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Abstract: In this paper, for a given spray S on an n-dimensional manifold M, we investigated
the geometry of S-invariant functions. For an S-invariant function P, we associated a vertical
subdistribution VP and found the relation between the holonomy distribution and VP by showing
that the vertical part of the holonomy distribution is the intersection of all spacesVFS associated with
FS where FS is the set of all Finsler functions that have the geodesic spray S . As an application,
we studied the Landsberg Finsler surfaces. We proved that a Landsberg surface with S-invariant flag
curvature is Riemannian or has a vanishing flag curvature. We showed that for Landsberg surfaces
with non-vanishing flag curvature, the flag curvature is S-invariant if and only if it is constant; in this
case, the surface is Riemannian. Finally, for a Berwald surface, we proved that the flag curvature is
H-invariant if and only if it is constant.
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1. Introduction

A system of second-order homogeneous ordinary differential equations (SODE), whose coefficients
do not depend explicitly on time, can be identified by a special vector field called spray. The solution
of the SODE is called the geodesic of the spray. The spray corresponding to the geodesic equation of
a Riemannian or Finslerian metric is called the geodesic spray of the corresponding metric.

The concept of geodesic invariant functions (or, equivalently, S-invariant functions or first integrals
of S ) has various applications not only in Finsler and Riemann geometries, but also in physics. For
example, the norm and energy functions are geodesic invariant functions on Finslerian or Riemannian
manifolds; on Landsberg surfaces, the main scalar of the surface is S-invariant. Also, in physics, if a
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geodesic invariant function is given, then this function can be treated as a constant of motion; in other
words, these functions are conserved along motion. Geodesic invariant functions can give important
information on the geometric structure. See, for example, [3, 14] and references therein.

By [15], for a given spray S on a n-dimensional manifold M, we can associate the so-called
holonomy distribution, which is generated by the horizontal vector fields and their successive Lie
brackets. The functions on T M that are invariant with respect to the parallel translation are called
holonomy invariant functions. These functions are constant along the holonomy distribution [8]. It is
easy to see that the holonomy invariant functions are also S-invariant functions, that is, constant along
the spray. However, the opposite is not true: not all functions constant along the spray are holonomy
invariant. In the literature S-invariant functions are also known as first integrals of the spray S ; for
example, we refer to [3, 14].

In this paper, we investigate the geometry of distributions associated with homogeneous S-invariant
functions of degree k , 0. A function P defined on T M is called k-homogeneous, if it satisfies the
equation P(λv) = λkP(v) for any v ∈ T M. We show that, to any k-homogeneous S-invariant nontrivial
function P, one can associate the decomposition of TT M

TT M = H
P
⊕ S pan{S } ⊕ V

P
⊕ S pan{C}, (1.1)

where H
P

and V
P

are n − 1-dimensional sub-distribution of the horizontal (resp. the vertical) spaces
associated with the spray. Moreover, if P is a holonomy invariant function, then

Ker dP = H ⊕V
P
, (1.2)

whereH is the horizontal distribution associated to S .
As a special case, for a Finsler manifold (M, F), since F is constant along its geodesic spray S

and also along the horizontal distribution H , we focus our attention on the distribution VF . In [8],
the notion of metrizability freedom of sprays was introduced. For a given spray S , mS shows how
many essentially different Finsler functions can be associated to it. The metrizability freedom of a
spray can be determined with the help of its holonomy distribution Hol. We prove that VHol and VF

coincide if and only if the metrizability freedom of S is one. In the case when mS ≥ 1, then VHol is a
sub-distribution ofVF and we prove that

VHol = ∩
F∈FS
VF

where FS denotes the set of Finsler functions associated with the spray S .
As an application, we turn our attention to the Landsberg surfaces. We show that for a Landsberg

surface, if the flag curvature is S-invariant, then the surface is Riemannian or has a vanishing flag
curvature. Also, for a Landsberg surface with non-vanishing flag curvature K, we establish that K is
S-invariant if and only if K is constant. In this case, the surface is Riemannian. Finally, we prove that,
for a Berwald surface, the flag curvature is H-invariant if and only if K is constant.

2. Preliminaries

M is an n-dimensional smooth manifold, its tangent bundle (T M, πM,M), and its subbundle of non-
zero tangent vectors (TM, π,M). On the base manifold M, we indicate local coordinates by (xi), while
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on T M, the induced coordinates are (xi, yi). The natural almost-tangent structure of T M is defined
locally by J = ∂

∂yi ⊗ dxi, which is the vector 1-form J on T M. The canonical or Liouville vector field
is the vertical vector field C = yi ∂

∂yi on T M.

2.1. Spray and Finsler manifold

The geometry of sprays and Finsler manifolds has a vast literature. Here, we are using essentially
the results and the terminology of [11, 12].

A vector field S ∈ X(TM) is called a spray if JS = C and [C, S ] = S . Locally, a spray is expressed
as follows

S = yi ∂

∂xi − 2Gi ∂

∂yi , (2.1)

where the spray coefficients Gi = Gi(x, y) are 2-homogeneous functions in the y = (y1, . . . , yn) variable.
A curve σ : I → M is called regular if σ′ : I → TM, where σ′ is the tangent lift of σ. A regular curve
σ on M is called geodesic of a spray S if S ◦ σ′ = σ′′. Locally, σ(t) = (xi(t)) is a geodesic of S if and
only if it satisfies the equation

d2xi

dt2 + 2Gi
(
x,

dx
dt

)
= 0. (2.2)

A nonlinear connection is described by a supplemental n-dimensional distribution to the vertical
distribution, denoted asH : u ∈ TM → Hu ⊂ Tu(TM). For every u ∈ TM, we have

Tu(TM) = Hu ⊕Vu. (2.3)

Every spray S induces a canonical nonlinear connection [11] through the corresponding horizontal and
vertical projectors,

h =
1
2

(Id + [J, S ]), v =
1
2

(Id − [J, S ]). (2.4)

Equivalently, the canonical nonlinear connection defined by a spray is expressed as an almost product
structure Γ = [J, S ] = h − v. A spray S is horizontal with regard to the induced nonlinear connection;
this means that S = hS . Moreover, the two projectors, h and v, have the following local expressions

h =
δ

δxi ⊗ dxi, v =
∂

∂yi ⊗ δy
i,

and the distributions are generated by the vector fields

δ

δxi =
∂

∂xi −G j
i (x, y)

∂

∂y j , δyi = dyi + G j
i (x, y)dxi,

where G j
i (x, y) = ∂G j

∂yi . If X ∈ X(M), thenLX and iX stand for the Lie derivative with respect to X and the
interior product by X, respectively. d f represents the differential of f ∈ C∞(M). A skew-symmetric
C∞(M)-linear map L : (X(M))` −→ X(M) is a vector `-form on M. Each vector `-form L defines two
graded derivations of the Grassmann algebra of M, namely iL and dL, as follows

iL f = 0, iLd f = d f ◦ L ( f ∈ C∞(M)),

dL := [iL, d] = iL ◦ d − (−1)`−1diL.
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The curvature tensor R of the nonlinear connection is

R = −
1
2

[h, h], (2.5)

and the Jacobi endomorphism [12] is defined by

Φ = v ◦ [S , h] = Ri
j
∂

∂yi ⊗ dx j =

(
2
∂Gi

∂x j − S (Gi
j) −Gi

kG
k
j

)
∂

∂yi ⊗ dx j.

The two curvature tensors are related by

3R = [J,Φ], Φ = iS R.

For simplicity, we use the notations

δi :=
δ

δxi , ∂i :=
∂

∂xi , ∂̇i :=
∂

∂yi .

Definition 2.1. A Finsler manifold of dimension n is a pair (M, F), where M is a smooth manifold of
dimension n, and F is a continuous function F : T M → R such that:

a) F is smooth and strictly positive on TM.

b) F is positively homogenous of degree 1 in the directional argument y: LCF = F.

c) The metric tensor gi j = ∂̇i∂̇ jE has rank n on TM, where E := 1
2 F2 is the energy function.

Since the 2-form ddJE is non-degenerate, the Euler-Lagrange equation

ωE := iS ddJE − d(E − LCE) = 0 (2.6)

uniquely determines a spray S on T M. This spray is called the geodesic spray of the Finsler function.
The ωE is called the Euler-Lagrange form associated with S and E.

2.2. Holonomy distribution and metrizability freedom

Definition 2.2. [15] The holonomy distributionHol of a spray S is the distribution on T M generated
by the horizontal vector fields and their successive Lie-brackets, that is

Hol :=
〈
X

h(T M)
〉

Lie
=

{
[X1, [. . . [Xm−1, Xm]...]]

∣∣∣ Xi ∈ X
h(T M)

}
(2.7)

where Xh(T M) is the modules of horizontal vector fields.

The parallel translation along curves with respect to the canonical nonlinear connection associated
with a spray S can be introduced through horizontal lifts. Let c : [0, 1] → M be a piecewise smooth
curve such that c(0) = p and c(1) = q, and let ch be a horizontal lift of the curve c (that is, π ◦ ch = c
and ċh(t) ∈ Hch(t)). The parallel translation τ : TpM → TqM along c is defined as follows: If ch(0) = v
and ch(1) = w, then τ(v) = w.
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Definition 2.3. Let S be a spray. A function E ∈ C∞(T M) is called a holonomy invariant function if
it is invariant with respect to the parallel translation induced by the associated canonical nonlinear
connection to S . That is, we have E(τ(v)) = E(v), where v ∈ T M and τ is any parallel translation. The
set of holonomy invariant functions is denoted by C∞

Hol.

Since the parallel translations can be interpreted as travelling along the horizontal lift of curves [8],
one can characterize the element of C∞

Hol as functions with vanishing horizontal derivatives. It follows
that

C∞
Hol = {E ∈ C∞(TM) | LXE = 0, X ∈ Hol} . (2.8)

Definition 2.4. Suppose S is a spray on a manifold M. If there is a Finsler function F such that its
geodesic spray is S , then S is called Finsler metrizable.

Let us denote by FS the set of Finsler function F generating S as a geodesic spray. Then, we have

F ∈ FS ⇐⇒ E = 1
2 F2 ∈ C∞

Hol (2.9)

meaning that F is a Finsler function of S if and only if the energy function associated is a 2-
homogenous regular element of C∞

Hol.
The questions of how many essentially different Finsler metrics can be associated with a spray, and

how to determine this number in terms of geometric quantities were considered in [8]. In the case when
the holonomy distribution (2.7) of a spray S is regular, then the metrizability freedom mS (∈ N) can be
calculated by the following

Theorem. ([8, Theorem 4.4]) Let S be a metrizable spray with regular holonomy distribution Hol.
Then, the metrizability freedom can be calculated as mS = codim(Hol).

In the case when the metrizability freedom of S is mS ≥ 1, then for every v0 ∈ TM there exists a
neighborhood U ⊂ TM and functionally independent element E1, . . . , EmS

of C∞
Hol on U such that any

E ∈ C∞
Hol can be expressed as

E(v) = ϕ
(
E1(v), . . . , EmS

(v)
)
, ∀ v ∈ U,

with some function ϕ : RmS → R. We also remark that in that case, sinceHol is generated by horizontal
vector fields and their Lie brackets, it containsH , therefore

Hol = H ⊕VHol, (2.10)

whereVHol denotes the vertical part ofHol. Since dim(H) = n, we get

dimVHol = n − mS . (2.11)

3. Geodesic invariant functions

Definition 3.1. Let S be a spray on M. Then, P ∈ C∞(TM) is called a geodesic invariant function, if
for any geodesics c(t) of S it satisfies P(c′(t)) ≡ const.
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Obviously, for a given spray S , the function P ∈ C∞(TM) is a geodesic invariant function if and
only if

LSP = 0, (3.1)

that is, P is a first integral of S [3]. In that spirit, we can call such a function an S-invariant function,
referring also to the spray determining the geodesic structure. We remark that P is constant along S if
and only if the dynamical covariant derivative of P vanishes; see for example [4].

As the results of [4, 9] show, certain geometric distributions associated with sprays and their
deformation can play a central role in the investigation of their metrizability property. This is why,
motivated by [9], for further computation and analysis, we introduce a decomposition of the horizontal
(resp. the vertical) distributions adapted to an S-invariant function P, homogeneous of degree k , 0;
we introduce the endomorphisms

h
P

= h −
dJP

kP
⊗ S , v

P
= v −

dvP

kP
⊗ C, (3.2)

and we set
H
P

:= Im h
P
, V

P
:= Im v

P
. (3.3)

We have the following

Lemma 3.2.

1. Properties of v
P

andV
P
:

i) ker(v
P
) = H ⊕ Span{C},

ii) Im(v
P
) = V

P
is an (n − 1)-dimensional involutive subdistribution ofV,

iii) any X ∈ V
P

is an infinitesimal symmetry of P that is LXP = 0,

iv) the vertical distribution has the decompositionV = V
P
⊕ S pan{C}.

2. Properties of h
P

andH
P
:

i) ker(h
P
) = V ⊕ Span{S },

ii) Im(h
P
) = H

P
is an (n − 1)-dimensional subdistribution ofH ,

iii) the horizontal distribution has the decompositionH = H
P
⊕ S pan{S },

3. J(H
P
) = V

P
.

Proof. We prove (1) in detail. The computations for (2) are similar.
ad i) We note thatH = Ker v, thereforeH ⊂ Ker v

P
. Moreover, if V ∈ ker v

P
is vertical, then using

v(V) = V we get

v
P
(V) = 0 ⇐⇒ V =

V(P)
kP
C,

that is V ∈ Span{C} and we get i).
ad ii) We introduce the simplified notation Pi := ∂̇iP and the vector fields

hi := h
P
(δi) = δi −

Pi

kP
S , (3.4a)
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vi := v
P
(∂̇i) = ∂̇i −

Pi

kP
C (3.4b)

for i = 1, . . . , n. We get

H
P

= Span{h1, . . . , hn}, (3.5a)
V
P

= Span{v1, . . . , vn}. (3.5b)

We note that the vector fields in (3.5a) (resp., in (3.5b)) are not independent since yihi = 0 (resp., yivi =

0). Because the k-homogeneity property of P (and the (k − 1)-homogeneity property of Pi) for any
vi, v j ∈ VP

, their Lie bracket is

[vi, v j] =
[
∂̇i −

Pi

kP
yk∂̇k, ∂̇ j −

P j

kP
y`∂̇`

]
=
Pi

kP
∂̇ j −

P j

kP
∂̇i =

Pi

kP
v j −

P j

kP
vi

and hence, from (3.5b), we get that [vi, v j] ∈ VP
henceV

P
is involutive.

ad iii) One can check that the generators (3.5b) of the distribution are infinitesimal symmetry of P.
Indeed, using Euler’s theorem of the homogeneous functions, we get for the k-homogeneous P:

LCP = kP, (3.6)

and therefore
LviP = ∂̇i(P) −

Pi

kP
C(P) = Pi −

Pi

kP
kP = 0. (3.7)

ad iv) Supposing C ∈ V
P

we get from (3.5b) that C = Civi with some coefficients Ci. Solving this
equation, since C(P) = kP and vi(P) = 0, we find that C(P) = Civi(P) = 0, which is a contradiction.

For 3), we note that for the generators (3.4a) of (3.5a) and (3.4b) of (3.5b), we get

Jhi = Jδi −
Pi

kP
JS = ∂̇i −

Pi

kP
C = vi, (3.8)

i = 1, . . . , n, and this proves 3). �

From Lemma 3.2 we get the following

Corollary 3.3. For a given spray S on T M, then any non-trivial S-invariant function P ∈ C∞(TM)
and homogeneous of degree k , 0 gives rise to the direct sum decomposition (1.1). Moreover, if P is
constant alongH

P
, then we have also (1.2).

We have the following

Proposition 3.4. Let (M, F) be a Finsler manifold with geodesic spray S . If P is a k-homogeneous
holonomy invariant function with k , 0, then

VHol ⊆ VP
. (3.9)

Proof. Assume that P is a k-homogeneous holonomy invariant function with k , 0, then P ∈ C∞
Hol,

and according to (2.8), we haveVHol ⊆ Hol ⊆ Ker dP. It follows that

VHol ⊆ V ∩ Ker dP = V
P
,

where we use the notation (3.3). �
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Remark 3.5. Let (M, F) be a Finsler manifold with geodesic spray S . If P is a k-homogeneous S-
invariant (but not necessarily holonomy invariant) function with k , 0 andVHol ⊆ VP, then dhdhP = 0.

Proof. We note that, since P is not necessarily a holonomy invariant function, we do not have dhP = 0.
However, the image of the curvature tensor R is in the holonomy distribution. If VHol ⊆ VP

, then
dRP = 0. On the other hand, using (2.5) and the properties d[h,h] = [dh, dh] and

[dh, dh] = dhdh − (−1)dhdh = 2dhdh,

we have
dhdhP = 1

2d[h,h]P = −dRP = 0,

which shows the statement of the remark. �

It should be noted that in the generic case, the holonomy distribution of a spray is the 2n-dimensional
distribution TT M and the metrizability freedom is mS = 0. For mS = 1 we get the following

Theorem 3.6. Let S be a given spray metrizability freedom mS = 1, that is (essentially) uniquely
metrizable by a Finsler function F. Then, for any 1-homogeneous S-invariant function P, we have
VHol = V

P
if and only if F = cP where c ∈ R \ {0}.

Proof. Since the metrizability freedom of S is 1, then by [8] the codimension of Hol is one. That is,
the dimension of Hol is 2n − 1 and by the fact that the dimension of HHol is n, we can conclude that
the dimension ofVHol = n − 1.

Assume that F = cP, then P is holonomy invariant 1-homogenous function. From Proposition 3.4,
we haveVHol ⊆ VP

. Since the dimension of both spaces is n − 1, we get their equality.
Conversely, assume thatVHol = V

P
, then

dv
P

F = 0 =⇒ dvF −
dvP

P
dCF = 0.

Since dCF = F, then we have

dvF −
dvP

P
F = 0 =⇒

dvF
F

=
dvP

P
.

Then, there exists a function a(x) on M such that F = ea(x)P. Now, sinceP is S-invariant, thenLSP = 0
and also LS F = 0; therefore, LS a(x) = 0. Locally, we obtain that

yi∂ia(x) − 2Gi∂̇ia(x) = 0 =⇒ yi∂ia(x) = 0.

By differentiation with respect to y j, we get ∂ ja(x) = 0, that is a(x) is constant function. Hence, we get
F = cP. �

Corollary 3.7. Let (M, F) be a Finsler manifold with isotropic non-vanishing curvature. Then, for
any 1-homogeneous S-invariant function P, we have VHol = V

P
if and only if F = cP, where c is a

non-zero constant.

Proof. In the case where the Finsler manifold has a non-vanishing isotropic curvature, then by [8], the
metrizability freedom of its geodesic spray is 1. Therefore, the result follows by Theorem 3.6. �
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The next theorem characterizes VHol and therefore Hol as the intersection of distributions
associated with geodesic invariant functions:

Theorem 3.8. Let S be a metrizable spray with regular holonomy distribution. Then, we have

VHol = ∩
F∈FS
VF . (3.10)

Proof. Let us assume that S is a metrizable spray with regular holonomy distribution on an n-
dimensional manifold M, and its metric freedom is mS (≥ 1). According to [8, Theorem 4.4], we
have codim(Hol) = mS , or equivalently,

dim(Hol) = 2n − mS , (3.11)

and at the neighborhood of any (x, y) ∈ T M, there exists a set
{
E1, . . . EmS

}
of energy functions

associated with S such that any energy function of S can be locally written as a functional combination
of E1, . . . EmS . It follows that the corresponding Finsler functions

{
F1, . . . FmS

}
are functionally

independent, and locally generating the set of Finsler functions of S , that is, every Finsler function
F of S can be written as a functional combination

F = φ(F1, . . . , FmS
)

with some 1-homogeneous function φ. It follows that

∩
F∈FS

Ker(dF) =∩mS

µ=1 Ker(dFµ). (3.12)

Since
{
F1, . . . , FmS

}
are functionally independent, their derivatives are linearly independent, therefore

∩mS

µ=1 Ker(dFµ) is characterized by mS linearly independent equations in TT M. It follows that

dim
(
∩mS

µ=1 Ker(dFµ)
)

= dim(TT M) − mS = 2n − mS . (3.13)

Moreover, the functions Fµ are all holonomy invariant functions; therefore, Ker(dFµ) contains the
holonomy distribution for µ = 1, . . . ,mS , and as a consequence, their intersection∩mS

µ=1Ker(dFµ) also
contains Hol. Since the dimension of the intersection (3.13) and the dimension of the holonomy
distribution (3.11) are equal, we get

Hol =∩mS

µ=1Ker(dFµ). (3.14)

Using the vertical projection for (3.14) we get

VHol = v (Hol)
(3.14)
= v

 mS⋂
µ=1

Ker(dFµ)

 (3.12)
=

= v
(
∩

F∈FS
Ker(dF)

)
= ∩

F∈FS
v (Ker(dF)) = ∩

F∈FS
VF

showing the statement of the theorem. �
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Corollary 3.9. Let S be a metrizable spray by a Finsler function F. Then, VHol = VF if and only if
the metrizability freedom of S is mS = 1.

Theorem 3.10. Let F be a Finsler function and S its geodesic spray. Then, if P is a 1-homogeneous
nontrivial VF-invariant function, then it is regular. Moreover, if P is S-invariant, then P = cF with
some constant c ∈ R.

We remark that the theorem shows that the S-invariant and VF-invariant properties are essentially
characterizing the Finsler function associated with S .

Proof. Let P be a 1-homogeneousVF-invariant function. It follows that it satisfies the the system

dXP = 0, ∀X ∈ VF .

Then, we have

dvFP = dvP −
dvF
F
P = 0 =⇒

dvF
F

=
dvP

P
.

Then, there exists a function a(x) on M such that F = ea(x)P. Then P = e−a(x)F, and hence P inherits
its regularity from the Finsler function F.

Now, assume that P is S-invariant; then, we have LSP = 0 and using the fact that LS F = 0, we
have

LS F = LS ea(x)P = ea(x)PLS a(x) = 0.

Then, we obtain that yi∂ia(x) = 0. But by differentiating with respect to the y j variable, we get
∂ ja(x) = 0. That is a(x) = const. Consequently, we get F = cP.

�

4. Applications to the Landsberg surfaces

Definition 4.1. A Finsler metric F on a manifold M is called a Berwald metric, if in any standard local
coordinate system in TM the connection coefficients Gi

j(x, y) are linear. A Finsler metric F is called
Landsberg metric if Landsberg tensor with the components Li jk = −1

2 FGh
i jk

∂F
∂yh is identically zero.

The Berwald- and Landsberg-type Finsler metrics are the most important particular cases in Finler
geometry. For Berwald metrics, the associated canonical connection is linear; for Landsberg metrics
the parallel transport with respect to the canonical connection preserves the metric [1]. It is well
known that all Berwald-type Finsler metrics are also Landsbergian, but there is the long-open, so-
called unicorn problem: Is there a Landsberg metric that is not Berwald? In higher dimensions (n ≥ 3),
there are non-regular Landsberg metrics that are not Berwladian; for more details, we refer to [7, 17].
In dimension two, L. Zhou [19] investigated a class of Landsberg surfaces and claimed that this class
is not Bewaldian. Later, in [10], it was shown that the class is, in fact, Berwaldian. Up to the best of
our knowledge, there is no example of non-Berwaldian Landsberg surfaces.

A Finsler function F with the geodesic spray S is said to be of scalar flag curvature if there exists a
function K ∈ C∞(TM) such that the Jacobi endomorphism Φ of the geodesic spray S is given by

Φ = K(F2J − FdJF ⊗ C). (4.1)
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Since the Jacobi endomorphism Φ of any Finsler surface is in the above form, then it is clear that all
Finsler surfaces are of scalar flag curvature K(x, y). Also, since the curvature R of a spray vanishes if
and only if the Jacobi endomorphism vanishes, then the curvature of any Finsler surface vanishes if
and only if K vanishes.

Whenever the scalar curvature K of the Finsler surface is non-vanishing, we will use the so-called
Berwald frame, introduced by Berwald in [6]: It is a frame on TM canonically associated with a 2-
dimensional Finsler manifold and used to investigate projectively flat 2-dimensional Finsler manifolds.
We note that when the scalar curvature vanishes, the Berwald frame is not defined. For more details,
we refer, for instance, to [18].

Lemma 4.2. [2] Let (M, F) be a Finslerian surface with the geodesic spray S and of flag curvature
K , 0. Then, the Berwald frame {S ,H,C,V} satisfies JH = V,

[S ,H] = KV, (4.2a)
[S ,V] = −H, (4.2b)
[H,V] = S + IH + S (I)V, (4.2c)

and
H(F) = V(F) = 0. (4.3)

Moreover, the Bianchi’s identity is given by [14, Proposition 1.4]

S 2(I) + V(K) + I K = 0, (4.4)

where K is the flag curvature and I is the main scalar of (M, F).

One can characterize the Berwald- and Landsberg-type Finler metrics in terms of the main scalar:

Lemma 4.3. [5] A Finsler surface (M, F) is

1. Landsberg if and only if S (I) = 0.

2. Berwald if and only if S (I) = 0 and H(I) = 0.

Proposition 4.4. All Landsberg surfaces with basic flag curvature are either Riemannian or have
vanishing flag curvature.

Proof. Let (M, F) be a Landsberg surface with basic flag curvature, that is, K = K(x) is a function on
the manifold M. Then, V(K) = 0, and by using the fact that S (I) = 0 together with (4.4), we have

KI = 0.

Then, we have either K = 0 or I = 0 and this completes the proof. �

Proposition 4.5. For any Landsberg surface (M, F) with non-vanishing curvature, we have

β + I V(β) + H(I) + V2(β) = 0, (4.5)

where β := S (K0)
K0
− S

(∫ t

0
I(t)dt

)
, K0 ∈ C∞(TM), V(K0) = 0, I is the main scalar of (M, F) and the

integration here is taken with respect to V.
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Proof. Assume that (M, F) is a Landsberg surface with non-vanishing K. We work on a neighborhood
of a point (x0, y0) ∈ TM where F is regular. Then, from Lemma 4.3, we get that S (I) = 0 and hence
S 2(I) = S (S (I)) = 0. Then, (4.4) has the form

V(K) = −IK. (4.6)

Since K , 0, then we can write
V(K)

K
= −I.

Using integration as in [16] we obtain

K = K0 exp
(
−

∫ t

0
I(t)dt

)
, (4.7)

where K0 ∈ C∞(TM) and V(K0) = 0. But since K is homogeneous of degree 0 and by the fact that
[C,V] = 0, then K0 must be homogeneous of degree 0, that is, C(K0) = 0. That is, V(K0) = 0 and
C(K0) = 0, hence K0 = K0(x).

Taking the fact that S (I) = 0, (4.7) implies

S (K) = S (K0) exp
(
−

∫ t

0
I(t)dt

)
+ KS

(
−

∫ t

0
I(t)dt

)
= S (K0)

K
K0

+ KS
(
−

∫ t

0
I(t)dt

)
.

From which we can write
S (K)

K
=

S (K0)
K0

+ S
(
−

∫ t

0
I(t)dt

)
. (4.8)

Then, (4.8) can be written in the form
S (K) = βK, (4.9)

where β =
S (K0)

K0
+ S

(
−

∫ t

0
I(t)dt

)
. Applying S on (4.6) and using (4.9), we have

S (V(K)) = −IS (K) = −βIK. (4.10)

Applying V on (4.9) and using (4.6), we have

V(S (K)) = V(β)K + βV(K) = V(β)K − βIK. (4.11)

Now, by the property that [V, S ] = H (4.2b), (4.10), and (4.11) we have

H(K) = V(β)K. (4.12)

From which, together with (4.6), we get

V(H(K)) = V2(β)K + V(β)V(K) = V2(β)K − IK V(β). (4.13)

H(V(K)) = −H(I)K − IH(K) = −H(I)K − IK V(β). (4.14)

Since [H,V]K = H(V(K)) − V(H(K)) then by (4.2c), (4.13), and (4.14), we have

S (K) + I H(K) = −K H(I) − K V2(β)

from which, together with the fact that K , 0, and by (4.9), (4.12), we have

β + I V(β) + H(I) + V2(β) = 0.

This completes the proof. �
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As a consequence of the above proposition, we have the following result, which is obtained by [13]
and [18], proved in a different way.

Theorem 4.6. Let (M, F) be a Landsberg surface with non-zero flag curvature. If the flag curvature is
S-invariant, then the surface is Riemannian.

Proof. Let (M, F) be a Landsberg surface with non-vanishing flag curvature K and the property that
S (K) = 0. Then, by (4.9), we get that β = 0 and therefore V(β) = V2(β) = 0. Now, by (4.5), we obtain
that H(I) = 0 and the surface is Berwaldian. Moreover, by (4.12), we have H(K) = 0 and using the
fact that S (K) = 0, (4.2a) implies

K V(K) = 0,

from which, together with Proposition 4.4, the result follows. �

Theorem 4.7. Let (M, F) be a Landsberg surface with non-vanishing flag curvature K; then, K is
S-invariant if and only if K is constant. In this case, F is Riemannian.

Proof. Let (M, F) be a surface with non-vanishing flag curvature K. It is obvious that if K is constant,
then S (K) = 0 and hence K is S-invariant. Now, assume that K is S-invariant, that is, S (K) = 0.
By (4.9), β = 0 and then by (4.12) we get that H(K) = 0. Since [S ,H] = KV , then KV(K) =

S (H(K)) − H(S (K)) = 0, and hence V(K) = 0 since K , 0. Moreover, K is zero homogeneous in y,
then C(K) = 0. Therefore, we have

S (K) = 0, H(K) = 0, V(K) = 0, C(K) = 0

which implies that K is constant. Then, F is Riemnnian by Theorem 4.6. �

A smooth function f on TM is said to be H-invariant if H( f ) = 0. Let’s end this work by the
following result.

Theorem 4.8. Let (M, F) be a Berwald surface with non-vanishing flag curvature. Then, the flag
curvature K is H-invariant if and only if K is constant.

Proof. Let (M, F) be a Berwald surface. If K is constant, then it is clear that H(K) = 0 and hence it is
H-invariant. Now, assume that H(K) = 0. If K = 0, then the proof is done. If K , 0, then by (4.12),
V(β) = 0. Since the surface is Berwaldian, then H(I) = 0. Therefore, by (4.5), β = 0 and by (4.9), we
have S (K) = 0. Using (4.2a), we get that V(K) = 0 since K , 0. Since C(K) = 0, we have

S (K) = 0, H(K) = 0, V(K) = 0, C(K) = 0

which means that K is constant. �

5. Conclusions

In this work, we have investigated the concept of geodesically invariant functions (or, equivalently,
S-invariant functions for a given spray S ) and some of its geometric consequences. For a given S-
invariant function P and homogeneous of degree k , 0, we manged to express the horizontal and
vertical subbundles as a direct sum of associated distributions depending on the function P. Moreover,
we study the relationship between the holonomy distribution and the kernel distribution of P. Also,
we pay some attentions to the role of the metrizability freedom and its effect on the geometry of an
S-invariant function. Finally, as an application, we focus on the Berwald- and Landsberg-type surfaces.
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