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Abstract: With the growth of online networks, understanding the intricate structure of communities 
has become vital. Traditional community detection algorithms, while effective to an extent, often fall 
short in complex systems. This study introduced a meta-heuristic approach for community detection 
that leveraged a memetic algorithm, combining genetic algorithms (GA) with the stochastic hill 
climbing (SHC) algorithm as a local optimization method to enhance modularity scores, which was a 
measure of the strength of community structure within a network. We conducted comprehensive 
experiments on five social network datasets (Zachary’s Karate Club, Dolphin Social Network, Books 
About U.S. Politics, American College Football, and the Jazz Club Dataset). Also, we executed an 
ablation study based on modularity and convergence speed to determine the efficiency of local search. 
Our method outperformed other GA-based community detection methods, delivering higher maximum 
and average modularity scores, indicative of a superior detection of community structures. The 
effectiveness of local search was notable in its ability to accelerate convergence toward the global 
optimum. Our results not only demonstrated the algorithm's robustness across different network 
complexities but also underscored the significance of local search in achieving consistent and reliable 
modularity scores in community detection. 
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1. Introduction  

As the internet has swiftly grown, there's been a significant increase in the online engagement of users. 
A variety of social networking platforms, such as Facebook and Twitter, have emerged to support these 
user interactions. Social networks depict and simulate the social connections between individuals [1]. Also, 
numerous intricate systems found in biology, sociology, and physics can be modeled as complex 
networks in the real world [2]. In real-life scenarios, the elements of a complex system can be depicted 
as a network configuration. At the heart of network development are communities, which serve as the 
fundamental components [3]. Examining the community framework within a network aids in 
understanding the social dynamics of group interactions among individuals [4]. Additionally, 
uncovering and studying the community structure is of significant interest due to its economic and 
marketing consequences [5].  

Community structure in networks typically refers to the natural division of nodes into densely 
linked clusters where the links between different clusters are relatively infrequent compared to the 
connections within the same cluster [6]. Pothen et al. [7] introduced the spectral bisection technique, 
a hierarchical clustering-based method for identifying community structures within networks. One 
quantitative measure for partitioning a network into communities is modularity, proposed by Girvan 
and Newman [8]. However, the issue of maximizing modularity is recognized as a nondeterministic 
polynomial time (NP)-hard [9]. The Girvan-Newman (GN) algorithm, proposed by Girvan and 
Newman [8], utilizes a divisive hierarchical algorithm and has shown good performance in community 
detection. However, as the authors note in [8], the GN algorithm requires a huge computational cost, 
which means it’s impractical for large-size community detection. Newman and Moore [10] proposed the 
Clauset, Newman, and Moore (CNM) algorithm, which employs local search to handle very large 
community detection problems, but the CNM algorithm has a problem that can easily fall into the local 
optima. To address this problem, many researchers aimed meta-heuristic algorithms to enhance the 
modularity of community detection [11–15]. In [16–18], the authors introduced a genetic algorithm 
(GA)-based method for community detection. In particular, [17,18] used hill climbing and simulated 
annealing, a mathematical optimization technique, as a local search algorithm. 

Current GA-based methods are constrained by issues such as prolonged durations to reach the 
global optimum and susceptibility to premature convergence. When addressing multi-peak issues that 
contain numerous optimal solutions, GA tends to get trapped in local minima, ceasing their search 
prematurely. This results in the challenge of premature convergence and the inability to reach global 
optima [19]. GAs are adept at quickly identifying the vicinity of the global optimum, yet they require 
a considerably longer period to find the precise local optimum within the convergence area [20,21]. In 
a hybrid approach, using local search to refine solutions directed by a GA toward the most favorable area 
can hasten the process of converging on the global optimum. Utilizing local search techniques and area-
specific expertise can additionally shorten the duration required to arrive at the global solution [22]. 

Here, we propose a memetic algorithm that uses a combination of GA and Stochastic-Hill-
Climbing (SHC) for community detection. We applied SHC as a local search to improve the 
performance of GA and conducted experiments on five datasets (Zachary’s Karate Club, the Dolphin 
Social Network, Books About U.S. Politics, the American College Football Club, and the Jazz 
Musician Club datasets) with ten runs. Modularity Q was used as the community detection quality and 
compared to the results of [17] using average and the best modularity scores. In summary, the 
contribution of our methodology is as follows:  
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 We applied SHC as a local search mechanism within our memetic algorithm, demonstrating its 
superiority over other methods through comparative performance metrics. 

 We address the limitation of existing GAs by explaining the issues such as extended time to the 
global optimum. Our study contrasts the efficiencies of approaches with and without local search, 
providing insight into the substantial benefits of local search in enhancing performance. The 
detailed analysis of convergence speed and modularity scores in Section 6 not only refines the 
detection of community structures but also adds to the mathematical rigor, providing clear 
evidence of the algorithm's efficiency and reliability.  

 We provided a comparative analysis with 5 social network datasets, which reveals that the use 
of local search not only refines the detection of community structures but also expedites the 
convergence of the algorithm, showcasing the practical advantage of our proposed method. 

 We introduced a memetic algorithm framework in this paper, particularly highlighting the 
effective use of local search within the GA. This framework not only enhances the efficiency of 
GA but also can be adapted and applied to other optimization problems beyond community 
detection, contributing a versatile tool to the mathematical and computational toolkit for network 
analysis. This adaptation showcases the practical advantages and broader applicability of our 
proposed method. 

The structure of this paper is as follows. Section 2 provides the background methodology of this 
study and a description of the dataset used in this study. Section 3 presents the procedure for how we 
implemented GAs with an addition of local search, a memetic algorithm. Sections 4 and 5 present the 
simulation of experiments and results analysis, respectively. Section 6 presents the summary. 

2. Background 

In this study, we introduce a meta-heuristic approach for community detection that leverages a 
memetic algorithm. This combines GAs with the SHC algorithm as a local optimization method to 
enhance modularity scores. By integrating SHC with GA, we aim to address the limitations of existing 
GA-based methods, such as prolonged durations to reach the global optimum and susceptibility to 
premature convergence. 

The memetic algorithm employed in this study is designed to improve the performance of 
traditional GAs in community detection tasks. The methodology involves using SHC as a local search 
mechanism within our memetic algorithm, demonstrating its superiority over other methods through 
comparative performance metrics.  

2.1 Modularity Q 

For this study, Modularity Q is taken as the performance measure for community detection. 
Modularity, as described in [23], is a prominent indicator of the robustness of community structures 
within networks. It has a propensity to bias in favor of larger communities at the expense of smaller 
ones, particularly when these smaller groups are beneath a certain scale. Nonetheless, this metric is 
indispensable in evaluating and contrasting different community detection techniques. 

In study [17], a parameter λ is introduced within the modularity density 𝐷, where adjusting λ is 
necessary to achieve optimal community detection outcomes. To simplify the process and enhance the 
accuracy of detecting communities, this paper opts to use modularity 𝑄 instead of 𝐷 as the primary 
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objective function, as defined in [23]: 

𝑄 =
1

2𝑀
𝑎 −

𝑘 𝑘

2𝑀
δ 𝐶 , 𝐶 , 

 
(1) 

where 𝑀 denotes the total number of edges in the network, and 𝑖 and 𝑗 represent two nodes within the 
network. The terms 𝑘  and 𝑘  refer to the degrees of the 𝑖-th, 𝑗-th nodes. The matrix element 𝑎  is located 
at the i-th row and j-th column of the adjacency matrix. The function 𝛿(𝐶 , 𝐶 ) describes the relationship 
between nodes i and j. It equals 1 if nodes i and j belong to the same community, and 0 otherwise. 

2.2. Memetic algorithm 

GA is a well-known adaptive heuristic search algorithm that is modeled after the principles of 
natural selection and genetics, originally introduced by Holland at the University of Michigan [24]. 
GA begins with initially randomly generated populations and evolves through successive generations 
toward a population of better quality [25]. In particular, memetic algorithms (MAs) are a class of meta-
heuristic optimization methods that combine a meta-heuristic algorithm such as the GA with a local 
search strategy. These local search strategies are employed during the generational cycles of the 
evolutionary process [26]. To be more specific, the process of MA is similar to GA. After a population 
is initialized with feasible solutions, offsprings are generated by selection, crossover, and mutation 
according to probability. After employing genetic operators, local search aids in refining the solutions 
generated by offspring and circumventing local optima. 

From an optimization perspective, MAs have demonstrated greater efficiency and effectiveness 
compared to traditional GAs in certain problem domains [17]. In particular, MAs have been widely 
accepted for combinatorial optimization problems and various practical applications [27–30]. Li et al. [31] 
has proven MAs to have better results than evolutionary algorithms (EAs). Furthermore, 
outperforming existing optimization algorithms proposed in [32–35]. MAs demonstrate robustness 
across various network complexities, adapting effectively to different topologies. This adaptability is 
particularly beneficial for dynamic networks where community structures can change over time. The 
Robust Dynamic Memetic Algorithm (RDMA)_Net algorithm [36], for example, has shown superior 
performance in maintaining community detection accuracy and quality under changing network 
conditions. The integration of local search methods enhances the consistency of community detection 
results. MAs tend to provide more reliable solutions across multiple runs, ensuring that the detected 
community structures are stable and repeatable [37]. Therefore, we decided to use MA with SHC as 
the local search method over other optimization methods. 

2.3. Local search 

When a GA is adeptly crafted, the best candidate within the population has the potential to evolve 
into an optimal solution for the given issue. Nonetheless, due to its inherent randomness, a GA might 
experience sluggish progress toward convergence. Additionally, the precision of the optimal solution 
it identifies can fluctuate depending on the specific problem being addressed. Owing to these 
shortcomings, numerous research efforts have focused on enhancing GA’s performance [38,39]. 

Local search is an intuitive approach to tackling combinatorial optimization problems. It starts 
with an initial solution s that is likely suboptimal and seeks to enhance its value through “local 
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changes”. Such changes might include adding or removing elements to s, reorganizing how elements 
are grouped within s, or altering their sequence. If these modifications lead to a better solution, the 
process yields a new solution s. This iterative method is repeated until it reaches a point where no 
further advancements can be made [40]. 

Local search techniques have been effectively applied to discover satisfactory solutions for a 
myriad of intricate issues, with the traveling salesman problem standing out as the most notable 
example [41]. The practical efficacy of local search methods has been thoroughly analyzed across various 
domains such as scheduling, very large scale integration (VLSI) design, network configuration, distributed 
planning, production management, and beyond [42]. The consensus from most of these analyses is that 
local search offers an efficient way to compute solutions that are close to the optimum for problems of 
practical scale [40]. In this study, we have applied a SHC method to find the optimum solution. 

2.4. Stochastic hill climbing algorithm 

The SHC algorithm [43], a modification of the SHC method, represents an incomplete strategy 
for tackling optimization issues. It operates through a loop that persistently advances toward higher-
value points, akin to ascending a hill. The process concludes upon arriving at a “peak” where none of 
the surrounding points offer an increase in value. Unlike traditional hill climbing, this variant randomly 
selects from potential uphill moves, with the selection likelihood adjusting based on the ascent's 
gradient. It essentially modifies an existing assignment into a collection of slightly altered versions. 
Each modified version is then evaluated based on certain measures intended to draw nearer to a suitable 
assignment, thereby enhancing the state's evaluation score. The most favorable modification is then 
selected as the new assignment. This core procedure is carried out repeatedly until a satisfactory 
solution emerges or a pre-established stopping condition is met [44]. 

3. Methods 

Figure 1 represents a flow chart of the MA. We will provide a detailed description starting from 
the selection, crossover, mutation, and local search in this section. 
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Figure 1. Flowchart of MAs. 

3.1. Representation and initialization 

The effectiveness of a GA’s convergence is often influenced by the initial population’s diversity. 
In the context of actual network applications, the number of communities that need to be established 
is usually predetermined. In our experiment, we have specified the number of communities before 
streamlining the search space. We ensure diversity by randomly generating chromosomes for each new 
generation, while also avoiding infeasible solutions through a careful initialization process. This 
process ensures that only connected nodes are placed in the same community, while unconnected nodes 
are segregated at the outset [3]. 

Each gene in the chromosome holds a value that falls between 0 and 𝑛 − 1, with 𝑛 being the set 
number of communities, which is known as label-based representation. We have appraised the 
algorithm's performance across varying values of  𝑛,  considering a range of varieties based on the 
dataset we are using. For instance, Figure 2 illustrates a potential solution for a network of 7 nodes 
where the number of communities, denoted by 𝑛, is fixed at 2. Consequently, the candidate solution's 
values lie between 0 and 1. As in the scenario depicted in Figure 2, we create chromosome sets for 
each prescribed value of n. The length of each candidate solution is determined by the total number of 
nodes in the network. 
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Figure 2. Example of label-based representation. 

3.2. Tournament selection 

Selection is a key stage in a meta-heuristic algorithm that aids in the extensive search for the 
optimal solution to a given problem [3]. For this study, we have applied tournament selection as the 
selection operator. Tournament selection intensifies the search for the best solution by staging a 
competition among 'S ' participants, where 'S ' denotes the size of the tournament. The competitor with 
the greatest fitness value from these 'S ' individuals emerges as the winner of the tournament. This 
selected individual is then placed into the mating pool. Consequently, the mating pool, filled with the 
winners of these tournaments, possesses an average fitness value that surpasses the general 
population’s average fitness value [45]. In our method, we select a random sample of the tournament 
size, which is 2. This means that the tournament selection function will conduct a tournament between 
two competitors at a time from the given population to select individuals for the mating pool. Then, 
the winner of the tournament in which the chromosome that has the maximum fitness value in the 
sampled group is selected as the parent chromosome.  

3.3. Uniform crossover 

In GAs, the creation of the next generation hinges on specific procedures that remix and alter 
chosen individuals from the existing population. In this study, we used a uniform crossover to generate 
a new offspring. Two chromosomes are chosen by tournament selection from the current population as 
parent chromosomes, respectively. For each iteration within every gene of the chromosome, a random 
number between 0 and 1 is generated. If k (meaning the threshold value) is larger or equal to 0.5, genes 
from parent 1 are chosen. If k is smaller than 0.5 genes from parent 2 are chosen. Consequently, the 
diversity of the chromosomes increases and expands the optimal space by appropriately combining the 
features of both parent chromosomes. For instance, Table 1 illustrates a potential offspring after 
performing crossover with 2 parents for a network of 7 nodes with a random number r generated as 
the crossover probability between 0 and 1. 
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Table 1. Example of uniform crossover.  

v 𝑂  𝑂  k 𝑂  
1 1 3 0.23 1 
2 3 2 0.54 2 
3 2 3 0.89 3 
4 2 2 0.21 2 
5 1 2 0.02 3 
6 3 1 0.69 1 
7 2 3 0.18 2 

3.4. Mutation 

Beyond recombination mechanisms that generate offspring through the fusion of elements from 
two parents, another class of operators creates offspring from a parent. Specifically, the mutation 
operator introduces minor, random alterations to the bit string by randomly selecting a single bit and 
flipping its value. Typically, the mutation is applied subsequent to the crossover process. 

The mutation operator stands as a fundamental component within GAs, inducing random 
variations in chromosomes [46]. Its role is crucial in augmenting the population’s diversity and 
accelerating convergence. This operator functions by inverting the genetic values at specific loci within 
chromosomes, doing so with a predefined likelihood. Algorithms based on GA incorporate a variety 
of crossover operators, including but not limited to boundary, uniform, nonuniform, directional, and 
Gaussian mutations [47]. 

In our algorithm, a random vertex is chosen and then assigned a class label in a stochastic manner 
during the mutation phase. This approach to mutation can streamline the mutation procedure and help in 
narrowing down the search space, as detailed in Table 2. For instance, in a network with three classes as 
described in Table 2, we first select a chromosome, say chromosome O. Next, we randomly select a 
vertex within this chromosome, such as vertex 5. If the class label of vertex 5 is initially 1, the mutation 
changes it to a different community label, in this case, to 3. Such a mutation enhances the variety of 
chromosomes, thereby increasing the probability of discovering a higher modularity score Q. 

Table 2. Example of mutation. 

𝑣  𝑂  𝑂  
1  1  1 
2  3  3 
3  2  2 
4  2  2 
5   → 1   → 3 
6  3  3 
7  2  2 

3.5. Repair 

In this study, we have a predefined number of communities, but if there are missing communities 
in an individual’s gene, we employed a repair phase. In the repair phase, a two-level nested loop 
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mechanism is employed. The outer loop iterates over the list of missing labels. For each missing label, 
the inner loop randomly selects positions in the individual's structure and inserts the missing label into 
these positions.  

This repair process is crucial for preserving genetic diversity while simultaneously respecting the 
label distribution. The resulting individuals are both diverse and adhere to the problem’s constraints, 
leading to a more effective and robust search for the optimal solution. 

3.6. Stochastic hill search 

In this study, we have refined our vertex movement heuristic to exploit the neighborhood solution 
of each solution by employing SHC with an integrated mutation strategy to optimize the neighborhood 
solutions within a graph. Specifically, we focus on the community detection problem within networks, 
where our goal is to discover a partitioning of the graph that maximizes modularity—a measure of the 
strength of the division of a network into communities. Hence, the repositioning of a node from its 
original community into another, forms an adjacent solution. 

In our algorithmic approach, we refine the strategy for community detection in networks by 
introducing a heuristic based on SHC complemented by genetic operations. The local search procedure 
works as follows, as shown in Table 3. 

Table 3. Pseudo-code of local search. 

Algorithm: Stochastic Hill Climbing 
Input: offspring - an array representing a current partition of the graph 
Output: offspring - an improved partition with enhanced modularity  
 
idx ← random integer between 0 and length(offspring)           // Index Selection 
neighbor ← copy(offspring)                                                     // Neighbor Creation 
current_modularity ← Q(offspring)                                         // Fitness Evaluation 
change ← ∅                                                                                
For label index from 0 to num_label do                                    // Local Change Process 
    neighbor [idx] ← label index 
    ∆modularity ← Q(neighbor) - current_modularity 
    change ← ∆modularity 
End For 
max_idx ← index of maximum value in change                    // Selection of Best Suboptimal 
offspring [idx] ← max_idx 
 
return offspring 

Table 3 illustrates the SHC local search algorithm, a method developed to refine the partitioning 
of nodes within a network to maximize modularity, which is indicative of optimal community structure. 
The input and output of the SHC algorithm is an offspring (a single array), and the main steps are as 
follows: (1) Select a random index in a single array to change. (2) Compute the current objective 
function (the modularity Q) of offspring. (3) Enter all possible labels for the randomly selected index 
to calculate the change from the modularity of offspring. (4) Assign the label with the largest change 
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to the randomly selected index and return it. 
Through local search, GAs evolve into individuals in a better direction and improve diversity. 

The SHC local search algorithm is thus portrayed as both robust and efficient, capable of effectively 
navigating the search space to arrive at superior network partitions. 

4. Experimental setup 

4.1. Dataset 

In this study, for the verification of our performance on the proposed GA method to improve 
modularity scores, we have compared 5 social network datasets from small-scale and simple datasets 
to large-scale datasets. Our datasets include Zachary’s Karate Club [48], the American College 
Football Club [49], the Dolphin Social Network [50], Books About U.S. Politics [51], and the Jazz 
Musician Club dataset [52]. These datasets were commonly used in previous studies related to 
community detection. Shang et al. [18] used a community detection method based on modularity and 
an improved genetic algorithm (MIGA) on four real-world networks (Zachary’s Karate Club, Dolphin 
Social Network, American College Football, and Books about U.S. Politics) to enhance the normalized 
mutual information (NMI) score. Pizzuti [53] applied a multi-objective approach to discover 
communities in networks by employing genetic algorithms named multi-objective genetic algorithm 
(MOGA-Net) on Zachary’s Karate Club, Dolphin Social Network, American College Football, and 
Books about U.S. Politics. Gurrero et al. [54] applied a new generational genetic algorithm that 
includes efficient initialization methods and search operators under the guidance of modularity named 
GGA+ using the Books about U.S. Politics and the American College Football dataset. Shi et al. [55] 
applied a new genetic algorithm to enhance modularity scores using the Zachary’s Karate Club and 
the American College Football Dataset. 

Our selection of these datasets, which have been extensively used and validated in the study of 
community detection, allows us to benchmark our proposed GA method against established methods. 
This approach ensures the robustness and reliability of our results, contributing to the existing body of 
knowledge with a focus on improving modularity scores in community detection. 

4.1.1. Zachary’s Karate Club 

Zachary’s Karate Club, often utilized in community detection research, is composed of 34 nodes 
that represent the club’s members. The connections, or edges, between these members, numbering 78 
in total, illustrate the interpersonal relationships within the club [18]. Over a two-year observation of 
a karate club involving 34 members, Zachary witnessed the emergence of a conflict between the club's 
administrator and its instructor. This discord eventually led to the instructor departing to establish a 
new club, taking approximately half of the original members with him [8]. 

4.1.2. Dolphin Social Network 

The Dolphin Social Network is a real-world example commonly utilized in testing community 
detection algorithms. Documented by D. Lusseau, this network maps out the interactions among 62 
dolphins off the coast of New Zealand. It is structured into 62 nodes and 159 edges, where each node 
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signifies an individual dolphin, and the edges represent their interaction frequencies. This network is 
divided into two main dolphin groups: a larger one with 42 individuals and a smaller group of 20 [56]. The 
two major communities in the Dolphin Social Network can be divided into five subcommunities  [57]. 

4.1.3. Books about U.S. politics 

This social network presents a political book network curated by V. Krebs (through personal 
communication). This network features nodes that signify 105 recent books on American politics, 
acquired from the online retailer Amazon.com. Edges connect books often bought by the same 
customer. The books were categorized based on their expressed or evident political orientation—liberal 
or conservative—with a few exceptions for books that were distinctly bipartisan, centrist, or lacked a 
definite political stance [51]. 

4.1.4. American College Football 

The American College Football Dataset maps out the Division I football games for the 2000 season, 
featuring 115 vertices and 616 edges that symbolize the football teams and the regular season games played 
between them, respectively. Throughout the season, these 115 teams were organized into 12 conferences, 
each hosting about 8 to 12 teams. Within this setup, games occurred more frequently among teams 
within the same conference compared to those from different conferences. This pattern suggests that 
each conference functions as an individual community within the overall network [58]. The network 
was proposed by Girvan and Newman. The nodes represent different football teams and the edges 
represent the matches between two teams. The network consists of 115 nodes and 616 edges. The 
network consists of 12 communities, which are 12 football teams [18]. 

4.1.5. Jazz club dataset 

 Data from The Red Hot Jazz Archive was used to analyze 198 bands active from 1912 to 1940, 
primarily in the 1920s [52]. The database, listing 1275 musician names within these bands, does not 
specify the timing of musicians’ participation, hindering the study of the network’s temporal evolution. 
Notably, the count of names does not equate to distinct individuals due to aliases and unnamed 
musicians labeled as “unknown”. For instance, Henry Allen is listed under multiple names. The 
analysis reveals a distribution with most bands having 5 to 10 musicians, and a few larger ones with 
up to 171 members. In this network, each node represents a jazz musician, and an edge is established 
between two musicians if they have played together. There are a total of 198 jazz musicians within this 
network. The average degree of 27.697 indicates that the network's nodes are highly interconnected [59]. 

4.2. Characteristics and parameters used for datasets 

Table 4 describes the characteristics of various network datasets used in the experiments along 
with the specific parameters set for the MA employed. Table 4 lists five distinct networks: Karate, 
Dolphin, U.S. Books, Football, and Jazz. For each network, Table 4 specifies the number of nodes, the 
number of edges, and the number of labels which indicate how many communities each dataset will 
be divided into, and for the parameters of MA, the population size and the number of generations are 
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described above. The crossover rate and the mutation rate are identical to all five datasets with rate 
values of 1.0 and 0.5, respectively. The crossover rate is set to 1.0 to ensure that every gene of the two 
chromosomes is considered for crossover, aligning with the general guideline to utilize a high 
crossover rate [60]. It ensures that crossover occurs for every parent chromosome, and all offspring 
are generated through crossover at every generation. The information of the two parent chromosomes 
is randomly exchanged through uniform crossover, enhancing the genetic diversity of the offspring. 

Table 4. Characteristics of the used dataset and parameters of the MA. 

Network # nodes # edges # label Population Size Generation 
Karate 34 78 2 100 50 
Dolphin 62 159 5 400 200 
U.S. Books 105 440 3 400 200 
Football 115 613 12 500 400 
Jazz 798 2742 4 400 400 

5. Results 

To assess the efficacy of our algorithm’s performance, we juxtaposed its outcomes with those 
from four established algorithms for enhancing modularity: the GN [8], which is a greedy heuristic, 
CNM [61] which is an improved heuristic algorithm, genetic algorithm using a variation of information 
(GATHB) [16], which is a GA, and the Meme-Net [17], which is a memetic algorithm. 

Table 5 represents the comparative analysis between the maximum modularity of all five different 
social network datasets with the maximum modularity (𝑄 ) and the average modularity (𝑄 ) obtained 
by 50 runs of our method. The best results for each community detection method are shown in boldface. 
We can imply that our method is superior to the modularity scores achieved by GN, CNM, GATHB, and 
Meme-Net, although we have slightly inferior results compared to Meme-Net for two datasets.  

Table 5. Comparison of modularity scores with various heuristic algorithms. 

Network GN CNM GATHB Meme-Net  
Our Method 

𝑄  𝑄avg 

Karate 0.401 0.381 0.402 0.402 0.404 0.404 
Dolphin 0.519 0.515 0.522 0.518 0.529 0.518 
U.S. Books 0.510 0.502 0.518 0.523 0.522 0.510 
Football 0.599 0.565 0.551 0.604 0.603 0.591 
Jazz 0.439 0.439 0.445 0.438 0.445 0.444 

Our method consistently demonstrates superiority by achieving the highest modularity scores in 
each dataset, outperforming the GN, CNM, and GATHB methods, thereby asserting its advanced 
capability in identifying and delineating the community structures within the networks. This is 
evidenced by the maximum modularity score (𝑄max) values, which not only equal but in some cases 
surpass the best results obtained by the existing algorithms, underscoring the precision and efficacy of 
our algorithm. 

The average modularity scores ( 𝑄 ) obtained from our method also reflect its robust 
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performance, maintaining an edge over the GN, CNM, and GATHB scores across almost all networks. 
Particularly, the Dolphin, U.S. Books, and Jazz networks exhibit higher values 𝑄  when our method is 
applied, indicating an enhanced reliability in the community detection process. While our method's 𝑄  
for the Football network slightly trails behind that of the Meme-Net, it nonetheless remains competitive, 
illustrating the adaptability and resilience of our algorithm even in complex network scenarios. 

To summarize, the empirical findings are drawn from Table 5, solidifying the standing of our 
algorithm as a formidable contender in the field of community detection. With its methodological 
enhancements, it not only stands up to the challenge against established algorithms but also often 
surpasses them, achieving high-quality community structure detection in diverse networks. These 
results fortify the assertion that our method is not only a significant contribution to the existing body 
of research but also a reliable tool for practical applications in community detection. 

Figure 3(a)–3(e) showcases the facets of community detection using MAs in the analysis of five 
different datasets. 

      

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3. Detected communities after MAs. (a) Karate; (b) Dolphins; (c) Books; (d) 
Footballs; (e) Jazz. 
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The figure presents a visual representation of the detected communities within each social 
network dataset described above. Each node represents a member of the dataset, and the edges indicate 
the relationships between them. The color coding denotes the algorithm's division into communities, 
where we can see clear segregation into primary groups based on the number of their actual 
communities in real life.  

6. Discussion 

6.1. Effectiveness of local search 

Table 6 provides an insightful comparative study on the effectiveness of the local search for 
community detection across five different social networks where w/ L.S. represents using local search 
and w/o L.S. represents the absence of local search. The results are segmented into two sets: one that 
includes local search and another without it. The best results for community detection performance are 
shown in boldface. 

Table 6. Comparison of the presence and absence of local search. 

Method 
Karate Dolphin Books Football Jazz 

𝑄max 𝑄  𝑄max 𝑄  𝑄max 𝑄  𝑄max 𝑄  𝑄max 𝑄  

w/ L.S. 0.4036 0.4036 0.5285 0.5186 0.5221 0.5085 0.6027 0.5911 0.4451 0.4448 

w/o 
L.S. 

0.4036 0.4036 0.5277 0.5131 0.5221 0.5043 0.5946 0.5789 0.4451 0.4442 

p-value 1.00 4.9 × 10  6.15 × 10  3.8× 10  8.1× 10  

Table 6 delineates both the highest modularity scores (𝑄max) with average modularity scores (𝑄 ) 
for the Karate, Dolphin, Books, Football, and Jazz networks. It reveals that the incorporation of local 
search does not necessarily enhance the best modularity scores but does offer notable improvements 
in average modularity scores across most networks. This suggests that the optimization consistency 
and the algorithm’s ability to reliably identify community structures are strengthened when local search 
techniques are applied. 

When we applied the local search, there was a discernible consistency in the 𝑄max  across the 
Karate and Dolphin networks, with values of 0.4036 and 0.5285. When we do not apply the local 
search, there is a slight decrement in the Dolphin network’s 𝑄max to 0.5277, while the Karate network 
remains unchanged. This pattern suggests that for certain network structures, such as that of the Karate 
network, which has a comparatively small size, local search may not significantly impact the peak 
modularity score. 

Looking at the 𝑄 , the enhancement due to local search is more apparent. For instance, in the 
Dolphin network, the 𝑄  sees an increase from 0.5131 to 0.5186 with the inclusion of local search. 
This improvement emphasizes the role of local search in providing a more consistent detection of 
community structures. 

In the Books and Football networks, a similar trend is observed where the 𝑄  increases by 
approximately 0.042 and 0.122, respectively, when local search is applied. However, in the Jazz 
network, the 𝑄  is only slightly increased by 0.006 with the implementation of local search. This 
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could suggest that while the approach generally enhances 𝑄  , suggesting more consistent 
community detection, the Jazz network’s unique complexity may require a custom-tailored local search 
strategy. 

To confirm the significance of the performance improvements, we performed a Mann-Whitney U 
test between the modularity of GA with and without local search, with the p-value included at the 
bottom of Table 6. For the Dolphins and Football networks, using local search led to a significant 
performance improvement (p<0.05). However, for the remaining networks, there was no significant 
performance enhancement (p>0.05). In networks where a statistically significant performance 
enhancement was observed, the GA with local search outperformed the one without it in terms of 𝑄 . 
Conversely, in cases without significant performance enhancement, the GA with local search and the 
one without yielded equal results. 

In summary, the quantitative analysis of Table 6 indicates that the application of local search in a 
GA framework tends to bolster the average performance in detecting community structures, though its 
impact on the 𝑄  may vary depending on the specific characteristics of the network under 
investigation. The consistency and reliability of community detection appear to be enhanced by the 
use of local search, especially in networks with less complex structures. The improved 𝑄  
underscores the enhanced robustness of the GA due to the local search, suggesting it is an effective 
strategy for achieving more reliable and stable solutions in the realm of community detection. 

6.2. Convergence analysis 

Figure 4 presents a figurative comparative analysis of the convergence behavior of GA with and 
without the implementation of local search across five different datasets: Karate, Dolphin, Books, 
Football, and Jazz. Each dataset is represented by a pair of plots in a two-row configuration, with the 
top row showing the convergence of GA with the implementation of local search and the bottom row 
depicting GA convergence without implementing local search. The red line indicates the point at which 
the best performance was achieved. 

Karate Dolphin Books Football Jazz 

    

(a) 

(b) 

Figure 4. Convergence analysis of local search utilization across five datasets. (a) with 
local search; (b) without local search. 
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From the convergence curves, it is evident that the incorporation of local search generally results 
in a more rapid approach toward higher modularity values, indicative of more optimal community 
structures. This is characterized by a steeper ascent in the early generations for the GA with local 
search, suggesting an accelerated discovery of better solutions. In contrast, the GA without local search 
demonstrates a more gradual increase in modularity, reflecting slower progress toward optimizing 
community partitions. 

Specifically, in the Karate, Dolphin, and Books datasets, the initial slope of the convergence curve 
with local search is markedly steeper compared to without, illustrating that local search significantly 
quickens the initial phase of optimization. For the Football and Jazz datasets, which are larger and 
presumably more complex, the acceleration in convergence is still visible with local search, although 
the difference in the rate of convergence compared to the GA without local search is less pronounced 
than in the smaller datasets. 

The graphs also reveal that GA with local search reaches a plateau sooner, indicating an earlier 
stabilization at high modularity values. This suggests that local search not only speeds up convergence 
but potentially also contributes to achieving more robust solutions. 

Overall, the comparative visualization underscores the effectiveness of local search in enhancing 
the efficiency of GAs in community detection tasks, particularly in terms of convergence speed to 
optimal or near-optimal solutions. 

6.3. Novelty of our study 

The novelty of our study lies in its introduction of a MA combining GA with the SHC algorithm 
to enhance modularity scores in community detection. Traditional community detection algorithms, 
although effective to some extent, often struggle with complex systems. While current GA-based 
methods are hindered by issues such as prolonged durations to reach the global optimum and 
susceptibility to premature convergence, our approach addresses these limitations by integrating SHC 
as a local optimization method, which significantly enhances both convergence speed and modularity 
scores. This integration demonstrates superior performance across multiple social network datasets 
compared to existing GA-based methods, providing a robust solution for detecting community 
structures in various complex networks. 

While community structure is a key property of complex networks and indicates the potential 
functionality of networked systems, attacks and errors are common in everyday life, making network 
robustness crucial. In reality, networked systems frequently encounter unpredictable failures or 
intentional attacks. Therefore, maintaining the functionality of these networks under such disturbances 
is crucial [62]. In [63], the simulated annealing algorithm is applied to alleviate damage to the 
robustness of communities under attacks and errors. Recent studies have increasingly focused on the 
robustness of communities, which should maintain much of their original structure even under 
structural fluctuations [64]. We have devised a method that remains robust to changes in network 
structure, achieved through a GA using SHC as a local search. By integrating strategies that account 
for robustness against attacks and errors, our study offers a comprehensive approach to community 
detection that maintains functional integrity even in adverse conditions. 
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6.4. Limitation 

While Newman’s modularity [51] is effective and is the one of the most accepted measures for 
the evaluation of community structure in networks, modularity-based methods might introduce biases 
by favoring specific network structures and often merging smaller communities into larger ones 
although smaller communities are more appropriate. For example, they often perform well on synthetic 
networks designed with clear community structures but struggle with real-world networks where 
community structures overlap each other [65]. To provide a more comprehensive view of community 
structures, future research should explore alternative metrics such as NMI [66], the Omega index [67], 
which is the adaptation of the Rand index and is originally designed for partition problems that 
evaluates the proportion of communities in which pairs of nodes are correctly placed together, and the 
F1-score, which is frequently used to evaluate the communities identified by the methods that can be 
understood as a weighted average of precision and recall [65]. 

Moreover, the performance of the MA in networks with overlapping or hierarchical community 
structures should be further investigated. To date, numerous methods for detecting overlapping 
communities have been proposed, with the majority being node-based algorithms [68]. However, the 
combination of exploring the solution space through global search and exploiting promising regions 
within that space makes MAs highly effective tools for addressing challenging computational 
problems, such as detecting overlapping communities [2]. In real networks, communities often exhibit 
overlapping and hierarchical structures [69]. Thus, further studies should also focus on hierarchical 
detection methods that can be integrated with MAs. Approaches that evaluate multiple hierarchical 
levels and apply constraints on community capacity and hierarchical relationships can improve the 
detection quality. Therefore, research that focuses on adapting the algorithm to handle these complex 
structures more effectively and exploring the robustness of the algorithm under varying network 
conditions may be prospective. 

7. Conclusions 

In this study, we have attempted an approach of GAs implemented with the SHC local search 
method to increase the modularity scores based on community detection. By providing a comparative 
analysis with existing GAs such as GN [8], CNM [61], GATHB [16], and Meme-Net [17], our 
algorithm has consistently outperformed traditional GAs and shown that even without guaranteeing 
the global optimum, the local search mechanism significantly enhances the average performance 
metrics, indicating a stable and reliable detection of community structures. Particularly noteworthy is 
the evidence suggesting that local search prevents the algorithm from becoming ensnared in local 
optima, thereby facilitating a more effective exploration of the solution space. 

The comparative analysis across five datasets: Karate, Dolphin, Books, Football, and Jazz reveals 
that our memetic algorithm is robust and versatile, adapting effectively to the complexities of each 
network. This study has rigorously explored the role of SHC as a local search strategy within the 
framework of a MA for community detection across a diverse set of social network datasets. The 
experimental results demonstrate a marked improvement in the convergence speed and modularity 
scores when local search is employed alongside GAs. 

While in our study, we explored the effectiveness of using a MA for community detection in small 
and medium-sized datasets, Jin et al. [70] proposed using the integration of graph convolutional 
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networks (GCN) and Markov random fields (MRF) to solve the problem of community detection using 
a large scale dataset. For instance, the Never-Ending Language Learning (NELL) dataset has 65,755 
nodes compared to our largest Jazz dataset having only 798 nodes. Shi et al. [71] proposed a 
community-based variational autoencoder (ComVAE) model in which both community information 
and deep learning techniques are utilized, where large scale datasets including 2000 to 4000 vertices 
were used. Therefore, we recognize the need for future research to combine local search strategies with 
deep learning methods. Integrating our MA with approaches like VAE and GCNs could leverage the 
strengths of both local optimization and deep learning. This hybrid approach has the potential to 
enhance detection accuracy and scalability for large community detection problems. Furthermore, 
exploring the application of our enhanced algorithm on more extensive and diverse datasets could 
provide deeper insights into its generalizability and robustness. Developing a comprehensive 
framework that incorporates both local optimization and deep learning could contribute significantly 
to the advancement of community detection techniques. 

In conclusion, this study has affirmed that integrating local search into GA constitutes a 
significant advancement in the field of network analysis and community detection. It opens avenues 
for further research into hybrid meta-heuristic methods. It underscores the potential of such approaches 
in dealing with NP-hard problems that are prevalent in complex systems across various domains. 
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