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1. Introduction and motivations

The normalized Ricci flow on a compact Riemann surface of an arbitrary genus g was introduced
by Hamilton [23, 24]. Under the action of the normalized Ricci flow, the smooth metric gi j evolves
according to the following differential equation. A one-parameter family of Riemannian metric g(t, x)
is called normalized Ricci flow if it satisfies the following equation:

∂

∂t
g(t, x) = −2Ric(t, x) +

2r
n

gi j,
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g(0, x) = g0,

where r =

∫
B
Rdv∫
B

dV
is the average of scalar curvature. If r = 0, then the above equation reduces to Ricci

flow. After initiating these concepts, several authors studied them. For example, Abolrinwa et al. [4]
constructed some results for the solitons of the normalized Ricci flow and generalized corresponding
results for Ricci solitons. A complete closed Riemannian manifold evolved by a normalized Ricci flow
was studied to examine the spectrum of the p-biharmonic operator by them. A flow is used to derive
evolution formulas, monotonicity properties, and differentiability for the least nonzero eigenvalue.
Under these flows, several monotone quantities involving the first eigenvalue are obtained. In the
case n = 2, monotone quantities depend on compact surfaces’ Euler characteristics. Additionally, the
spectrum diverges in the direction of the presence of some geometric condition on which the curvature
is derived. For similar studies, see [6, 7, 12–16].

In the next study, the concept of harmonic-Ricci solitons was introduced and provided some
characterizations of rigidity, generalizing known results for Ricci solitons. In the complete case, the
restriction to the steady and shrinking gradient soliton was imposed, and some rigidity results can be
traced back to the vanishing of certain modified curvature tensors that take into account the geometry
of a Riemannian manifold equipped with a smooth map ϕ, called ϕ-curvature, which is a natural
generalization in the setting of harmonic-Ricci solitons of the standard curvature tensor [5].
Furthermore, almost all Ricci-harmonic solitons were defined as generalizations of Ricci-harmonic
solitons and harmonic-Einstein metrics [2, 3]. It has been shown that a gradient shrinking almost
Ricci-harmonic soliton on a compact domain can be almost harmonic Einstein under some necessary
and sufficient conditions. Following the previous concept, the Ricci-Bourguinon harmonic solitons
are introduced in [31] and use the idea of the V-harmonic map to study for geometric properties for
gradient Ricci-Bourguinon harmonic solitons. As a result, the relationship between gradient
Ricci-harmonic solitons and sequential warped product manifolds was established in [25, 26] by
considering sequential warped product manifolds consisting of gradient Ricci-harmonic solitons.
They also gave the physical applications of sequential standard static space-time and sequential
generalized Robertson-Walker space-time.

In the present paper, our main focus is on studying gradient normalized Ricci-harmonic solitons
inspired by [31] in sequential warped product manifolds in a similar manner with [26]. Taking
motivation from Ricci-harmonic solitons in sequential warped product manifold, we then introduce
the notion of normalized Ricci-harmonic solitons in sequential warped product manifold and prove
some results about them which generalize previous results for Ricci-harmonic solitons in sequential
warped product manifold. We also derive some significant applications for gradient normalized
Ricci-harmonic solitons in sequential standard static space-time and sequential generalized
Robertson-Walker space-time.

2. Basic formulas and notations

Now, we define the normalized Ricci-Harmonic soliton which is defined as follows: For a closed
manifold B, given a map ϕ from B to some closed target manifold N;

∂

∂t
g = −2Ric + 2α∇ϕ ⊗ ∇ϕ,

∂

∂t
ϕ = ρgϕ,
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where g(t) is a time-dependent metric on B,Rc is the corresponding Ricci curvature, ρgϕ is the tension
field of ϕ with respect to g and α is a positive constant (possibly time-dependent). Moreover, ∇ϕ stands
for the gradient of the function ϕ. We developed normalized Ricci-Harmonic flow, which is{

∂
∂t g = −2Ric − 2 r

ng + 2α∇ϕ ⊗ ∇ϕ,
∂
∂tϕ = ρgϕ.

Definition 2.1. Let ϕ : (B, g) → (N, h) be a smooth map (not necessarily harmonic map), where
(B, g) and (N, h) are static Riemannian manifolds. ((B, g), (N, h),V, ϕ, λ1, λ) is called normalized Ricci-
Harmonic solitons if

{
Ric − r

ng − α∇ϕ ⊗ ∇ϕ − 1
2LVg = λg,

ρgϕ + 〈∇ϕ,V〉 = 0,
(2.1)

where α > 0 is a positive constant depending on if m, λ1 , and λ are real constants. On the other hand,
ϕ is a map between (B, g) and (N, h). In particular, when V = −∇ f , then ((B, g), (N, h),V, ϕ, λ1, λ) is
called a gradient normalized Ricci-harmonic soliton if it satisfies the coupled system of elliptic partial
differential equations {

Ric − r
ng − α∇ϕ ⊗ ∇ϕ + ∇2 f = λg,

ρgϕ − 〈∇ϕ,∇ f 〉 = 0,
(2.2)

where f : B → R is a smooth function and ∇2 f = Hess( f ). The function f is called the potential
function of normalized Ricci-harmonic soliton. It is obvious that normalized Ricci-harmonic soliton
((B, g), (N, h),V, ϕ, λ1, λ) is a Ricci-harmonic soliton if r = 0. Azami et al. [7] gave the condition under
which the complete shrinking Ricci-harmonic Bourgainion soliton must be compact. The gradient
Ricci-harmonic soliton is said to be shrinking, steady, or expanding depending on whether λ > 0, λ = 0,
or λ < 0.

Remark 2.1. Gradient normalized Ricci-harmonic soliton is called trivial if the potential function f
is constant.

It can be from (2.2) that when ϕ and f are constants, (B, g) must be an Einstein manifold.

2.1. Sequential warped product manifolds

Let (Bi, g) be a three Riemannian manifold with associated matrix gi for i = 1, 2, 3, then the
sequential warped product of the form B = (B1 ×h B2) × f B3 is defined as the following metric:

g = (g1 ⊕ h2g2) ⊕ f 2
2 g3, (2.3)

where h : B1 ←− R and f : B1 × B2 ←− R are two smooth warping functions. Now, we denote
the Levi-Civita connections on B, B1, B2, and B3 are ∇ḡ,∇1,∇2, and ∇3, respectively. Similarly, Ricci
curvature is presented as Ric,Ric1,Ric2, and Ric3, respectively. We represent the gradient of h on B1

by ∇1h and ‖∇1h‖2 = g(∇1h,∇2h). Similarly, the gradient of f on B is by ∇h and ‖∇ f ‖2 = g(∇ f ,∇ f ).
Now, we recall a lemma which will be important in the proof of our main theorems.
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Lemma 2.1. [18] Assuming that B = (B1 ×h B2) × f B3 is a sequential warped product manifold with
metric g = (g1 ⊕ h2g2) ⊕ f 2

2 g3, for any Ui,Vi,Zi ∈ Γ(Bi), and i = 1, 2, 3, the following holds:

1) ∇̄U1V1 = ∇1U1V1.
2) ∇̄U1U2 = ∇̄U2U1 = U1(ln h)U2.

3) ∇̄U2V2 = ∇2U2V2 − hg(U2,V2)∇1h.
4) ∇̄U3U1 = ∇̄U1U3 = U1(ln f )U3.
5) ∇̄U3U2 = ∇̄U2U3 = U2(ln f )U3.
6) ∇̄U3V3 = ∇3U3V3 − f g(U3,V3)∇3 f3.
7) R(U1,V1)Z1 = R1(U1,V1)Z1

8) R(U2,V2)Z2 = R2(U2,V2)Z2 − ‖∇1h‖2{g2(U2,Z2)V2 − g2(V2,Z2)U2}.

9) R(U1,V2)Z1 = −1
h∇

2
h(U1,Z1)V2.

10) R(U1,V2)Z2 = hg2(V2,Z2)∇1U1∇1h.
11) R(U1,V2)Z3 = 0.
12) R(Ui,Vi)Z j = 0, i , j.
13) R(Ui,V3)Z j = 1

f∇
2
f (Ui,Z j)V3, i, j = 1, 2.

14) R(Ui,V3)Z3 = f g(V3,Z3)∇Ui∇ f , i = 1, 2.
15) R(U3,V3)Z3 = R3(Ui,V3)Z3 − ‖∇ f ‖1{g3(U3,Z3)V3 − g3(V3,Z3)U3}.

Lemma 2.2. [18] Assuming that B = (B1 ×h B2) × f B3 is a sequential warped product manifold with
metric g = (g1 ⊕ h2g2) ⊕ f 2

2 g3, for any Ui,Vi,Zi ∈ Γ(Bi), and i = 1, 2, 3, the following holds:

1) R̄ic(U1,V1) = Ric1(U1,V1) − n2
h ∇

2
h(U1,V1) − n3

f ∇
2
f (U1,V1).

2) R̄ic(U2,V2) = Ric2(U2,V2) − f ?1 g2(U2,V2) − n3
f ∇

2
f (U2,V2).

3) R̄ic(U3,V3) = Ric3(U3,V3) − f ?g3(U3,U3).
4) R̄ic(Ui,V j) = 0, i , j.

where h? = h∆h + (n2 − 1)‖∇1‖
2h and f ? = f ∆ f + (n3 − 1)‖∇2‖

2 f .

Now, we proof the key lemma as:

Lemma 2.3. Assuming that B = ((B1×hB2)× f B3, ϕ1, ϕ, λ1, λ) is a gradient normalized Ricci-harmonic
soliton on a sequential wrapped product manifold including a nonconstant harmonic map ϕ, then the
harmonic map ϕ can be expressed in the form ϕ = ϕB1 ◦ π1; ϕ = ϕB2 ◦ π2; or ϕ = ϕB3 ◦ π3 if, and only
if, ϕ1 = ϕ1B1 ◦ π1 for a neighborhood v of a point (p1, p2, p3) ∈ Γ(B̄), where ϕ1 ∈ C∞(B1) is a another
potential function and πi : Bi −→ R as projection maps for i = 1, 2, 3.

Proof. Operating Eq (2.2) for Ui and U j, we have

R̄ic(Ui,U j) + ∇2
ḡ(Ui,U j) − α∇̄ϕ(Ui)∇̄ϕ(U j) = (

r
n

+ λ)ḡ(Ui,U j), (2.4)

ρḡϕ(Ui,U j) − ḡ(∇̄ϕ(Ui), ∇̄ϕ1(U j)) = 0, (2.5)

for i , j and i ≤ i, j ≤ 3. It is implied that ḡ(Ui,U j) = 0. Now, from Lemma 2.2, we have R̄ic(Ui,U j) =

0. Following from [27], we get ∇2
ḡ(Ui,U j) = 0. Rearranging (2.4) and (2.5), we get

ḡ(∇ḡ
Ui

(∇̄ϕ1),U j) = 0. (2.6)
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Finally, implementing Lemma 2.1 in the above equation, it is easy to find that ϕ1 = ϕ1B1 ◦ π1.

Conversely, we assume that ϕ1 can be written in the form ϕ1 = ϕ1B1 ◦ π1 ∈ C∞(B1, then using
Eqs (2.1) and (2.3), we constructed

α∇̄ϕ(Ui)∇̄ϕ(U j) = 0. (2.7)

The above equation can be expressed because ϕ is a nonconstant map

∇̄ϕ(U1 + U2 + U3)∇̄ϕ(U1 + U2 + U3) , 0. (2.8)

For a neighborhood v, applying and summing up to 3 in (2.8), we get

3∑
i=1

(∇̄ϕ(Ui))2 +

3∑
i=1

3∑
j=1,i, j

∇̄ϕ(Ui)∇̄ϕ(U j) , 0. (2.9)

Now, from (2.7) and (2.9), we reached that ∇̄ϕ(Ui) , 0 for i = 1, 2, 3. It is a complete proof of the
lemma. �

2.2. Main theorems

Theorem 2.1. Assume that a sequential warped product manifold of the type B = ((B1 ×h B2) × f

B3, ḡ, ϕ1, ϕ, λ) is a gradient normalized Ricci-harmonic soliton if, and only if, the functions f , ϕ1, ϕ,

and λ satisfy one of the following conditions:

(a) If ϕ = ϕB1 ◦ π1, then
Ric1 −

n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) − α∇1ϕB1 ⊗ ∇1ϕB1 =

(
λ +

r
n

)
g1,

∆1 − g1(∇1,∇1(ϕ1 − n2 log(h))
}
ϕB1 + n3∇1ϕ1(log)( f )) = 0, (2.10)

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n

)
h + h(∆1h) + (n2 − 1)‖∇1h‖2−h(∇1ϕ1(h)

}
g2, (2.11)

and
together B3 is Einstein with Ric3 = λ3g3 such that

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − f (∇1ϕ1( f )). (2.12)

(b) If ϕ = ϕB2 ◦ π2, then

Ric1 −
n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) =

(
λ +

r
n

)
g1, (2.13)


Ric2 −

n3

f
∇2( f ) −

α

h4∇2ϕB2 ⊗ ∇2ϕB2 =
{(
λ +

r
n
)
h2 + h∆1h

+ (n2 − 1)‖∇1h‖2 − h(∇1ϕ1(h))
}
g2,

∆2ϕB2 + n3∇2ϕB2( f ) =0, (2.14)
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and
together B3 is Eintein with Ric3 −

α
f
∇

2
ϕB2 ⊗ ∇2ϕB2 = λ3g3 such that

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − f (∇1ϕ1( f )). (2.15)

(c) If ϕ = ϕB3 ◦ π3, then

Ric1 −
n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) =

(
λ +

r
n

)
g1, (2.16)

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n
)
h2 + h∆1h+(n2 − 1)‖∇1h‖2 − h(∇1ϕ1(h))

}
g2.

(2.17)
Ric3 −

α

f 4∇3ϕB3 ⊗ ∇3ϕB3 =λ3g3,

∆3ϕB3 =0, in B3, (2.18)

and
together with the following

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − f (∇1ϕ1( f )). (2.19)

where ∇2 f = Hess( f ) and ∇ f is the gradient of the function f .

Proof. Let B = ((B1 ×h B2) × f B3, ḡ, ϕ1, ϕ, λ1, λ) be a gradient normalized Ricci-harmonic soliton with
the assumptions ϕ = ϕB1 ◦ π1. By applying Lemma 2.2 and Hessian equations from [21] in the main
Eq (2.1), we arrive at (2.10). With similar procedures, again using Lemma 2.2 and putting ϕ = ϕB1 ◦π1

into the Eq (2.1), we derive that

Ric2(U2,V2) −
(
h∆1h + (n2 − 1)‖∇1h‖2

)
g2(U2,V2)

−
n3

f
∇2(U2,V2) + ∇2ϕ1(U2,V2) =

(
λ +

r
n

)
h2g2(U2,V2) (2.20)

for any U2,V2 ∈ Γ(B2). Including the results from Lemma 2.1 and the relation of Hessian for any
function gives the following:

∇2ϕ1(U2,V2) = h∇1ϕ1(h)g2(U2,V2). (2.21)

Combing the Eqs (2.20) and (2.21), we get our supposed result (2.11). Now for any U3,V3 ∈ Γ(B3)
and using Lemma 2.2 with ϕ = ϕB1 ◦ π1, we get

Ric3(U3,V3)−
(

f ∆2 f + (n3 − 1)‖∇ f ‖2
)
g3(U3,V3) + ∇2ϕ1(U3,V3)

=
(
λ +

r
n

)
f 2g2(U3,V3). (2.22)

Again with same property as in (2.21), we have

∇2ϕ1(U3,V3) = f∇2ϕ1( f )g2(U3,V3). (2.23)
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Inserting (2.23) into (2.22), we derive

Ric3(U3,V3)−{ f ∆2 f + (n3 − 1)‖∇ f ‖2}g3(U3,V3) + f∇2ϕ1( f )g3(U3,V3)

=
(
λ +

r
n

)
f 2g2(U3,V3). (2.24)

From the above equation, it is concluded that B3 is an Einstein manifold. The same procedures will
apply to another case, and then we complete the proof of the theorem. �

Theorem 2.2. Let a sequential warped product manifold of the type B = ((B1 ×h B2) × f B3, ḡ, ϕ1, ϕ, λ)
is a gradient normalized Ricci-harmonic soliton with noncosntant harmonic map ϕ. If (λ + r

n ) ≥ 0, ϕ1

tends to maximum or minimum in B1 with the following inequality

n1

f
trg1∇

2( f ) +
n2

h
∆1(h) ≥ R1, (2.25)

then ϕ1 = ϕ1B1 ◦ π1 are constant functions, where R1 represents the scalar curvature on R1.

Proof. From the first statement of the theorem and taking trace in (2.10) for any U1,V1 ∈ Γ(B1),

∆1ϕ1B1 = n1

(
λ +

r
n

)
+ α‖dπ1(ϕ)‖2 − R1 +

n3

f
trg1∇

2( f ) +
n2

h
∆1(h). (2.26)

Now from (2.25) and
(
λ+ r

n

)
≥ 0 together with ϕ1 tending to the maximum or minimum in B1, it easily

concludes from (2.26) that the map ϕ1 = ϕ1B1 ◦ π1 is a constant function. �

Theorem 2.3. Let a sequential warped product manifold of the type B = ((B1 ×h B2) × f B3, ḡ, ϕ1, ϕ, λ)
be a gradient normalized Ricci-harmonic soliton with nonconstant harmonic map ϕ such that f tends
to the maximum or minimum and the following inequalities hold:{(

λ +
r
n

)
≤
µ

f 2 or
(
λ +

r
n

)
≥
µ

f 2

}
∈ B1 × B2, (2.27)

then f is a constant function.

Proof. One of the most useful elliptic operators of 2nd order is defined by

ω(·) = ∆(·) − ∇ϕ1(·) +
n1 − 1

f
∇ f (·). (2.28)

Implementing (2.12), (2.15), (2.20), and (2.28), we get the following:

ω(·) =
µ −

(
λ + r

n

)
f 2

f
. (2.29)

Applying our assumption (2.27) together with Eq (2.29), if f tends to a maximum or minimum, then f
is a constant function. It completes the proof of the theorem. �
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3. Applications in sequential standard static space-time

We consider B3 = I to be an open interval associated with a subinterval of R. In this case, dt2 is the
Euclidean metric tensor on I, then a sequential warped product manifold of the form B = ((B1×hB2)× f

I, ḡ) turns into sequential standard static space-time with metric tensor ḡ = (g1 ⊕ h2g2) ⊕ f 2(−dt2).
This type of space-time is defined in [19, 20]. If ϕ : B −→ R is a harmonic map, then we have the
following result:

Theorem 3.1. Assume that a sequential warped product manifold of the type B = ((B1 ×h B2) × f

I, ḡ, ϕ1, ϕ, λ) is a gradient normalized Ricci harmonic soliton if, and only if, the functions f , ϕ1, ϕ and
λ satisfy one of the following conditions:

(a) If ϕ = ϕB1 ◦ π1, then
Ric1 −

n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) − α∇1ϕB1 ⊗ ∇1ϕB1 =

(
λ +

r
n

)
g1,

∆1 − g1(∇1,∇1(ϕ1 − n2 log(h))
}
ϕB1 + n3∇1ϕ1(log)( f )) = 0, (3.1)

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n

)
h + h(∆1h) + (n2 − 1)‖∇1h‖2−h(∇1ϕ1(h)

}
g2, (3.2)

and together with the following(
λ +

r
n
)
f 2 + f ∆ f − f (∇1ϕ1( f )) = 0. (3.3)

(b) If ϕ = ϕB2 ◦ π2, then

Ric1 −
n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) =

(
λ +

r
n

)
g1, (3.4)

Ric2 −
n3

f
∇2( f ) −

α

h4∇2ϕB2 ⊗ ∇2ϕB2 =
{(
λ +

r
n
)
h2 + h∆1h + (n2 − 1)‖∇1h‖2

− h(∇1ϕ1(h))
}
g2,

∆2ϕB2 + n3∇2ϕB2( f ) = 0,

(3.5)

and together with the following(
λ +

r
n
)
f 2 + f ∆ f − f (∇1ϕ1( f )) = 0. (3.6)

(c) If ϕ = ϕI ◦ πI, then

Ric1 −
n2

h
∇2

1(h) −
n3

f
∇2( f ) + ∇2(ϕ1) =

(
λ +

r
n

)
g1, (3.7)

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n
)
h2 + h∆1h+(n2 − 1)‖∇1h‖2 − h(∇1ϕ1(h))

}
g2, (3.8)α∇IϕI ⊗ ∇IϕI+ f 4

{
big(λ +

r
n
)
f 2 + f ∆ f − f (∇1ϕ1( f ))}

}
= 0.

∆IϕI = 0, in I. (3.9)

Proof. For the interval I, the metric tensor is defined as gI( ∂
∂t ,

∂
∂t ) = −1 and the Ricci curvature is given

as Ric( ∂
∂t ,

∂
∂t ) = 0 in Theorem 2.1, the desire result of theorem. The proof is completed. �
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4. Applications in generalized Robertson-Walker space-time

If we consider ϕ : B −→ R is a harmonic map through the sequential generalized Robertson-Walker
space-time B = ((I ×h B2) × f B3, ḡ, ϕ1, ϕ, λ), then we have the following results.

Theorem 4.1. A sequential generalized Robertson-Walker space-time B = ((I×hB2)× f B3, ḡ, ϕ1, ϕ, λ)
is a gradient normalized Ricci harmonic soliton if, and only if, the following differential equations
satisfy

(a) If ϕ = ϕB1 ◦ π1, then 
n2 f ′′1

f
+

n3∇
2( f )
f

− ϕ′′1 + αϕ′′
I

= λ +
r
n
,

ϕ′′
I
− ϕ′

I
ϕ′1 +

n2h′

h
ϕ′
I

+
n3∇ f

f
ϕ′
I

= 0,

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n

)
h2 + hh′′ + (n2 − 1)(h′)2 − hh′ϕ′1

}
g2,

and together B3 is Einstein with Ric3 = λ3g3 such that

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − (∇ f ) fϕ1.

(b) If ϕ = ϕB2 ◦ π2, then

n2 f ′′1

f
+

n3∇
2( f )
f

− ϕ′′1 = λ +
r
n
,


Ric2 −

n3

f
∇2( f ) −

α

h4∇2ϕB2 ⊗ ∇2ϕB2 =

{(
λ +

r
n

)
h2 + hh′′ + (n2 − 1)(h′)2

− hh′ϕ′1
}
g2,

∆2ϕB2 + n3∇2ϕB2( f ) = 0,

and together B3 is Eintein with Ric3 −
α
f
∇

2
ϕB2 ⊗ ∇2ϕB2 = λ3g3 such that

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − (∇ f ) fϕ1.

(c) If ϕ = ϕB3 ◦ π3, then

n2 f ′′1

f
+

n3∇
2( f )
f

− ϕ′′1 = λ +
r
n
,

Ric2 −
n3

f
∇2( f ) =

{(
λ +

r
n

)
h2 + hh′′ + (n2 − 1)(h′)2

− hh′ϕ′1
}
g2,
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Ric3 −

α

f 4∇3ϕB3 ⊗ ∇3ϕB3 =λ3g3,

∆3ϕB3 =0, in B3,

and together with the following

λ3 =
(
λ +

r
n
)
f 2 + f ∆ f + (n3 − 1)‖∇ f ‖2 − (∇ f ) fϕ1.

Proof. Now, we define the following for the first factor I:

∇1h = −h′,

∇2
1h(

∂

∂t
,
∂

∂t
) = h′′,

∆1h = −h′′,

gI(
∂

∂t
,
∂

∂t
) = −1,

gI(∇1h,∇1h) = −(h′)2.

All the above equations substitute in Theorem 2.1, and we get our desired results. It completes the
proof of our theorem. �

Remark 4.1. As we know, if r = 0 in (2.2), then a gradient normalized Ricci-harmonic soliton is
generalized to a gradient Ricci-Harmonic soliton which is given in [2, 6]. Now substitute r = 0 in
Theorems 2.1, 2.2, 2.3, 3.1, and 4.1. Then Theorems 2.1, 2.2, 2.3, 3.1, and 4.1 coincide with Theorems
2.1, 2.2, 3.1, and 3.2 in [26]. As a result, our results are the natural generalization of gradient Ricci-
Harmonic solitons on sequentially warped product manifolds.

5. Conclusions

The geometry of warped product manifolds is rich and varied, and their properties depend crucially
on the choice of the warping function. Understanding the behavior of this function is therefore of
fundamental importance in the study of these objects. In recent years, there has been a surge of
interest in the study of warped product manifolds, driven in part by their wide-ranging applications
and connections to other mathematics areas. Therefore, the study of warped product manifolds has
many important applications in geometry and physics. For example, in general relativity, warped
product manifolds are used to model certain black hole space-times. In algebraic geometry, they arise
in studying moduli spaces of vector bundles on algebraic varieties. In topology, they have been used
to construct examples of exotic manifolds that do not admit a smooth structure [11].

Normalized Ricci solitons are solutions to the Ricci flow equation in Riemannian geometry, and
they have found applications in various areas of mathematics and physics. In physics, particularly in
the study of general relativity and the behavior of space-time, normalized Ricci solitons have been of
interest. Here are some potential physical applications: In the context of gravitational collapse:
Normalized Ricci solitons can be used to model the behavior of space-time in the context of
gravitational collapse. In the study of black holes and other astrophysical phenomena, these solitons
can provide insights into the dynamics of space-time near singularities. About cosmology, normalized
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Ricci solitons may have implications for cosmological models, particularly in understanding the
behavior of the universe at large scales. They can potentially shed light on the evolution of the
universe and the behavior of space-time in the early universe. Quantum gravity: In the quest to
develop a consistent theory of quantum gravity that unifies general relativity and quantum mechanics,
space-time behavior at small scales is crucial. Normalized Ricci solitons could play a role in
understanding the quantum nature of space-time and its dynamics in a quantum gravity framework.

In singularities and space-time geometry: Normalized Ricci solitons can be used to study the
behavior of space-time near singularities, such as those found in black holes or cosmological models.
Understanding the geometric properties of space-time near singularities is important for
understanding the fundamental nature of space-time. The study of geometric flows, including the
Ricci flow, has applications in understanding the evolution of manifolds and geometric structures.
Normalized Ricci solitons are important solutions in this context and can provide insights into the
long-term behavior of geometric evolution. These are just a few potential physical applications of
normalized Ricci solitons. Their study can contribute to our understanding of the fundamental nature
of space-time, gravitational phenomena, and the behavior of geometric structures in
physics [1–4, 8–10, 22, 28–30].
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