−1(α | x). Conditional quantiles have been extensively
studied when the predictor X is of finite dimension. Since F(qα(x) | x) = α = F̃ (̂qn,α(x) | x), and
F̃(· | x) is continuous and strictly increasing, we have, for any ε > 0, there exists η(ε) > 0 such that for
all y: ∣∣∣∣F̃(y | x) − F̂T (qα(x) | x)

∣∣∣∣ ≤ η(ε)⇒ |y − qα(x)| ≤ ε.

This implies that, for any ε > 0, there exists η(ε) > 0 such that:

P
(∣∣∣̂qn,α(x) − qα(x)

∣∣∣ ≥ η(ε)
)
≤ P

(∣∣∣F̃ (̂
qn,α(x) | x

)
− F̃ (qα(x) | x)

∣∣∣ ≥ η(ε)
)

= P
(
| F (qα(x) | x) − F̃ (qα(x) | x) ≥ η(ε)

)
.

This result may be immediately used to establish the consistency of the quantile estimator. This topic
will be investigated in future research.

Remark 4.3. Over time, it has become increasingly clear that the performance of kernel estimates
deteriorates as the dimensionality of the problem increases. This decline is primarily due to the
fact that, in high-dimensional spaces, local neighborhoods often lack sufficient sample observations
unless the sample size is extraordinarily large. Consequently, in kernel estimation, computing local
averages is not feasible unless the bandwidth is significantly wide. This overarching issue is known
as the curse of dimensionality [10]. The paper by [77] provides a comprehensive analysis of the
feasibility and challenges of high-dimensional estimation, complete with examples and computations.
For recent references, see [6, 15, 16, 35]. To address the difficulties associated with high-dimensional
kernel estimation and simplify the process, a wide range of dimension reduction techniques have been
developed. These techniques major to explain the main features of a set of sample curves using
a small set of uncorrelated variables. One effective solution is to generalize principal component
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analysis (PCA) to the context of a continuous-time stochastic process [33]. The asymptotic properties
of the estimators of Functional Principal Component Analysis (FPCA) have been extensively studied
in the general context of functional variables [30]. Nonparametric methods have been developed to
perform FPCA for cases involving a small number of irregularly spaced observations of each sample
curve [50, 88]. As in the multivariate case, interpreting principal component scores and loadings is
a valuable tool for uncovering relationships among the variables in a functional data set. To avoid
misinterpretation of PCA results, a new type of plot, named Structural and Variance Information plots,
was recently introduced by [25]. Numerical results suggest that regularization using a smoothness
measure often yields more satisfactory outcomes than the FPCA approach. The FPCA method assumes
that the top eigenfunctions of the predictors, which are unrelated to the coefficient function or the
response, provide a good representation of the coefficient function. While it is generally believed that
neither approach will consistently outperform the other, the Reproducing Kernel Hilbert Space (RKHS)
method is an interesting alternative that merits attention [58, 89]. Spline smoothing is one of the most
popular and powerful techniques in nonparametric regression [36, 46, 47, 84]. Penalized splines have
gained widespread use in recent years due to their computational simplicity and their connection to
mixed effects models [86]. These methods have also found significant success in Functional Data
Analysis (FDA), as evidenced by tools like the R package refund. However, there is a consensus that
the asymptotic theory of penalized splines is difficult to derive, and many theoretical gaps remain, even
in the standard nonparametric regression setting. To our knowledge, there are very few theoretical
studies on penalized splines for FDA [87]. Most approaches to functional regression are based on
minimizing some L2-norm and are therefore sensitive to outliers. Finally, we can mention methods
based on the delta sequences [23] and the wavelet methods [34].

5. Concluding remarks

Local polynomial fitting exhibits various statistically significant characteristics, particularly in the
intricate domain of multivariate analysis. As functional data analysis gains traction in the field of
data science, there arises a need for a specialized theory focused on local polynomial fitting. This
study employs local higher-order polynomial fitting to address the complex challenge of estimating
the regression function operator and its partial derivatives for stationary mixing random processes,
represented as (Yi, Xi). For the first time, we have achieved significant progress by demonstrating
the joint asymptotic normality of the estimates for the regression function and its partial derivatives,
particularly applicable to strongly mixed processes. Additionally, we derive precise formulas for the
bias and the variance-covariance matrix of the asymptotic distribution. We establish the uniform strong
consistency of the regression function and its partial derivatives across compact subsets, providing a
detailed analysis of their convergence rates. Importantly, these conclusions are grounded in general
conditions that form the foundation of the underlying models. To illustrate practical utility, we
utilize our findings to compute confidence regions for individual points. Furthermore, we extend our
concepts to encompass the nonparametric conditional distribution and acquire its limiting distribution.
There are multiple avenues for further methodological development. As a prospective direction,
relaxing the stationarity assumption and exploring similar uniform limit theorems for local stationary
functional ergodic processes would be fruitful. Additionally, considering the functional kNN local
polynomial approach and expectile regression estimators in future investigations could yield alternative
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estimators benefiting from the advantages of both methods, as discussed in [20] and referenced in [19].
Investigating the extension of our framework to the censored data setting would also be of interest.
In an upcoming investigation, obtaining a precise uniform-in-bandwidth limit law for the proposed
estimators will be essential. This outcome would allow the bandwidth to vary across a comprehensive
range, ensuring the estimator’s consistency and serving as a valuable practical guideline for bandwidth
selection in nonparametric functional data analysis. It is crucial to acknowledge that advancing
research in this direction poses a more challenging task compared to previous efforts. The primary
challenge lies in the need to develop new probabilistic results, such as inequalities and maximal
moment inequalities specifically tailored for independent and identically distributed (i.i.d.) samples,
as discussed in [81].

6. Proof of the main result

This section is devoted to the proof of our main result. The previously presented notation continues
to be used in the following. Before studying the limit law of ĉ(x), we need to center the vector Vn as
follows. Let

u∗n, j =
1

nE(K)

n∑
i=1

(
βi

hK

) j

Ki(Yi − r(x)), (6.1)

where V∗n => (u∗n,0, . . . , u
∗
n,p). Making use of assumption (H4) and by the Taylor expansion, we obtain

E (r(Xi) | βi) = r(x) + E (r(Xi) − r(x) | βi)

= r(x) + Ψ(βi)

= r(x) +

p∑
k=1

1
k!

Ψ(k)(0)βp
i + o(βp

i ).

Therefore, we have

Γ := >((r(X1), . . . , r(Xn))

= Qβ


r(x)

Ψ(1)(0)
...

Ψ(p)(0)

 +
1

(p + 1)!
Ψ(p+1)(0)>

(
β

p+1
1 , . . . , βp+1

n

)
+>

(
o(βp+1

1 ), . . . , o(βp+1
n )

)
.

Making used of Eq (6.1), we have:

Un
−1 V∗n = diag(1, hK , h2

K , . . . , h
p
K)

(̂
c(x) − (>QβWQβ)−1QβW Γ

)
(6.2)

= diag(1, hK , h2
K , . . . , h

p
K)


r̂(x) − r(x)

Ψ̂(1)(0) − Ψ(1)(0)
...

Ψ̂(p)(0) − Ψ(p)(0)


−

hp+1
K

(p + 1)!
Ψ(p+1)(0)U−1

n


un,p+1
...

un,2p+1

 − o(hp+1
K )U−1

n


un,p+1
...

un,2p+1

 .
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The rest of the proof for this theorem relies on the following lemmas, the proofs of which are provided
in the appendix.

Lemma 6.1. Under the assumptions (H1)–(H7), we have, as n→ ∞,

Un
P
−→ S and U−1

n


un,p+1
...

un,2p+1

 P−→ S −1 U.

Hence, considering Lemma 6.1, Theorem 3.2 will hold if we can furnish the proof.

Lemma 6.2. Under the assumptions of Theorem 3.2, we have, as n→ ∞,√
nφx(hK)V∗n

D
−→ N(0, σ2(x)V).
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A. Appendix

Lemma A.1. (See [92]) Under assumptions (H1), (H2-ii) and (H5)–(H7-i), we have

(1) E(K j
1) = M jφx(hK), for j = 1, 2;

(2) E(Ka
1β1) = o(hKφx(hK)), for all a > 0;

(3) E(Ka
1β

b
1) = N(a, b)hb

Kφx(hK) + o(hb
Kφx(hK)), for all a > 0 and b = 2, 4;

(4) For all (k, l) ∈ N∗ × N, E
(
Kk

1 |β1|
l
)
≤ C hl

Kφx(hK);

(5) For all (a, c, l, s) ∈ N∗ × N∗ × N × N, E
(
Ka

1 Kc
2 |β1|

l|β2|
s
)
≤ C hl+s

K ψx(hK).

Proof of Lemma 6.1. To prove this lemma, we use the sufficient convergence condition in probability.
For this, it suffices to prove the following formulas

E(un,0) = 1, E(un,1)
P
−→ 0, E(un,p)

P
−→

N(1, p)
M1

, E(un,1)
P
−→

N(1, 2p + 1)
M1

,

and
Var(un, j) −→ 0, for j ∈ {0, 1, p, 2p + 1}. (A.1)

Using Lemma A.1, we get

E(un,0) = 1, E(un,1) =
E(hKβ1K1)
E(K1)

= o(1),
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E(un,l) =
E(h−l

K β
l
1K1)

E(K1)
−→

N(1, l)
M1

for l ∈ {p, 2p + 1}.

Concerning Eq (A.1), we can write

Var(un, j) =
1

n2E(K1)2

 n∑
i=1

Var(β j
i h
− j
K Ki) + 2

∑
1≤i,l≤n

Cov(β j
i h
− j
K Ki, β

j
l h
− j
K Kl)


= Qn1 + Qn2.

For the term Qn1, we have

Qn1 =
1

n2E(K1)2

n∑
i=1

Var(β j
i h
− j
K Ki) (A.2)

≤
1

nE(K1)2E(β2 j
1 h−2 j

K K2
1)

≤
1

nφx(hK)
.

Moreover, for computing the term of Qn2, we used the same technique as in [62], we define the sets W1

and W2 as follows
W1 = {(i, l) ∈ {1, . . . , n} such that 1 ≤| i − l |≤ un} ,

and
W2 = {(i, l) ∈ {1, . . . , n} such that un + 1 ≤| i − l |≤ n − 1} ,

where the sequence un is selected in such a way that un → +∞ as n → +∞. Based on the
aforementioned splitting, we obtain

Q1,n =
1

n2E2(K1)

∑
W1

Cov(h− j
K β

j
i Ki, h

− j
K β

l
jKl), (A.3)

and
Q2,n =

1
n2E2(K1)

∑
W2

Cov(βc
kKk, h

− j
K β

j
l Kl). (A.4)

For the sum Q1,n, by assumptions (H2-ii), (H5) and by Lemma of [92], we have

| Cov(h−2 j
K β

j
i Ki, β

j
l Kl) | ≤ | E(h−2 j

K β
j
i Kiβ

j
l Kl) | +E2(h− j

K β
j
1K1)

≤ C(E(KiKl) + E2(K1))
≤ C(φ1+ε

x (hK) + φ2
x(hK))

≤ C(φ1+ε
x (hK)).

Then, we readily infer

| Q1,n | ≤
1

n2E2(K1)

∑
W1

C φ1+ε
x (hK)
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≤
un

n
φ−1+ε

x (hK).

On the other hand, for computing the sum of covariance Q1,n, we use the inequality for the bounded
mixing processes, then for any l , i, we have

| Cov(h− j
K β

j
i Ki, h

− j
K β

j
l Kl) |≤ C α(|i − l|).

Next, using the inequality ∑
j≥x+1

j−a ≤

∫
u≥x

u−a,

we derive
n∑

i=1

∑
W2

α(|i − l|) ≤
C n(un)1−a

a − 1
. (A.5)

Therefore, we readily obtain

|Q2,n| ≤
C (un)1−a

n φ2
x(hK)

.

Subsequently, by choosing un = bφ1+ε
x (hK))−1/ac and by assumption (H7), we obtain

Q1,n → 0 and Q2,n → 0 as n→ ∞.

Hence the proof is complete. �

Proof of Lemma 6.2. We consider a given vector of real numbers, denoted as a =>
(
α0 . . . αp

)
, 0,

then √
nφx(hK) a> V∗n =

1
√

n

n∑
i=1

(Zi − E(Zi)) +
1
√

n

n∑
i=1

E(Zi), (A.6)

where

Zi =

√
nφx(hK)

E(K1)

 p∑
j=0

α jh
− j
K β

j
i

 Ki (Yi − r(x)) .

By the Cramér-Wold theorem and Slutsky’s theorem, to show (A.6), it suffices to prove the following
two claims:

1
√

n

n∑
i=1

E(Zi) =

√
nφx(hK)Ψ′(0)

M1

α0 o(hK) +

p∑
j=1

a j h j+1
K N(1, j + 1)

 , (A.7)

and
1
√

n

n∑
i=1

(Zi − E(Zi))
D
−→ N(0, σ2(x) a>V a). (A.8)

First, we proof Claim (A.7). We have

1
√

n

n∑
i=1

E(Zi) =
√

nE(Z1)

AIMS Mathematics Volume 9, Issue 9, 23651–23691.
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=

√
nφx(hK)

E(K1)
E


α0 +

p∑
j=1

α jh
− j
K β

j
1

 K1 (Y1 − r(x))


=

nφx(hK)
E(K1)

a0E(K1(Y1 − r(x)))︸                  ︷︷                  ︸
S 1

+
nφx(hK)
E(K1)

p∑
j=1

a j E
(
h− j

k β
jK1(Y1 − r(x))

)︸                      ︷︷                      ︸
S 2

.

Next, by the same arguments as those used by [72] and [40], we get

S 1 = α0 Ψ′(0)E(K1Ψ(β1)) + o(E(K1β1))
= α0 Ψ′(0)o(hKφx(hK),

and

S 2 =

p∑
i=1

a j Ψ′(0) h j+1
K N(1, j + 1) φx(hK),

then, using Lemma A.1, we obtain

1
√

n

n∑
i=1

E(Zi) =
√

nφx(hK)

α0 Ψ′(0)
M1

o(hK) +

p∑
i=1

a j Ψ′(0) h j+1
K N(1, j + 1)

 . (A.9)

Now, we prove Claim (A.8). Using The CLT by [56] (see Corollary 2.2, Page 196), which rests on the
asymptotic behavior of the quantity

lim
n→∞

n∑
i=1

E[∆2
i ], (A.10)

where ∆i = 1
√

n (Zi − E(Zi)) in addition to the assumptions:

Assumption 1. (A1) There exists a sequence τn = o(
√

n), such that

(i) τn = o(
√

n) such that τn ≤

(
max

i=1,...,n
Ci

)−1
, where Ci = ess sup

ω∈Ω

|∆i|,

(ii) for all ε > 0,
n
τn
α(ετn)→ 0, for all ε > 0.

Assumption 2. (A2) There exists a sequence (mn) of positive integers tending to∞, such that

(i) nmnγn = o(1), where γn := max
1≤i, j≤n

(
E|∆i∆ j|

)
,

(ii) for all ε > 0,
n
τn
α(ετn)→ 0.

We start by computing the limit of (A.10). In order to do so, let us observe that
n∑

i=1

E(∆2
i ) = Var(Z1)

=
φx(hK)
E2(K1)

E


α0 +

p∑
j=1

α jh
− j
K β

j
1


2

K2
1(Y1 − r(x))2


−
φx(hK)
E2(K1)

E2


α0 +

p∑
j=1

α jh
− j
K β

j
1

 K1(Y1 − r(x))

 = A1 − A2.
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Using the fact that

A1 =
φx(hK)
E2(K1)

α
2
0E(K2

1(Y1 − r(x))2)︸                   ︷︷                   ︸
I1

+ 2α0

p∑
j=1

α jE(h− j
K β

j
1K2

1(Y1 − r(x))2

︸                                    ︷︷                                    ︸
I2


+
φx(hK)
E2(K1)

E


 p∑

j=1

α jh
− j
K β

j
1


2

K2
1(Y1 − r(x))2

︸                                ︷︷                                ︸
I3

 ,
in combination with Lemma A.1, we readily find

I1 = a2
0 σ

2(x) M1 φx(hK),

I2 = a0

p∑
j=1

a j σ
2(x) O(φx(hK)),

and

I3 =

p∑
j=1

a2
jE(h−2 j

K β
2 j
1 (K2

1(Y1 − r(X1))2)) + 2
p∑

1≤i, j≤n

a jaiE(h− j−i
K β

j+i
1 (K2

1(Y1 − r(X1))2))

= σ2(x) M1

p∑
j=1

a2
j N(2, 2 j) φx(hK) + 2σ2(x) M1

p∑
1≤i, j≤n

a jai O(φx(hK)).

Under assumptions (H1), we have

lim
n→+∞

A1 = σ2(x)
M1

M2
2

a2
0 +

p∑
j=1

a j N(2, 2 j)


= σ2(x) a>V a.

Subsequently, the assertion (A.7) suggests that E(Z1) → 0 as n → ∞. Consequently, we infer that
A2 → 0 as n → ∞. Concerning Assumption (1), the fact that the kernel K(·) is bounded, allows us to
infer that

Ci = O

 1√
nφx(hK)

 .
Therefore, an appropriate choice is the following

τn =

√
nφx(hK)

log n
.

Furthermore, this choice gives, for all ε > 0

n
τn
α(ετn) ≤ C

(
n1−(a+1)/2(φx(hK))−(a+1)/2(log n)(a+1)/2

)
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23680

≤ Cn1−(a+1)/2+(a+1)/2(a−1)(log n)(a+1)/2

≤ Cn(3a−a2)/2(a−1)(log n)(a+1)/2 → 0 since a > 3.

Concerning Assumption (2), using assumptions (H2-ii) and (H3), we have

E|∆i∆ j| ≤
φx(hK)

nE(K1)2

∑
0≤ j,i≤p

|αiα j|E(KiK j)

≤

∑
0≤ j,i≤p

|αiα j|

nφx(hK)
sup
i, j
P((Xi, X j) ∈ B(x, hK) × B(x, hK))

≤
C φεx(hK)

n
.

Elsewhere, using the fact that ∑
j≥x+1

j−a ≤

∫
u≥x

u−a =
[
(a − 1)xa−1

]−1
, (A.11)

we obtain
∞∑

j=mn+1

α( j) ≤
∞∑

j=mn

α( j) ≤
∫

t≥mn

t−adt =
m1−a

n

a − 1
,

thus,  ∞∑
j=mn+1

α( j)

 n∑
i=1

Ci = O
(

m1−a
n

a − 1

√
n

φx(hK)

)
.

We select

mn =

⌊(
φx(hK)
n log n

)⌋1/(2(1−a))

,

such that b·c represents the function of the integer part. It is evident that, under assumption (H7),
mn → ∞. Furthermore, by substituting the expression for mn, we readily get

∞∑
j=mn+1

α( j)
n∑

i=1

Ci = o(1).

Once more, considering assumption (H2-i) and (H7), we have

mnγn ≤ Cn−1−1/(2(1−a)(φx(hK))1+1/(2(1−a)(log n)−1/(2(1−a))

≤ n(−3+2a)/(2(1−a)(φx(hK))(3−2a)/(2(1−a)(log n)−1/(2(1−a))

≤ n−1+η(2a−3)/(2(1−a)(log n)−1/(2(1−a)) = o
(
n−1

)
.

Hence the proof is complete. �
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Proof of Theorem 3.7. According to the formula of (6.2), we deduce the following error formula

ĉ(x) − c(x) = U−1
n (x) V∗n(x) − U−1

n (x)en(x) +
hp+1

K

(p + 1)!
Ψ(p+1)(0)U−1

n (x)en(x) + O(hp+1
K )U−1

n (x)en(x),

where en(x) => (un,p+1(x), . . . , un,2p+1(x)). Hence, Theorem 3.7 is a direct result of the following
lemmas.

Lemma A.2. Assume that the conditions (U1), (U3), (U5) and (U6) are fulfilled. We have, as n→ ∞,

sup
x∈SF
|un j(x) − E(un j(x))| = Oa.co.


√

log dn

nφx(hK)

 .
Lemma A.3. Assume that the conditions (U1)–(U6) are fulfilled. We have, as n→ ∞,

sup
x∈SF
|v∗n j(x) − E(v∗n j(x))| = Oa.co.


√

log dn

nφx(hK)

 ,
sup
x∈SF
|en j(x) − E(en j(x))| = Oa.co.


√

log dn

nφx(hK)

 .
Lemma A.4. Assume that the conditions (U1)–(U5) are fulfilled. We have, as n→ ∞,

sup
x∈SF
|E(v∗n j(x))| = O(hp+1

K ), sup
x∈SF
|E(en j(x))| = O(1).

�

Proof of Lemma A.2. The proof of this lemma relies on Proposition A.11-i in [38]. In order to apply the
latter, we need to compute a certain quantity. In a first attempt, we evaluate the expression E(un j(x)).
For this, we use Lemma A.1 and by the fact that observations are identically distributed, we have

E(un j(x)) =
1

h j
KE(K1)

E(β j
1K1) (A.12)

= O(1). (A.13)

Moreover, for the covariance term, we have :

S 2
n,α,l(x) =

n∑
i=1

n∑
i=1

|Cov(Aα
i (x), Al

j(x))|, (A.14)

where
Al

i(x) =
1

hl
K

(
βl

iki(x) − E(βl
i(x)ki(x)

)
, for l ∈ {1, 2, . . . , p}. (A.15)

Under some of the dependence assumptions, we treat the term of S 2
n,α,l(x). Then we have

S 2
n,α,l(x) = Rn,1(x) + Rn,2(x) + n Var(Al

1(x)),

with
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Rn,1(x) =
∑
W1

Cov(Al
j(x)), Aα

i (x))); W1 = {(i, j) ∈ {1, 2, . . . , n} such that 1 ≤| i − l |≤ un} ,

and

Rn,2(x) =
∑
W2

Cov(Al
j(x)), Aα

i (x))); W2 = {(i, j) ∈ {1, 2, . . . , n} such that un + 1 ≤| i − l |≤ n − 1} .

For the term variance using Lemma A.1 and we deduce that

n Var(Al
1(x)) = O(nφx(hK)). (A.16)

Concerning the covariance term Rn,1(x), we use the same idea as those used in the Eq (A.3) with the
choice un = φ−εx (hK), we get

Rn,1(x) = O(nφx(hK)), (A.17)

and for the term Rn,1(x) we applied Rio inequality, see Theorem B.3 (ii). So for this technique, we need
to compute the absolute moments of the random variable Al

j(x). Then, using a Newton expansion, we
have

E[|Al
j(x)|m] = E

∣∣∣∣h−lm
K

(
K j(x)βl

j(x) − E[K j(x)βl
j(x)]

)m∣∣∣∣
= h−lm

K E

∣∣∣∣∣∣∣
m∑

i=0

Ci
m

(
K j(x)βl

j

)i
(x)

(
E[K j(x)βl

j(x)]
)m−i

(−1)m−i

∣∣∣∣∣∣∣
≤ h−lm

K

m∑
i=0

Ci
mE

∣∣∣K j(x)βl
j

∣∣∣i (x)
∣∣∣E[K j(x)βl

j(x)]
∣∣∣m−i

≤ h−lm
K

m∑
i=0

Ci
mE

∣∣∣Ki
j(x)βli

j (x)
∣∣∣ ∣∣∣E[K j(x)βl

j(x)
∣∣∣m−i

,

where Ci
m =

m!
i!(m − i)!

. Next, by applying Lemma A.1, we get

E[|Al
j|

m] = O(φx(hK)).

By following the same reasoning used to establish Eq (A.4) with the choice un = φ−εx (hK) permits to
get:

Rn,2(x) = O(nφx(hK)). (A.18)

Finlay, by Eqs (A.16), (A.17) and (A.18), we deduce that

S 2
n,α,l(x) = O(nφx(hK)). (A.19)

On the other hand, we can write

un j(x) − E(un j(x)) =
1

nφx(hK)

n∑
i=1

Al
i(x), (A.20)
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where Al
i(x) is defined in (A.15). Now, we apply the Definition 3.6 to show the uniform convergence

of our estimator on a subset S of F . For this aim, we take

z(x) = arg min
j∈{1,...,dn}

|δ(x, x j)|.

Let us consider the following decomposition:

sup
x∈SF
|un j(x) − E(un j(x))| ≤ sup

x∈SF
|un j(x) − un j(xz(x)))|︸                        ︷︷                        ︸

T1

+ sup
x∈SF
|un j(xz(x)) − E(un j(xz(x)))|︸                               ︷︷                               ︸

T2

+ sup
x∈SF
|E(un j(xz(x))) − E(un j(x))|︸                                ︷︷                                ︸

T3

.

Concening the term T2, for all ε > 0, we have

P(T2 > ε) = P

(
max

j∈{1,...,dn}
|un j(x) − E(un j(xz(x)))| > ε

)
≤ dn max

j∈{1,...,dn}
P
(
|un j(x) − E(un j(xz(x)))| > ε

)
≤ dn max

j∈{1,...,dn}
P
(
|An j(xz(x)))| > εn φ(hK)

)
.

Next, we can apply the Proposition A.11 of [38] for any m > 2, τ > 0, $ ≥ 1 and for certain 0 < C <

∞,
P(T2 > τ) < C(A1 + A2),

where

A1 = dn

1 +
τ2n2φ(hK)2

$S 2
n,α,l

−$/2 , A2 = dn n$−1
(

$

τn φ(hK)

)(a+1)m/(a+m)

. (A.21)

By using equation of (A.19) and under assumption (U1), we obtain that

S 2
n,α,l = sup

x∈SF
S 2

n,α,l(x) = O(nφ(hK)).

Now, for η > 0, we choose

τ = η

√
log dn

nφ(hK)
and $ = (log(dn))2.

Therefore, by utilizing the fact that ΨSF (ε) = log(dn) and by taking C η2 = λ, we obtain under the
assumption (U6) the following terms

A1 = O(d1−λ
n ) and A1 = O(n1−λ′), for λ, λ′ > 0.
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Finally, for η large enough, we infer

P

T2 > η

√
log dn

nφ(hK)

 < C(d1−λ
n + n1−λ′).

Using the fact that
∞∑

n=1

d1−λ
n < ∞ and

∞∑
n=1

1
n1+λ′

< ∞,

we get

T2 = Oa.co.


√

log dn

nφ(hK)

 .
For the term T1 we have

T1 ≤
C

nh j
Kφ(hK)

sup
x∈SF

n∑
i=1

Ki(x)1B(x,hK )(Xi) | β
j
i (x) − β j

i (xzx)1B(xzx ,hK )(Xi) |

+
C

nh j
Kφ(hK)

sup
x∈SF

n∑
i=1

β
j
i (xzx)1B(xzx ,hK )(Xi) | Ki(x)1B(x,hK )(Xi) − Ki(xzx) |

:= L j
1 + L j

2.

Evaluation of the term L j
1. Under assumption (U3) we have

1B(x,hK )(Xi) | β
j
i (x) − β j

i (xzx)1B(xzx ,hK )(Xi) | ≤ Cιnh j−1
K 1B(x,hK )

⋂
B(xzx ,hK )(Xi) + Ch j

K1B(x,hK )
⋂

B(xzx ,hK )(Xi),

which gives the following expression

L j
1 ≤

Cιn
nhKφ(hK)

sup
x∈SF

n∑
i=1

Ki(x)1B(x,hK )
⋂

B(xzx ,hK )(Xi) (A.22)

+
C

nφ(hK)
sup
x∈SF

n∑
i=1

Ki(x)1B(x,hK )
⋂

B(xzx ,hK )(Xi).

Making use of the Lipschitz condition on K(·) and by hypotheses (U3) enables us to directly write

| β
j
i (xz(x)) | 1B(xz(x) ,hK )(Xi) | Ki(x)1B(x,hK )(Xi) − Ki(xz(x)) |

≤ Ch j
Kιn1B(x,hK )

⋂
B(xz(x) ,hK )(Xi) + Ch j

KKi(xz(x))1B(x,hK )
⋂

B(xz(x) ,hK )(Xi).

Therefore, we readily obtain

L j
2 ≤

Cιn
nφ(hK)

sup
x∈SF

n∑
i=1

1B(x,hK )
⋂

B(xz(x) ,hK )(Xi)

+
C

nφ(hK)
sup
x∈SF

n∑
i=1

Ki(xz(x))1B(x,hK )
⋂

B(xz(x) ,hK )(Xi).

Under assumption (U5) en by combined the last inequality with (A.22) implies that
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T1 ≤
Zi

nφ(hK)
,

where

Zi =
Cιn
hK

sup
x∈SF

n∑
i=1

1B(x,hK )
⋃

B(xz(x) ,hK )(Xi).

Using a similar approach to the one employed in the proof of (A.14), under the assumptions (U1), (U2)
and (U6), we obtain

S 2
n =| Cov(Zi,Z j) |= O(nφ(hK)).

Next, by employing a similar proof to the one applied in the evaluation of T2, we infer that

T1 = Oa.co.


√

log dn

nφ(hK)

 .
Concerning the term of T3, it is obvious that

T3 < E

(
sup
x∈SF
|un j(x) − un j(xz(x)))|

)
,

we infer that

T3 = Oa.co.


√

log dn

nφ(hK)

 .
This completes the proof. �

Proof of Lemma A.4. By conditioning on X1, we have

sup
x∈SF
|E(v∗n j(x))| ≤

1
|E(K1)|

|E((β1h−1
K ) jK1))| sup

X1∈B(x,hK )
|r(X1) − r(x)|,

so under assumption (U4) and by using the uniform version of Lemma A.1, we obtain

sup
x∈SF
|E(v∗n j(x))| = O(hp+1

K ).

Concerning the term sup
x∈SF
|E(en j(x))| = O(1) is already treated in Eq (A.12). �

Proof of Theorem 4.1. Using similar reasoning employed for the regression function, we show that√
nφx(hK)(B∗n − Bp

L(x, y)
D
−→ N(0,VF(x, y)), (A.23)

where
B∗n => (Υ∗n,0, . . . ,Υ

∗
n,p), VF(x, y) = F x(y)(1 − F x(y))a>V a)

and

Υ∗n, j =
1

nE(K)

n∑
i=1

(
β(Xi, x)

hK

) j

K(h−1
K (δ(Xi, x))(L(h−1

L (Yi − y)) − F x(y)).

For any given vector of real numbers a => (α0, . . . , αp) , 0, we have
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√
nφx(hK)a>B∗n =

1
√

n

n∑
i=1

(Ri − E(Ri)) +
1
√

n

n∑
i=1

E(Ri),

where

Ri =

√
φx(hK)
E(K1)

 p∑
l=0

αlh−l
K β

l
i

 Ki (Li − F x(y)) . (A.24)

According to the Cramér-Wold theorem and Eq (A.24), Eq (A.23), will be verified if we prove the
following two statements:

1
√

n

n∑
i=1

(Ri − E(Ri))
D
−→ N(0, F x(y)(1 − F x(y)) a>V a), (A.25)

1
√

n

n∑
i=1

(E(Ri)) =
√

nφx(hK)Bp
L(x, y). (A.26)

�

Proof of statement A.25. We utilize Bernstein’s big-block method, as employed in Theorem 3.1 of [55].
The set (1, 2, . . . , n) is partitioned into 2υn + 1 subsets, each containing large blocks of size (wn) and
small blocks of size (qn), by considering

υ =

⌊
n

wn + qn

⌋
.

Assumption (M6) allows us to define the size of the large block as follows

wn =

 (nφx(hK))
1
2

rn

 .
Afterward, under the same assumptions and employing straightforward calculations, we obtain:

lim
n→+∞

qn

wn
= 0, lim

n→+∞

wn

n
= 0, lim

n→+∞

wn√
nφx(hK)

= 0 and lim
n→+∞

n
wn
α(qn) = 0. (A.27)

It can be easily inferred that, as n tends to infinity,

υqn

n
'

(
n

rn + vn

)
qn

n
'

qn

wn + qn
'

qn

wn
= 0. (A.28)

Presently, we partition the sum
n∑

i=1

(Ri−E(Ri)) into distinct large and small blocks as outlined below.

Let
I j = ( j − 1)(w + q) + 1, l j = ( j − 1)(w + q) + w + 1, j = 1, 2, . . . , υ.

One can see that

1
√

n

n∑
i=1

(Ri − E(Ri))︸        ︷︷        ︸
Ei

=

υ∑
j=1

F j
√

n
+

υ∑
j=1

F′ j
√

n
+

Fn
√

n

=: n−1/2(S 1,n + S 2,n + S 3,n),
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where the random variables F j, F
′

j and Fn are defined by

F j =

I j+w−1∑
i=I j

Ei, F
′

j =

l j+q−1∑
i=l j

Ei, Fn =

n∑
i=υ(w+q)+1

Ei. (A.29)

Subsequently, making use of Slutsky’s theorem, we establish that the two terms 1
√

nS 2,n and 1
√

nS 3,n

converge to zero in probability. Before applying Lindeberg-Feller conditions to establish the
asymptotic normality of the term 1

√
nS 1,n, it is imperative to demonstrate that the variables F j are

asymptotically independent. Therefore, we obtain

E(S 2
2,n)

n
=

υ∑
j=1

1
n

Var(F′j) +

υ∑
j=1

υ∑
i=1

i, j

2
n

Cov(F′j, F
′
i ) =:

1
n

(A1 + A2).

Using second-order stationarity, we get

Var(F′j) = qVar(E1) + 2
q∑

i, j

Cov(Ei, E j).

Therefore
A1

n
≤
υq
n

Var(E1)︸  ︷︷  ︸
VF (x,y)

+
2
n

n∑
i, j

Cov(Ei, E j).

To derive the covariance term, we adopt the identical procedures outlined in the verification of Eq (A.2).
Then we set

T1 = {(i, j) ∈ {1, 2, . . . , n} such that 1 ≤| i − j |≤ cn} ,

and
T2 = {(i, j) ∈ {1, 2, . . . , n} such that cn + 1 ≤| i − j |≤ n − 1} .

Based on the aforementioned splitting, we obtain

2
n

n∑
i, j

Cov(Ei, E j) =
2
n

∑
G1

Cov(Ri,R j) +
2
n

∑
G2

Cov(Ri,R j) =: U1,n + U2,n.

Cov(Ri,R j) =
φx(hK)
E2(K1)

p∑
l=0

p∑
m=0

αlαmE
(
h−l

K h−m
K βl

iβ
m
j KiK jE((Li − F x(y)(L j − F x(y) | (Xi, Xi))

)
−
φx(hK)
E2(K1)

E

 p∑
l=0

αlh−l
K β

l
jKi(Li − F x(y))

2

.

Utilizing the inequality
| Li(y) − F x(y) |≤ 1, (A.30)
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stated in Lemma A.1 and given the conditions (H2-ii) and (H4-ii), we obtain the following

| Cov(Ri,R j) | ≤
φx(hK)
E2(K1)

 p∑
l=0

p∑
m=0

| αlαm | E(KiK j) +

 p∑
l=0

| αl |

2

E2(Ki)


≤

φx(hK)
E2(K1)

(
CP((Xi, X j) ∈ B(x, hK) × B(x, hK)) + C′M2

1φ
2
x(hK)

)
≤ Cφx(hK)

ψx(hK)
φ2

x(hK)
+ C′M2

1nφx(hK).

Then, we readily infer

| U1,n | ≤

(
2Cn−1φx(hK)

ψx(hK)
φ2

x(hK)
+ 2C′n−1M2

1φx(hK)
) ∑

G1︸︷︷︸
ncn

1.

In relation to the summation over the set G2, the utilization of Theorem B.3 (ii) gives∑
G2

| Cov(Ri,R j) |≤
∑
G2

C(α| j − i|)
1
p (E|Ri|

q)
1
q
(
E|R j|

r
) 1

r
.

Conditioned on Xi, and using (A.30) along with assumption (M3), we obtain

E(|Ri|
q) =

√
φx(hK)

M1φx(hK)
E (|Ki|

q E (|Li − F x(y)|q | Xi)) ≤ C(φx(hK))−
1
2 + 1

q .

We readily infer that

| U2,n | ≤ 2
∑
G2

C(α| j − i|)
1
p (φx(hK))−1+ 1

q + 1
r (A.31)

≤ 2c−δn (φx(hK))−
1
p

∑
|l|>cn

lδ(α(|l|))
1
p . (A.32)

Using the fact that
ψx(hK)
φ2

x(hK)
is bounded, we select cn = bφx(hK)c−

1
pδ and by assumptions (M4), and (M5)

we obtain
2
n

n∑
i, j

Cov(Ei, E j) = o(1).

Furthermore, for the term A2, we have

| A2 |

n
≤

∑
1≤i< j≤n

2
n

Cov(F′j, F
′
i ) =

∑
1≤i< j≤n

2
n
| Cov(R j,Ri) |︸                       ︷︷                       ︸

o(1)

.

Consequently by (A.27), we get
E(S 2

2,n)

n
= 0, as n −→ ∞.
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Let’s now examine the term of S 2
2,n

E(S 2
3,n)

n
≤

1
n

n∑
i=υ(w+q)+1

Var(E1) +
2
n

∑
1≤i< j≤n

| Cov(Ei, E j) |

≤
n − υ(w + q)

n
Var(E1) +

2
n

∑
1≤i< j≤n

| Cov(Ei, E j) |︸                       ︷︷                       ︸
o(1)

.

Besides, from (A.27) and (A.28), we get
υw
n
−→ 1. Then, we obtain

E(S 2
3,n)

n
= 0, as n −→ ∞.

In order to demonstrate the asymptotic independence of the variables F j, we employ Lemma B.1. By
setting V j = exp

( itF j
√

n

)
, the ensuing relationship∣∣∣∣∣∣∣E

(
exp

(
it

S 1,n
√

n

))
−

υ∏
j=1

E

(
exp

(
it

F j
√

n

))∣∣∣∣∣∣∣ ≤ 16υα(q) (A.33)

�
n
w
α(q) −→ 0.

Therefore, according to formula (A.33), the term variance S 1,n is computed as follows:

Var(S 1,n) =
υw
n

Var(R1),

where

Var(R1) =
φx(hK)

M2
1φ

2
x(hK)

p∑
l=0

α2
l h−2l

K Var(βl
iKi(Li − F x(y)).

Using Lemma 6.3 of [14], we obtain

Var(βl
iKi(Li − F x(y)) = E(β2l

i K2
i )F x(y)(1 − F x(y)).

Then, by using the fact that
υw
n
−→ 1 and under Lemma A.1, we get

Var(R1) = α2
0

M2

M2
1

+

p∑
l=1

α2
l
N(2, 2l)

M2
1

F x(y)(1 − F x(y)) = F x(y)(1 − F x(y))a>V a.

Finally, our attention turns to Lindeberg’s central limit theorem concerning F j. It is then enough to
demonstrate that for any ε > 0,

1
n

υ∑
j=1

E
[
F2

j 1|F j |>ε
√

nVF (x,y)

]
−→ 0 as n −→ +∞.
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Under assumption (M2), we have

| F j |
√

n
≤

p∑
l=0

| αl |
w√

nφx(hK)
.

According to (A.27), we obtain
| F j |
√

n
−→ 0, as n −→ ∞.

Hence, for any given ε and when n is sufficiently large, the set {|F j| > ε
√

nVF(x, y)} becomes empty.
Consequently, the demonstration of (A.25) is now concluded. �

Proof of statement A.26. We have

1
√

n

n∑
i=1

(E(Ri)) =
√

nE(R1)

=
√

nφx(hK)
(
α0

E(K1)
,
α1h−1

K

E(K1)
, . . . ,

αph−p
K

E(K1)

)
.



E(K1L1) − F x(y)E(K1)
E(K1β1L1) − F x(y)E(K1β1)

...

E(K1β
p
1 L1) − F x(y)E(K1β

p
1)︸                             ︷︷                             ︸

N(x,y)


.

Next, we compute the term N(x, y). Notice that

E(K1β
p
1 L1) − F x(y)E(K1β

p
1) = E(K1β

p
1((E(L1 | X1) − F x(y))).

Making use of the Taylor expansion under the assumptions (M2) and (M3), we obtain

E(L1 | X1) =

p∑
k=0

ϕ2k(X1, y)
h2k

L

(2k)!

∫
R

t2kL′(t)dt + o(h2p
L ).

Therefore, we readily obtain

E(K1β
p
1((E(L1 | X1) − F x(y)))

=

p∑
k=0

E(K1β
p
1ϕk(X1, y))

h2k
L

(2k)!

∫
R

t2kL′(t)dt − ϕ0(x, y)E(K1β
p
1) + o(h2P

L E(K1β
p
1)). (A.34)

Observe that ψk(0) = 0, we get

E(K1β
p
1ϕk(X1, y)) = ϕk(x, y)E(K1β

p
1) +

p∑
a=1

ψ(a)
k (0)
a!
E(K1β

p+a
1 ). (A.35)

By combining Eqs (A.34) and (A.35), we can derive

E(K1β
p
1((E(L1 | X1) − F x(y)))

=

p∑
k=0

h2k
L

(2k)!

∫
R

tkL′(t)dt

ϕ2k(x, y)E(K1β
p
1) +

p∑
a=1

ψ(a)
k (0)
a!
E(K1β

p+a
1 )


−

p∑
k=0

h2k
L

(2k)!

∫
R

tkL′(t)dtϕ0(x, y)E(K1β
p
1)] + o(h2p

L E(K1β
p
1)).

So the statement (A.26) is proved. �
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B. Appendix

This appendix contains supplementary information that is an essential part of providing a more
comprehensive understanding of the paper.

Lemma B.1. [82] Let V1, . . . ,VL be random variables measurable with respect to the σ-algebras
F j1

i1
, . . . ,F jL

iL
respectively with 1 6 i1 < j1 < i2 < · · · < jL 6 n, il+1 − jl > w > 1 and

∣∣∣V j

∣∣∣ 6 1 for
j = 1, . . ., L. Then ∣∣∣∣∣∣∣E

 L∏
j=1

V j

 − L∏
j=1

E
(
V j

)∣∣∣∣∣∣∣ 6 16(L − 1)α(w),

where α(w) is the strongly mixing coefficient.

Theorem B.2. (Lindeberg central limit theorem). For each n ≥ 1, let
{
Un1, . . . ,Unrn

}
be a collection of

independent random variables such that E(Un j) = 0 and Var(Un j) < ∞ for j = 1, . . . , rn.

Ũn j =
Un j√∑rn

k=1 Var Unk

, j = 1, . . . , rn.

Then
rn∑
j=1

Ũn j → N(0, 1) in distribution as n→ ∞,

if for every ε > 0

lim
n→∞

rn∑
j=1

E
∣∣∣Ũn j

∣∣∣2 1
(∣∣∣Ũn j

∣∣∣ > ε) = 0.

The following theorem is Proposition A.10. in [38].

Theorem B.3. Assume that (Tn)n∈Z is α-mixing. Let us, for some k ∈ Z, consider a real variable T
(resp. T ′ ) which isAk

−∞-measurable (resp. A+∞
n+k-measurable).

(i) If T and T ′ are bounded, then:

∃C, 0 < C < +∞,Cov
(
T ,T ′

)
≤ Cα(n).

(ii) If, for some positive numbers p, q, r such that p−1 + q−1 + r−1 = 1, we have ET p < ∞ and
ET ′q < ∞, then:

∃C, 0 < C < +∞, Cov
(
T ,T ′

)
≤ C (ET p)

1
p
(
ET ′q

) 1
q α(n)

1
r .
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