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1. Introduction

Symmetric polynomials are significant in various areas of mathematics, including computational
linear algebra [1, 2], representation theory [3], combinatorics [4–6], and others. There are several
types of symmetric polynomials, including power-sum, monomial, Schur, elementary and complete
polynomials. For more information, refer to [7].

According to the fundamental theorem of symmetric polynomials, the elementary symmetric
polynomials are distinguished from other symmetric polynomials, as any symmetric polynomial can
be uniquely represented in terms of the elementary symmetric polynomials (see [8]). Also, from
the Jacobi–Trudi and Nägelsbach–Kostka identities, we see that the elementary and the complete
symmetric polynomials are dual to each other (see [9]).

There are numerous studies presenting identities for symmetric polynomials, such as ([10–12])
and others listed in the references. For instance, the authors in [11] introduced some identities
for the elementary and complete symmetric polynomials and used them to generalize Stirling
numbers, in addition to proving a conjecture proposed in [13]. In [12], the author presented new
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relationships between elementary and complete symmetric polynomials and used them to provide a
new representation for the Gaussian polynomials. Similarly, the author in [10] introduced identities
for the elementary symmetric polynomials and used them to present elegant representations for
Legendre polynomials. In the current paper, we will present additional identities for elementary
and complete symmetric polynomials, supported by some applications. Some of these applications
include improving the results presented in [2] related to the Vandermonde determinant, computing
determinants for some special cases of tri-diagonal matrices, and generalizing the results presented
in [10] related to Legendre polynomials.

To begin with, we will introduce some basic definitions, notations, and well-known results, which
we will use in the sequel. For further details, refer to [1,7,10–12,14–16]. Throughout this article, let n ∈
N, x = (x1, x2, . . . , xn) ∈ Cn, and we use the notation Rn

+ := {(x1, x2, . . . , xn) | xi ∈ R+, i = 1, 2, . . . , n}.
Let us start with the definitions of elementary and complete symmetric polynomials.

Definition 1.1. The elementary symmetric polynomial (for short, ESP) of degree k, denoted by σ(n)
k (x),

is the sum of all possible products of distinct k variables of {x1, x2, . . . , xn}, that is,

σ(n)
k (x) =


0, if k > n or k < 0,
1, if k = 0,∑
1≤i1<i2<···<ik≤n

xi1 xi2 · · · xik , if k = 1, 2, . . . , n.
(1.1)

The complete symmetric polynomial (for short, CSP) of degree k, denoted by h(n)
k (x), is defined as

follows:

h(n)
k (x) =


0, if n < 0 or k < 0 or (n = 0 with k , 0),
1, if k = 0,∑
1≤i1≤i2≤···≤ik≤n

xi1 xi2 · · · xik , if k = 1, 2, . . . .
(1.2)

For instance, the ESP and CSP of degree 2 for n = 3 are given by

σ(3)
2 (x1, x2, x3) = x1x2 + x1x3 + x2x3,

h(3)
2 (x1, x2, x3) = x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3.

It should be noticed that for a fixed degree k, each σ(n)
k (x) involves

(
n
k

)
terms, and each h(n)

k (x) involves(
n+k−1

k

)
terms. From the definition of ESP and CSP, we see that they are homogeneous polynomials.

Therefore, it is convenient to state the so-called Euler’s theorem on homogeneous functions.

Theorem 1.1 (Euler’s theorem on homogeneous functions). Let x ∈ Rn. If the function f : Rn → R is
homogeneous of degree m, then

n∑
i=1

xi
∂ f (x)
∂xi

= m f (x).

The generating functions for ESP and CSP are given, respectively, by

En(t; x) =

n∏
j=1

(1 + x jt) =

n∑
k=0

σ(n)
k (x)tk, (1.3)
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and

Hn(t; x) =

n∏
j=1

(1 − x jt)−1 =

∞∑
k=0

h(n)
k (x)tk. (1.4)

We can rewrite (1.3) and (1.4), respectively, as follows:

n∑
k=0

σ(n)
k (x)tk = (1 + xnt)

n−1∑
k=0

σ(n−1)
k (x1, x2, . . . , xn−1)tk, (1.5)

and

(1 − xnt)

∞∑
k=0

h(n)
k (x)tk =

∞∑
k=0

h(n−1)
k (x1, x2, . . . , xn−1)tk. (1.6)

From (1.3) and (1.4), we see that En(t; x)Hn(−t; x) = 1, consequently [17, Eq (1)]

n∑
k=0

(−1)kσ(n)
k (x) h(n)

n−k(x) = 0. (1.7)

Furthermore, it is important to note that the ESP and CSP of degree k are interconnected through
Jacobi–Trudi and Nägelsbach–Kostka identities, receptively,

σ(n)
k (x) = det

([
h(n)

1−i+ j(x)
]

1≤i, j≤k

)
, (1.8)

h(n)
k (x) = det

([
σ(n)

1−i+ j(x)
]

1≤i, j≤k

)
, (1.9)

for any positive integer k (see [9]).
Now, by comparing the coefficients of tk in (1.5), the ESP satisfies

σ(n)
k (x) = σ(n−1)

k (x1, x2, . . . , xn−1) + xn σ
(n−1)
k−1 (x1, x2, . . . , xn−1). (1.10)

Similarly, for the CSP, by comparing the coefficients of tk in (1.6), we have

h(n)
k (x) = h(n−1)

k (x1, x2, . . . , xn−1) + xn h(n)
k−1(x). (1.11)

By using the symmetry property of σ(n)
k (x), we see that

σ(n)
k (x) = σ(n−1)

k (x1, x2, . . . , xi−1, xi+1, . . . , xn) + xi σ
(n−1)
k−1 (x1, x2, . . . , xi−1, xi+1, . . . , xn),

for all k = 0, 1, 2, . . . and i = 1, 2, . . . , n.
By differentiating the recurrence relation (1.10) with respect to xi, we obtain

∂σ(n)
k (x)
∂xi

= σ(n)
k,i (x) = σ(n−1)

k−1 (x1, x2, . . . , xi−1, xi+1, . . . , xn), (1.12)

for all k = 0, 1, 2, . . . (see [11]). Moreover, using (1.3) and (1.12) yields

σ(n)
k−1(x) = σ(n)

k,i (x) + xi σ
(n)
k−1,i(x), (1.13)
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for all k = 0, 1, 2, . . . and i = 1, 2, . . . , n. Repeated application of (1.13) gives

σ(n)
k,i (x) =

k∑
j=1

(−1) j−1σ(n)
k− j(x) x j−1

i , (1.14)

for all k = 0, 1, 2, . . . and i = 1, 2, . . . , n.
In a similar manner, the CSP satisfies

∂h(n)
k (x)
∂xi

= h(n)
k,i (x) = h(n)

k−1(x) + xi h(n)
k−1,i(x), (1.15)

and repeated application of (1.15), we obtain

h(n)
k,i (x) =

k∑
j=1

h(n)
k− j(x) x j−1

i , (1.16)

for all k = 0, 1, 2, . . . and i = 1, 2, . . . , n.
The structure of the remaining sections of this article is outlined as follows: In Section 2, we

introduce new identities for the ESP and the CSP. Section 3 includes applications of these identities,
supplemented with numerical examples. Finally, Section 4 presents the conclusion of the article.

2. Main results

In this section, we are going to introduce novel identities for the ESP and the CSP. We begin with
the following result, which comes directly from [15, Theorem 1.1].

Corollary 2.1. Let n and m be any positive integers. If x ∈ Cn and y ∈ Cm, then

h(n+m)
r (x, y) =

r∑
k=0

h(n)
k (x) h(m)

r−k(y), (2.1)

for all r = 0, 1, 2, . . . .

As a direct consequence of Corollary 2.1, we can infer that the CSP adheres to the following
identity:

h(n)
k (x) =

k∑
j=0

h(i)
j (x1, . . . , xi) h(n−i)

k− j (xi+1, . . . , xn), (2.2)

for a non-negative integer k. The following result is a particular case of Corollary 2.1.

Corollary 2.2. For any positive integer n and any non-negative integer k, we have

h(2n)
k (x,−x) =


0, if k is odd,

h(n)
k/2

(
x2

1, x
2
2, . . . , x

2
n

)
, if k is even.

(2.3)
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The following is a more general result of Corollary 2.2.

Proposition 2.1. For any positive integer n and any non-negative integers k and r such that 0 ≤ r ≤ dn
2e,

we have

h(n)
k (x1, . . . , xr,−x1, . . . ,−xr, y1, . . . , yn−2r) =

k∑
`=0

`≡0(mod 2)

h(r)
`/2

(
x2

1 . . . , x
2
r

)
h(n−2r)

k−` (y1, . . . , yn−2r), (2.4)

for all k = 0, 1, 2, . . ., where d·e represents the ceiling function.

Proof. Using (1.4), we have

∞∑
k=0

h(n)
k (x1, . . . , xr,−x1, . . . ,−xr, y1, . . . , yn−2r) tk =


r∏

i=1

(
1 − x2

i t2
)−1




n−2r∏
i=1

(1 − yit)−1

 .
By applying Corollary 2.2 to the first term on the right-hand side of the previous equation, we obtain

∞∑
k=0

h(n)
k (x1, . . . , xr,−x1, . . . ,−xr, y1, . . . , yn−2r) tk

=


∞∑
`=0

`≡0(mod 2)

h(r)
`/2

(
x2

1 . . . , x
2
r

)
t`



∞∑
`=0

h(n−2r)
` (y1, . . . , yn−2r)t`


=

∞∑
k=0


k∑
`=0

`≡0(mod 2)

h(r)
`/2

(
x2

1 . . . , x
2
r

)
h(n−2r)

k−` (y1, . . . , yn−2r)

 tk. (2.5)

Equation (2.5) can be obtained by utilizing the Cauchy product of two infinite series. This concludes
the proof. �

The following identities hold for the ESP:

σ(n+m)
r (x, y) =

r∑
k=0

σ(n)
k (x) σ(m)

r−k(y), (2.6)

and

σ(2n+1)
k (x, 0,−x) = σ(2n)

k (x,−x) =


0, if k is odd,

(−1)k/2σ(n)
k/2

(
x2

1, x
2
2, . . . , x

2
n

)
, if k is even,

(2.7)

for any non-negative integer k and any positive integers n and m (see [10]). The formula (2.6) reduces
to

σ(n)
k (x) =

k∑
j=0

σ(i)
j (x1, . . . , xi) σ

(n−i)
k− j (xi+1, . . . , xn),
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for any non-negative integer k when y is missing (see [15]). It should be noticed that, from (1.3)
and (1.4), we conclude that h(n)

k (−x) = (−1)k h(n)
k (x) and σ(n)

k (−x) = (−1)k σ(n)
k (x). Now, we are ready

to extend Lemma 2 presented in [10] as follows:

Proposition 2.2. For any positive integer n and any non-negative integers k and r such that 0 ≤ r ≤ dn
2e,

we have

σ(n)
k (x1, . . . , xr,−x1, . . . ,−xr, y1, . . . , yn−2r) =

k∑
`=0

`≡0(mod 2)

(−1)`/2σ(r)
`/2

(
x2

1 . . . , x
2
r

)
σ(n−2r)

k−` (y1, . . . , yn−2r),

(2.8)
for all k = 0, 1, 2, . . . .

Proof. Using (1.3), we have

n∑
k=0

σ(n)
k (x1, . . . , xr,−x1, . . . ,−xr, y1, . . . , yn−2r) tk

=

r∏
i=1

(
1 − x2

i t2
) n−2r∏

i=1

(1 + yit)

=

r∑
`=0

`≡0(mod 2)

(−1)`/2σ(r)
`/2

(
x2

1 . . . , x
2
r

)
t`

n−2r∑
`=0

σ(n−2r)
` (y1, . . . , yn−2r)t`

=

n∑
k=0


k∑
`=0

`≡0(mod 2)

(−1)`/2σ(r)
`/2

(
x2

1 . . . , x
2
r

)
σ(n−2r)

k−` (y1, . . . , yn−2r)

 tk. (2.9)

Comparing the coefficients of tk on both sides, the required result follows. �

For n = 2r + 1, Proposition 2.2 gives

σ(2n+1)
k (x,−x, y1) =


(−1)

k−1
2 y1σ

(n)
k−1

2

(
x2

1, x
2
2, . . . , x

2
n

)
, if k is odd,

(−1)
k
2σ(n)

k
2

(
x2

1, x
2
2, . . . , x

2
n

)
, if k is even.

(2.10)

It is worth pointing out that if we set y1 = 0 in Eq (2.10), we essentially arrive at Lemma 2 as presented
in [10]. The following results may be obtained by using Corollary 2.1 together with Corollary 2.2.

Corollary 2.3. For s = 0, 1, 2, . . ., the following identities are satisfied:

(1)
s+1∑

i=−s

(−1)i h(n)
s+i(x) h(n)

s−i+1(x) = 0;

(2)
s∑

i=−s

(−1)i h(n)
s+i(x) h(n)

s−i(x) = h(n)
s

(
x2

1, x
2
2, . . . , x

2
n

)
.
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Likewise, regarding ESP, the authors in [18] demonstrated that the following identities hold true for
s = 0, 1, 2, . . .

s+1∑
i=−s

(−1)i σ(n)
s+i(x) σ(n)

s−i+1(x) = 0, (2.11)

and
s∑

i=−s

(−1)i σ(n)
s+i(x) σ(n)

s−i(x) = σ(n)
s

(
x2

1, x
2
2, . . . , x

2
n

)
. (2.12)

It should be noticed that both σ(n)
k (x) and h(n)

k (x) are homogeneous polynomials of degree k. The
following identities are satisfied by using Theorem 1.1.

Corollary 2.4. For k = 0, 1, 2, . . . , n, the ESP and the CSP satisfy,

(1)
n∑

i=1

xi σ
(n)
k,i (x) = k σ(n)

k (x);

(2)
n∑

i=1

xi h(n)
k,i (x) = k h(n)

k (x).

The following result introduces some novel additional identities concerning the ESP and the CSP.

Theorem 2.5. For any positive integer n and any non-negative integer k, the ESP and the CSP satisfy
the following identities:

(1) σ(k+1)
k (x1, x2, . . . , xk+1) = (xk + xk+1) σ(k)

k−1(x1, x2, . . . , xk) − x2
k σ

(k−1)
k−2 (x1, x2, . . . , xk−1);

(2) h(2)
k (x1, x2) = (x1 + x2) h(2)

k−1(x1, x2) − x1x2 h(2)
k−2(x1, x2);

(3) h(n)
k (x) =

n∑
i=1

xi h(i)
k−1(x1, . . . , xi);

(4) If x1, x2, . . . , xn are distinct non-zero variables, then

σ(n)
k

(
1
x1
,

1
x2
, . . . ,

1
xn

)
=
σ(n)

n−k(x)

σ(n)
n (x)

,

for all i = 1, 2, . . . , n;
(5) If x1, x2, . . . , xn are distinct non-zero variables, then

h(n)
k

(
1
x1
,

1
x2
, . . . ,

1
xn

)
=

n∑
i=1

x−k
i

n∏
j=1
j,i

x j

(x j − xi)
; (2.13)

(6)
n∑

i=1

x2
i σ

(n)
k,i (x) = σ(n)

1 (x) σ(n)
k (x) − (k + 1) σ(n)

k+1(x);

(7)
n∑

i=1

x2
i h(n)

k,i (x) = (k + 1) h(n)
k+1(x) − h(n)

1 (x) h(n)
k (x);

(8)
n∑

i=1

σ(n)
k+1,i(x) = (n − k) σ(n)

k (x);
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(9)
n∑

i=1

h(n)
k+1,i(x) = (n + k) h(n)

k (x);

(10)
n∑

i=1

xi σ
(n)
k,i, j(x) = (k − 1) σ(n)

k, j(x), j = 0, 1, 2, . . . , n;

(11)
n∑

i=1

xi h(n)
k,i, j(x) = (k − 1) h(n)

k, j(x), j = 0, 1, 2, . . . , n;

(12) σ(n)
k,i (x) − σ(n)

k, j(x) = (x j − xi) σ
(n)
k,i, j(x), i, j = 0, 1, 2, . . . , n.

Proof.

• To prove Theorem 2.5 (1), we rewrite the right-hand side as follows:

(xk+xk+1) σ(k)
k−1(x1, x2, . . . , xk) − x2

k σ
(k−1)
k−2 (x1, x2, . . . , xk−1)

= xk (σ(k)
k−1(x1, x2, . . . , xk) − xk σ

(k−1)
k−2 (x1, x2, . . . , xk−1)) + xk+1 σ

(k)
k−1(x1, x2, . . . , xk).

By applying the recurrence relation (1.10), this completes the proof of Theorem 2.5 (1).
• To prove Theorem 2.5 (2), we express the right-hand side in the following manner:

(x1 + x2) h(2)
k−1(x1, x2) − x1x2 h(2)

k−2(x1, x2) = x1 (h(2)
k−1(x1, x2) − x2 h(2)

k−2(x1, x2)) + x2 h(2)
k−1(x1, x2).

By using the recurrence relation given in Eq (1.11), we have now completed the proof of
Theorem 2.5 (2).
• To prove Theorem 2.5 (3), we directly apply and repeatedly use the recurrence relation (1.11).
• To prove Theorem 2.5 (4), we replace x j by 1

x j
on the generating function of the elementary

symmetric polynomial (1.3). Hence, we obtain

n∑
k=0

σ(n)
k

(
1
x1
,

1
x2
, . . . ,

1
xn

)
tk =

n∏
j=1

(t + x j)

x1x2 · · · xn
=

n∑
k=0

σ(n)
n−k(x) tk

σ(n)
n (x)

.

Note that the numerator of the last term above comes from Vieta’s theorem (see [19]).
Furthermore, by comparing the coefficients of tk, the proof of Theorem 2.5 (4) is complete.
• To prove Theorem 2.5 (5), since x1, x2, . . . , xn are distinct, then by partial fraction decomposition,

we have
∞∑

k=0

h(n)
k

(
1
x1
,

1
x2
, . . . ,

1
xn

)
tk =

n∏
i=1

1(
1 − t

xi

) =

n∑
i=1

λi

(
1 −

t
xi

)−1

,

where

λi =

n∏
j=1
j,i

(
1 −

t
x j

)−1

∣∣∣∣∣∣∣∣∣∣∣
t=xi

=

n∏
j=1
j,i

x j

(x j − xi)
,

for all i = 1, 2, . . . , n. Consequently,
∞∑

k=0

h(n)
k

(
1
x1
,

1
x2
, . . . ,

1
xn

)
tk =

n∑
i=1

λi

∞∑
k=0

x−k
i tk =

∞∑
k=0


n∑

i=1

λix−k
i

 tk
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=

∞∑
k=0


n∑

i=1

x−k
i

n∏
j=1
j,i

x j

(x j − xi)

 tk,

the proof of Theorem 2.5 (5) is complete.
• To prove Theorem 2.5 (6), we rewrite the left-hand side as follows:

n∑
i=1

x2
i σ

(n)
k,i (x) =

n∑
i=1

xi

(
xi σ

(n)
k,i (x)

)
.

Now, by using the recurrences (1.13) and the identity (1) in Corollary 2.4, we obtain
Theorem 2.5 (6).
• To prove Theorem 2.5 (7), we use the recurrence relation (1.15), and applying the identity (2)

from Corollary 2.4, we establish Theorem 2.5 (7).
• To prove Theorem 2.5 (8), we will rewrite (1.13) as

σ(n)
k (x) = σ(n)

k+1,i(x) + xi σ
(n)
k,i (x).

Then, by summing both sides in the above identity over i from 1 to n and using the identity (1) in
Corollary 2.4. Thus, we obtain

n σ(n)
k (x) =

n∑
i=1

σ(n)
k+1,i(x) + k σ(n)

k (x).

• To prove Theorem 2.5 (9), similarly, we will rewrite (1.15) as

h(n)
k+1,i(x) = h(n)

k (x) + xi h(n)
k,i (x).

Then, by summing both sides over i from 1 to n and using the identity (2) in Corollary 2.4. Thus,
we directly obtain the identity Theorem 2.5 (9).
• To prove Theorem 2.5 (10), we rewrite the identity (1) in Corollary 2.4 as follows:

n∑
i=1
i, j

xi σ
(n)
k,i (x) + x j σ

(n)
k, j(x) = k σ(n)

k (x).

Differentiate both sides with respect to x j gives

n∑
i=1
i, j

xi σ
(n)
k,i, j(x) + σ(n)

k, j(x) = k σ(n)
k, j(x).

Since σ(n)
k, j, j(x) = 0, we directly get the identity Theorem 2.5 (10).

• To prove Theorem 2.5 (11), in a similar way, by using (2) in Corollary 2.4 and noting that
h(n)

k, j, j(x) , 0, we see that Theorem 2.5 (11) is satisfied.
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• To prove Theorem 2.5 (12), we rewrite the recurrence relation (1.13) as

σ(n)
k,i (x) = σ(n)

k−1(x) − xi σ
(n)
k−1,i(x).

By partial differentiation with respect to x j, then we have

σ(n)
k,i, j(x) = σ(n)

k−1, j(x) − xi σ
(n)
k−1,i, j(x). (2.14)

Moreover, we conclude that

σ(n)
k, j,i(x) = σ(n)

k−1,i(x) − x j σ
(n)
k−1, j,i(x). (2.15)

Since σ(n)
k (x) is symmetric, then we complete the proof by subtracting (2.15) from (2.14).

�

Additionally, the authors in [16] showed that the CSP satisfies the following identity

h(n)
k,i (x) − h(n)

k, j(x) = (xi − x j) h(n)
k,i, j(x), (2.16)

for i, j, k = 1, 2, . . . , n.
Based on the Schur-concavity of σ(n)

k (x) on Rn
+ and the identity (12) in Theorem 2.5, we see that

σ(n)
k,i, j(x) ≥ 0 holds true for all i, j, k = 1, 2, . . . , n and x ∈ Rn

+ (see [20]). While the Schur-convexity
of h(n)

k (x) for even degree on Rn, combined with the identity (2.16), results in h(n)
k,i, j(x) ≥ 0 for all

i, j = 1, 2, . . . , n and k being an even positive integer (see [21]).
The complete symmetric polynomial can be written as a rational function, as shown by Jacobi

(see [4]). The author in [22] provided proof of this fact using matrix decomposition. The current paper
gives the proof by using partial fractions.

Theorem 2.6. For a positive integer n and a set of distinct variables x1, x2, . . . , xn, then

h(n)
k (x) =

n∑
i=1

xn+k−1
i∏n

j=1
j,i

(xi − x j)
. (2.17)

Proof. Since the variables x1, x2, . . . , xn are all distinct from each other, we can use partial fraction
decomposition to express the following:

H(t) =

n∏
i=1

1
(1 − xit)

=

n∑
i=1

ai

(1 − xit)
,

where for all i = 1, 2, . . . , n, ai is defined as

ai =
1∏n

j=1
j,i

(1 − x jt)

∣∣∣∣∣∣∣∣∣
t=1/xi

=
xn−1

i
n∏

j=1
j,i

(xi − x j)

.
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Hence,
∞∑

k=0

h(n)
k (x) tk =

n∑
i=1

ai

∞∑
k=0

xk
i tk =

∞∑
k=0


n∑

i=1

aixk
i

 tk

=

∞∑
k=0


n∑

i=1

xn+k−1
i∏n

j=1
j,i

(xi − x j)

 tk.

The required result follows. �

3. Applications and illustrative examples

The main objective of the current section is to demonstrate three potential applications. Firstly, we
will concentrate on the inversion of a generalized Vandermonde matrix. Secondly, we will explore
specific applications concerning the determinant of two special tri-diagonal matrices. Lastly, we will
discuss the representation of Jacobi polynomials in terms of their zeros.

3.1. On the inverse of a generalized Vandermonde matrix

The Vandermonde matrix is an example of such matrices, and it finds applications in various fields,
including mathematics ([23–25]), engineering ([26, 27]), and natural science ([28–30]).

Let p ∈ R. A generalized Vandermonde matrix denoted by Vn,p(x1, x2, . . . , xn) (for short, Vn,p)
and defined as Vn,p =

[
xp+i−1

j

]n

i, j=1
for distinct nodes x1, x2, . . . , xn ∈ C. Here, we assume that

Vn,p is an invertible matrix. It is clear that the classical Vandermonde matrix is a special case of
Vn,p(x1, x2, . . . , xn) with p = 0. Following [1], the explicit formula of the determinant for a generalized
Vandermonde matrix Vn,p, is given by

det
(
Vn,p

)
= xp

1

n∏
i=2

xp
i

i−1∏
j=1

(
xi − x j

)
.

In their recent work [2], concise and rigorous proofs were presented for the determinant and inverse
formulas of a generalized Vandermonde matrix. For the convenience of the reader, we mention the
following result:

Theorem 3.1 ([2]). Consider a generalized Vandermonde matrix, Vn,p with distinct nodes
x1, x2, . . . , xn ∈ C. Then, we have V−1

n,p =
[ Ni j

D(xi)

]n

i, j=1
, where

Ni j =

n− j∑
`=0

%` xn− j−`
i , (3.1)

D(xi) =

n∑
`=1

` %n−` xp+`−1
i , (3.2)

and

%` = (−1)`σ(n)
`

(x1, x2, . . . , xn) . (3.3)
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It is advantageous to note, according to formula (3.2), that for every Vandermonde node xi, there
exists a corresponding denominator D(xi). So, the denominators D(xi) in any row of V−1

n,p remain
consistent. Moreover, in V−1

n,p

(
x1, x2, . . . , x n

2
,−x1,−x2, . . . ,−x n

2

)
, we can infer that

D(−xi) = (−1)p+1D(xi). (3.4)

Due to the relationship described in Eq (3.4), this will lead to a reduction in the computational cost for
inverting the Vandermonde matrix Vn,p

(
x1, x2, . . . , x n

2
,−x1,−x2, . . . ,−x n

2

)
.

Proposition 2.2 enables us to introduce the following result, which encompasses Corollaries 1 and 2
in [2] and provides a generalization of them for computing the inverse of Vn,p with distinct nodes
x1, x2, . . . , xr,−x1,−x2, . . . ,−xr, y1, y2, . . . , yn−2r ∈ C, where r be a non-negative integer such that 0 ≤
r ≤ dn

2e.

Corollary 3.2. Consider the generalized Vandermonde matrix Vn,t with distinct nodes x1, x2, . . . , xr,

−x1,−x2 . . . ,−xr, y1, y2, . . . , yn−2r ∈ C, where r be a non-negative integer such that 0 ≤ r ≤ dn
2e. Then

we have

V−1
n,p =

[
Ni j

D(xi)

]n

i, j=1
,

where

Ni j =

n− j∑
`=0

%` xn− j−`
i , (3.5)

D(xi) =

n∑
`=1

` %n−` xp+`−1
i , (3.6)

and

%` =
∑̀
κ=0

κ≡0(mod 2)

(−1)(κ+2`)/2σ(r)
κ/2(x2

1 . . . , x
2
r ) σ(n−2r)

`−κ (y1, . . . , yn−2r). (3.7)

Notice that, when r = n
2 in Corollary 3.2, we obtain Corollary 1 in [2], which involves computing the

inverse ofVn,0

(
x1, x2, . . . , x n

2
,−x1,−x2, . . . ,−x n

2

)
. The special case r = n−1

2 and y1 = 0 gives Corollary 2

in [2], which entails computing the inverse ofVn,0

(
x1, x2, . . . , x n−1

2
, 0,−x1,−x2, . . . ,−x n−1

2

)
, with ones as

the first-row inputs. The benefit of Corollary 3.2 is to reduce the computational cost of computing the
inverse of Vn,p with distinct nodes x1, x2, . . . , xr,−x1,−x2, . . . ,−xr, y1, y2, . . . , yn−2r ∈ C, as the number
of ESPs σ(n)

k evaluations in (3.7) will decrease by approximately r times.

Example 3.3. Consider the Vandemonde matrix

V5, 1
2

(−2,−1, 2, 1, 3) =



√
−2

√
−1

√
2 1

√
3

(
√
−2)3 (

√
−1)3 (

√
2)3 1 (

√
3)3

(
√
−2)5 (

√
−1)5 (

√
2)5 1 (

√
3)5

(
√
−2)7 (

√
−1)7 (

√
2)7 1 (

√
3)7

(
√
−2)9 (

√
−1)9 (

√
2)9 1 (

√
3)9


.
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For this matrix, we have n = 5, x1 = −2, x2 = −1, x3 = 2, x4 = 1, x5 = 3, p = 1
2 and r = 2. As stated

in [2], through the implementation of the VMIEA algorithm and employing formula (3.7), we can infer
that %0 = 1, %1 = −3, %2 = −5, %3 = 15, %4 = 4, and %5 = −12. Furthermore, utilizing formula (3.6),
we find that D(−2) = 60

√
2i,D(−1) = −24i,D(2) = −12

√
2,D(1) = 12 and D(3) = 40

√
3, where

i =
√
−1. Thus, the inverse of V5, 1

2
(−2,−1, 2, 1, 3) can be expressed as

V−1
5, 1

2
=



−6
60
√

2i
5

60
√

2i
5

60
√

2i
−5

60
√

2i
1

60
√

2i
−12
−24i

16
−24i

−1
−24i

−4
−24i

1
−24i

6
−12
√

2
1

−12
√

2
−7
−12
√

2
−1
−12
√

2
1

−12
√

2
12
12

8
12

−7
12

−2
12

1
12

4
40
√

3
0

40
√

3
−5

40
√

3
0

40
√

3
1

40
√

3


=



√
2

20 i −
√

2
24 i −

√
2

24 i
√

2
24 i −

√
2

120 i

−1
2 i 2

3 i − 1
24 i −1

6 i 1
24 i

− 1
2
√

2
− 1

12
√

2
7

12
√

2
1

12
√

2
− 1

12
√

2

1 2
3 − 7

12 −1
6

1
12

1
10
√

3
0 − 1

8
√

3
0 1

40
√

3


.

3.2. Evaluating the determinant of two special tri-diagonal matrices

The tri-diagonal matrix is defined as T =
[
ti j

]n

i, j=1
with ti j = 0 for |i − j| ≥ 2. This matrix is a

common occurrence in various scientific and engineering fields, such as algebra [31], physics [32],
parallel computing [33], and engineering [34].

Based on the identities (1) and (2) in Theorem 2.5, we obtain the following result: calculating the
determinant of a particular tri-diagonal matrix.

Corollary 3.4. Consider real symmetric n × n tri-diagonal matrices of the form

An =



x1 + x2 x2 0 · · · · · · 0

x2 x2 + x3 x3
. . .

...

0 x3 x3 + x4
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . xn

0 · · · · · · 0 xn xn + xn+1


,

and

Bn =



a + b b 0 · · · · · · 0

a a + b b . . .
...

0 a a + b . . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . b

0 · · · · · · 0 a a + b


,

then det(An) = σ(n+1)
n (x1, x2, . . . , xn+1) and det(Bn) = h(2)

n (a, b).

Proof. Let det(An) = 4n. Write 41 = x1 + x2 = σ(2)
1 (x1, x2). The determinant of An can be computed

via the three-term recurrence relation, that is,

4i = (xi + xi+1)4i−1 − x2
i 4i−2, (3.8)
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for i = 1, 2, . . . , n and 40 = 1, 4−1 = 0 (see [35]). According to identity Theorem 2.5 (1), we can
deduce that

42 = (x2 + x3) σ(2)
1 (x1, x2) − x2

2 σ
(1)
0 (x1) = σ(3)

2 (x1, x2, x3).

By repeating this process, we get 4n = σ(n+1)
n (x1, x2, . . . , xn+1).

Similarly, define det(Bn) = 4̂n and write 4̂1 = a + b = h(2)
1 (a, b). Utilizing the following three-term

recurrence relation
4̂i = (a + b) 4̂i−1 − ab 4̂i−2, (3.9)

for i = 1, 2, . . . , n and 4̂0 = 1, 4̂−1 = 0 (see [35]), we can compute the determinant of Bn. Based on the
identity Theorem 2.5 (2), we obtain

4̂2 = (a + b) h(2)
1 (a, b) − ab h(2)

0 (a, b) = h(2)
2 (a, b).

By repeating this procedure, we complete the proof. �

The inverse of matrices An and Bn can be calculated using the methods described in [36] or the
algorithm outlined in [37]. The following corollary presents some specific cases that can be derived
from Corollary 3.4. The proof of this corollary is straightforward and will not be included here.

Corollary 3.5. Consider the tri-diagonal matrices An and Bn defined in Corollary 3.4.

(1) If a = b = 1, then det(Bn) = n + 1,
(2) If a = b = −1, then det(Bn) = (−1)n(n + 1),
(3) If xi = i − 1, i = 1, 2, . . . , n + 1, then det(An) = n!,
(4) If xi = i, i = 1, 2, . . . , n + 1, then det(An) = (n + 1)! Hn+1, where Hn is the harmonic numbers,
(5) If xi = y, i = 1, 2, . . . , n + 1, then det(An) = (n + 1) yn,
(6) If xi = −y, i = 1, 2, . . . , n + 1, then det(An) = (−1)n+1(n + 1)yn,
(7) If xi = q for i = 1, 2, . . . , d n

2e, and xi = −q for i = d n
2e + 1, . . . , n + 1, then

det(An) =


0 if n is odd,

(−1)n/2qn if n is even.

3.3. Zeros of the Jacobi polynomials P(α,β)
n (x)

In this subsection, we are going to focus on Jacobi polynomials and their zeros. A formula for
Legendre polynomials in terms of their zeros was previously presented in [10]. The objective of the
present study is to build upon this idea and derive a formula for Jacobi polynomials that expresses them
in terms of their zeros.

Jacobi polynomials P(α,β)
n (x) are a class of orthogonal polynomials with respect to a weight function

ω(x) = (1−x)α(1+x)β that are defined as the polynomials of degree n on the interval [−1, 1]. The Jacobi
polynomials P(α,β)

n (x) are characterized by the two parameters α, β > −1. According to formula (4.21.2)
in [38], we can deduce that P(α,β)

n (x) satisfies the following explicit formula:

P(α,β)
n (x) =

n∑
k=0

(
n + α

n − k

)(
n + α + β + k

k

) (
x − 1

2

)k

. (3.10)
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Following the formula (4.5.7) in [38], the Jacobi polynomials satisfy the subsequent recurrence
relation

(2n + α + β)
(
1 − x2

) d
dx

P(α,β)
n−1 (x) =(n + α + β)(α − β + (2n + α + β)x)P(α,β)

n−1 (x)

− 2n(n + α + β)P(α,β)
n (x).

(3.11)

There are various special instances of Jacobi polynomials. These include the Legendre polynomials
Pn(x) (α = β = 0), the Chebyshev polynomials of the first kind Tn(x) (α = β = −1/2), the Chebyshev
polynomials of the second kind Un(x) (α = β = 1/2), the Chebyshev polynomials of the third kind
Vn(x) (α = −1/2, β = 1/2), the Chebyshev polynomials of the fourth kind Wn(x) (α = 1/2, β = −1/2),
and the ultraspherical polynomials (Gegenbauer polynomials) C(λ)

n (x) (α = β > −1
2 ), where λ = α + 1

2 .
These polynomials have many applications in mathematics and physics, as demonstrated in works
such as [39–42]. An alternate explicit formula for Jacobi polynomials, equivalent to formula (3.10), is
provided by the following result:

Corollary 3.6. Consider the sequence of Jacobi polynomials
{
P(α,β)

n (x)
}∞

n=0
. Then the explicit

formula (3.10) is equivalent to the following formula:

P(α,β)
n (x) =

n∑
k=0


n−k∑
`=0

(−1)`

2k+`

(
n + α

n − k − `

)(
n + α + β + k + `

k + `

)(
k + `

k

) xk. (3.12)

Proof. The proof is obtained by applying the binomial theorem to (x − 1)k in formula (3.10), and then
applying the associativity and commutativity properties of double summations. �

Following this, we will proceed to introduce a result that allows us to express Jacobi polynomials
in terms of their zeros.

Theorem 3.7. For any positive integer n, consider x1, x2, . . . , xn are the zeros of the Jacobi polynomial
P(α,β)

n (x). Then

P(α,β)
n (x) = 2−n

(
2n + α + β

n

) n∑
k=0

(−1)n−kσ(n)
n−k (x1, x2, . . . , xn) xk. (3.13)

Proof. Using the formula (3.12), we can deduce that the highest-degree term of P(α,β)
n (x) has a

coefficient of 2−n
(

2n+α+β
n

)
. Since x1, x2, . . . , xn are the zeros of P(α,β)

n (x), the Jacobi polynomial P(α,β)
n (x)

can be expressed as follows:

P(α,β)
n (x) = 2−n

(
2n + α + β

n

)
Q(x),

where Q(x) is a monic polynomial of degree n with zeros x1, x2, ..., xn. Furthermore, Q(x) can be
written as the product of n linear factors, that is, Q(x) =

∏n
i=1(x − xi). Utilizing Vieta’s formula [43,

Theorem 33.3] on Q(x) allows us to complete the proof and arrive at the desired result. �

By combining Corollary 3.6 and Theorem 3.7, we can derive the following result, whose proof will
be omitted.
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Lemma 3.8. Consider n to be a positive integer and k to be a non-negative integer. If we let
x1, x2, . . . , xn be the zeros of the Jacobi polynomial P(α,β)

n (x), then

σ(n)
k (x1, x2, . . . , xn) =

2k

k! (2n + α + β)!

(
n
k

) k∑
`=0

(−1)`+k

(
n + α

k − `

)
(2n + α + β − k + `)!

`!
. (3.14)

In addition, it can be shown that the Jacobi polynomials P(α,β)
n (x) can be expressed using the zeros

of P(α,β)
n−1 (x). The following result will provide this fact.

Theorem 3.9. For any positive integer n > 1. Let P(α,β)
n (x) and P(α,β)

n−1 (x) be Jacobi polynomials with
zeros x1, x2, . . . , xn and y1, y2, . . . , yn−1, respectively. Then,

P(α,β)
n (x) =

2−n

(2n + α + β − 1)

(
2n + α + β

n

) n∑
k=0

(−1)k Ak xn−k, (3.15)

with

Ak = (2n + α + β − k − 1)σ(n−1)
k (y) −

(n + α + β)(α − β)
(2n + α + β)

σ(n−1)
k−1 (y) − (n − k + 1)σ(n−1)

k−2 (y) , (3.16)

where y = (y1, y2, . . . , yn−1).

Proof. We can demonstrate the validity of this proof by using the recurrence relation (3.11) with the
modified formula of Jacobi polynomials (3.13). �

If we set α = β, we obtain the property that P(α,α)
n (−x) = (−1)n P(α,α)

n (x). By virtue of Theorem 3.7,
the following corollaries for P(α,α)

n (x) with even and odd orders can be derived, respectively.

Corollary 3.10. Let n be an even positive integer, and x1, x2, . . . , x n
2

are the positive zeros of the Jacobi
polynomial P(α,α)

n (x). Then P(α,α)
n (x) can be expressed as follows:

P(α,α)
n (x) = 2−n

(
2n + 2α

n

) n
2∑

k=0

(−1)kσ
( n

2 )
k

(
x2

1, x
2
2, . . . , x

2
n
2

)
xn−2k. (3.17)

Remark 1. Drawing from Corollary 3.10 and Theorem 2.5, let us delve into the following
observations: Let n be an even positive integer and k = 0, 1, 2, . . . , n

2 .

(1) In case α > −1
2 , consider that x1, x2, . . . , x n

2
are the positive zeros of the ultraspherical polynomial

C(λ)
n (x) with λ = α + 1

2 , then

σ
( n

2 )
k

(
x2

1, x
2
2, . . . , x

2
n
2

)
= 22n−2k

(
n − k

k

)(n − k + α − 1
2

α − 1
2

)(
n + α

n

)
(
2n + 2α

n

)(
n + 2α

2α

) ,

σ
( n

2 )
k

 1
x2

1

,
1
x2

2

, . . . ,
1
x2

n
2

 = 4k

( n
2 + k
n
2 − k

)( n
2 + k + α − 1

2

α − 1
2

)
( n

2 + α − 1
2

α − 1
2

) .
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(2) In case α = 0, consider that x1, x2, . . . , x n
2

are the positive zeros of the Legendre polynomial Pn(x),
then

σ
( n

2 )
k

(
x2

1, x
2
2, . . . , x

2
n
2

)
=

(
n
k

)(
2n − 2k

n

)
(
2n
n

) ,

σ
( n

2 )
k

 1
x2

1

,
1
x2

2

, . . . ,
1
x2

n
2

 =

(
n

n
2 − k

)(
n + 2k

n

)
(
n
n
2

) .

(3) In case α = −1/2, consider that x1, x2, . . . , x n
2

are the positive zeros of Chebyshev polynomials of
the first kind Tn(x), then

σ
( n

2 )
k

(
x2

1, x
2
2, . . . , x

2
n
2

)
=

n
4k(n − k)

(
n − k

k

)
,

σ
( n

2 )
k

 1
x2

1

,
1
x2

2

, . . . ,
1
x2

n
2

 =
4kn

(n + 2k)

( n
2 + k
2k

)
.

(4) In case α = 1/2, consider that x1, x2, . . . , x n
2

are the positive zeros of Chebyshev polynomials of
the second kind Un(x), then

σ
( n

2 )
k

(
x2

1, x
2
2, . . . , x

2
n
2

)
=

1
4k

(
n − k

k

)
,

σ
( n

2 )
k

 1
x2

1

,
1
x2

2

, . . . ,
1
x2

n
2

 = 4k

(n
2 + k
2k

)
.

Corollary 3.11. Let n be an even positive integer, and y1, y2, . . . , y n
2

are the positive zeros of the Jacobi
Polynomial P(α,α)

n+1 (x). Then P(α,α)
n+1 (x) can be expressed as follows:

P(α,α)
n+1 (x) = 2−(n+1)

(
2n + 2α + 2

n + 1

) n
2∑

k=0

(−1)kσ
( n

2 )
k

(
y2

1, y
2
2, . . . , y

2
n
2

)
xn−2k+1. (3.18)

Remark 2. Referring to Corollary 3.11 and Theorem 2.5, we now turn our attention to the following
insights: Let n be an even positive integer and k = 0, 1, 2, . . . , n

2 .

(1) If we set α > −1
2 , let us assume that y1, y2, . . . , y n

2
represent the positive zeros of the ultraspherical

polynomial C(λ)
n+1(x) with λ = α + 1

2 . Then,

σ
( n

2 )
k

(
y2

1, y
2
2, . . . , y

2
n
2

)
= 22n−2k+2

(
n − k + 1

k

)(n − k + α + 1
2

α − 1
2

)(
n + α + 1

n

)
(
2n + 2α + 2

n + 1

)(
n + 2α + 1

2α

) ,
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σ
( n

2 )
k

 1
y2

1

,
1
y2

2

, . . . ,
1
y2

n
2

 =
22k+1

n + 2

( n
2 + k + 1

n
2 − k

)(n
2 + k + α + 1

2

α − 1
2

)
(n

2 + α + 1
2

α − 1
2

) .

(2) If we set α = 0, let us assume that y1, y2, . . . , y n
2

represent the positive zeros of the Legendre
polynomial Pn+1(x). Then,

σ
( n

2 )
k

(
y2

1, y
2
2, . . . , y

2
n
2

)
=

(
n + 1

k

)(
2n − 2k + 2

n + 1

)
(
2n + 2
n + 1

) ,

σ
( n

2 )
k

 1
y2

1

,
1
y2

2

, . . . ,
1
y2

n
2

 =

(
n + 1
n
2 − k

)(
n + 2k + 2

n + 1

)
(n + 2)

(
n + 1

n
2

) .

(3) If we set α = −1/2, let us assume that y1, y2, . . . , y n
2

represent the positive zeros of Chebyshev
polynomials of the first kind, Tn+1(x). Then

σ
( n

2 )
k

(
y2

1, y
2
2, . . . , y

2
n
2

)
=

n + 1
4k(n − k + 1)

(
n − k + 1

k

)
,

σ
( n

2 )
k

 1
y2

1

,
1
y2

2

, . . . ,
1
y2

n
2

 =
4k

(2k + 1)

(n
2 + k
2k

)
.

(4) If we set α = 1/2, let us assume that y1, y2, . . . , y n
2

represent the positive zeros of Chebyshev
polynomials of the second kind Un+1(x). Then

σ
( n

2 )
k

(
y2

1, y
2
2, . . . , y

2
n
2

)
=

1
4k

(
n − k + 1

k

)
,

σ
( n

2 )
k

 1
y2

1

,
1
y2

2

, . . . ,
1
y2

n
2

 =
22k+1

(n + 2)

(n
2 + k + 1
2k + 1

)
.

Clearly, setting α = 0 in Corollaries 3.10 and 3.11 allows us to obtain Corollaries 2 and 3,
respectively, as derived in [10]. It is clear that we can also define the Jacobi polynomials P(α,β)

n (x)
in terms of the complete symmetric polynomials of their zeros via the relation (1.8).

Now, we will provide some illustrative examples concerning Theorem 3.7, Theorem 3.9, and
Corollary 3.11.

Example 3.12. Taking α = 0 and β = 1, the zeros of P(0,1)
2 (x) are x1 = 1

5 −
√

6
5 and x2 = 1

5 +
√

6
5 .

Therefore, we have

σ(2)
2

1
5
−

√
6

5
,

1
5

+

√
6

5

 = −
1
5
,
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σ(2)
1

1
5
−

√
6

5
,

1
5

+

√
6

5

 =
2
5
.

Using Theorem 3.7, we can further deduce

P(0,1)
2 (x) = 2−2

(
5
2

) 2∑
k=0

(−1)2−kσ(2)
2−k

1
5
−

√
6

5
,

1
5

+

√
6

5

 xk

=
5
2

[
−

1
5
−

2
5

x + x2
]

= −
1
2
− x +

5
2

x2.

Consequently, by applying Theorem 3.9, we can formulate the Jacobi polynomial P(0,1)
3 (x) in the

following manner:

P(0,1)
3 (x) =

2−3

6

(
7
3

) 3∑
k=0

(−1)kAkx3−k,

where, the values of Ak for k = 0, 1, 2, 3 are computed using the formula (3.16) as follows:

A0 = 6σ(2)
0

1
5
−

√
6

5
,

1
5

+

√
6

5

 = 6,

A1 = 5σ(2)
1

1
5
−

√
6

5
,

1
5

+

√
6

5

 +
4
7
σ(2)

0

1
5
−

√
6

5
,

1
5

+

√
6

5

 =
18
7
,

A2 = 4σ(2)
2

1
5
−

√
6

5
,

1
5

+

√
6

5

 +
4
7
σ(2)

1

1
5
−

√
6

5
,

1
5

+

√
6

5

 − 2σ(2)
0

1
5
−

√
6

5
,

1
5

+

√
6

5

 = −
18
7
,

A3 =
4
7
σ(2)

2

1
5
−

√
6

5
,

1
5

+

√
6

5

 − σ(2)
1

1
5
−

√
6

5
,

1
5

+

√
6

5

 = −
18
35
.

Hence, the Jacobi polynomial P(0,1)
3 (x) is given by

P(0,1)
3 (x) =

35
48

[
6x3 −

18
7

x2 −
18
7

x +
18
35

]
=

1
8

(
35x3 − 15x2 − 15x + 3

)
.

Example 3.13. Let us consider the case where α = β = 5
2 . The zeros of P( 5

2 ,
5
2 )

3 (x) are x1 = −

√
3

10 ,

x2 = 0, and x3 =

√
3

10 .
Utilizing Corollary 3.11, we obtain

P( 5
2 ,

5
2 )

3 (x) = 2−3
(
11
3

) 1∑
k=0

(−1)kσ(1)
k

(
3

10

)
xk =

165
8

[
−

3
10

x + x3
]
.

Applying formula (4.7.1) in [38], we obtain the normalized ultraspherical polynomial of degree 3
with λ = 3 as

C(3)
3 (x) =

(
2 + 1

2

)
! 8!

5!
(
5 + 1

2

)
!

P( 5
2 ,

5
2 )

3 (x) = 8x
(
10x2 − 3

)
.
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By employing Theorem 3.9, we can express the Jacobi polynomial P( 5
2 ,

5
2 )

4 (x) in terms of the zeros of

P( 5
2 ,

5
2 )

3 (x) as follows

P( 5
2 ,

5
2 )

4 (x) =
2−4

12

(
13
4

) 4∑
k=0

(−1)kAkx4−k,

where the coefficients Ak are calculated using the formula (3.16) as shown

Ak = (12 − k)(−1)
k
2σ(1)

k
2

(
3

10

)
− (5 − k)(−1)

k−2
2 σ(1)

k−2
2

(
3

10

)
, k = 0, 1, 2, 3, 4.

Therefore, the Jacobi polynomial P( 5
2 ,

5
2 )

4 (x) is given by

P( 5
2 ,

5
2 )

4 (x) =
2−4

12

(
13
4

) [
12x4 − 6x2 +

3
10

]
.

Finally, the normalized ultraspherical polynomial of degree 4 with λ = 3 can be represented as

C(3)
4 (x) =

(
2 + 1

2

)
! 9!

5!
(
6 + 1

2

)
!

P( 5
2 ,

5
2 )

4 (x) = 6
[
40x4 − 20x2 + 1

]
.

4. Conclusions

In this article, we presented novel identities for elementary and complete symmetric polynomials
and explored their practical implications. These identities helped to increase our understanding of
elementary and complete symmetric polynomials, as well as their connections to various fields. For
instance, we extended certain results presented in [2], specifically those concerning the inversion
of a generalized Vandermonde matrix. Additionally, we applied some of the derived identities to
compute the determinant of two symmetric tri-diagonal matrices. Furthermore, we extended the results
presented in [10] concerning orthogonal polynomials. Theorem 3.9 shows that the Jacobi polynomials
P(α,β)

n (x) can be expressed using the zeros of P(α,β)
n−1 (x).
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