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1. Introduction

The nonhomogeneous incompressible micropolar fluids with density-dependent viscosity ( [12,20])
in R? read as follows:
p; +div(pu) = 0,
(pu), + div(pu ® ) + VP(p) = div((u(p) + {)Vu) + 2Lrotw,
(ow), + div(pu ® w) + 4{w = (' Aw + (¢’ + A")Vdivw + 2{rotu,

diva = 0,

(1.1)

where p,u = (u',u?, ), w = (w!,w?,w?), and P denote the fluid density, velocity, micro-rotational
velocity, and pressure, respectively. The viscosity coefficient u(p) satisfies

ueC'0,00), up)>a>0, (1.2)

for some positive constant a, while the constants ¢’ and A’ are the angular viscosities satisfying y’ > 0
and u’ + A’ > 0, and the constant £ > 0 denotes the dynamic micro-rotation viscosity.
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In this paper, we consider the Cauchy problem of (1.1)—(1.2) with the far-field behavior
(p,u,w)(x,1) — (0,0,0) as [x] = o0 (1.3)
and the initial conditions

(p, pu, pw)(x, 0) = (0o, Pollg, PoWo)(x) With x € R’ (1.4)

A micropolar fluid system is the study of fluids that exhibit micro-rotational effects and micro-
rotational inertia and can be viewed as non-Newtonian fluids. It can be used to describe many
phenomena that appear in a large number of complex fluids, such as suspensions, animal blood,
and liquid crystals. The micropolar fluid system reduces to the Navier-Stokes equations when
there is no microstructure ( { = 0 and w = 0) and has been discussed by many mathematicians
(see [1,2,5-10,13,17,19], and references therein).

When it comes to the case that { # 0 and w # 0, there have been substantial developments
on the global regularity problem concerning nonhomogeneous micropolar fluids (1.1) with constant
viscosity 4. When the initial density is strictly away from vacuum, Braz e Silva and his cooperators [4]
investigated the global existence and uniqueness of solutions for 3D nonhomogeneous asymmetric
fluids by using an approach and Lagrangian coordinates under suitable initial conditions. Qian-
Chen-Zhang [15] studied the global existence of weak and strong solutions to 3D nonhomogeneous
incompressible asymmetric fluid equations. For initial velocities sufficiently small in the critical Besov
space, global Fujita-Kato type solutions with initial density in the bounded function space and that have
a positive lower bound are obtained, and this result extends the classical one on the life-span by Leray.
Subsequently, Qian-He-Zhang [16] investigated the global existence and uniqueness of the solutions
for the 2D inhomogeneous incompressible asymmetric fluids, with the initial (angular) velocity being
located in sub-critical Sobolev spaces H*(R?)(0 < s < 1) and the initial density being bounded from
above and below by some positive constants. In particular, the uniqueness of the solution in [16] is
also obtained without any more regularity assumptions on the initial density. When the initial density
contains a vacuum state, Braz e Silva and Santos [3] established the existence of global in-time weak
solutions for the equations of asymmetric incompressible fluids with variable density. Zhang-Zhu [18]
proved the global existence of strong solutions under the condition of the following compatibility:

—(u + O)Aug + VP(pg) — 2{Totw, = p(l)/zgl,
—' Awg — (' + 2)Vdivwg + 40wy — 24rotuy = py g,

for some (P(py), g1, 82) € H' x L> x L*.

When we consider the case of u = u(p), Liu-Zhong [12] showed that the initial boundary value
problem of 2D nonhomogeneous micropolar fluids with density-dependent viscosity has a global and
unique strong solution under the assumption of the smallness of ||Vu(oo)||ze. Qian-Qu [14] investigated
the 3D inhomogeneous incompressible asymmetric fluids system and proved local well-posedness for
initial velocity in the critical Besov space Bf,/ U for 1 < p < 6 and initial density p, satisfying that
po— 1 1s in the critical Besov space and that p, is bounded away from zero. Zhong [20] also considered
the same model in 3D cases and established the global existence and uniqueness of strong solutions,
provided that the initial energy is sufficiently small. It is worth noting that there is no need to impose
some compatibility condition on the initial data.
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It should be noted that although the large initial velocity is allowed in [12], it excludes large
oscillations of the initial density. A natural question arises: where can we establish the global strong
solutions to the 3D Cauchy problem of (1.1)—(1.4) not only with large initial velocity but also allowing
large oscillations of the initial density? In fact, this is the main aim of this paper.

Before stating the main results, we set

ff dx = fR3fdx, I M = M f1lee + 11812

For 1 < r < o0 and § > 0, we denote the standard homogeneous and inhomogeneous Sobolev spaces
as follows:

LT = Lr(R3), Wk,r — Wk’r(R3), Hk — Wk,2,
DY = DMRY) = {v e LL (R)IVRv e L'(RY)}, Dt = D2,

D' = {v e LS(RY)|Vv € L*(RY)},
Cy, ={f € Cyldivf =0}, D), = @ closure in the norm of D'.

The main result can be stated as follows:

Theorem 1.1. For constant p and any given number g € (3, 6), assume that the initial data (pg, 0y, Wo)
satisfies

0<py<p, po€L'NH', Vu(py) €L, wgeD,,, W€ H,. (1.5)
Then there exists a positive constant &, depending only on {, /', X', p, g, @, B = supyg 5 1(P), IVi(oo)llLs,
[IVugll;2 and ||VWoll;2 such that if

mo = [lpoller < &, (1.6)

then the problem (1.1)—(1.4) possesses a unique global strong solution (p,u, w) in R?x (0, o) satisfying
that forany 0 <t <T < oo and s € (3, q),

0<p<p, peL0,00L'NH)NC(0,00): L' NH,

(tVu, 1Yw) € L*(0, c0; H') N L*(0, co; W),

tVP € L0, co; L*) N L*(0, 003 L*), (1.7)
(tVu, tVw) € C([0,00); H"), (pu, pw) € C([0, 0); L?),

(to'u,, tp'?w,) € L=(0,00; L?), (tVu,, tVw,) € L*(0, co; L?).

Moreover,
sup [[Vu)llze < 2|IVu(eo)llLa,

0<t<T

and forany t > 1,

IV, Dl + VW, DIl + IVPC, DI
+ llo 2w 0l + o Wi Dl < Ce™,

where o = 301(5)* lpoll 3, with o7 = min{a, 1'}.
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Remark 1.1. It is worth noting that Theorem 1.1 holds for arbitrarily large initial velocity with a
smallness only on the initial mass, which generalizes the result of [14], where they need the smallness
assumption on |[uy|| 2l with 1 < p < 6.

The rest of this paper is organized as follows: In Section 2, we collect some elementary facts and
inequalities that will be used later. Section 3 is devoted to a priori estimates, and Theorem 1.1 is also
proved in Section 3.

2. Preliminaries

In this section, we list some auxiliary lemmas that will be used later. First of all, we start with the
local existence of strong solutions that can be obtained from similar arguments as used in [13,20], and
we omit the details.

Lemma 2.1. Assume that (pgy, Wy, Wo) satisfies (1.5). Then, there exists a small positive time T, such
that the problem (1.1)—(1.4) has a unique strong solution (p,u, w) on R> x (0, T,].

Next, the following well-known Gagliardo-Nirenberg inequality will be used more frequently
later (see [11]).

Lemma 2.2. Let p € [2, 3Tss]for s€[2,3), orpe[2,00] fors =3, andlet g € (1,00),r € (3,00). There
exists some generic constant C > 0 may depend on s and r such that for f € L*>N D(])’S andg € LN D(l)’r,
we have

11, < CIFIIE, P20y f| =250, 2.1)

and

lgllzs < Cllgl|ty =/ CrHat=) g g Pr/Greatr=, (2.2)

The following regularity results on the Stokes equations will be used for the derivations of higher-
order a priori estimates (see [10]).

Lemma 2.3. For constants g € (3,6),a > 0 and 8 > 0, in addition to (1.2), assume that u(p) satisfies

Vu@p)e L/, 0<a<u() <p <oo.

Then, if G € L" with r € (2,q), there exists some positive constant C depending only on a,,r and q

such that the unique weak solution (u, P) € DO » X L? to the following problem

~div((u(p) + HVu) + VP =G, xeR’,

diva = 0, x € R3,
u(x) - 0, x| — oo,
satisfies
IV%ull> + VP2 < CIGHI(1 + VIl ™), (2.3)
and
IV?ully: + [IVPllr < ClIGH(1 + VoIl ™), (2.4)
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3. A priori estimates

In this section, we will establish some necessary a priori bounds of local strong solutions (o, u, w)
to the Cauchy problem (1.1)—(1.4), whose existence is guaranteed by Lemma 2.1. Thus, let 7 > 0 be
a fixed time and (p, u, w) be the smooth solution to (1.1)-(1.4) on R? x (0, T'] with smooth initial data
(0, up, Wo) satisfying (1.5).

We have the following key a priori estimates on (o, u, w).

Proposition 3.1. There exists some positive constant &y depending only on q,¢,p,a,B, 1, ool
IVuoll.2, IVWoll 2, and ||[Vu(oo)|lze such that if (o, w, W) is a smooth solution of (1.1)~(1.4) on R3x (0, T]

satisfying

sup [[Vu(o)llze < HIVuoo)llLs, (3.1)
1€[0.7]
the following estimates hold
sup [[Vu(o)llze < 2[IVuoo)llzs, (3.2)
1€[0,7]
provided that
my < &. 3.3)

The proof of Proposition 3.1 consists of Lemmas 3.1-3.4 and is to be completed by the end of this
section. Throughout this section, for simplicity, we denote by C or C;(i = 1,2, - - - ) the generic positive
constants, which may depend on ¢, {,p, @, B, 1, ', |lpollz32, [[Vugl|z2 and |[Vwy||;2, but are independent
of time 7 > 0 and my.

We begin with the following estimates:

Lemma 3.1. Let (p,u, w) be a smooth solution of (1.1)—(1.4) on R? x (0, T satisfying (1.5). Then one

has
sup [lollz» < Clipollzs, ~ for p € [1, 00], (3.4)
te[0,T]
T
sup (llo"ull?, + llo">wii7.) + f (Al + IV W, ) dt
t€[0,T] 0 (3 5)
. .
+ f {llrotu — 2w, dt < Cm”
0
and
T
sup ”(|lo"*u + llp'*wiZ, ) + f e (el Vull, + p/IIVWIZ, ) dt
t€[0,T] 0 (36)

T
+ f e’ Z|rotu — 2w||izdt < Cmé“,
0

where o = 301(5)* lpoll 3, with o7 = min{a, u'}.

Proof. First, Eq (3.4) can be shown by standard arguments ( [8]).
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Next, in order to prove (3.5), we multiply (1.1), and (1.1); by u and w, respectively, and in
integrating the resulting equations by parts over R*, we get after adding them together and using (1.1)4

that
5 dtn(p”2 u, o' PWIZ, + () *VullZ, + @ IIVWIE, + (1 + )lIdivwll2,
+ {||rotu — 2W||L2 =0.

Integrating (3.7) over [0, T'] gives

T
1/2 1/2 2 2 2 2
sup |I(o'u, p"*w)ll7, + f (cdIVul, + g/ IIVWIZ, + Zlirotu — 2w, ) dt
t€[0,T] 0

2 2
< Cllpoll(Imol s + lwoll3,).

which, together with (2.1) and (3.4), yields (3.5).
Finally, we notice from (2.1), (3.4), and (3.8) and Holder’s inequality that

o' ul?, + llo" w2, < llolle (Il + Iwis)
1,24
<3 ) loolloo: (VI + IVwWIE, ),

where we have used the following fact:

1,2\4/3
If1s < 5(2) IVAG..  forany f e D'
Combining (3.7) with (3.9), one has

1/2..112 1/2 2 1/2..112 1/2 2
S (||p Pul?, + llo"*wiig,) + oIl ull?, + llo'?wiE.) < 0,

where o = 301(£)*?|lpoll 3, with oy = min{e, i'}. By using Gronwall’s inequality, one has

13

1/2 1/2

2 1/2 2 -2 2 1/2 2
o' ulZ, + llo" w2, < e (llog uoll2: + llog *Woll2.)-

Multiplying (3.7) by €”" and using (3.10) show that

d
|70 P, p WG| + 26 (lIVull, + VW, + dllrotu — 2wl )

172112 1/2 112
< e’ (llo"ulf, + 10" wi.)

1/2

- 12 112
< oe (”(Ilp w2, + lip, / WO||L2)~

Integrating the above inequality over [0, 7] leads to (3.6).
Remark 3.1. Evidently, we can infer from (1.2) and (3.4) that

O<a<up)<p= maXﬂ(p) < oo.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Lemma 3.2. Let the condition of (3.1) be in force, then there exists some positive constant &,

depending only on q,{,p, B, p', X', |IVu(po)lles, [IVuollz2 and [[VWoll2 such that if

sup (al[Vul, + @ IIVWIZ, + (' + )divwiZ, + {llrotu — 2w, )
t€[0,T]

T
1/2 2 1/2 2
+ f (Ilo"wili3, + llo"*will3, )t
0

< 4BV, + (Vo7 + (' + A)lidivwoll?, + llrotug — 2wy|l7. ).

then
V 2 / V 2 ’ /l, d 2 t _2 2
sup (@llVull, + /' [IVWIIL + (" + )lIdivwl[;, + {llrotu — 2wl[;,
t€[0,T]
T
+ f (Ilo" il + llo"*will3, )t
0
< 2(BIVuoll7, + 1YWl + (1 + A)Idivwyl[7, + Zllrotug — 2woll;
< 2(BlIVugll7, + w1 [[Vwoll7, + (u 1vwol|7, + {]|rotug — 2wo||;, ),
provided

my < &1.

Moreover, fori =1,2,3 and o, as in Lemma 3.1, one has

T
i 2 2 i 1/2 2 1/2 2 2/3
sup [#(IIVull?, + IVWI2.)| + f £(Ilo"wlly, + o' w7 )dr < Cmg”,
t€[0,T] 0

and

t€[0,T]

Proof. The Eq (1.1); can be written as

o)), + - V() = 0.

T
2 2 1/2 2 1/2 2 2/3
sup [ (IVull3, + Vw3, )| + f e (llo" w7, + llo*wil}: )1 < Corl.
0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Multiplying (1.1), by wu, and integrating the resulting equation over R*, one can deduce from (3.17)

that
1d
2 dt

1
-2 f rotu - w,dx — f pu-Vu-u,dx — 5 f u - Vu(p)|Vul*dx,

(Il )Vl + Zlirotul}.) + I w7, = 2¢( f rotu - wlx),

where we have used the fact that Au + rot(rotu) = Vdiva = 0.
Multiplying (1.1); by w, and integrating by parts over R show that

1d,, .
EE(’U IVWIZ, + (' + 2)lIdivwlf7, + 4§”W||iz) + 10" 2wl

= 2§frotu~w,dx—fpu~Vw-wtdx,

(3.18)

(3.19)
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Combining (3.18) with (3.19), yields

d ’ ’ ’ :
Tl 2 @)Valiz, + @ IVWIE, + G+ A)lidivwilE, + dllrotu — 2wl )

1/2 1/2

+2llo" w7, + 2llo

Wt”iz (3.20)
3

= —2fpu -Vu-udx - 2fpu -Vw - w,dx — fu . V,u(p)qulzdx = Zli'
i=1

Now, we estimate /;(i = 1,2,3.) as follows: Holder’s inequality, together with (2.1), (2.2), and (3.4),
gives

[Sm—

I < 5 llo"ulz: + 2ol i Vul,
1 (3.21)
< 5l Pwll; + CEIVlIVull
Similarly,
1
I < S ll0" 2 wily: + 2llpll VWil
1 (3.22)
< 310" Wil + CEIVWILIVull IV ull2,
and
I < CB)lullsl[Vull 2| Vull: < C@)IVull2(IVull. (3.23)
Putting (3.21)—(3.23) into (3.20), one has
d ’ ’ 7 M
(o) Vully; + W IIVWIG: + G+ ) divwii, + ot — 2wl
(3.24)

3
+ 5 (0" Pwl + llo"will7:)
< C(IVull, + VW IVull2 ) Vull2 + ClIVulZ |Vl

L L2 12

We know from (1.1), that (u, P) satisfies the following system:

—div[(,u(p) + ()Vu] +VP = —pu, — pu - Vu + 2{rotw, x € R3,
divu = 0, x eR3,
u(x) = 0, x| — oo,
Taking G = —pu, — pu - Vu + 2{rotw and r = 2 in (2.3), we deduce from (3.1), (3.4), and Cauchy-
Schwarz’s inequality that
IV2ullz2 + VP2
< Cll = pu, ~ pu - Vu + 2¢rotwll2(1 + V(o))

12

1/2
< Clioll2lio" w2 + Clipllshull o[ Vulls + ClIVW2

1/2 3/2 2. 111/2
< Clio"w |2 + ClIVulP 2 IV2ul])5 + ClIV w2

1
< EHVzu”LZ + Cllo' a2 + CIIVull}, + ClIVWI2,
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which gives
IV2ull,2 + IVPll2 < Cllo"?wll2 + ClIVul}, + ClIIVWI 2. (3.25)

Taking (3.25) into (3.24), one deduces from (3.13) that

d ’ ’ ’ :
— (o) Vully; + W IIVWIG, + G+ ) divwi, + Clirotu — 2wii;)

(3.26)
+ (llo"wlly, + "> wil2,) < C(IVully, + IVWIE,).
Integrating (3.26) over [0, T], then using (3.5) and (3.12), shows that
sup (a[Vull, + @IV W, + (' + 2)lidivwil7, + Zlirotu — 2w}, )
t€[0,T]
T
- f (Ilo" w2, + llo">wili2. )dt (3.27)
0

2/3 2 2 ’ : 2 2
< Coml® + (BIVuolZ, + 1 IVWollZ, + (1 + )lidivwol2, + Llirotug — 2wol2,),

where the positive constant C; depends only on ¢, Z,p, @, 5,1, ', ||[Vu(oo)lle, [IVaollz2, and |[Vwy||2,
but is independent of time 7" > 0 and m,. Taking

BIIVuo|l7, + i IVWoll7, + (1 + )lldivwoll7, + ¢llrotag — 2woll7, )3/2
C, '

m0<815(

Thus, we obtain (3.14).
Multiplying (3.26) by ¢ gives that

d ’ ’ ’ .
E[t(llu” 20)VullZ, + 7 [Vull2, + (' + )divwi2, + Llirotu — 2w, )]
+ (Il wl + 1o *will7.) (3.28)

< C(IVull2, + VW2, + lirotu — 2wli2,) + Ce(|IVull2, + [VwIE,).

1/2

Integrating (3.28) over [0, T'], we obtain from (3.5) and (3.6) that

T
2 2 1/2 2 1/2 2
sup [(IVull?, + IVwZ)] + f (0" w2 + Il wili2, )t
t€[0,T] 0

T T
<C f (IVulZ, + IV W, + [lrotu — 2w|2, )t + C f (|IVull2, + Vw2, )dr
0 0

T
<Cmg”* +C sup (te™") f e (IVull2, + VWi, )dt < Cmg,
t€[0,T] 0

which implies that (3.15) holds for i = 1. For i = 2,3, we can take a similar approach to obtain the
results of (3.15).
Next, multiplying (3.26) by ¢”’, one has

d , SEINIFT
— (I Vullf, + IVul, + (@ + D)lidivwliz, + Zlirotu - 2w, )|
+ (1o, + o' *wili) (3-29)

< Ce‘”(||Vu||§2 +[IVWII?, + |lrotu — 2w||§2).
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Integrating (3.29) over [0, T'], one can deduce from (3.6) that

T
sup e (IVull?, + IVwi )| + f (Il w2, + 1l w2, )dt
0

t€[0,T]

T
<C f e (IVull?, + IV Wi, + lirotu — 2w, )dr < Cmg”.
0

Thus, we obtain (3.16). O
Lemma 3.3. Under the condition of (3.1), then fori=1,2,3,
T
sup [#(Ilo" w2, + llo"*will7.)| + f IV |2, + Vw2 )de < Cmyl. (3.30)
t€[0,T] 0

Moreover, for o as in Lemma 3.1 and 6(t) = min{1, t},

T
sup [ (llo"wlly, + llo'wiliz.)| + f ¢ (IVwl7, + Vw2 )de < C. (3.31)
1€[6(T).T] &(T)

Proof.  Operating 9, to (1.1), and (1.1)3, respectively, we infer from (1.1), that
ou, +pu-Vu, — div((,u(p) +/ )Vu)t + VP,

(3.32)
=—pu,-Vu+ (u- Vp)(u, + u- Vu) + 2{rotw,,

and
pW,, + pll * VW[ - IJIAWt - (/l/ + ﬂ/)vdlth + 4£WI

(3.33)
=—pu,- VW + (u- Vp)(w, + u - Vw) + 2{rotu,.

Multiplying (3.32) and (3.33) by u, and w;, respectively, and then integrating by parts on R*, we deduce
from (3.17) that
1d

id—t(llp”zutlliz + 11" PWill2.) + (o) + 02V, + Vw7,

+4ZIWI7, + (' + )ldivw |7,
= f[—put~Vu+(u-Vp)(u,+u-Vu)] -udx
(3.34)
+f[—pu,-Vw+(u-Vp)(w,+u-Vw)] - w,dx

4
+ 2§f(r0twt -u, + rotu, - w,)dx + fu - Vu(p)Vu - Vu,dx = Z N;.

i=1
Now, we estimate N;(i = 1,2, 3,4) as follows: Thanks to diva = 0, we deduce from (2.1), (2.2), (3.4),
(3.14) and Cauchy-Schwarz’s inequality that
Ny < Clipll 2 1o uill: IV llzzlallzs + Cllollz= [Vl ]l ul 2
+ Clipll= IVl 2 [V ullgsliullFs + Cllpllzs gl Vull s [Val| 2l

1/2 2
+ [lo" w2 Vull 2 (3.35)
3/4y .1/2 1/2 3/2 2 2
< Cliply o a2V ull 21Vl 222 + Cllollz V|2Vl 2 Vul

a 2 17240 112 2,112
< glquzlle +Cllo' w7, + ClIV?ull?,,
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and

/2y .1/2 2 2
N> < Cllpll, Zlle Wil IV willzlullze + Cllollz V2wl 211wl s lull
2
+ Cllpll= VWil 2[[VWI[zsl[all; s + Cllollz 1wl zs[[VWI| 6]Vl 2 ||al| s
1/2 1/2
+ 10" Wil IV Wl 2l s ol -
< C 3/4 1/2 1/2 V V 3/2 C V VZ V 2
< Cllpllz< o™ “will IVl 2 VWAL + Cllplls [V WAl 21V Wl 2]Vl

3/4y 1/2 1/2 1/2
+ Cllol 210" >will VWl 2V Wil S Vg2

< ZIVu, + %'uw,niz + Cllo"? Wil + CIVAWII.
Cauchy-Schwarz’s inequality gives
N3 < 42w lI7, + IV,
The inequalities (2.2) and (3.1), together with Cauchy-Schwarz’s inequality, show that

Ny < Clulle=[[Vu(o)ll ol [Vall 2o [Vl 2
3.1 3.1
1_6+§ ) 5+§
< ClVull,* “IVaull, “lIVal

a
< glqutlliz + C|[Vull7, + C||V?ul]}..
Putting (3.35)—(3.38) into (3.34) and using (3.25) yields

d 1/2 2 1/2 2 2 2
— (" Pwl + o 2wl ) + Vi, + 19w

1/2 2 1/2 2 2112 2 2 2114
< ("l + llo">wili2.) + C(IV?ull?, + VWi, + ClIV2ull},
1/2 2 1/2 2 2 2
< C(ll" w2, + 1l *will2.) + C(IVull, + IVwl.)

1/2

2 (141724 112 p )
+ Cllo' w7l w7, + CIIVWIL,.

(3.36)

(3.37)

(3.38)

(3.39)

To deal with the last term on the right side of (3.39), we first multiply (1.1); by w and then integrate

the resulting equation by parts on R? to get that
HIVWIE, + (' + )lIdivwi, + 421wl
< |IWllz2llow: + pu - Vw — 2Zrotul 2
< ZIWIE + C(llowili% + llou - YW, + [[Vuli2.),
which implies
VW2 + [[wllz2 < C(”pwtllL2 + llow - Vwllr2 + IIVu||L2)~

On the other hand, one can deduce from (1.1); that

IV>Wli2 < C(llow, + pu - Yw — 2Zrotu + 47wl
< Clwllz + C(llowilzz + llow - Vw2 + [[Vull2).

(3.40)
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which, together with (3.40), (2.1), and (3.4), yields
Wiz < C(llowillz2 + llow - Vwliz2 + [[Vull,2)
< Cllo"*will2loll, 2 + Cllpllz Iull [V wllzs + Cl[Vull,»
1
< 5IWlliz + Cllp P will2 + CIVul [Vwll.: + ClVul;z,
thus
Wiz < Clio"* Wiz + CIVull2, [V wli,2 + ClIVullz. (3.41)

Taking (3.41) into (3.39), we infer from (3.14) that

d

— (0" 2wl + 1l wiliF) + 19w + IV wil,

< C(llo"wl, + llo"2wilz.) + C(IIVul?, + Vw2, (3.42)
+ Cllo" w2, llo" a7,

Multiplying (3.42) by ¢, one has

%[r(up”zutniz + L2 wil)] + eIV, + 1VwillZ,)
< Cllo" w3 {1l w2, + o' w2, )|
+ C(IIVully, + IVWIZ, + lo"wll, + llo"*wi.)
+ C(llo"wl, + llo"*willz, ),
which, together with (3.14), (3.15) and Gronwall’s inequality, gives that (3.30) holds for i = 1. Using

the same methods, we can show that (3.30) for i = 2, 3.
Next, in order to prove (3.31), we first multiply (3.42) by ¢”’, then

d ot 1
- /2 2 1/2 2 ot 2 2
217 (P, + 1l Pwillz )| + (Vi + 19wl

1/2 2 1/2 2 1/2 2
< Cllo" Il [e™ (10" w7, + llo'*will2,)|

+ Ce™(|IVullZ, + [IVWIZ, + [l w2, + llo">wilI2.).
which, combining (3.6), (3.14), and (3.16) with Gronwall’s inequality, gives that (3.31) holds. O
Lemma 3.4. Under the condition of (3.1), then
T
f IVull,~dt < Cmy/”, (3.43)
0

where 3 < r < g with q € (3, 6).
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Proof. 1t follows from (1.1),, (2.1), (2.2), (2.4), and (3.1) that for any r € (3, min{6, g})

IV2ully + IV Pl
< Cll = pu, = pu - Vu + 2grotwll (1 + [Vu(o)llg"~ ™)
< C||p||1/2||P1/2llt||(6 r)/2r||p1/2u ||(3r 6)/2r
+ Clipllsron |l [[Vulls + CIIVWIS > [V w[5 "
< C”p]/zut||(6_r)/2r||Vut”(3r—6)/2r + Cmg6_’)/6’||Vu||1/2||V2u||3/2
+ C”VW”(é r)/2r||V2 ||(3r 6)/2r

thus

2r—6)/(5r-6 2. 113r/(5r-6 2
VUl < ClIVully ") w2027/ < C||Vul|2 + ClIV7ull
1/2 6-r)/2 3r-6)/2
< Cl[Vull2 + Cllp" |5V |5~
6-r)/6 1/2 2..113/2 6-r)/2 2 3r-6)/2
+ Cm ™ Va2Vl + CIVwWIS " V2wl

The inequality (3.6), together with Holder’s inequality, shows that

T T
Vu||,»dt = e“"?||Vul|;2e~ 72 dt
(IVul|; L
0 0

< fo el fo o)

<CmlP.

For any T € (0, 1], we can show from (3.30) and Holder’s inequality that

T
(6—r)/4r (3r-6)/4r
1/2 2 2
< C sup (rnp / u,||Lz) (f IV u,ll;.d)
0

t[0,T]

T
(r+6)/4r
% (f t—2r/(r+6)dt)
0

< Cmé/3.

For T > 1, one can deduce from (3.30), (3.31), and Holder’s inequality that
T
f o 2wl IVl dr
1

T
(6—r)/4r (3r—=6)/4r
1/2 2 3 2
< C sup (ellp"ull%,) (f £1Vu,|2,dt)
0

t€[0,T]

T
(r+6)/4r
x ( f t—9(r—2)/(r+6) dt)

1
< Cm (3r 6)/6r
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Similarly,
T
f Vw2 V2wl O de < Cm§O + Cmy). (3.49)
0

It follows from (3.5), (3.13), and (3.25) that

12

T
6-1)/6 1/211%9244113/2
f my IVl VRl dr
0

< cni foT IVuifdr) fo o Pus + 19wl + 19wlEdr) ™ (3.50)
< Cm(l)/r + Cm(l)/ZH/"
Dueto3 <r<gq, g€ (3,6),one has
1 3r-6 1

" Ter 3
Integrating (3.45) over ¢ € [0, T'] and using (3.46)—(3.50), we can obtain (3.43). |
With Lemmas 3.1-3.4 at hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. It follows from (3.17) that

[V,u(p)]t +u- V2u(p) + Vu - Vu(p) = 0.

Multiplying the above equation by g|Vu(p)|* >Vu(p) and integrating the resulting equations on R?, we
can obtain

d
JIIIVﬂ(p)IIZq =—q f u - Vu(p) - [Vu(p)|" > Vu(p)dx
—q f Vu - Vu(p) - [Vu(p)l**Vu(p)dx.

Due to divu = 0, then

q f u- Vu(p) - [Vu(p)l > Vu(p)dx = - f [Vu(p)l’divadx = 0.

Thus
(IVu)II7,), < gVl IV,

which implies that
(I9@)le), < IVl V) lis,

which, together with (3.43) and Gronwall’s inequality, shows that

T
sup [[Vu(p)llzs < expf f IVulldt)lI V(o)L
0

te[0,T]
. 3.51
< exp {Cgm(l)/2 }IIV,U(Po)lqu 32D

< 2/[Vu(eo)lls
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provided

In2\2r
my < & = mini&, (—) |-
<02 minfer, (2)7)
Thus, we complete the proof of Proposition 3.1.

Lemma 3.5. Under the condition of (3.1), then

sup (I¥pllzz + lpdlzse) < C.
t€[0,T]

Proof. Similar to the method of (3.51), we can deduce from (1.1), that

sup ||[Vpll> < C.
1€10,T]

Holder’s inequality, together with (1.1)y, (3.14), and (3.53), yields
llodlzsr2 = [lw - Vpllzs2 < [[Vpllp:llallze < ClIVoll|[Vallz2 < C.

Thus, we complete the proof of Lemma 3.5.

(3.52)

(3.53)

O

Lemma 3.6. Under the condition of (3.1), then for 3 < r < g with q € (3, 6), the following estimates

hold:
T

sup 1(|I(Vu, VW)II2, + IVPIZ) + f {1l(Vu, VWG, + IVPI, )dt < C,
0

W],r
t€[0,T]

and
ot 2 2
sup e (II(Vu, VW)IZ, + IVPIE,) < C,

te[o(T),T]

for o as in Lemma 3.1 and 6(t) as in Lemma 3.3.

Proof. It follows from (3.14), (3.15), (3.25), (3.30), and (3.41) that

IVull3, + VW, + IV PIE,
2 1/2 2 2 2
< C(ll"wl, +llo">will2.) + C(IIVull, + [IVwiZ, ).
thus
2 2 2
sup (dIVull2, + Vw2, +[IVPIE.)
t€[0,T]
1/2 2 2 2
< Ct(llo" w2, + lIp"*will2.) + Ce{|[Vul, + [Vwi.)
<C

Hence, we can use the same methods to obtain (3.55).

(3.54)

(3.55)

(3.56)
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By virtue of r € (3, g) with g € (3, 6), one can obtain from (3.44) that
IVull,., + IVPIZ, + VW,
< C(IVull, + IVWIE,) + C(IVul, + IVPIZ,) + CIIV>wI,
< C(IV2ul, + VWi, + IVull?, + [IVWIE.)
+ C(IV2ull, + IVPIZ) + CIVAWIE,
< C(llo" w2, + o' willz, + IVul, + VW, + Wi,
+ C(ll Pull VO + Va9l + VW9 wllE, )
+ C(llp Wil IV WAl + 19l 21V ull 2V wii, )
< C(llo"wll}. + o' will}.) + C(IVwl, + IV Wi, )
+ C(IVull2 IVull, + VWil V2w
+ C(IVully, + VWi, + Iwll3.),

which, together with (3.5), (3.15), (3.25), (3.30), (3.41), and (3.56), yields

T
f (070, VIR, +IVPIE, )dt < C.
0

Thus, we complete the proof of Lemma 3.6. O
Proof of Theorem 1.1. Similar to the standard arguments in [10, 18, 20], with all the a priori estimates
established in Sections 3 at hand, we can immediately obtain our main results. O
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