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Abstract: In this work, we analyze the approximate solution of a specific partial integro-differential
equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical
solution procedure for this PIDE, which is transferred into a Volterra—Fredholm integral equation
(VFIE), and the spectral method is performed on VFIE. In some illustrated examples, we show that
the VFIE problem has high numerical stability with respect to the original form of the PIDE problem.
For this aim, we apply the spectral Tau method in two cases, first for the problem in the form of VFIE
and then also for the problem in the form of PIDE. The remarkable numerical results obtained from
the VFIE problem form compared to those gained from the PIDE problem form show the efficiency
of the proposal method. Also, we prove the convergence theorem of the numerical solution of the Tau
method for the VFIE problem, and then it is generalized to the PIDE problem.
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1. Introduction

In some models of the physical and biological sciences, the impact of the systems’ memory needs
to be reflected, so that formulation by partial differential equations may not precisely model such
situations. Then, for assimilating the memory effect in such systems, an integral term is added to the
basic partial differential equation, which leads to a partial integro-differential equation (PIDE). Some
examples of a parabolic PIDE occur in the study of the dynamics of nuclear reactors influenced by
space-time [1, 2], the situation under control for a reaction-diffusion issue [3,4], and the compression
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of poro-viscoelastic media [5] with the equation in the following form:

N f
vi(x, 1) + av(x, 1) — vaal(x, t):Zbick f e I (x, s)ds, (x,t) € (0,1) x (0, T], (1.1)
k=1 0

where
v(x,0)=0, 0<x <1, v0,1) = fo(t), vi(1,6) =0, t€(0,T],

such that b; and ¢, are dimensionless constants with b, > 0 and 0 < ¢; < 1, and a is the effective
stress (more details about Eq (1.1) can be found in [5]). In viscoelasticity [6,7] and in some physical
systems involving fluid flow [8-11], we deal with partial integro-differential equations with weakly
singular kernels. As you know, Volterra integral equations with weakly singular kernels have solutions
whose derivatives are unbounded at the left endpoint of the interval of integration, but the solutions of
Volterra integro-differential equations with weakly singular kernels are slightly more regular [12].

The authors in the research works [13—18] concentrated on the PIDEs with a weakly singular
kernel by using the Cubic B-spline least-square, Galerkin method with quadratic weight function, and
Quintic B-spline collocation method. Now, we are motivated to focus on the partial integro-differential
equation with a weakly singular kernel as follows:

f
Vi(x, 1) + AVi(x,t) — yV,(x, 1) = f H(t - s)V(x,s)ds + p(x,t), 0<x<L, t >0, (1.2)
0

where A and 7y are positive constants that quantify the convection and diffusion processes, respectively.
Also, p(x,1t) is a given function, and

Ht-s5)=(t—-95)% 0O<a<l,
subject to the initial and boundary conditions.
V(x,0) =g(x), 0<x<L,
V(0,1 = fo(r), V(L,t) = fi(¥), t > 0.

The outline of the paper is organized as follows: In Section 2, we describe a detailed transfer of the
PIDE problem to the VFIE problem form, and also discuss the implementation of the spectral Tau
schema for solving the VFIE is discussed in this section. The convergence of the numerical solution is
analyzed in Section 3. In Section 4, the numerical results will be presented, and finally, the conclusion
of the paper is brought up in Section 5.

2. Numerical scheme
We rewrite (1.2) as

Veel(x, 1) = th(x, 1+ /—le(x, ) — l f H(t - s)V(x,s)ds — lp(x, 1). 2.1
Y Y Y Jo Y

Let V,.(x,t) = O(x, 1), then
Vix,t) = V(0,1 + f ®(1, t)dr, (2.2)
0

and

AIMS Mathematics Volume 9, Issue 9, 23182-23196.



23184

Vix,t) = V(0,1) + xV,(0,1) + f f (1, t)dtrdt
0o Jo

=V(@O,r) +xV.(0,1) + fx(x — 17)D(T, 1)dT. (2.3)
0
Use x = L in (2.3), and consider boundary conditions.
1 1t
Vi(0,1) = Z(f1 () = fo(®) - I f (L —1)O(7, n)dr. (2.4)
0
By substituting (2.4) into (2.2) and (2.3), we have
L X
Vilx, 1) = l(fl(t) - fo(0) — l f (L — 1)D(t, t)dt + f d(t, 1)dr, (2.5)
L L 0 0
and . .
Voo n = 2= pio+ 2w -2 f (L - )0(t, dt + f (x — 1)O(r, Hdr. (2.6)
L L LJ, o

A derivative from both sides of (2.6) with respect to #; yields

0D(r, 1)
t

L _ L
Vi(x,1) = Txfé(’) + %f{(t) - % fo (L-1)—

dr + f L L
0 ot

Substituting (2.5), (2.6), and (2.7) into (2.1), we obtain

L—
yL

1 A L — !
D(x, 1) = — —p(x, D) + —(fi(1) = fol®) + ———F1() + —f](1) — —= f H(t - 5)fo(s)ds
Y yL yL YL Jy

t L
X f Ht - s)fi(s)ds — -= f (L - 1)O(x, f)dt
YL Jo YL Jo

L t .
+71LL fO(L—T)H(t—s)cD(T,s)dsdT_yiLﬁ(L_T)adb(;;r,t)dT

+5 f o - f x f (x = DH( - $)(r, s)dsdr + - f o2
T T  Jo o

Consequently, the following Volterra—Fredholm integral equation with a weakly singular kernel is
obtained:

L L t
DO(x, 1) = p(x, 1) + f Ki(x, n)®(t, )dt + f f K>(x, ))H(t — s)D(7, s)dsdt
. 0 o JoJo
+ f Ki(x,7) G(D;:, ) dr + f Ki(x, D)O(1, t)dt (2.8)
0 0
; f Ks(x, D)H(t — $)D(7, s)dsdr + f Ko(x, 1) 22@D 40
0o Jo 0

ot

where
plx, 1) = =2 p(x, 1) + (i) = o) + EEf5 (1) + S £1()

- fo H(t—s)fo(t)ds—y—xL j; H(t - 5)fi(s)ds,
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A
Ky = =—p(L=0, K1) = yiL@ -1,
K. = —(L=p, Kix,t)=2,
vL Y
KS(X’ t) = _1()6 - t)’ KG(X’ t) = l('x - t)
Y Y

Now, we consider the approximate solution ®y(x, ) € Qy of Eq (2.8) as:

N
Dy(x, 1) = ) clHge(x),

k=0

where ¢;(x) is an orthogonal polynomial taken from the space

b
Qy = span{gi(x) [{$:(x),¢;(x)) = f $i(X)$ (X)W (x)dx = 0,i # j).

(2.9)

Note that ¢x(x) can be included the classical orthogonal polynomials, consisting of the Jacobi
polynomials, ultraspherical polynomials as a subclass of Jacobi polynomials which include the
Legendre, Chebyshev and Gegenbaue polynomials. We now require that the residual

N N L X
Ry(x,1) = ) culdel) = plx, 1) = D cult)( f Ki(x, ge(t)dt + f Ka(x, Dult)dlr)
0 0

k=0 k=0

L X
+ (1) j; K3(x, ¢r(t)dt + fo Ke(x, )i (1)dr)

N ! L X
- Z(f H(t - S)Ck(S)dS)(f Ky (x, (D)t + f Ks(x, Dgi(t)d),
=0 “0 0 0

is orthogonal to Q. This procedure yields

N
i) (i), @), = (POx, 1, @), + D O + (e
k=0

N !
+g8k1£H(t—s)Ck(s)ds, [=0,---,N,

where

L X
Ak = <f0 Ki(x, )i (t)dt + fo Ky(x, g (t)dt, ¢1(X)>
L X
M = <f Ki(x, g (D)dt + f Ke(x, g (t)dt, ¢1(X)>
0 0

L X
En = < f Ky (x, i (D)dt + f Ks(x, Dgi(r)dt, ¢z(X)>
0 0

s
w

b

w

w

(2.10)

(2.11)
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Define D = diag({go(x), po(xX),, >+ - {n(), SnCON,), T = (Al s A = {muly e P = {el} g
and P(1) = ((p(x, 1), po(X)),, - -+ » (P(x, 1), dn(x)),)T. Let & = (o, ..., cn)7, then we have a system of
Volterra integro-differential equations with weakly singular kernels as follows:

ATE () = (D =YDe@w) - P - P f H(t — s)¢(s)ds, (2.12)
0

with the initial conditions

(), 4,
i), g,

For the numerical solution of the problem (2.12), we now take into consideration the piecewise
polynomial collocation method [12] within the interval [0, 7']. For a given integer N; > 2 and a real
value r > 1, we define the mesh

ci(0) =0,---,N.

- n .=
== (T, =000 Ny}

If » > 1, I} is a graded mesh on [0, T] with a grading exponent of r if r > 1. When r = 1, the mesh is
considered uniform. Additionally, let &, = t,,,1 — 1, be the stepsize and © be determined as follows:

O={t,j=t,+qh,: 0<q<q@p<..<qgu<1, 0<n<N -1}

The collocation solution ¢, € S 21(12) (SO is the piecewise polynomial space with degree m > 0)

for (2.12)by the collocation equation, which defines
!
AT (1) = D -Y)E, ) - P() - PTf H(t — s)¢,(s)ds, te€®, ¢,(0)=¢(0) = c. (2.13)
0

Since €;,.1,,,1 € -1 (IL, is the space occupied by polynomials with real coeflicients that have a
degree not greater than m), for € € [0, 1], the following equations hold:

&ty +eh) = > Li@)Cuji  Coj = Tt + qjh), (2.14)
j=1
where .

(CEN/Y)

Li(e) = ,
oL (q; — qx)

=1,..,m. (2.15)
Assume that ¢, = ¢,(¢,) and «;(g) = fog Li(s)ds, j=1,...,m,then

&t + &h) = & + iy Y a(@)Cyjy &€ [0, 1], (2.16)

=1

Substituting (2.14) and (2.16) into collocation Eq (2.13) leads to

A"Ci =D = Y@, + hy ) j(g)Coy) = Plt)

J=1
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f H(tyi = (1 + sh))aj(s)ds)Cy;

n—1
- P/( Z hy f H(tyi = (1 + shy)ds)e; + Z h?
=0 =1

+ h( f ' H(tyi — (ty + shy))ds)e, + h Z ( f ! H(tyi = (t, + shy))a(5)ds)C,).
0 0

=1

n=0,....,Ny—=1, i=1,...,m. (2.17)

Consequently, we will find the numerical solution of the differential equation problem (2.12) for
arbitrary € € [0, 1] by inserting C, ; as the solution of the linear system (2.17) into (2.16).
Algorithm 1. Coding algorithm for PIDE with VFIE form (2.8).

Step 1. Input N, Ny, m, T and q;, j=1,...,m

Step 2. Input the values of matrices A, D, Y, f’(t), P.

Step 3. Compute L;(e) in (2.15).

Step 4. Compute a;(e) = [ Li(s)ds, j=1,...,m

Step 5. Solve the system of (2.17).

Step 6. Put ¢;’s, which outputs from step 5, in Eq (2.9).

Step 7. Put ®y(x, 1), which outputs from step 6, in Eq (2.6).

Step 8. Output Vy(x,1).

3. Convergence analysis

We require the following lemmas to demonstrate the error estimate: In the beginning, we view
Gronwall’s inequality as

Theorem 3.1. [19] Let u(t),v(t), h(t, r), and H(t, r, x) be nonnegative functions fort > r > x > a, and
1, C3, and c3 be nonnegative constants not all zero. If

u(t) <cp + czf [v(s)u(s)ds + fs h(s, r)u(r)dr]ds + c3 f fs fr H(s, r, x)u(x)dxdrds,

then fort > a,

u(t) < clexp{q fs [v(s)ds + fs h(s, r)dr]ds + 3 f fs fr H(s,r, x)dxdrds}.

The following result can be obtained directly, by considering H(s, r, x) = 0, from Theorem 3.1.

Lemma 3.2. Suppose u(t) is a nonnegative function satisfying the following inequality:

u(t) <c+ f k(t, s)u(s)ds + f fs IA<(t, o)(s — o) u(o)dods, 3.1

fo

where two functions of k(t, s) and IAc(t, o),asc>0andt> s> o >ty >0, are nonnegative, then

! ! T ak ] t T R
u(t) <c exp{f k(s, s)ds + f f (@ s)dsdT + f f k(t,o)(t — o) Ydodr
Io Io 1o aT fo 1o
t T s 0]’% .
+ f f f (t,) (s — J)_“d(rdsdr}.
fo Io Iy aT
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Proof. According to the same procedure in the proof of Theorem 3.1 from [19], let the right, hand side
of (3.1) be denoted by B(¢). Then B(s) < B(t) for s < t since all the terms are nonnegative. We have

By keou®+ [ 2y (s)ds + [Tk, o)t - o) uydo + [ [P 2D (s - gyeu(o)dods
B() B(1)

" Ok(t, ‘. L Ok,
< k(t, 1) + f ( S)ds + f k(t,o)(t — o) %do + f f (t,0) (s — o) %dods.
0 Ot o 0 Jn ot

Integration from ¢, to ¢ yields

! ! T k ! T R
log B(t) — logc < f k(s, s)ds + f f Ok, s)dsdT + f f k(t,o)(t — o) “dodr
fo o Yo dt o Jio
t T s a7
+ f f f Ok, ) (s — o) *dodsdr.
Io Iy to aT

Writing this in terms of B(¢) and using u(#) < B(¢) completes the proof. O

Lemma 3.3. [20] The Sobolev space W) (Q) is the set of all functions ¢(X)(x = (x;---,x,)) on
Q = (0,1)? ,for p = 1,2, which the functions ¢(X) and its weak derivatives to order m are in LEV(Q), let
Py (A) be the space of all polynomials with degrees not exceeding N on Q. Denote by Py the orthogonal
projective operator from L?(Q) on to Py(Q). For all $ € W"(Q), m > 1, the following estimate holds

||¢ - PN¢||L§V(Q) < CN_m|¢|W$,N(Q), (3.2)

where the semi-norm |.| is defined as

1/2

m p
i 12
Blwmvoy=| D, Do IDIIL o |

Jj=min(m,N+1) i=1

such that @ = (ay,--- ,@,) is a nonnegative multi-index with D*¢ = al—an[, The following estimate

extends (3.2) to higher-order Sobolev norms in those situations where the truncation error of the
derivatives is significant:

S
¢ = Pndllwgay < CNZ 27" (Bl ) (3.3)

for any r such that 1 <r < m.

In the following, we scrutinize the error estimate of the numerical Tau method, which is proposed
in Section 2, equipped with the L? weighted norm. As you have seen, we consider the approximate
solution ®y(x, 1) = Z/lcv=o cr(t)¢r(x) of Eq (2.8) such that for finding € = (cy, ..., cy)!, we get a system
of Volterra integro-differential equations with weakly singular kernels, and the approximate solution
of this system is obtained by the piecewise polynomial collocation method. These two approximate
methods (first with respect to x and then with respect to ) are completely different. Then we can not
investigate convergence analysis simultaneously. In this position, we find ||V — Vill;2;) — 0 with
respect to x and do not consider the effect of approximation with respect to ¢. In other words, 7 is
assumed to be a constant value in this situation.
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Theorem 3.4. Let V(x,t) as a sufficiently smooth function be the exact solution of the partial
differential equation (1.2). Also, let Vy(x,t) be the numerical solution of V(x,t) by the spectral Tau
method, which is defined in the previous section. Then, for all sufficiently large N, we have

IV = Vullzo1) — 0.
Proof. Without loss of generality, we let L = 1. Then Eq (2.1) can be considered in the below form:

Vi, 1) = 1Vi06, 1) + 2V, 0) = L [T H(E = 5)V(x, 5)ds = Lp(x, 1),
Vt(x’ 0) = g(-x7 0)’

B (3.4
Ht-s5)=(—-95)" 0<a<l,
V(@0,1) = fo(), V(1,t) = fi(r), t = 0.
We use the similar procedure in Section 2, then we gain
1 X
Vix,t) = (1 —x)fo(t) + xfi(t) — xf (1 —)D(r, t)dr + f (x — D)D(T, t)dr, 3.5
0 0
and
1 1t
O(x, 1) = p(x, 1) + f K (x, )®(t, t)dt + f f K>y(x, T)H(t — s)D(7, s)dsdt
0 0o Jo
1 X
+ f Ki(x,7) 00(r, 1) dr + f Ki(x, T)D(1, t)dt
0 ot 0
+ f ) f Ks(x, DH(t — $)D(T, s)dsdr + f Ky 22ED (3.6)
0o Jo 0 ot
Also, 1
Vn(x, 1) = (1 = x) fo(t) + xf1(1) — xf (1 = 1)®p(r, HdT + f (x — T)®n(T, DdT, (3.7
0 0

and

DOy(x, 1) =pn(x, 1) + jo\l Kin(x, T)®n(T, H)dT + ﬁl fot Kon(x, T)H(t — s)Dp(T, s)dsdt
+ Ll K3 n(x, T)Wdr + Lx Ky n(x, T)Dn(T, t)dsdT
f f Ksn(x, T)H(t — 5)Dp(1, s)dsdT +f Ko n(x, )6®N(T 0 dr. (3.8)
Subtracting (3.6) from (3.8) yields

1 1
e(x,t) = f Ki(x,t)e(t, )dt + f f Ky(x, T)H(t — s)e(t, s)dsdt
0 0o Jo

+ fx Ki(x,D)e(t, ndr + fxf Ks(x, )H(t — s)e(t, s)dsdt
0 0o Jo

+e +ete3t+eqst+es+eqt ey, 3.9
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such that e(x, ) = O(x, 1) — Dy(x, 1) and

= p(x, 1) — pn(x, 1),
€ = fol(Kl (x,7) = Ky n(x, 7)Dp(T, t)dT,
€= fol fot(KZ(x 7) — Ko n(x, 7)) H(t — 5)Op(7, 5)dsdT,
O O A P
es = fo (Ky(x,7) — K4,N(x,r))cI>N(r, 1dr,
€6 = fox fot(KS(x T) — Ks n(x, T))H(t — 5)Dp (7, 5)dsdT,
er = [ Kow(o ) T2 — P8R )dr + [(Ko(x,T) — Ko (x, 1) 250,

Using Gronwall’s inequality from Theorem 3.1 and applying the generalized Hardy’s inequality
from [21], and also using Lemma 3.2 by considering H(t — s) = (t — 5)~* for (3.9), yields

llellz,1) < Cller + €2 + €3 + eq + s + €6 + e7ll12(0.1)- (3.10)
Using the inequality (3.2) from Lemma 3.3,
lleillzz .1y < CNT"1Plym g 1y-
It follows from generalized Hardy’s inequality and the inequality (3.2) that
leallz2 0,1y < ClIKL = Kinllzz 0.0 l1Pwl 20,1y £ CNT" 1K Ly o 1y (1Pl 20,1 + llell 2 0,1)s

lesllzzo,1) < ClIKa = Ko wllzz0,01Pwl20.1) £ CN 1Ko lyma g 1 Dl 2.0,1) + llellzzo,1))-

Also,

oD (’ﬂDN 0o
||€4||L2(0 I = C(||K3 N”LW(O 1)” ”LW(O nTt IIK5 — KS,NHL?V(O,I)”E”LEV(O,l))’

using the inequality (3.3) forr = 1

o0Dd 0Dy 3
”E - 7“#(01) <D = Dyllwior) < CN? D]y g1
then
3 0D
leallizon < CNVF IR wlz 0@l + N 1Kl nll =iz o).

and similarly

||€5||L§,(0,1) <Ky - K4,N||L§,(o,1)||‘DN||L§,(0,1) < CN_m|K4|W(ng(o,1)(||cD||L§,(o,1) + ||€||L3,(0,1))’
lesllzz 0,1y < I1Ks = Ksnllz 0.0 1Pwll20,1) £ CNT" 1Ky .1y (1PNl 20,1) + llell20,1))s

3_ oo
llell 20,1y < C(N2 1K N 22,01y @lymav o1y + N7 1Kelyma o, 1)||—||L2(o 1))
Now, considering (3.10), for N — oo, we have ®y — @, then the desired result is obtained. m]
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4. Numerical examples

In this section, we apply the numerical procedure introduced in Section 2 to solve three examples.
Also, the PDE problems are solved directly, and by comparing the deduced results, it would be clarified
that the integral form of the PIDE problem has high numerical stability. All codes were written by
Mathematica 11 on ASUS Laptop, Processor: Intel(R) Core(TM) 17-1065G7 CPU @ 1.30GHz 1.50
GHz, 8.00 GB. The shifted Legendre polynomials into the interval [0, 1] are used as orthogonal basis

functions, and ¢; = 5 and g, = 1 on the interval [0, 1] are selected as collocation parameters. Also,

we consider N1 = 10 with uniform mesh, &, = %, andt = t,+chwithe = 1forn =0,---,N1.

Tables 1-6 show the maximum and L? errors in two cases; the converted integral and direct forms
with m = 2, N; = 10. Also, Figures 1-6 display plot of the error function in two cases; the converted
integral and direct forms for different values of N.
Example 4.1.
V(x,1) = xt> + tcos(nx), V(x,0) =0, Ht—s)=(t—95)"" 0<a <1,
1
VO,5)=t, VA, ) =L +1, t>0.1=0.05, y=04, a = >

p(x, 1) is such that the exact solution is V(x, t).

Table 1. Max and L? errors in Example 4.1 for the converted integral form with m = 2, N; =

10.
N Max error L*(0, 1) error
2 2.05x 1072 1.35x 1073
4 2.61x107* 1.52x10°°
6 2.10x 107 1.18 x 1077
8 1.14 x 1078 6.31 x 10710
10 429 x 10710 2.03x 1071

(b) N=6 (c) N=10

Figure 1. Plot of error function in Example 4.1 for the converted integral form.
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Table 2. Max and L? errors in Example 4.1 for the direct form with m = 2, Ny = 10.

N Max error L*(0, 1) error
2.10 x 107! 1.50 x 107!
4 2.00 x 1072 1.31 x 1072
6 6.51 x 1073 3.51x 1073
8 4.55%x 107 3.19x 10
10 4.56 x 107 2.11 x 107

~

1.0 . 1.0

(¢) N=10
Figure 2. Plot of error function in Example 4.1 for the direct form.

(a) N=2

Example 4.2.
V(ix,t) = 2(2 +t + Dsin’(rx), V(0,1 =0, V(1,/) =0, >0,

1
V(x,0) = 2sin’(nx), Ht—s)=(t—-5)% 0<a <1, 1=0.05, vy=04, a= >

Table 3. Max and L? errors in Example 4.2 for the converted integral form with m = 2, N; =

10.
N Max error L*(0, 1) error
2 3.80 x 107! 2.05x 1072
4 1.50 x 1072 8.50x 107*
6 424 x 107 2.30x 107
8 7.90 x 10°° 427 x 1077
10 1.20 x 1077 5.85x 107

I

] 0.0002
0.0000 |
-0.0002 ’L

(¢) N=10
Figure 3. Plot of error function in Example 4.2 for the converted integral form.
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Table 4. Max and L? errors in Example 4.2 for the direct form with m = 2, N; = 10.

N Max error L*(0, 1) error
2 6.10 x 107! 3.74 x 107!
4 3.76 x 107! 2.00 x 1072
6 1.57 x 1072 8.50x 107*
8 420% 107 2.30x 107
10 7.90 x 1076 427 x 1077

(a) N=2

(b) N:6.

1.0

(c) N=10

Figure 4. Plot of error function in Example 4.2 for the direct form.

Example 4.3.

V(x,1) = (t + D*(1 = Cosnrx) + 27°x(1 — x)), V(x,0) = (1 — Cos2nx) + 21*x(1 — x)),

1
Hit-s5)=(@t-s5 "% 0<a<l1, VO,0)=0, V(1,/) =0, 1>0.2=0.05, y =04, o = 3

Table 5. Max and L? errors in Example 4.3 for the converted integral form with m = 2, N; =

10.
N Max error L%(0, 1) error
2 4.83 x 1072 2.69 x 1072
4 2.08 x 1072 1.13x 1073
6 5.65x 107 3.06 x 107
8 1.05x 107 5.69 x 1077
10 1.48 x 1077 7.65 x 10~

(a) N=2

(b) N=6

00 T

05 T

(¢) N=10

Figure 5. Plot of error function in Example 4.3 for the converted integral form.
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Table 6. Max and L? errors in Example 4.3 for the direct form with m = 2, Ny = 10.

N Max error L*(0, 1) error
2 6.74 x 107! 4.01 x 107!
4 4.73 x 107! 2.67 x 1072
6 2.08 x 1072 1.13x 1073
8 5.65x 107 3.06 x 107>
10 1.05x 107 5.69x 1077

00 ,,,,,,,,,,,,,,,,,,V,/
000001 F
-6 ¢
5.x10-6 |
o A
0.00000 | Bl LA
—5.x10—si[ ,
|
-0.00001 <
00—

(a) N=2 (b) N=6 (¢) N=10
Figure 6. Plot of error function in Example 4.3 for the direct form.

Remark 4.4. When you want to find the approximate solution of PIDE directly, you need to know the
derivatives of the approximation. Using the relation (3.3) (truncation error of the derivatives) for the
first or second derivatives, we can let r = 1 or r = 2 and write

’ ’ §_m

9" = (Px@)llz @) < CN>"Ilyymn )
7’ 173 Z_m

167 = (Pn) Nz < CN> 1Bl )

whereas by the the relation (3.2), we have

¢ — Pnélliz ) < CN"Iplymn -

Comparing these obtained relations, we observe that for the truncation error of the derivatives, the
order of convergence has worsened. Due to the elimination of these derivatives in VFIE form, the
reported errors in this form are better than the PIDE form and show good numerical stability compared
to that.

5. Conclusions

In this paper, in order to study the numerical solution of a partial integro-differential equation with
a weakly singular kernel (PIDE), we first transferred this equation into a Volterra—Fredholm integral
equation (VFIE), then applied the Tau method based on orthogonal polynomials in two cases. In the
first case, we performed the Tau method for the numerical solution of the problem in VFIE form, and
in the second case, the Tau method was used for the PIDE form. The convergence of the numerical
solution has been analyzed. Through the remarkable numerical results, we have shown that the VFIE
problem has high numerical stability with respect to the original form of the PIDE problem.
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