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Abstract: In this paper, we proposed a model for suppressing mosquito populations, evaluating
various release strategies for sterilized mosquitoes, including constant continuous release, open-
loop control, closed-loop control, and composite control strategies. We established release amount
thresholds for each strategy to ensure the ultimate extinction of the wild population. Through numerical
simulations, we validated our theoretical results and assessed the efficacy of each strategy. The
results indicated that the closed-loop control mechanism significantly enhanced population suppression
effectiveness. Higher intensity control notably shortened the control duration, and strategies that
incorporated shorter release periods and more frequent population assessments markedly reduced
the cumulative release quantity. Furthermore, we found that, compared to closed-loop control, the
composite control strategy reduced single release amounts but did not show advantages in other aspects
at low control intensities. However, it significantly decreased the cumulative release quantity at high
control intensities.
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1. Introduction

Diseases transmitted by mosquitoes, including dengue, yellow fever, and the Zika virus, have
historically represented a significant risk to health worldwide. These viruses, transmitted through
mosquito bites, affect millions of people, particularly in tropical and subtropical regions. With the
acceleration of global climate change and urbanization, the prevalence of mosquito-borne diseases is
expanding, presenting new challenges to public health control. In controlling mosquito-borne diseases,
the Sterile Insect Technique (SIT) has shown significant advantages [1–3]. SIT is a biological control
method that involves releasing sterile mosquitoes, treated with radiation or other methods, to mate with
wild ones. This results in offspring that cannot survive, thereby reducing the mosquito population.
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Compared to traditional chemical control methods, this technique is more environmentally friendly
and sustainable, and it does not negatively impact the ecosystem.

Currently, the development of mathematical models for controlling mosquito populations using SIT
is advancing rapidly. A portion of these models is based on the traditional continuous and discrete
dynamical models [4–10]. L. Cai et al. proposed several continuous dynamical models to describe
the temporal evolution of mosquito populations under different release patterns of sterile ones [4] and
analyzed the long-term dynamics and steady-state behaviors of mosquito populations. Subsequently, J.
Li et al. further refined the population characteristics of mosquitoes, taking into account growth stages
and the Allee effect in the modeling process [5, 6]. Considering that discrete models are more flexible
and accurate in handling mutations and release strategies caused by SIT intervention, some researchers
have studied the impact of sterile mosquito release on wild mosquito populations by constructing
difference equation models [9, 10].

In SIT control models, the application of impulsive differential equations is crucial. They are
capable of simulating the dynamic changes in mosquito populations, particularly during the abrupt
shifts caused by SIT interventions. Recent research findings clearly indicate that the frequency
and intensity of impulsive releases of sterile mosquitoes significantly influence the effectiveness of
population control [11–14]. In SIT impulsive control models, both open-loop and closed-loop control
models have been studied [1,2,15]. The open-loop control model does not consider the actual response
of the mosquito population during implementation. The release plan for sterile ones is predetermined
and not adjusted based on the actual population size. This type of research generally focuses on
obtaining release thresholds that promote the extinction of wild mosquito populations [1,12–14]. This
approach is advantageous for its simplicity and predictability but lacks flexibility and cannot adapt to
environmental changes or natural fluctuations in mosquito populations.

In contrast, closed-loop control models adjust the release of sterile ones based on real-time
feedback. In such models, real-time monitoring data of the mosquito population is used to dynamically
adjust the release plan, enabling more precise control of population numbers. The strengths of closed-
loop control lie in its high adaptability and flexibility, effectively handling environmental changes
and unpredictable population dynamics. In recent years, such models have been widely applied in
various fields of biological control process research. For example, in the management of agricultural
pests [16–19], measures such as spraying insecticides or releasing natural enemies are taken based
on the feedback of the pest population. In fisheries management [20, 21], the time for catching or
releasing new fish fry is determined based on the monitored fish density data. In addition, closed-loop
control has been extensively utilized in disease control and drug management [22, 23]. For the SIT
control model, M. Huang et al. developed and analyzed a model for mosquito population management
featuring real-time feedback and impulsive releases of sterile mosquitoes in [15]. They verified that
the wild population can be maintained below a preset threshold, and initiating the release of sterile
mosquitoes early can yield improved control outcomes.

Closed-loop control with real-time feedback is complex and relies on dense data collection and
real-time feedback to adjust the release of sterile mosquitoes. However, in practical applications,
frequent and extensive data collection is both costly and impractical [24]. In contrast, models with
sparse state feedback only require intermittent collection of key data on mosquito populations. This
approach significantly reduces the need for data collection while maintaining effective control over
mosquito population dynamics [2]. In such models, sparse data is utilized to guide the release strategy
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of sterile mosquitoes, making the control process more economical and efficient. Although this method
may reduce the fine-tuning capabilities of the control model, it offers a practical solution for resource-
limited environments by lightening the load of monitoring and data processing.

In this study, we aim to build a new type of mosquito population suppression model based on
previous research, examining both open-loop control and closed-loop control featuring sparse state
feedback for the wild population under impulsive releases of sterile ones.

The structure of the paper is as follows: Section 2 introduces a new mosquito suppression model and
propose three distinct control strategies. We then study the constant continuous release and open-loop
control in Section 3, identifying the release threshold required to ultimately eradicate the wild mosquito
population, laying the groundwork for subsequent research on closed-loop control with sparse state
feedback. In Section 4, we explore how to determine the impulsive release amount of sterile ones
under different sparsities of state feedback, ensuring the eradication of the wild mosquito populations.
Additionally, we combine open-loop and closed-loop controls to establish the minimum release amount
threshold. In Section 5, we present a series of numerical simulations to validate the theoretical results.
Finally, we provide a brief conclusion in Section 6.

2. Model formulation

In [4], L. Cai and colleagues developed a mathematical model to describe the interaction between
two types of mosquitoes as follows:

dW(t)
dt

=
aW2(t)

W(t) + g(t)
− (µ1 + ξ1(W(t) + g(t))) W(t),

dg(t)
dt

= b(·) − g(t) (µ2 + ξ2(W(t) + g(t))) .
(2.1)

Here, W(t) and g(t) represent the population density of wild and sterile mosquitoes at time t,
respectively. a reflects the reproduction rate of the wild population, while ξi and µi, i = 1, 2, are
parameters that measure the density dependent and independent death rates, respectively. b(·) stands
the release rate of sterile ones.

Building on this model, a substantial number of researchers have popularized and extended it,
developing new models, studying different release modes, and exploring the mechanisms of wild
mosquito population suppression [7, 10, 13, 14]. In model (2.1), we note the presence of intraspecific
competition among both wild and sterile mosquitoes. The growth of wild mosquitoes encompasses
several stages, including eggs, larvae, and pupae, all of which occur in aquatic environments. During
these stages, significant intraspecific competition occurs due to limited living space. Once the pupae
transform into adult mosquitoes and leave the aquatic environment, there is competition among adult
mosquitoes for breeding sites (such as puddles). However, this form of competition is absent among
adult sterile males. Hence, this aspect should be distinctly addressed when constructing the model.

In addition, the authors in [2] investigated a SIT control model with sex structure:
dM
dt = rρ FM

M+γMS (t)e
−β(F+M) − δM M,

dF
dt = (1 − r)ρ FM

M+γMS (t)e
−β(F+M) − δF F,

dMs
dt = Λ(·) − δsMs,

(2.2)
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where M, F respectively represent the population of adult males and females, while Ms(t) denotes
sterile males. ρ stands for the egg-laying rate, r is the proportion of males to females at birth, and γ
quantifies the competitive ability of sterile males in mating scenarios. e−β(F+M) describes intraspecific
competition among adult mosquitoes, and δi, i = M, F, s, are the natural death rates. Λ(·) denotes the
release of sterile males.

The above model distinguishes between adult wild mosquitoes by sex and uses an exponential term
to depict the intraspecific competition among wild mosquitoes. Unlike model (2.1), it differentiates the
growth stages of mosquitoes, specifically focusing on the adult mosquito population. However, under
closed-loop control, it is necessary to assess and provide feedback on the mosquito population in the
environment. According to the depiction in model (2.2), this process requires separate estimations and
feedback for the numbers of male and female mosquitoes, which inevitably complicates the actual
estimation process. A more streamlined approach would be to estimate the mosquito population
without differentiating between males and females. For this purpose, and based on the above two
models, we propose a mosquito population suppression model as follows:


dW(t)

dt
=

ρ1W2(t)
W(t) + γ1Ms(t)

e−βW(t) − δWW(t),

dMs(t)
dt

= Λ(·) − δsMs(t).
(2.3)

In this context, W and Ms correspond to adult wild mosquitoes and sterile male mosquitoes,
respectively. ρ1 indicates the reproduction rate of the wild ones, while δi, i = W, s, are natural death
rates. e−β(W) describes intraspecific competition among adult mosquitoes.

In this study, we delve into the conditions for the successful suppression of wild mosquito
populations based on model (2.3), examining this through the lens of the asymptotic behavior of
dynamical models. Our focus is on the release of sterile mosquitoes, and in alignment with practical
operational norms, we evaluate three distinct release strategies:

(R1) Constant Continuous Release Strategy: this approach involves a steady, ongoing release of
sterile mosquitoes.

(R2) Open-loop Control Strategy: here, sterile mosquitoes are periodically released, without
adjusting for the current state of the mosquito population.

(R3) Closed-loop Control Strategy with Sparse State Feedback: this strategy is characterized
by periodic releases that vary based on frequent assessments of the mosquito population and
corresponding feedback mechanisms.

In the subsequent sections, we will meticulously examine the three release strategies (R1)–(R3) for
sterile mosquitoes, utilizing model (2.3) as our analytical framework. Our objective is to ascertain the
specific release thresholds required to achieve the ultimate eradication of the wild mosquito population
under each of these distinct modes. Furthermore, we will conduct a comparative analysis of these
release strategies, aiming to evaluate and highlight their relative effectiveness in controlling mosquito
populations.
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3. Constant continuous release and open-loop control

We consider the population development model of wild mosquitoes in the environment without
releasing sterile mosquitoes:

dW(t)
dt

= ρ1W(t)e−βW(t) − δWW(t). (3.1)

Note that dW
dt |W=0 = 0, we can conclude that W(t) ≥ 0, t ≥ 0 if W(0) ≥ 0. Additionally, since

We−βW ≤ 1
βe for W ≥ 0, we can deduce that dW

dt ≤
ρ1
βe − δWW, thus we know that

Ω1 = {W |0 ≤ W ≤
ρ1

βeδW
}

is forward-invariant and exhibits global attractivity for model (3.1) in R+ = {W |W ≥ 0}.
Obviously, model (3.1) always has an extinction equilibrium W0 = 0. If ρ1

δW
> 1, then model (3.1)

has a unique positive equilibrium W∗ = 1
β

ln ρ1
δW

. Denote

NW =
ρ1

δW
,

and we usually call it the basic offspring number of wild mosquitoes.
For the stability of the equilibria of model (3.1), we have the following conclusion:

Lemma 1. Consider model (3.1). We have two cases:

(i) If NW ≤ 1, the extinction equilibrium W0 = 0 is globally asymptotically stable.
(ii) If NW > 1, then the extinction equilibrium W0 = 0 becomes unstable, and there exists a unique

positive equilibrium W∗ = 1
β

ln ρ1
δW

, which is globally asymptotically stable.

Proof. (i) WhenNW < 1, the inequality dW
dt ≤ δW(NW − 1)W holds. This implies that W0 = 0 is locally

asymptotically stable and lim
t→∞

W(t) = 0, confirming its global asymptotic stability.

In the scenario where NW = 1, we have dW
dt = ρ1(e−βW − 1)W. Since dW

dt |W=0 = 0 and dW
dt < 0

for W > 0, W0 = 0 is globally attractive. To establish its local stability, let us choose a sufficiently
small η > 0. For W(t) > η, it follows that dW

dt < ρ1(e−βη − 1)W < 0, indicating that W(t) is strictly
monotonically decreasing. When W ≤ η, we have

dW
dt

= ρ1(e−βW − 1)W = ρ1(−βW + O(W2))W = −βρ1W2 + O(W3),

thus, W0 = 0 is locally asymptotically stable on [0, η]. Overall, for NW = 1, W0 = 0 is globally
asymptotically stable.

(ii) WhenNW > 1, considering the linearized model dW
dt = (ρ1(1− βW)e−βW − δW)W of model (3.1),

where W = W0 or W∗, it is evident that W0 = 0 is unstable and W∗ is locally stable. We need to further
demonstrate that lim

t→∞
W(t) = W∗ for any W(t) with W(0) ∈ (0, ρ1

βeδW
]. Since Ω1 is a forward invariant

set, both W = lim
t→∞

inf W(t) ≥ 0 and W = lim
t→∞

sup W(t) exist.
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Choosing a sufficiently small η > 0, and considering dW
dt = (ρ1e−βW(t) − δW)W(t), we find that

for 0 < W(t) ≤ η:
dW
dt

= (ρ1(1 − βW(t) + O(W2(t))) − δW)W(t)

= [(ρ1 − δW) − ρ1βW(t) + O(W2(t))]W(t)
= (ρ1 − δW)W(t) + O(W2(t)).

Given ρ1 > δW , it follows that for any W(0) > 0 and W(t) ≤ η, W(t) is strictly monotonically
increasing with respect to t. Hence, for any W(0) > 0, lim

t→∞
inf W(t) = W ≥ η > 0.

By applying the fluctuation lemma, there exists a monotonically increasing time series tk with
lim
k→∞

tk = +∞, such that lim
k→∞

W(tk) = W and W ′(tk) = 0. Taking the limit in (3.1) along {tk} yields

ρ1W(tk)e−βW(tk) = δW(tk), leading to the conclusion that ρ1We−βW = δWW. Since W > 0, we have
ρ1e−βW = δW , implying W = W∗.

Moreover, there exists another monotonically increasing time series tl, satisfying lim
t→∞

tl = ∞, such

that lim
l→∞

W(tl) = W and W ′(tl) = 0. Following a similar argument, we deduce that W = W∗.

From the above analysis, we conclude that lim
t→∞

inf W(t) = lim
t→∞

sup W(t) = W∗, meaning lim
t→∞

W(t) =

W∗. Therefore, the positive equilibrium W∗ is globally asymptotically stable. This completes the
proof. �

In subsequent discussions, we shall consistently assume that NW > 1.

3.1. Constant continuous release

In the following, we explore the constant continuous release of sterile mosquitoes, a method
suitable for scenarios requiring long-term and stable control of mosquito populations. This approach
is particularly relevant in environmentally sensitive areas, densely populated regions, or areas with
persistent disease transmission risks. At this juncture, the release function Λ(·) ≡ Λ, and model (2.3)
becomes: 

dW(t)
dt = ρ1

W2

W+γ1 Ms
e−βW − δWW,

dMs(t)
dt = Λ − δsMs(t).

(3.2)

Note that the second equation in model (3.2) operates independently of the wild mosquito
population. Over time, the number of sterile mosquitoes in the environment stabilizes at M∗

s = Λ
δs

.
Consequently, the limit form derived from model (3.2) is

dW
dt

= ρ1
W2

W + γ1M∗
s
e−βW − δWW. (3.3)

Since our primary objective is to examine the asymptotic behavior of the wild mosquito population,
so in the following we focus on studying model (3.3). The solution to model (3.3) remains positive
and bounded. The extinction equilibrium point, denoted as W0 = 0, persists. To discuss the positive
equilibrium point, we examine the existence of a positive root for the following algebraic equation:

NW
W

W + γ1M∗
s

= eβW . (3.4)

AIMS Mathematics Volume 9, Issue 9, 23344–23367.



23350

Consider the functions f1(W,Λ) = NW
W

W+γ1 M∗s
and f2(W,Λ) = eβW . It is evident that

f1(0,Λ) =0, f1(+∞,Λ) = NW > 1, f ′1 W(W,Λ) > 0, f2(0,Λ) = 1, f2(+∞,Λ) = +∞, and f ′2 W(W,Λ) > 0.
Therefore, there must exist a critical value Λcrit > 0 such that M∗

s
crit = Λcrit

δs
and at this critical point, the

curves of f1(W,Λ) and f2(W,Λ) are tangent at a positive value W = W∗
c . Furthermore, if Λ > Λcrit, then

these two curves do not intersect for any W > 0. Conversely, if Λ < Λcrit, they intersect at two distinct
points W = W∗

1 and W = W∗
2 , indicating the existence of two possible positive equilibria under certain

conditions.
To determine the threshold Λcrit, we note that at the tangency point W = W∗

c > 0, when
M∗

s = M∗
s

crit = Λcrit

δs
, the following conditions hold: f1(W∗

c ,Λ
crit) = f2(W∗

c ,Λ
crit) and f ′1(W∗

c ,Λ
crit) =

f ′2(W∗
c ,Λ

crit).
Direct calculation leads to

W∗
c =

γ1M∗
s

crit

2

−1 +

√
1 +

4
βγ1M∗

s
crit


and

1
W∗

c
=
β

2

1 +

√
1 +

4
βγ1M∗

s
crit

 .
From Eq (3.4), it is known that 1 +

γ1 M∗s
crit

W∗c
= NWe−βW∗c . Substituting W∗

c , 1
W∗c

and M∗
s

crit = Λcrit

δs
into

this equation, we obtain:

1 +
βγ1Λ

crit

δs

1 +

√
1 +

4δs

βγ1Λcrit

 = NW exp

−1
2
βγ1Λ

crit

δs

1 +

√
1 +

4δs

βγ1Λcrit


. (3.5)

The function on the left side of Eq (3.5) is monotonically increasing with respect to Λcrit over the range
[0,∞), starting from a minimum value of 1 and tending towards infinity as Λcrit increases. The function
on the right side, conversely, is monotonically decreasing, with a maximum value of NW and tending
towards 0. Given that NW > 1, Eq (3.5) has a unique positive root Λcrit > 0. Thus, we can state the
following lemma:

Lemma 2. Given NW > 1, there is a critical threshold Λcrit > 0 beyond which model (3.3) supports
two positive equilibria 0 < W∗

1 < W∗
2 for 0 < Λ < Λcrit, a singular positive equilibrium W∗

c at Λ = Λcrit,
and no positive equilibrium for Λ > Λcrit. Here, Λcrit is the uniquely positive root of Eq (3.5).

Theorem 1. Given NW > 1, for model (3.3), we derive the following conclusions:
(i) When Λ > Λcrit, W0 = 0 is globally asymptotically stable.
(ii) When Λ < Λcrit, W0 = 0 and the higher positive equilibrium W∗

2 are locally asymptotically
stable, whereas W∗

1 is unstable.
(iii) When Λ = Λcrit, W0 = 0 maintains local asymptotic stability, while the only positive equilibrium

W∗
c is semi-stable.

Proof. The linearized model of (3.3) at equilibrium W̃ is given by

dW
dt
|W̃ =

[
ρ1

(
2W̃

W̃ + γ1M∗
s

−
βW̃2

W̃ + γ1M∗
s

−
W̃2

(W̃ + γ1M∗
s )2

)
e−βW̃ − δW

]
W. (3.6)
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(i) For W̃ = W0, model (3.6) simplifies to dW
dt = −δWW. Clearly, W0 = 0 is always locally

asymptotically stable. To demonstrate its global attractiveness, consider the following deduction
from (3.3):

dW
dt

= ρ1
W2

W + γ1M∗
s
e−βW − δWW =

δWW2

W + γ1M∗
s

(
NWe−βW − 1 −

γ1M∗
s

W

)
.

Observe that

NWe−βW − 1 −
γ1M∗

s

W
=

W + γ1M∗
s

W
e−βW( f1(W,Λ) − f2(W,Λ)).

Based on Lemma 2, if Λ > Λcrit, then f1(W,Λ)− f2(W,Λ) < 0 for W ≥ 0. Thus, 1 +
γ1 M∗s

W −NWe−βW > 0
for W ≥ 0. Let η1 = minW≥0

(
1 +

γ1 M∗s
W − NWe−βW

)
> 0, then dW

dt ≤ −
η1δW W2

W+γ1 M∗s
. Consider the comparison

model
dX
dt

= −
η1δW X2

X + γ1M∗
s
, X(0) = W(0), (3.7)

leading to the inequality 0 ≤ W(t) ≤ X(t). Solving Eq (3.7) yields

ln X(t) −
γ1M∗

s

X(t)
= ln X(0) +

γ1M∗
s

X(0)
− η1δW t. (3.8)

Define g(X) � ln X − γ1 M∗s
X . It is straightforward to show that g′(X) = 1

X +
γ1 M∗s

X2 > 0 for all X > 0,
and lim

X→0
g(X) = −∞, lim

X→+∞
g(X) = +∞. Additionally, (3.8) implies lim

t→∞
g(X(t)) = −∞, suggesting

lim
t→∞

X(t) = 0. Since 0 ≤ W(t) ≤ X(t), it follows that lim
t→∞

W(t) = 0, confirming that W0 = 0 is globally
attractive.

(ii) When W̃ = W∗
i , i = 1, 2, the coefficient of the linear term in (3.6) is

J(W∗
i ) = ρ1

(
2W∗

i

W∗
i + γ1M∗

s
−

β(W∗
i )2

W∗
i + γ1M∗

s
−

(W∗
i )2

(W∗
i + γ1M∗

s )2

)
e−βW∗i − δW . (3.9)

Given that ρ1
W∗i

W∗i +γ1 M∗s
e−βW∗i = δW , it follows that

J(W∗
i ) = δW(1 − βW∗

i −
W∗

i

W∗
i + γ1M∗

s
)

= δW(W∗
i + γ1M∗

s )
(

γ1M∗
s

(W∗
i + γ1M∗

s )2 −
βW∗

i

W∗
i + γ1M∗

s

)
=
δW

NW
(W∗

i + γ1M∗
s )

(
NW

γ1M∗
s

(W∗
i + γ1M∗

s )2 − βe−βW∗i

)
=
δW

NW
(W∗

i + γ1M∗
s )( f ′1 W(W∗

i ,Λ) − f ′2 W(W∗
i ,Λ)).

Referring to Lemma 2, it is evident that f ′1 W(W∗
1 ,Λ)− f ′2 W(W∗

1 ,Λ) > 0 and f ′1 W(W∗
2 ,Λ)− f ′2 W(W∗

2 ,Λ) < 0
when Λ < Λcrit. Consequently, J(W∗

1) > 0 and J(W∗
2) < 0, indicating that W∗

1 is unstable, whereas W∗
2

exhibits local asymptotic stability.
(iii) When Λ = Λcrit, it is deduced from the discussion in (ii) that the two positive equilibria W∗

1 and
W∗

2 converge to establish a singular positive equilibrium W∗
c . From the stability of W∗

1 and W∗
2 , we have

W∗
c is semi-stable. This completes the proof. �
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3.2. Open-loop control

In scenarios where the mosquito population remains relatively stable and environmental conditions
do not vary significantly, or in cases where data collection capabilities are constrained, thus hindering
real-time monitoring of population densities, the adoption of an open-loop control strategy is advisable.
To address this, we consider the following periodic pulse release model:

dW(t)
dt = ρ1

W2(t)
W(t)+γ1 Ms(t)

e−βW(t) − δWW(t),
dMs(t)

dt = −δsMs(t), t , nτ, n = 0, 1, 2, · · · ,

W(nτ+) = W(nτ),Ms(nτ+) = Ms(nτ) + Λn, t = nτ,

(3.10)

where τ is the release period and Λn is the release amount for the nth release.
For simplicity, let’s first consider the scenario with a fixed release amount, that is, Λn ≡ Λ. Then

from the last two equations in (3.10), we have
dMs(t)

dt = −δsMs(t), t , nτ, n = 0, 1, 2, · · · ,

Ms(nτ+) = Ms(nτ) + Λ, t = nτ.
(3.11)

It is evident that model (3.11) has a periodic solution Mp
s (t) = Λe−δs(t−nτ)

1−e−δsτ t ∈ (nτ, (n+1)τ], n = 0, 1, 2, · · · ,
which is globally asymptotically stable, that is, lim

t→∞
Ms(t) = Mp

s (t). Therefore, a limit form of (3.10)
can be considered

dW
dt

= ρ1
W2(t)

W(t) + γ1Mp
s (t)

e−βW(t) − δWW(t). (3.12)

Obviously, model (3.12) has a unique equilibrium W0 = 0. In the following, we discuss its stability.
Denote 〈

1
Mp

s

〉
=

1
τ

∫ τ

0

1
Mp

s (t)
dt =

eδsτ + e−δsτ − 2
δsτΛ

=
2(cosh(δsτ) − 1)

δsτΛ
. (3.13)

Theorem 2. For any τ > 0, if

Λ > Λcrit
p =

2ρ1(cosh(δsτ) − 1)
eβγ1τδsδW

, (3.14)

then the unique equilibrium W0 = 0 of (3.12) is globally asymptotically stable.

Proof. Noting We−βW ≤ 1
βe for W ≥ 0, we can deduce that for t ∈ (nτ, (n + 1)τ],

dW
dt
≤ W(t)

(
ρ1

eβ(W(t) + γ1Mp
s (t))

− δW

)
≤ W(t)

(
ρ1

eβγ1Mp
s (t)
− δW

)
holds. Thus, we get

W(t) ≤ e
∫ t

nτ

(
ρ1

eβγ1
1

Mp
s (t)
−δW

)
ds

W(nτ), t ∈ (nτ, (n + 1)τ],

and

W((n + 1)τ) ≤ e

(
ρ1

eβγ1

〈
1

Mp
s

〉
−δW

)
τ
W(nτ).

If
ρ1

eβγ1

〈
1

Mp
s

〉
< δW , i.e., Λ > Λcrit

p , then W((n + 1)τ) < W(nτ), n ∈ N and lim
t→∞

W(t) = 0, which

implies that the extinction equilibrium W0 = 0 is globally asymptotically stable. This completes the
proof. �
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Based on the conclusion in Theorem 1, we can conclude that in the scenario of periodic pulse
release, if

inf
t∈[0,τ]

Mp
s (t) =

Λe−δsτ

1 − e−δsτ
> M∗

s
crit

=
Λcrit

δs
,

i.e., Λ > Λcrit e
δsτ − 1
δs

, then W0 = 0 is also globally asymptotically stable.

4. Closed-loop control

In environments where mosquito populations experience significant fluctuations, managers
with adequate monitoring capabilities can implement closed-loop control strategies for population
management. Depending on the challenges associated with population monitoring and data
processing, varying degrees of sparsity in population estimation and data feedback may be considered.
Consequently, the release function Λ(·) changes accordingly. At this juncture, the development model
of the wild mosquito population can be expressed as follows:

dW
dt

= ρ1
W2(t)

W(t) + γ1Ms(t)
e−βW(t) − δWW(t). (4.1)

4.1. Periodic state feedback control

Initially, it is assumed that the mosquito population in the environment is estimated periodically,
every τ time units. This estimation frequency aligns with the release schedule of sterile mosquitoes.
Based on the estimated population value W(nτ) for the nth period, the release quantity Λn for that
period is determined, aiming to drive the wild mosquito population towards eventual extinction.

Considering the evolution model (3.1) of wild mosquitoes, the basic offspring number of the
wild mosquito population is denoted as NW =

ρ1
δW

. The introduction of sterile mosquitoes into the
environment alters this basic offspring number, which can be estimated as NW

W(t)
W(t)+γ1 Ms(t)

. By choosing
ε ∈ (0, 1

NW
), we can show that the wild mosquito population will eventually become extinct if

W(t)
W(t) + γ1Ms(t)

≤ ε (4.2)

holds for all t ≥ 0.

Lemma 3. Assume that W(t) is any solution of model (4.1). If inequality (4.2) holds for all t ≥ 0, then
W(t) converges exponentially to W0 = 0.

Proof. According to Eq (4.1), if inequality (4.2) is satisfied, then it follows:

dW(t)
dt

≤ (ρ1εe−βW(t) − δW)W(t) ≤ (ρ1ε − δW)W(t),

then we consider the following comparison model:

dW1(t)
dt

= (ρ1ε − δW)W1(t), W1(0) = W(0) ≥ 0. (4.3)
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Since ε < 1
NW

= δW
ρ1

, so ρ1ε − δW < 0, and any solution W1(t) of (4.3) will converge exponentially
to W0 = 0. From the comparison theorem, it follows that 0 ≤ W(t) ≤ W1(t), and W(t) converges
exponentially to W0 = 0. This completes the proof. �

Next, we will focus on determining the appropriate release quantity, denoted as Λn, for each period,
where n = 1, 2, · · · . This is essential to ensure the persistent satisfaction of inequality (4.2). Given
the impulsive form of sterile mosquito releases, the population Ms(t) over the interval (nτ, (n + 1)τ] is
described by

Ms(t) = Ms(nτ+)e−δs(t−nτ) = (Ms(nτ) + Λn)e−δs(t−nτ). (4.4)

To maintain inequality (4.2), it is necessary to ensure that γ1Ms(t) ≥ 1−ε
ε

W(t). From the proof of
Lemma 3, we understand that W(t) ≤ W1(t) for t ∈ (nτ, (n + 1)τ], where W1(t) is the solution to the
comparison Eq (4.3) with the initial condition W1(nτ) = W(nτ). Therefore, if

γ1Ms(t) ≥
1 − ε
ε

W1(t) (4.5)

is satisfied, then γ1Ms(t) ≥ 1−ε
ε

W(t) naturally follows.
With W(nτ) = W1(nτ) on [nτ, (n + 1)τ], we have

W1(t) = W(nτ)e−(δW−ρ1ε)(t−nτ), t ∈ [nτ, (n + 1)τ],

which implies inequality (4.5) is equivalent to

γ1Ms(t) ≥
1 − ε
ε

e−(δW−ρ1ε)(t−nτ)W(nτ), t ∈ (nτ, (n + 1)τ].

From (4.4), we conclude that if

Λn ≥ −Ms(nτ) +
1 − ε
γ1ε

e(δs−δW +ρ1ε)(t−nτ)W(nτ) (4.6)

is fulfilled over [nτ, (n + 1)τ], then γ1Ms(t) ≥ 1−ε
ε

W(t) for all t ∈ [nτ, (n + 1)τ].

Theorem 3. For any given ε ∈ (0, δW
ρ1

), if for every n ∈ N, the release amount satisfies:

Λn ≥ max
{
−Ms(nτ) +

1 − ε
γ1ε

e(δs−δW +ρ1ε)τW(nτ), 0
}
, (4.7)

then every solution of model (4.1) will converge to W0 = 0. Moreover, if Λn fulfills the condition
Λn ≤

1−ε
γ1ε

e(δs−δW +ρ1ε)τW(nτ), then the series of release amounts
∑∞

i=1 Λn converges, implying that the
total number of sterile mosquitoes released throughout the control process is finite.

Proof. Given (4.6), its right-hand side function is monotonically increasing with respect to t on the
interval (nτ, (n + 1)τ]. Consequently, if inequality (4.6) is satisfied at t = (n + 1)τ, then it holds over
the entire interval (nτ, (n + 1)τ]. Thus, setting

Λn ≥ −Ms(nτ) +
1 − ε
γ1ε

e(δs−δW +ρ1ε)τW(nτ)
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ensures that

γ1Ms(t) ≥
1 − ε
ε

W(t), for t ∈ (nτ, (n + 1)τ].

If inequality (4.7) is valid for all n ∈ N, it implies that γ1Ms(t) ≥ 1−ε
ε

W(t) for all t ≥ 0, thereby
satisfying (4.2). Based on Lemma 3, it follows that all solutions of model (4.1) converge to W0 = 0.

Furthermore, if Λn ≤ e(δs−δW +ρ1ε)τ 1−ε
γ1ε

W(nτ) for n ∈ N, then

dW
dt
≤ (ρ1ε − δW)W(t), for t ≥ 0,

and
W(nτ) ≤ W(0)e(ρ1ε−δW )nτ, for n ∈ N.

Given that ρ1
δW
> 1 and 0 < ε < δW

ρ1
, it follows that ρ1ε − δW < 0. Hence,

∞∑
i=1

Λn ≤

∞∑
i=1

e(δs−δW +ρ1ε)τ1 − ε
γ1ε

W(0)e(ρ1ε−δW )nτ =
(1 − ε)W(0)

γ1ε

e(δs−δW +ρ1ε)τ

1 − e(ρ1ε−δW )τ . (4.8)

This demonstrates that the series of release amounts
∑∞

i=1 Λn converges. The proof is completed. �

4.2. Sparse state feedback control

Given the costs associated with estimating the mosquito population in the environment, reducing the
frequency of these estimates becomes a practical consideration. Instead of conducting them in every
release cycle of sterile mosquitoes, it’s proposed to carry out an estimation once every several release
cycles, for instance, once every m(m ∈ N,m ≥ 1) cycles. Based on the results of the nth estimation,
W(nmτ),Ms(nmτ), the quantity of sterile mosquitoes to be released in the m cycles preceding the next
estimation, Λnm+k, k = 1, 2, · · · ,m, is determined. This approach aims to ensure that the wild mosquito
population ultimately heads towards extinction.

Regarding this, we have the following conclusion about the sparse state feedback control:

Theorem 4. For any given m ∈ N+ and ε ∈ (0, δW
ρ1

), suppose that for all n = 0, 1, 2, . . . and
k =1, 2, . . . ,m, the amounts of mosquitoes released satisfy

Λnm+k ≥ max

1 − ε
γ1ε

e[(k+1)(ρ1ε−δW )+δs]τW(nmτ) − Ms(nmτ)e−kδsτ −

k−1∑
l=0

Λnm+le−(k−l)δsτ, 0

 . (4.9)

Then every solution of model (4.1) will converge to the extinction equilibrium W0 = 0. Furthermore,
if the release amounts fulfill Λnm+k ≤

1−ε
γ1ε

e[(k+1)(ρ1ε−δW )+δs]τW(nmτ), then the series of released amounts∑∞
i=1 Λn converges.

Proof. First, we seek conditions under which W(t)
W(t)+γ1 Ms(t)

≤ ε ≤ δW
ρ1

is maintained for t ∈ (nmτ, (n+1)mτ].
Specifically, this requires

γ1Ms(t) ≥
1 − ε
ε

W(t), for t ∈ (nmτ, (n + 1)mτ].
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From model (3.11), it is evident that for any k = 1, 2, . . . ,m and t ∈ ((nm + k)τ, (nm + k + 1)τ], we have

Ms(t) = [(Ms(nmτ) + Λnm)e−kδsτ + Λnm+1e−(k−1)δsτ + · · · + Λnm+k−1e−δsτ + Λnm+k]e−δs[t−(nm+k)τ]. (4.10)

To ensure W(t)
W(t)+γ1 Ms(t)

≤ ε for t ∈ (nmτ, (n + 1)mτ], it suffices to guarantee

γ1Ms(t) ≥
1 − ε
ε

W(t), for t ∈ ((nm + k)τ, (nm + k + 1)τ], with k = 1, 2, . . . ,m. (4.11)

Letting s = t − (nm + k)τ, such that s ∈ (0, τ], and referring to (4.10), condition (4.11) can be
rewritten as

γ1[(Ms(nmτ) + Λnm)e−kδsτ + Λnm+1e−(k−1)δsτ + · · · + Λnm+k−1e−δsτ + Λnm+k]e−δs s

≥
1 − ε
ε

W(s + (nm + k)τ).
(4.12)

By Lemma 3, if W(nmτ) = W1(nmτ), then W1(t) ≥ W(t) for all t ≥ nmτ. This implies that condition

γ1[(Ms(nmτ) + Λnm)e−kδsτ + Λnm+1e−(k−1)δsτ + · · · + Λnm+k−1e−δsτ + Λnm+k]e−δs s

≥
1 − ε
ε

W1(s + (nm + k)τ) =
1 − ε
ε

e(ρ1ε−δW )(kτ+s)W(nmτ)
(4.13)

ensures (4.12) is satisfied.
From (4.13), it follows that

Ms(nmτ)e−kδsτ + Λnme−kδsτ + Λnm+1e−(k−1)δsτ + · · · + Λnm+k

≥
1 − ε
γ1ε

e(ρ1ε−δW )kτe(δs−δW +ρ1ε)sW(nmτ).

Consequently, the necessary release amount for Λnm+k can be determined by

Λnm+k ≥
1 − ε
γ1ε

e(ρ1ε−δW )kτe(δs−δW +ρ1ε)sW(nmτ) − Ms(nmτ)e−kδsτ −

k−1∑
l=0

Λnm+le−(k−l)δsτ. (4.14)

By selecting 0 < ε < 1 such that δs−δW +ρ1ε > 0, the right-hand side of (4.14) increases monotonically
with respect to s on the interval (0, τ]. Therefore, if (4.14) holds for s = τ, it holds for all s ∈ (0, τ]. This
implies that if the condition for (4.9) is met, then (4.14) is valid for all n = 0, 1, 2, . . . and k =1, 2, . . . ,m,
ensuring

γ1Ms(t) ≥
1 − ε
ε

W(t)

for all t ≥ 0.
According to the result of Lemma 3, we deduce that all solutions of model (4.1) converge to W0 = 0.
Additionally, when Λnm+k adheres to the upper bound 1−ε

γ1ε
W(nmτ)e[(k+1)(ρ1ε−δW )+δs]τ, similar to the

argument presented in Theorem 3, it follows that the series of release amounts
∑∞

i=1 Λn converges. This
completes the proof. �
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4.3. Composite control

Following our previous discussion, it has been established that strategies for managing wild
mosquito populations, either with or without state feedback, have their unique benefits. The approach
lacking state feedback ensures the universal allure of the extinction equilibrium while maintaining
a steady amount released across periods. Nonetheless, this method might continue releasing sterile
mosquitoes even when wild populations are minimal or have been eliminated, due to the absence of
state feedback. On the other hand, the strategy incorporating state feedback, though necessitating
regular evaluations of the wild mosquito numbers, tailors the amount of sterile mosquitoes released in
alignment with the estimated mosquito quantity. This adaptation decreases the quantity released as the
wild population dwindles, eventually ceasing the release. Reflecting on the distinct advantages of these
approaches, we propose a composite control strategy that merges the benefits of both.

Within this composite control framework, the two aforementioned methods of control will alternate
infinitely. Our task is to pinpoint the minimal release amount needed to ensure the wild population’s
ultimate extinction under this integrated strategy. In this context, we arrive at the following conclusion.

Theorem 5. Consider any m ∈ N+ and ε ∈ (0, δW
ρ1

). If, for every n = 0, 1, 2, . . ., and k = 1, 2, . . . ,m, the
release quantities adhere to

Λnm+k = min{Λcrit
p ,Λcrit

s }, (4.15)

where Λcrit
p is defined in Theorem 2 and

Λcrit
s = max

1 − ε
γ1ε

e[(k+1)(ρ1ε−δW )+δs]τW(nmτ) − Ms(nmτ)e−kδsτ −

k−1∑
l=0

Λnm+le−(k−l)δsτ, 0

 , (4.16)

then every solution to the model (4.1) will inevitably converge to the extinction equilibrium W0 = 0.

Proof. Let’s illustrate the theorem by initially considering the case where m = 1. The argument for
m > 1 follows a similar rationale.

Assume Λn = Λcrit
p . Drawing from the proof of Theorem 2, it is established that any solution W(t)

of model (4.1) will fulfill

W((n + 1)τ) ≤ W(nτ)e

(
ρ1

eβγ1

〈
1

Mp
s

〉
−δW

)
τ
,

with ρ1
eβγ1

〈
1

Mp
s

〉
< δW .

Furthermore, according to Theorem 3 (or Theorem 4 for m > 1), it’s noted that for any ε ∈ (0, δW
ρ1

),
and if Λn = Λcrit

s , then any solution W(t) of model (4.1) will satisfy

W((n + 1)τ) ≤ W(nτ)e(ρ1ε−δW )τ,

where ρ1ε < δW .
Thus, if the condition (4.15) is met, for any n ∈ N, we have

W((n + 1)τ) ≤ W(nτ)e
max{ ρ1

eβγ1

〈
1

Mp
s

〉
−δW ,ρ1ε−δW }τ

= W(nτ)e−στ,

where σ = min{δW −
ρ1

eβγ1

〈
1

Mp
s

〉
, δW − ρ1ε} > 0.

This establishes that W((n + 1)τ) < W(nτ) for any n ∈ N, and limt→∞W(t) = 0. Thus, regardless
of how the control modes alternate, the solution W(t) of model (4.1) is guaranteed to exponentially
converge to the extinction equilibrium W0 = 0, given Λn = min{Λcrit

p ,Λcrit
s }. The proof is completed.

�

AIMS Mathematics Volume 9, Issue 9, 23344–23367.



23358

5. Numerical simulation

First, we present a series of numerical simulations to illustrate and compare the release strategies
discussed earlier. For the model parameters, we refer to the parameter values in [2] and adjust them
according to our model.

Assuming that an egg has an equal chance of hatching into either a female or male mosquito,
i.e., r =0.5 in model (2.2), it’s important to note the significant difference in the quantities of female
and male mosquitoes in the environment. Since they have different death rates, δF and δM, a simple
calculation based on average lifespan reveals that the ratio of female to male mosquitoes in the
environment is approximately 1/δM : 1/δF . Let’s denote this ratio as α and W(t) = M(t) + F(t).
Then, from model (2.2), we have

M(t) =
1

1 + α
W(t), F(t) =

α

1 + α
W(t),

and

dW(t)
dt

=
ρ α

(1+α)2 W2(t)
1

1+α
W(t) + γMs(t)

e−βW(t) −
δM + αδF

1 + α
W(t) =

ρ1W2(t)
W(t) + γ1Ms(t)

e−βW(t) − δWW(t),

where

ρ1 =
αρ

1 + α
, γ1 = (1 + α)γ, δW =

δM + αδF

1 + α
.

Using the parameter values in [2], we obtain that

ρ1 = 2.6, β = 3.57 × 10−4, γ1 = 2.3333, δW = 0.0343, δs = 0.04.

After calculation, it is easy to obtain NW =
ρ1
δW

= 75.8017 > 1 and the release threshold for constant
continuous release Λcrit ≈ 1294. According to Lemma 1, if there are no sterile ones present in the field,
model (3.1) exhibits a globally asymptotically stable positive equilibrium, as depicted in Figure 1(a).
Furthermore, when sterile mosquitoes are continuously introduced at a fixed rate, with the release rate
Λ = 1200 being less than the critical threshold Λcrit, model (3.2) exhibits bistability. This means it has
both an extinction equilibrium and a positive equilibrium, each locally stable (see the blue curves in
Figure 1(b)). When the release rate increases to Λ = 1350 > Λcrit, model (3.2) is left with only the
extinction equilibrium, which is globally asymptotically stable (see the red curves in Figure 1(b)).

Drawing on field experiments where sterile mosquitoes are deployed two to three times weekly, we
have selected release periods of T = 2 and T = 4 for analytical comparison in the context of periodic
impulsive releases. For simplicity in comparing outcomes, we consider the wild mosquito population
eradicated when log10(W(t)) reaches a value of -1.
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(b) Constant Continuous Release

Figure 1. (a) The positive equilibrium of model (3.1) is globally stable; (b) Bistability with
Λ < Λcrit and global stability of the extinction equilibrium with Λ > Λcrit for model (3.2).

Within the open-loop control framework, employing the threshold calculation formula from
Theorem 2 allows us to ascertain the critical release amounts for release periods of T = 2 and
T = 4, calculated as Λcrit

p(2) = 2.680 × 103 and Λcrit
p(4) = 5.368 × 103, respectively. As demonstrated

in Figure 2, the time required to eliminate the wild mosquito population is nearly identical for both
strategies 970 and 976 days, with a cumulative release of 1.2998 × 106 and 1.309792 × 106 sterile
mosquitoes, respectively. In terms of control efficacy, the two methods are virtually indistinguishable.
However, when considering the costs associated with releasing sterile mosquitoes, the latter approach
proves to be more economical, necessitating only 244 releases compared to the 485 required by the
former, thereby significantly reducing the frequency of releases. This efficiency makes the second
method the preferred choice in practical applications.
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Figure 2. Open-loop control with release periods of T = 2 and T = 4.

Within the framework of closed-loop control, as discussed in the previous section, the basic
offspring number of the wild mosquito population after the release of sterile mosquitoes is represented
by εNW . This parameter acts as an indicator of the level of control exerted on the wild mosquito
population, where lower values indicate more effective control, and higher values suggest less effective
control. For the purpose of comparison, we choose two distinct values of εNW , specifically 0.2
and 0.8, to represent scenarios of high and low control effectiveness, respectively. Additionally, to
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account for different frequencies of population estimation, we employ m = 1 and m = 4 as markers.
These represent scenarios where estimations are conducted every release period and every four release
periods, respectively. This setup allows us to examine the impact of both the intensity of control (as
varied by ε) and the frequency of population assessments on the overall effectiveness of the mosquito
population management strategy.

Upon observing Figures 3 and 4, it is noted that within the closed-loop control process, the
intensity of population control significantly influences the timeliness of the entire control operation.
Compared to control strategies with lower intensity (εNW = 0.8), higher intensity control (εNW = 0.2)
can markedly reduce the duration of control. In Tables 1 and 2, the cumulative quantity of sterile
mosquitoes released, the duration, and the number of effective release events for each combination of
release period and estimation frequency are documented. Through comparison, it is also observed that
shorter release periods (T = 2) and more frequent population estimations (m = 1) can reduce the total
number of sterile mosquitoes required to achieve population extinction, whereas larger release periods
(T = 4) can significantly decrease the number of effective releases. Furthermore, stronger control
intensity (εNW = 0.2) necessitates the release of a larger number of sterile mosquitoes. Specifically,
at m = 4 (estimation conducted once every four periods), it significantly increases the total number
of sterile mosquitoes released throughout the control process but can greatly reduce the number of
effective release events in the case of low-intensity control.
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Figure 3. Closed-loop control for model (4.1) with εNW = 0.2.
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Figure 4. Closed-loop control for model (4.1) with εNW = 0.8.

Table 1. Closed-loop control with εNW = 0.2.

Total release amount Total duration of control Effective release counts
m = 1 m = 4 m = 1 m = 4 m = 1 m = 4

T = 2 2430877 2465778 410 416 205 208
T = 4 2477977 2507602 412 412 103 103

Table 2. Closed-loop control with εNW = 0.8.

Total release amount Total duration of control Effective release counts
m = 1 m = 4 m = 1 m = 4 m = 1 m = 4

T = 2 794517 839233 1188 1008 594 246
T = 4 820622 904891 1076 1068 269 228

Additionally, with m = 4 (performing estimations once every four periods), releasing sterile
mosquitoes in each cycle becomes unnecessary. If the environment’s accumulated sterile mosquito
count meets or exceeds the threshold outlined by inequality (4.9), then the release amount for that
cycle could be reduced to zero. Consequently, the actual count of release events might fall below the
total number of periods. Figure 5 illustrates how the release volumes vary with different settings of
release intervals, estimation frequencies, and control strengths.
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Figure 5. Distribution of the release amount for closed-loop control; (a) and (b) εNW = 0.2;
(c) and (d) εNW = 0.8.

In exploring the composite control strategy, we investigate the dynamics of the mosquito
population’s trajectory towards extinction across various combinations of release periods and
estimation frequencies, while also considering the level of control intensity (as illustrated in Figures 6
and 7). Tables 3 and 4 provide detailed data on the cumulative number of sterile mosquitoes released,
the duration of control, and the number of effective release instances for each scenario. It is observed
that under the composite control strategy, the effects of release periods and population control intensity
on the convergence towards the extinction equilibrium mirror those seen with the closed-loop control
strategy. Moreover, we find that although the composite control strategy can significantly reduce
the amount of each individual release compared to closed-loop control, the low-intensity composite
control strategy does not exhibit advantages in terms of the cumulative release quantity, control
duration, and the number of effective releases. Conversely, the high-intensity composite control
strategy demonstrates a significant advantage in the cumulative quantity of sterile mosquitoes released
but does not show improvement in the overall duration of control and the number of effective releases.
Figure 8 further details the distribution of release amounts under the composite strategy. Observations
indicate that state feedback from the wild mosquito population initiates a progressive reduction in
release amounts as the wild population decreases, ultimately ceasing when the number reaches zero.
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Figure 6. Composite control strategy for model (4.1) with εNW = 0.2.
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Figure 7. Composite control strategy for model (4.1) εNW = 0.8.
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Table 3. Composite control strategy with εNW = 0.2.

Total release amount Total duration of control Effective release counts
m = 1 m = 4 m = 1 m = 4 m = 1 m = 4

T = 2 1010317 1009699 1020 1022 510 492
T = 4 1011775 1009844 1020 1020 255 239

Table 4. Composite control strategy with εNW = 0.8.

Total release amount Total duration of control Effective release counts
m = 1 m = 4 m = 1 m = 4 m = 1 m = 4

T = 2 998683 994126 1750 1598 875 588
T = 4 994726 995392 1640 1660 410 386
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Figure 8. Distribution of the release amount for composite control strategy; (a) and (b)
εNW = 0.2; (c) and (d) εNW = 0.8.

6. Conclusions

In this work, we have developed a novel type of mosquito population suppression model. Utilizing
this model, we explored various release strategies for sterile mosquitoes, including the constant
continuous release strategy, open-loop control strategy, closed-loop control strategy, and composite
control strategy. Through extensive theoretical analysis, we identified the release amount thresholds
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for these strategies that can ensure the ultimate extinction of the wild mosquito population.
Furthermore, we carried out a comprehensive suite of numerical simulations to both validate

our theoretical results and assess the effectiveness of different mosquito release strategies. The
implementation of closed-loop control mechanisms aims to minimize the unpredictability of releases,
thus preventing the unnecessary and excessive delivery of sterile mosquitoes in scenarios where the
population of wild mosquitoes is minimal or has already been eradicated. It was observed that
within the closed-loop control framework, shortening the intervals between releases and increasing the
frequency of population assessments contribute to reducing the overall quantity of sterile mosquitoes
needed. Additionally, while the composite control strategy significantly lowers the amount of each
individual release compared to closed-loop control, the low-intensity composite control strategy does
not exhibit advantages in terms of cumulative release quantity, control duration, and the number of
effective releases. Conversely, the high-intensity composite control strategy demonstrates a significant
reduction in the cumulative quantity of sterile mosquitoes released but does not offer improvements in
the overall control duration and the number of effective releases. Hence, in field applications, when
there is state feedback on mosquito population numbers, the closed-loop control strategy should be
preferred for low-intensity control. For high-intensity control, the composite control strategy may be
selected with the aim of reducing the total quantity of sterile mosquitoes released. At this juncture,
strategically choosing larger release periods and estimation intervals becomes imperative to decrease
the number of effective releases and minimize the operational costs associated with field releases of
sterile mosquitoes.
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