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problem of three-dimensional (3D) nonhomogeneous incompressible micropolar fluids with density-
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1. Introduction

The nonhomogeneous incompressible micropolar fluids with density-dependent viscosity ( [12,20])
in R3 read as follows:

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇P(ρ) = div

(
(µ(ρ) + ζ)∇u

)
+ 2ζrotw,

(ρw)t + div(ρu ⊗ w) + 4ζw = µ′∆w + (µ′ + λ′)∇divw + 2ζrotu,
divu = 0,

(1.1)

where ρ,u = (u1, u2, u3), w = (w1,w2,w3), and P denote the fluid density, velocity, micro-rotational
velocity, and pressure, respectively. The viscosity coefficient µ(ρ) satisfies

µ ∈ C1[0,∞), µ(ρ) > α > 0, (1.2)

for some positive constant α, while the constants µ′ and λ′ are the angular viscosities satisfying µ′ > 0
and µ′ + λ′ > 0, and the constant ζ > 0 denotes the dynamic micro-rotation viscosity.
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In this paper, we consider the Cauchy problem of (1.1)–(1.2) with the far-field behavior

(ρ,u,w)(x, t)→ (0, 0, 0) as |x| → ∞ (1.3)

and the initial conditions

(ρ, ρu, ρw)(x, 0) = (ρ0, ρ0u0, ρ0w0)(x) with x ∈ R3. (1.4)

A micropolar fluid system is the study of fluids that exhibit micro-rotational effects and micro-
rotational inertia and can be viewed as non-Newtonian fluids. It can be used to describe many
phenomena that appear in a large number of complex fluids, such as suspensions, animal blood,
and liquid crystals. The micropolar fluid system reduces to the Navier-Stokes equations when
there is no microstructure ( ζ = 0 and w = 0) and has been discussed by many mathematicians
(see [1, 2, 5–10, 13, 17, 19], and references therein).

When it comes to the case that ζ , 0 and w , 0, there have been substantial developments
on the global regularity problem concerning nonhomogeneous micropolar fluids (1.1) with constant
viscosity µ. When the initial density is strictly away from vacuum, Braz e Silva and his cooperators [4]
investigated the global existence and uniqueness of solutions for 3D nonhomogeneous asymmetric
fluids by using an approach and Lagrangian coordinates under suitable initial conditions. Qian-
Chen-Zhang [15] studied the global existence of weak and strong solutions to 3D nonhomogeneous
incompressible asymmetric fluid equations. For initial velocities sufficiently small in the critical Besov
space, global Fujita-Kato type solutions with initial density in the bounded function space and that have
a positive lower bound are obtained, and this result extends the classical one on the life-span by Leray.
Subsequently, Qian-He-Zhang [16] investigated the global existence and uniqueness of the solutions
for the 2D inhomogeneous incompressible asymmetric fluids, with the initial (angular) velocity being
located in sub-critical Sobolev spaces H s(R2)(0 < s < 1) and the initial density being bounded from
above and below by some positive constants. In particular, the uniqueness of the solution in [16] is
also obtained without any more regularity assumptions on the initial density. When the initial density
contains a vacuum state, Braz e Silva and Santos [3] established the existence of global in-time weak
solutions for the equations of asymmetric incompressible fluids with variable density. Zhang-Zhu [18]
proved the global existence of strong solutions under the condition of the following compatibility:−(µ + ζ)∆u0 + ∇P(ρ0) − 2ζrotw0 = ρ1/2

0 g1,

−µ′∆w0 − (µ′ + λ′)∇divw0 + 4ζw0 − 2ζrotu0 = ρ1/2
0 g2,

for some (P(ρ0), g1, g2) ∈ H1 × L2 × L2.
When we consider the case of µ = µ(ρ), Liu-Zhong [12] showed that the initial boundary value

problem of 2D nonhomogeneous micropolar fluids with density-dependent viscosity has a global and
unique strong solution under the assumption of the smallness of ‖∇µ(ρ0)‖Lq . Qian-Qu [14] investigated
the 3D inhomogeneous incompressible asymmetric fluids system and proved local well-posedness for
initial velocity in the critical Besov space Ḃ3/p

p,1 for 1 < p < 6 and initial density ρ0 satisfying that
ρ0−1 is in the critical Besov space and that ρ0 is bounded away from zero. Zhong [20] also considered
the same model in 3D cases and established the global existence and uniqueness of strong solutions,
provided that the initial energy is sufficiently small. It is worth noting that there is no need to impose
some compatibility condition on the initial data.
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It should be noted that although the large initial velocity is allowed in [12], it excludes large
oscillations of the initial density. A natural question arises: where can we establish the global strong
solutions to the 3D Cauchy problem of (1.1)–(1.4) not only with large initial velocity but also allowing
large oscillations of the initial density? In fact, this is the main aim of this paper.

Before stating the main results, we set∫
f dx ,

∫
R3

f dx, ‖( f , g)‖Lp , ‖ f ‖Lp + ‖g‖Lp .

For 1 6 r 6 ∞ and β > 0, we denote the standard homogeneous and inhomogeneous Sobolev spaces
as follows: 

Lr = Lr(R3), Wk,r = Wk,r(R3), Hk = Wk,2,

Dk,r = Dk,r(R3) = {v ∈ L1
loc(R

3)|∇kv ∈ Lr(R3)}, Dk = Dk,2,

D1 = {v ∈ L6(R3)|∇v ∈ L2(R3)},
C∞0,σ = { f ∈ C∞0 |div f = 0}, D1

0,σ = C∞0,σ closure in the norm of D1.

The main result can be stated as follows:

Theorem 1.1. For constant ρ̄ and any given number q ∈ (3, 6), assume that the initial data (ρ0,u0,w0)
satisfies

0 6 ρ0 6 ρ̄, ρ0 ∈ L1 ∩H1, ∇µ(ρ0) ∈ Lq, u0 ∈ D1
0,σ, w0 ∈ H1

0 . (1.5)

Then there exists a positive constant ε, depending only on ζ, µ′, λ′, ρ̄, q, α, β , sup[0,ρ̄] µ(ρ), ‖∇µ(ρ0)‖Lq ,
‖∇u0‖L2 and ‖∇w0‖L2 such that if

m0 , ‖ρ0‖L1 6 ε, (1.6)

then the problem (1.1)–(1.4) possesses a unique global strong solution (ρ,u,w) in R3×(0,∞) satisfying
that for any 0 < t < T < ∞ and s ∈ (3, q),

0 6 ρ 6 ρ̄, ρ ∈ L∞(0,∞; L1 ∩H1)∩C([0,∞); L1 ∩H1),
(t∇u, t∇w) ∈ L∞(0,∞; H1)∩ L2(0,∞; W1,s),
t∇P ∈ L∞(0,∞; L2)∩ L2(0,∞; Ls),
(t∇u, t∇w) ∈ C([0,∞); H1), (ρu, ρw) ∈ C([0,∞); L2),
(tρ1/2ut, tρ1/2wt) ∈ L∞(0,∞; L2), (t∇ut, t∇wt) ∈ L2(0,∞; L2).

(1.7)

Moreover,
sup

06t6T
‖∇µ(ρ)‖Lq 6 2‖∇µ(ρ0)‖Lq ,

and for any t > 1,

‖∇ut(·, t)‖2H1 + ‖∇wt(·, t)‖2H1 + ‖∇P(·, t)‖2L2

+ ‖ρ1/2ut(·, t)‖2L2 + ‖ρ1/2wt(·, t)‖2L2 6 Ce−σt,

where σ = 3σ1(π2 )4/3‖ρ0‖
−1
L3/2 with σ1 = min{α, µ′}.
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Remark 1.1. It is worth noting that Theorem 1.1 holds for arbitrarily large initial velocity with a
smallness only on the initial mass, which generalizes the result of [14], where they need the smallness
assumption on ‖u0‖Ḃ3/p

p,1
with 1 < p < 6.

The rest of this paper is organized as follows: In Section 2, we collect some elementary facts and
inequalities that will be used later. Section 3 is devoted to a priori estimates, and Theorem 1.1 is also
proved in Section 3.

2. Preliminaries

In this section, we list some auxiliary lemmas that will be used later. First of all, we start with the
local existence of strong solutions that can be obtained from similar arguments as used in [13,20], and
we omit the details.

Lemma 2.1. Assume that (ρ0,u0,w0) satisfies (1.5). Then, there exists a small positive time T0 such
that the problem (1.1)–(1.4) has a unique strong solution (ρ,u,w) on R3 × (0,T0].

Next, the following well-known Gagliardo-Nirenberg inequality will be used more frequently
later (see [11]).

Lemma 2.2. Let p ∈ [2, 3s
3−s ] for s ∈ [2, 3), or p ∈ [2,∞] for s = 3, and let q ∈ (1,∞), r ∈ (3,∞). There

exists some generic constant C > 0 may depend on s and r such that for f ∈ L2∩D1,s
0 and g ∈ Lq∩D1,r

0 ,
we have

‖ f ‖p
Lp 6 C‖ f ‖p−3s(p−2)/(5s−6)

L2 ‖∇ f ‖3s(p−2)/(5s−6)
Ls , (2.1)

and
‖g‖L∞ 6 C‖g‖q(r−3)/(3r+q(r−3))

Lq ‖∇g‖3r/(3r+q(r−3))
Lr . (2.2)

The following regularity results on the Stokes equations will be used for the derivations of higher-
order a priori estimates (see [10]).

Lemma 2.3. For constants q ∈ (3, 6), α > 0 and β > 0, in addition to (1.2), assume that µ(ρ) satisfies

∇µ(ρ) ∈ Lq, 0 < α 6 µ(ρ) 6 β < ∞.

Then, if G ∈ Lr with r ∈ (2, q), there exists some positive constant C depending only on α, β, r and q
such that the unique weak solution (u, P) ∈ D1

0,σ × L2 to the following problem
−div

(
(µ(ρ) + ζ)∇u

)
+ ∇P = G, x ∈ R3,

divu = 0, x ∈ R3,

u(x)→ 0, |x| → ∞,

satisfies
‖∇2u‖L2 + ‖∇P‖L2 6 C‖G‖L2

(
1 + ‖∇µ(ρ)‖q/(q−3)

Lq

)
, (2.3)

and
‖∇2u‖Lr + ‖∇P‖Lr 6 C‖G‖Lr

(
1 + ‖∇µ(ρ)‖q(5r−6)/2r(q−3)

Lq

)
. (2.4)

AIMS Mathematics Volume 9, Issue 9, 23313–23330.



23317

3. A priori estimates

In this section, we will establish some necessary a priori bounds of local strong solutions (ρ,u,w)
to the Cauchy problem (1.1)–(1.4), whose existence is guaranteed by Lemma 2.1. Thus, let T > 0 be
a fixed time and (ρ,u,w) be the smooth solution to (1.1)–(1.4) on R3 × (0,T ] with smooth initial data
(ρ0,u0,w0) satisfying (1.5).

We have the following key a priori estimates on (ρ,u,w).

Proposition 3.1. There exists some positive constant ε0 depending only on q, ζ, ρ̄, α, β, µ′, ‖ρ0‖L3/2 ,
‖∇u0‖L2 , ‖∇w0‖L2 , and ‖∇µ(ρ0)‖Lq such that if (ρ,u,w) is a smooth solution of (1.1)–(1.4) on R3× (0,T ]
satisfying

sup
t∈[0,T ]

‖∇µ(ρ)‖Lq 6 4‖∇µ(ρ0)‖Lq , (3.1)

the following estimates hold
sup

t∈[0,T ]
‖∇µ(ρ)‖Lq 6 2‖∇µ(ρ0)‖Lq , (3.2)

provided that
m0 6 ε0. (3.3)

The proof of Proposition 3.1 consists of Lemmas 3.1–3.4 and is to be completed by the end of this
section. Throughout this section, for simplicity, we denote by C or Ci(i = 1, 2, · · · ) the generic positive
constants, which may depend on q, ζ, ρ̄, α, β, µ′, λ′, ‖ρ0‖L3/2 , ‖∇u0‖L2 and ‖∇w0‖L2 , but are independent
of time T > 0 and m0.

We begin with the following estimates:

Lemma 3.1. Let (ρ,u,w) be a smooth solution of (1.1)–(1.4) on R3 × (0,T ] satisfying (1.5). Then one
has

sup
t∈[0,T ]

‖ρ‖Lp 6 C‖ρ0‖Lp , for p ∈ [1,∞], (3.4)

sup
t∈[0,T ]

(
‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2

)
+

∫ T

0

(
α‖∇u‖2L2 + µ′‖∇w‖2L2

)
dt

+

∫ T

0
ζ‖rotu − 2w‖2L2dt 6 Cm2/3

0

(3.5)

and

sup
t∈[0,T ]

eσt
(
‖ρ1/2u + ‖ρ1/2w‖2L2

)
+

∫ T

0
eσt

(
α‖∇u‖2L2 + µ′‖∇w‖2L2

)
dt

+

∫ T

0
eσtζ‖rotu − 2w‖2L2dt 6 Cm2/3

0 ,

(3.6)

where σ = 3σ1(π2 )4/3‖ρ0‖
−1
L3/2 with σ1 = min{α, µ′}.

Proof. First, Eq (3.4) can be shown by standard arguments ( [8]).
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Next, in order to prove (3.5), we multiply (1.1)2 and (1.1)3 by u and w, respectively, and in
integrating the resulting equations by parts over R3, we get after adding them together and using (1.1)4

that

1
2

d
dt
‖(ρ1/2u, ρ1/2w)‖2L2 + ‖µ(ρ)1/2∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2

+ ζ‖rotu − 2w‖2L2 = 0.
(3.7)

Integrating (3.7) over [0,T ] gives

sup
t∈[0,T ]

‖(ρ1/2u, ρ1/2w)‖2L2 +

∫ T

0

(
α‖∇u‖2L2 + µ′‖∇w‖2L2 + ζ‖rotu − 2w‖2L2

)
dt

6 C‖ρ0‖L3/2

(
‖u0‖

2
L6 + ‖w0‖

2
L6

)
,

(3.8)

which, together with (2.1) and (3.4), yields (3.5).
Finally, we notice from (2.1), (3.4), and (3.8) and Hölder’s inequality that

‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2 6 ‖ρ‖L3/2

(
‖u‖2L6 + ‖w‖2L6

)
6

1
3

(2
π

)4/3
‖ρ0‖L3/2

(
‖∇u‖2L2 + ‖∇w‖2L2

)
,

(3.9)

where we have used the following fact:

‖ f ‖2L6 6
1
3

(2
π

)4/3
‖∇ f ‖2L2 , for any f ∈ D1.

Combining (3.7) with (3.9), one has

1
2

d
dt

(
‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2

)
+ σ

(
‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2

)
6 0,

where σ = 3σ1(π2 )4/3‖ρ0‖
−1
L3/2 with σ1 = min{α, µ′}. By using Gronwall’s inequality, one has

‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2 6 e−2σt
(
‖ρ1/2

0 u0‖
2
L2 + ‖ρ1/2

0 w0‖
2
L2

)
. (3.10)

Multiplying (3.7) by eσt and using (3.10) show that

d
dt

[
eσt‖(ρ1/2u, ρ1/2w)‖2L2

]
+ 2eσt

(
α‖∇u‖2L2 + µ′‖∇w‖2L2 + ζ‖rotu − 2w‖2L2

)
6 σeσt

(
‖ρ1/2u‖2L2 + ‖ρ1/2w‖2L2

)
6 σe−σt

(
‖ρ1/2

0 u0‖
2
L2 + ‖ρ1/2

0 w0‖
2
L2

)
.

(3.11)

Integrating the above inequality over [0,T ] leads to (3.6). �
Remark 3.1. Evidently, we can infer from (1.2) and (3.4) that

0 < α 6 µ(ρ) 6 β , max
06ρ6ρ̄

µ(ρ) < ∞. (3.12)
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Lemma 3.2. Let the condition of (3.1) be in force, then there exists some positive constant ε1,
depending only on q, ζ, ρ̄, α, β, µ′, λ′, ‖∇µ(ρ0)‖Lq , ‖∇u0‖L2 and ‖∇w0‖L2 such that if

sup
t∈[0,T ]

(
α‖∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+

∫ T

0

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt

6 4
(
β‖∇u0‖

2
L2 + µ′‖∇w0‖

2
L2 + (µ′ + λ′)‖divw0‖

2
L2 + ζ‖rotu0 − 2w0‖

2
L2

)
,

(3.13)

then

sup
t∈[0,T ]

(
α‖∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+

∫ T

0

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt

6 2
(
β‖∇u0‖

2
L2 + µ′‖∇w0‖

2
L2 + (µ′ + λ′)‖divw0‖

2
L2 + ζ‖rotu0 − 2w0‖

2
L2

)
,

(3.14)

provided
m0 6 ε1.

Moreover, for i = 1, 2, 3 and σ, as in Lemma 3.1, one has

sup
t∈[0,T ]

[
ti
(
‖∇u‖2L2 + ‖∇w‖2L2

)]
+

∫ T

0
ti
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt 6 Cm2/3

0 , (3.15)

and

sup
t∈[0,T ]

[
eσt

(
‖∇u‖2L2 + ‖∇w‖2L2

)]
+

∫ T

0
eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt 6 Cm2/3

0 . (3.16)

Proof. The Eq (1.1)1 can be written as[
µ(ρ)

]
t
+ u · ∇µ(ρ) = 0. (3.17)

Multiplying (1.1)2 by ut and integrating the resulting equation over R3, one can deduce from (3.17)
that

1
2

d
dt

(
‖µ1/2(ρ)∇u‖2L2 + ζ‖rotu‖2L2

)
+ ‖ρ1/2ut‖

2
L2 = 2ζ

( ∫
rotu · wdx

)
t

− 2ζ
∫

rotu · wtdx −
∫

ρu · ∇u · utdx −
1
2

∫
u · ∇µ(ρ)|∇u|2dx,

(3.18)

where we have used the fact that ∆u + rot(rotu) = ∇divu = 0.
Multiplying (1.1)3 by wt and integrating by parts over R3 show that

1
2

d
dt

(
µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + 4ζ‖w‖2L2

)
+ ‖ρ1/2wt‖

2
L2

= 2ζ
∫

rotu · wtdx −
∫

ρu · ∇w · wtdx,
(3.19)
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Combining (3.18) with (3.19), yields

d
dt

(
‖µ1/2(ρ)∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+ 2‖ρ1/2ut‖

2
L2 + 2‖ρ1/2wt‖

2
L2

= −2
∫

ρu · ∇u · utdx − 2
∫

ρu · ∇w · wtdx −
∫

u · ∇µ(ρ)|∇u|2dx =

3∑
i=1

Ii.

(3.20)

Now, we estimate Ii(i = 1, 2, 3.) as follows: Hölder’s inequality, together with (2.1), (2.2), and (3.4),
gives

I1 6
1
2
‖ρ1/2ut‖

2
L2 + 2‖ρ‖L∞‖u‖2L6‖∇u‖2L3

6
1
2
‖ρ1/2ut‖

2
L2 + C(ρ̄)‖∇u‖3L2‖∇

2u‖L2 .

(3.21)

Similarly,

I2 6
1
2
‖ρ1/2wt‖

2
L2 + 2‖ρ‖L∞‖u‖2L∞‖∇w‖2L2

6
1
2
‖ρ1/2wt‖

2
L2 + C(ρ̄)‖∇w‖2L2‖∇u‖L2‖∇2u‖L2 ,

(3.22)

and
I3 6 C(β)‖u‖L6‖∇2u‖L2‖∇u‖L3 6 C(β)‖∇u‖3/2

L2 ‖∇
2u‖3/2

L2 . (3.23)

Putting (3.21)–(3.23) into (3.20), one has

d
dt

(
‖µ1/2(ρ)∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+

3
2

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
6 C

(
‖∇u‖3L2 + ‖∇w‖2L2‖∇u‖L2

)
‖∇2u‖L2 + C‖∇u‖3/2

L2 ‖∇
2u‖3/2

L2 .

(3.24)

We know from (1.1)2 that (u, P) satisfies the following system:
−div

[(
µ(ρ) + ζ

)
∇u

]
+ ∇P = −ρut − ρu · ∇u + 2ζrotw, x ∈ R3,

divu = 0, x ∈ R3,

u(x)→ 0, |x| → ∞,

Taking G = −ρut − ρu · ∇u + 2ζrotw and r = 2 in (2.3), we deduce from (3.1), (3.4), and Cauchy-
Schwarz’s inequality that

‖∇2u‖L2 + ‖∇P‖L2

6 C‖ − ρut − ρu · ∇u + 2ζrotw‖L2

(
1 + ‖∇µ(ρ)‖q/(q−3)

Lq

)
6 C‖ρ‖1/2L∞ ‖ρ

1/2ut‖L2 + C‖ρ‖L∞‖u‖L6‖∇u‖L3 + C‖∇w‖L2

6 C‖ρ1/2ut‖L2 + C‖∇u‖3/2
L2 ‖∇

2u‖1/2
L2 + C‖∇w‖L2

6
1
2
‖∇2u‖L2 + C‖ρ1/2ut‖L2 + C‖∇u‖3L2 + C‖∇w‖L2 ,
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which gives
‖∇2u‖L2 + ‖∇P‖L2 6 C‖ρ1/2ut‖L2 + C‖∇u‖3L2 + C‖∇w‖L2 . (3.25)

Taking (3.25) into (3.24), one deduces from (3.13) that

d
dt

(
‖µ1/2(ρ)∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
6 C

(
‖∇u‖2L2 + ‖∇w‖2L2

)
.

(3.26)

Integrating (3.26) over [0,T ], then using (3.5) and (3.12), shows that

sup
t∈[0,T ]

(
α‖∇u‖2L2 + µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)
+

∫ T

0

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt

6 C1m2/3
0 +

(
β‖∇u0‖

2
L2 + µ′‖∇w0‖

2
L2 + (µ′ + λ′)‖divw0‖

2
L2 + ζ‖rotu0 − 2w0‖

2
L2

)
,

(3.27)

where the positive constant C1 depends only on q, ζ, ρ̄, α, β, µ′, λ′, ‖∇µ(ρ0)‖Lq , ‖∇u0‖L2 , and ‖∇w0‖L2 ,
but is independent of time T > 0 and m0. Taking

m0 6 ε1 ,
(β‖∇u0‖

2
L2 + µ′‖∇w0‖

2
L2 + (µ′ + λ′)‖divw0‖

2
L2 + ζ‖rotu0 − 2w0‖

2
L2

C1

)3/2
.

Thus, we obtain (3.14).
Multiplying (3.26) by t gives that

d
dt

[
t
(
‖µ1/2(ρ)∇u‖2L2 + µ′‖∇u‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)]
+ t

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
6 C

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖rotu − 2w‖2L2

)
+ Ct

(
‖∇u‖2L2 + ‖∇w‖2L2

)
.

(3.28)

Integrating (3.28) over [0,T ], we obtain from (3.5) and (3.6) that

sup
t∈[0,T ]

[
t
(
‖∇u‖2L2 + ‖∇w‖2L2

)]
+

∫ T

0
t
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt

6 C
∫ T

0

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖rotu − 2w‖2L2

)
dt + C

∫ T

0
t
(
‖∇u‖2L2 + ‖∇w‖2L2

)
dt

6 Cm2/3
0 + C sup

t∈[0,T ]

(
te−σt

) ∫ T

0
eσt

(
‖∇u‖2L2 + ‖∇w‖2L2

)
dt 6 Cm2/3

0 ,

which implies that (3.15) holds for i = 1. For i = 2, 3, we can take a similar approach to obtain the
results of (3.15).

Next, multiplying (3.26) by eσt, one has

d
dt

[
eσt

(
‖µ1/2(ρ)∇u‖2L2 + µ′‖∇u‖2L2 + (µ′ + λ′)‖divw‖2L2 + ζ‖rotu − 2w‖2L2

)]
+ eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
6 Ceσt

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖rotu − 2w‖2L2

)
.

(3.29)
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Integrating (3.29) over [0,T ], one can deduce from (3.6) that

sup
t∈[0,T ]

[
eσt

(
‖∇u‖2L2 + ‖∇w‖2L2

)]
+

∫ T

0
eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
dt

6 C
∫ T

0
eσt

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖rotu − 2w‖2L2

)
dt 6 Cm2/3

0 .

Thus, we obtain (3.16). �

Lemma 3.3. Under the condition of (3.1), then for i = 1, 2, 3,

sup
t∈[0,T ]

[
ti
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+

∫ T

0
ti
(
‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

)
dt 6 Cm2/3

0 . (3.30)

Moreover, for σ as in Lemma 3.1 and δ(t) , min{1, t},

sup
t∈[δ(T ),T ]

[
eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+

∫ T

δ(T )
eσt

(
‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

)
dt 6 C. (3.31)

Proof. Operating ∂t to (1.1)2 and (1.1)3, respectively, we infer from (1.1)1 that

ρutt + ρu · ∇ut − div
(
(µ(ρ) + ζ)∇u

)
t
+ ∇Pt

= −ρut · ∇u + (u · ∇ρ)(ut + u · ∇u) + 2ζrotwt,
(3.32)

and
ρwtt + ρu · ∇wt − µ

′∆wt − (µ′ + λ′)∇divwt + 4ζwt

= −ρut · ∇w + (u · ∇ρ)(wt + u · ∇w) + 2ζrotut.
(3.33)

Multiplying (3.32) and (3.33) by ut and wt, respectively, and then integrating by parts on R3, we deduce
from (3.17) that

1
2

d
dt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ ‖(µ(ρ) + ζ)1/2∇ut‖

2
L2 + µ′‖∇wt‖

2
L2

+ 4ζ‖wt‖
2
L2 + (µ′ + λ′)‖divwt‖

2
L2

=

∫ [
− ρut · ∇u + (u · ∇ρ)(ut + u · ∇u)

]
· utdx

+

∫ [
− ρut · ∇w + (u · ∇ρ)(wt + u · ∇w)

]
· wtdx

+ 2ζ
∫ (

rotwt · ut + rotut · wt

)
dx +

∫
u · ∇µ(ρ)∇u · ∇utdx =

4∑
i=1

Ni.

(3.34)

Now, we estimate Ni(i = 1, 2, 3, 4) as follows: Thanks to divu = 0, we deduce from (2.1), (2.2), (3.4),
(3.14) and Cauchy-Schwarz’s inequality that

N1 6 C‖ρ‖1/2L∞ ‖ρ
1/2ut‖L3‖∇ut‖L2‖u‖L6 + C‖ρ‖L∞‖∇2u‖L2‖ut‖L6‖u‖2L6

+ C‖ρ‖L∞‖∇ut‖L2‖∇u‖L6‖u‖2L6 + C‖ρ‖L∞‖ut‖L6‖∇u‖L6‖∇u‖L2‖u‖L6

+ ‖ρ1/2ut‖
2
L4‖∇u‖L2

6 C‖ρ‖3/4L∞ ‖ρ
1/2ut‖

1/2
L2 ‖∇u‖L2‖∇ut‖

3/2
L2 + C‖ρ‖L∞‖∇ut‖L2‖∇2u‖L2‖∇u‖2L2

6
α

6
‖∇ut‖

2
L2 + C‖ρ1/2ut‖

2
L2 + C‖∇2u‖2L2 ,

(3.35)
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and

N2 6 C‖ρ‖1/2L∞ ‖ρ
1/2wt‖L3‖∇wt‖L2‖u‖L6 + C‖ρ‖L∞‖∇2w‖L2‖wt‖L6‖u‖2L6

+ C‖ρ‖L∞‖∇wt‖L2‖∇w‖L6‖u‖2L6 + C‖ρ‖L∞‖wt‖L6‖∇w‖L6‖∇u‖L2‖u‖L6

+ ‖ρ1/2wt‖L3‖∇w‖L2‖ut‖L6‖ρ‖1/2L∞

6 C‖ρ‖3/4L∞ ‖ρ
1/2wt‖

1/2
L2 ‖∇u‖L2‖∇wt‖

3/2
L2 + C‖ρ‖L∞‖∇wt‖L2‖∇2w‖L2‖∇u‖2L2

+ C‖ρ‖3/4L∞ ‖ρ
1/2wt‖

1/2
L2 ‖∇w‖L2‖∇wt‖

1/2
L2 ‖∇ut‖L2

6
α

6
‖∇ut‖

2
L2 +

µ′

2
‖∇wt‖

2
L2 + C‖ρ1/2wt‖

2
L2 + C‖∇2w‖2L2 .

(3.36)

Cauchy-Schwarz’s inequality gives

N3 6 4ζ‖wt‖
2
L2 + ζ‖∇ut‖

2
L2 . (3.37)

The inequalities (2.2) and (3.1), together with Cauchy-Schwarz’s inequality, show that

N4 6 C‖u‖L∞‖∇µ(ρ)‖Lq‖∇u‖L2q/(q−2)‖∇ut‖L2

6 C‖∇u‖
1− 3

q +
1
2

L2 ‖∇2u‖
3
q +

1
2

L2 ‖∇ut‖L2

6
α

6
‖∇ut‖

2
L2 + C‖∇u‖2L2 + C‖∇2u‖4L2 .

(3.38)

Putting (3.35)–(3.38) into (3.34) and using (3.25) yields

d
dt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ ‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

6 C
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖∇2u‖2L2 + ‖∇2w‖2L2

)
+ C‖∇2u‖4L2

6 C
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖∇u‖2L2 + ‖∇w‖2L2

)
+ C‖ρ1/2ut‖

2
L2‖ρ

1/2ut‖
2
L2 + C‖∇2w‖2L2 .

(3.39)

To deal with the last term on the right side of (3.39), we first multiply (1.1)3 by w and then integrate
the resulting equation by parts on R3 to get that

µ′‖∇w‖2L2 + (µ′ + λ′)‖divw‖2L2 + 4ζ‖w‖2L2

6 ‖w‖L2‖ρwt + ρu · ∇w − 2ζrotu‖L2

6 ζ‖w‖2L2 + C
(
‖ρwt‖

2
L2 + ‖ρu · ∇w‖2L2 + ‖∇u‖2L2

)
,

which implies
‖∇w‖L2 + ‖w‖L2 6 C

(
‖ρwt‖L2 + ‖ρu · ∇w‖L2 + ‖∇u‖L2

)
. (3.40)

On the other hand, one can deduce from (1.1)3 that

‖∇2w‖L2 6 C
(
‖ρwt + ρu · ∇w − 2ζrotu + 4ζw‖L2

)
6 C‖w‖L2 + C

(
‖ρwt‖L2 + ‖ρu · ∇w‖L2 + ‖∇u‖L2

)
,
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which, together with (3.40), (2.1), and (3.4), yields

‖w‖H2 6 C
(
‖ρwt‖L2 + ‖ρu · ∇w‖L2 + ‖∇u‖L2

)
6 C‖ρ1/2wt‖L2‖ρ‖1/2L∞ + C‖ρ‖L∞‖u‖L6‖∇w‖L3 + C‖∇u‖L2

6
1
2
‖w‖H2 + C‖ρ1/2wt‖L2 + C‖∇u‖2L2‖∇w‖L2 + C‖∇u‖L2 ,

thus

‖w‖H2 6 C‖ρ1/2wt‖L2 + C‖∇u‖2L2‖∇w‖L2 + C‖∇u‖L2 . (3.41)

Taking (3.41) into (3.39), we infer from (3.14) that

d
dt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ ‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

6 C
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖∇u‖2L2 + ‖∇w‖2L2

)
+ C‖ρ1/2ut‖

2
L2‖ρ

1/2ut‖
2
L2 .

(3.42)

Multiplying (3.42) by t, one has

d
dt

[
t
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+ t

(
‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

)
6 C‖ρ1/2ut‖

2
L2

[
t
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+ Ct

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
,

which, together with (3.14), (3.15) and Gronwall’s inequality, gives that (3.30) holds for i = 1. Using
the same methods, we can show that (3.30) for i = 2, 3.

Next, in order to prove (3.31), we first multiply (3.42) by eσt, then

d
dt

[
eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+ eσt

(
‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

)
6 C‖ρ1/2ut‖

2
L2

[
eσt

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)]
+ Ceσt

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
,

which, combining (3.6), (3.14), and (3.16) with Gronwall’s inequality, gives that (3.31) holds. �

Lemma 3.4. Under the condition of (3.1), then∫ T

0
‖∇u‖L∞dt 6 Cm1/2r

0 , (3.43)

where 3 < r < q with q ∈ (3, 6).
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Proof. It follows from (1.1)2, (2.1), (2.2), (2.4), and (3.1) that for any r ∈ (3,min{6, q})

‖∇2u‖Lr + ‖∇P‖Lr

6 C‖ − ρut − ρu · ∇u + 2ζrotw‖Lr

(
1 + ‖∇µ(ρ)‖q(5r−6)/2r(q−3)

Lq

)
6 C‖ρ‖1/2L∞ ‖ρ

1/2ut‖
(6−r)/2r
L2 ‖ρ1/2ut‖

(3r−6)/2r
L6

+ C‖ρ‖L6r/(6−r)‖u‖L∞‖∇u‖L6 + C‖∇w‖(6−r)/2r
L2 ‖∇w‖(3r−6)/2r

L6

6 C‖ρ1/2ut‖
(6−r)/2r
L2 ‖∇ut‖

(3r−6)/2r
L2 + Cm(6−r)/6r

0 ‖∇u‖1/2
L2 ‖∇

2u‖3/2
L2

+ C‖∇w‖(6−r)/2r
L2 ‖∇2w‖(3r−6)/2r

L2 ,

(3.44)

thus

‖∇u‖L∞ 6 C‖∇u‖(2r−6)/(5r−6)
L2 ‖∇2u‖3r/(5r−6)

Lr 6 C‖∇u‖L2 + C‖∇2u‖Lr

6 C‖∇u‖L2 + C‖ρ1/2ut‖
(6−r)/2r
L2 ‖∇ut‖

(3r−6)/2r
L2

+ Cm(6−r)/6r
0 ‖∇u‖1/2

L2 ‖∇
2u‖3/2

L2 + C‖∇w‖(6−r)/2r
L2 ‖∇2w‖(3r−6)/2r

L2 ,

(3.45)

The inequality (3.6), together with Hölder’s inequality, shows that∫ T

0
‖∇u‖L2dt =

∫ T

0
eσt/2‖∇u‖L2e−σt/2dt

6 C
( ∫ T

0
eσt‖∇u‖2L2dt

)1/2( ∫ T

0
e−σtdt

)1/2

6 Cm1/3
0 .

(3.46)

For any T ∈ (0, 1], we can show from (3.30) and Hölder’s inequality that∫ T

0
‖ρ1/2ut‖

(6−r)/2r
L2 ‖∇ut‖

(3r−6)/2r
L2 dt

6 C sup
t∈[0,T ]

(
t‖ρ1/2ut‖

2
L2

)(6−r)/4r( ∫ T

0
t‖∇ut‖

2
L2dt

)(3r−6)/4r

×
( ∫ T

0
t−2r/(r+6)dt

)(r+6)/4r

6 Cm1/3
0 .

(3.47)

For T > 1, one can deduce from (3.30), (3.31), and Hölder’s inequality that∫ T

1
‖ρ1/2ut‖

(6−r)/2r
L2 ‖∇ut‖

(3r−6)/2r
L2 dt

6 C sup
t∈[0,T ]

(
eσt‖ρ1/2ut‖

2
L2

)(6−r)/4r( ∫ T

0
t3‖∇ut‖

2
L2dt

)(3r−6)/4r

×
( ∫ T

1
t−9(r−2)/(r+6)dt

)(r+6)/4r

6 Cm(3r−6)/6r
0 .

(3.48)
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Similarly, ∫ T

0
‖∇w‖(6−r)/2r

L2 ‖∇2w‖(3r−6)/2r
L2 dt 6 Cm(3r−6)/6r

0 + Cm1/3
0 . (3.49)

It follows from (3.5), (3.13), and (3.25) that∫ T

0
m(6−r)/6r

0 ‖∇u‖1/2
L2 ‖∇

2u‖3/2
L2 dt

6 Cm(6−r)/6r
0

( ∫ T

0
‖∇u‖2L2dt

)1/4( ∫ T

0
(‖ρ1/2ut‖

2
L2 + ‖∇u‖6L2 + ‖∇w‖2L2)dt

)3/4

6 Cm1/r
0 + Cm1/2+1/r

0 .

(3.50)

Due to 3 < r < q, q ∈ (3, 6), one has

1
2r

<
3r − 6

6r
<

1
3
.

Integrating (3.45) over t ∈ [0,T ] and using (3.46)–(3.50), we can obtain (3.43). �
With Lemmas 3.1–3.4 at hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. It follows from (3.17) that[
∇µ(ρ)

]
t
+ u · ∇2µ(ρ) + ∇u · ∇µ(ρ) = 0.

Multiplying the above equation by q|∇µ(ρ)|q−2∇µ(ρ) and integrating the resulting equations on R3, we
can obtain

d
dt
‖∇µ(ρ)‖qLq = −q

∫
u · ∇2µ(ρ) · |∇µ(ρ)|q−2∇µ(ρ)dx

− q
∫
∇u · ∇µ(ρ) · |∇µ(ρ)|q−2∇µ(ρ)dx.

Due to divu = 0, then

q
∫

u · ∇2µ(ρ) · |∇µ(ρ)|q−2∇µ(ρ)dx = −

∫
|∇µ(ρ)|qdivudx = 0.

Thus (
‖∇µ(ρ)‖qLq

)
t
6 q‖∇u‖L∞‖∇µ(ρ)‖qLq ,

which implies that (
‖∇µ(ρ)‖Lq

)
t
6 ‖∇u‖L∞‖∇µ(ρ)‖Lq ,

which, together with (3.43) and Gronwall’s inequality, shows that

sup
t∈[0,T ]

‖∇µ(ρ)‖Lq 6 exp
{ ∫ T

0
‖∇u‖L∞dt

}
‖∇µ(ρ0)‖Lq

6 exp
{
C2m1/2r

0

}
‖∇µ(ρ0)‖Lq

6 2‖∇µ(ρ0)‖Lq ,

(3.51)
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provided

m0 6 ε0 , min
{
ε1,

( ln2
C2

)2r}
.

Thus, we complete the proof of Proposition 3.1. �

Lemma 3.5. Under the condition of (3.1), then

sup
t∈[0,T ]

(
‖∇ρ‖L2 + ‖ρt‖L3/2

)
6 C. (3.52)

Proof. Similar to the method of (3.51), we can deduce from (1.1)1 that

sup
t∈[0,T ]

‖∇ρ‖L2 6 C. (3.53)

Hölder’s inequality, together with (1.1)1, (3.14), and (3.53), yields

‖ρt‖L3/2 = ‖u · ∇ρ‖L3/2 6 ‖∇ρ‖L2‖u‖L6 6 C‖∇ρ‖L2‖∇u‖L2 6 C.

Thus, we complete the proof of Lemma 3.5. �

Lemma 3.6. Under the condition of (3.1), then for 3 < r < q with q ∈ (3, 6), the following estimates
hold:

sup
t∈[0,T ]

t
(
‖(∇u,∇w)‖2H1 + ‖∇P‖2L2

)
+

∫ T

0
t
(
‖(∇u,∇w)‖2W1,r + ‖∇P‖2Lr

)
dt 6 C, (3.54)

and

sup
t∈[δ(T ),T ]

eσt
(
‖(∇u,∇w)‖2H1 + ‖∇P‖2L2

)
6 C, (3.55)

for σ as in Lemma 3.1 and δ(t) as in Lemma 3.3.

Proof. It follows from (3.14), (3.15), (3.25), (3.30), and (3.41) that

‖∇u‖2H1 + ‖∇w‖2H1 + ‖∇P‖2L2

6 C
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖∇u‖2L2 + ‖∇w‖2L2

)
,

thus

sup
t∈[0,T ]

(
t‖∇u‖2H1 + ‖∇w‖2H1 + ‖∇P‖2L2

)
6 Ct

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ Ct

(
‖∇u‖2L2 + ‖∇w‖2L2

)
6 C.

(3.56)

Hence, we can use the same methods to obtain (3.55).
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By virtue of r ∈ (3, q) with q ∈ (3, 6), one can obtain from (3.44) that

‖∇u‖2W1,r + ‖∇P‖2Lr + ‖∇w‖2W1,r

6 C
(
‖∇u‖2Lr + ‖∇w‖2Lr

)
+ C

(
‖∇2u‖2Lr + ‖∇P‖2Lr

)
+ C‖∇2w‖2Lr

6 C
(
‖∇2u‖2L2 + ‖∇2w‖2L2 + ‖∇u‖2L2 + ‖∇w‖2L2

)
+ C

(
‖∇2u‖2Lr + ‖∇P‖2Lr

)
+ C‖∇2w‖2Lr

6 C
(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2 + ‖∇u‖2L2 + ‖∇w‖2L2 + ‖w‖2L2

)
+ C

(
‖ρ1/2ut‖

(6−r)/r
L2 ‖∇ut‖

(3r−6)/r
L2 + ‖∇u‖L2‖∇2u‖3L2 + ‖∇w‖L2‖∇2w‖3L2

)
+ C

(
‖ρ1/2wt‖

(6−r)/r
L2 ‖∇wt‖

(3r−6)/r
L2 + ‖∇u‖L2‖∇2u‖L2‖∇2w‖2L2

)
6 C

(
‖ρ1/2ut‖

2
L2 + ‖ρ1/2wt‖

2
L2

)
+ C

(
‖∇ut‖

2
L2 + ‖∇wt‖

2
L2

)
+ C

(
‖∇u‖L2‖∇2u‖3L2 + ‖∇w‖L2‖∇2w‖3L2

)
+ C

(
‖∇u‖2L2 + ‖∇w‖2L2 + ‖w‖2L2

)
,

which, together with (3.5), (3.15), (3.25), (3.30), (3.41), and (3.56), yields∫ T

0
t
(
‖(∇u,∇w)‖2W1,r + ‖∇P‖2Lr

)
dt 6 C.

Thus, we complete the proof of Lemma 3.6. �
Proof of Theorem 1.1. Similar to the standard arguments in [10, 18, 20], with all the a priori estimates
established in Sections 3 at hand, we can immediately obtain our main results. �

Use of AI tools declaration

The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

We sincerely thank the Associate Editor and the anonymous referees for their carefully reading and
helpful suggestions that led to the improvement of the paper.

M.Y. Zhang was partially supported by the Natural Science Foundation of Shandong Province of
China (Grant No. ZR2021QA049) and the Science and Technology Project of Weifang (2022GX006).

Conflict of interest

The author declares that she has no conflict of interest.

References

1. H. Abidi, G. L. Gui, P. Zhang, On the decay and stability to global solutions of the 3D
inhomogeneous Navier-Stokes equations, Commun. Pure Appl. Math., 64 (2011), 832–881.
https://doi.org/10.1002/cpa.20351

AIMS Mathematics Volume 9, Issue 9, 23313–23330.

https://dx.doi.org/https://doi.org/10.1002/cpa.20351


23329

2. H. Abidi, P. Zhang, On the global well-posedness of 2-D inhomogeneous incompressible
Navier–Stokes system with variable viscous coefficient, J. Differ. Equations, 259 (2015), 3755–
3802. https://doi.org/10.1016/j.jde.2015.05.002

3. P. Braz e Silva, E. G. Santos, Global weak solutions for variable density asymmetric incompressible
fluids, J. Math. Anal. Appl., 387 (2012), 953–969. https://doi.org/10.1016/j.jmaa.2011.10.015

4. P. Braz e Silva, F. W. Cruz, M. Loayza, M. A. Rojas-Medar, Global unique solvability of
nonhomogeneous asymmetric fluids: a Lagrangian approach, J. Differ. Equations, 269 (2020),
1319–1348. https://doi.org/10.1016/j.jde.2020.01.001

5. B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch.
Rational Mech. Anal., 137 (1997), 135–158. https://doi.org/10.1007/s002050050025

6. R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids,
Adv. Differential Equations, 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948

7. R. Danchin, P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes
equations with variable density, Commun. Pure Appl. Math., 65 (2012), 1458–1480.
https://doi.org/10.1002/cpa.21409
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