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Abstract: In this research, we are examining the stochastic modified Korteweg-de Vries (SMKdV)
equation forced in the Itô sense by multiplicative noise. We use an appropriate transformation to
convert the SMKdV equation to another MKdV equation with random variable coefficients (MKdV-
RVCs). We use the generalizing Riccati equation mapping and Jacobi elliptic functions methods in
order to acquire new trigonometric, hyperbolic, and rational solutions for MKdV-RVCs. After that, we
can get the solutions to the SMKdV equation. To our knowledge, this is the first time we have assumed
that the solution of the wave equation for the SMKdV equation is stochastic, since all earlier research
assumed that it was deterministic. Furthermore, we provide different graphic representations to show
the influence of multiplicative noise on the exact solutions of the SMKdV equation.
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1. Introduction

The Modified Korteweg-de Vries (MKdV) equation [1] is a nonlinear partial differential equation
used to explain dispersive waves in shallow water. It is an extension of the original KdV equation
that has qualities such as soliton solutions, integrability, and wave breaking, making it a useful
model in many domains of physics and mathematics. The MKdV equation has several applications,
involving the investigation of wave propagation in plasma [2], the dynamics of traffic flow [3], and fluid
mechanics [4]. Additionally, it is applied in the field of nonlinear optics to describe pulses composed
of multiple optical cycles [5]. Therefore, numerous authors have tackled exact solutions for (1.1) using
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various approaches, including bifurcation [6], the Riccati equation method [7], (G′/G)-expansion [8],
the Exp-function method [9], the first integral method [10], and the tanh method [11]. While,
Mohammed et al. [12] obtained the exact solutions of SMKdV Eq (1.1) by using the mapping method.

On the other hand, random fluctuations in the MKdV equation play an important role in the
dynamics of nonlinear dispersive waves. They arise from uncertainties, or noise in the initial conditions
or from external forces and can lead to deviations from the deterministic predictions of the equation.
The study of these fluctuations has both theoretical and practical effects, helping us to get a better
understanding of wave statistical behavior in complex systems as well as improve wave dynamics
prediction and control in real-world applications. Various approaches, such as stochastic analysis and
numerical simulations, have been developed to study and model these fluctuations, providing valuable
insights into their effects on wave propagation.

In this study, we look at the stochastic MKdV (SMKdV) equation induced in the Itô sense by
multiplicative noise as follows:

Yt + aY2Yx + bYxxx = σYBt, (1.1)

where Y represents the wave amplitude, t is time, and x is position. The nonlinear term, aY2Yx,
describes the self-interaction of the wave, while the dispersive term, bYxxx, accounts for the effect of
higher-order dispersion. a and b are constants, B(t) is the Brownian motion, Bt = ∂B

∂t and σ is the
noise strength.

In all previous studies, all authors assumed the solutions to wave equations for some stochastic
differential equations were deterministic, such as the Sasa-Satsuma equation [13], the nonlinear
Schrödinger equation [14], the Davey-Stewartson equations [15], the potential Yu-Toda-Sasa-
Fukuyama equation [16], the Burgers’ equation [17], the Jimbo-Miwa equation [18], the coupled
stochastic Korteweg-de Vries equations [19], the modified Benjamin-Bona-Mahony equation [20], and
the Fokas system [21]. While we consider in this study that the wave equation is stochastic and its
solutions are also stochastic.

Our goal in this paper is to find the exact stochastic solutions to the SMKdV Eq (1.1). To
achieve this goal, we convert the SMKdV equation to another MKdV equation with random variable
coefficients (MKdVE-RVCs) by using a suitable transformation. After that, we get the exact solutions
for MKdVE-RVCs by using the generalizing Riccati equation mapping method (GREM-method) and
the Jacobi elliptic method (JEF-method). To our knowledge, this is the first time we have assumed that
the solution of the wave equation for the SMKdV equation is stochastic, since all earlier research
assumed that it was deterministic. Finally, by using the used transformation, we can acquire the
stochastic solutions of SMKdV. These acquired solutions are crucial in understanding several difficult
physical processes due to the importance of SMKdV Eq (1.1) in fluid dynamics, nonlinear optics, and
plasma physics. In order to see the influence of stochastic terms, we provide some figures by utilizing
MATLAB tools.

Here is how the rest of the paper is organized: In Section 2, we derive MKdVE-RVCs from SMKdV
Eq (1.1) and by utilizing the GREM and JEF-methods to find the exact solutions of MKdVE-RVCs. In
Section 3, we acquire the solutions of SMKdV Eq (1.1). In Section 4, we discuss the results that we
obtained. Finally, we present the conclusions of this paper.
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2. MKdV equation with RVCs and its solutions

In this section, we obtain the MKdV equation with random variable coefficients (MKdVE-RVCs).
By using the transformation

Y(t, x) = Z(t, x)eσB(t), (2.1)

and the Itô derivatives rule, one can get the MKdVE-RVCs as follows

Zt + bZxxx + A(t)Z2Zx +
1
2
σ2Z = 0, (2.2)

whereZ is a stochastic real function and A(t) = ae2σB(t).

2.1. GREM-method

Here, we utilize the GREM-method stated in [22]. To find the solutions of the MKdVE-RVCs (2.2),
assuming the solutions of Eq (2.2) have the form

Z(t, x) =

M∑
k=0

αk(t)Xk(ξ), ξ = kx +

∫ t

0
λ(s)ds, (2.3)

where
X′ = sX2 + rX + p. (2.4)

By balancingZ′′′ withZ2Z′, we can calculate the value of M as follows:

M = 1.

Rewriting Eq (2.3) as
Z(t, x) = α0(t) + α1(t)X(ξ). (2.5)

Differentiating Eq (2.5) with regards to t and x, we get

Zt(t, x) = (
·
α0 + pα1λ) + (

·
α1 + α1rλ)X + sλα1X

2,

Zx(t, x) = k[sα1X
2 + rα1X + pα1],

Zxxx(t, x) = k3[6s3α1X
4 + 12rs2α1X

3 + (7r2sα1 + 8ps2α1)X2 (2.6)
+(r3α1 + 8rpsα1)X + (pr2α1 + 2p2sα1)],

Z2Zx = k[(sα3
1)X4 + (2sα0α

2
1 + rα3

1)X3 + (sα2
0α1 + 2rα0α

2
1 + pα3

1)X2

+(rα2
0α1 + 2pα0α

2
1)X + pα2

0α1].

Substituting Eqs (2.5) and (2.6) into Eq (2.2), we obtain a polynomial of degree 4 in X as follows

[6bs3k3α1 + Aksα3
1]X4 + [12rbk3s2α1 + 2kAsα0α

2
1 + rkAα3

1]X3

+[sλα1 + 7r2bk3sα1 + 8pbk3s2α1 + skAα2
0α1 + 2rkAα0α

2
1 + pkAα3

1]X2

[
·
α1 + α1rλ + bk3r3α1 + 8rpsbk3α1 + rkAα2

0α1 + 2pkAα0α
2
1 +

1
2
σ2α1]X
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+[
·
α0 + pα1λ + pbk3r2α1 + 2bk3 p2sα1 + pkAα2

0α1 +
1
2
σ2α0] = 0.

Equating each coefficient of Xk to zero, we have

6bs3k3α1 + Aksα3
1 = 0,

12rbk3s2α1 + 2kAsα0α
2
1 + rkAα3

1 = 0,

sλα1 + 7r2bk3sα1 + 8pbk3s2α1 + skAα2
0α1 + 2rkAα0α

2
1 + pkAα3

1 = 0,

·
α1 + α1rλ + bk3r3α1 + 8rpsbk3α1 + rkAα2

0α1 + 2pkAα0α
2
1 +

1
2
σ2α1 = 0,

and
·
α0 + pα1λ + pbk3r2α1 + 2bk3 p2sα1 + pkAα2

0α1 +
1
2
σ2α0 = 0.

We solve these equations to get

α0(t) = r = 0, α1 = `e−
1
2σ

2t, b =
−A`2

6k2s2 e−σ
2t, and λ(t) =

akp`2

3s
e2σB(t)−σ2t, (2.7)

where ` is a constant. Hence, by utilizing Eqs (2.5) and (2.7), the solutions of MKdVE-RVCs (2.2) are

Z(t, x) = `X(ξ)e−
1
2σ

2t, ξ = kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ. (2.8)

To find X, there are three various cases for the solutions of Eq (2.4) based on p and s as follows:
Case 1. If ps > 0, then Eq (2.4) has the solutions:

X1(ξ) =

√
p
s

tan
(√

psξ
)
,

X2(ξ) = −

√
p
s

cot
(√

psξ
)
,

X3(ξ) =

√
p
s

(
tan(

√
4psξ) ± sec(

√
4psξ)

)
,

X4(ξ) = −

√
p
s

(
cot(

√
4psξ) ± csc(

√
4psξ)

)
,

X5(ξ) =
1
2

√
p
s

(
tan(

1
2
√

psξ) − cot(
1
2
√

psξ)
)
.

Then, MKdVE-RVCs (2.2) has the trigonometric function solutions:

Z1(t, x) = `

√
p
s

(
tan(
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.9)

Z2(t, x) = −`

√
p
s

(
cot(
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.10)
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Z3(t, x) = `

√
p
s

(
tan(

√
4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

± sec(
√

4ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.11)

Z4(t, x) = −`

√
p
s

(
cot(

√
4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

± csc(
√

4ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.12)

Z5(t, x) = `

√
p
s

(
tan(

1
2
√

ps
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

− cot(
1
2
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t. (2.13)

Case 2. If ps < 0, then Eq (2.4) has the solutions:

X6(ξ) = −

√
−p
s

tanh
(√
−psξ

)
,

X7(ξ) = −

√
−p
s

coth
(√
−psξ

)
,

X8(ξ) = −

√
−p
s

(
coth(

√
−4psξ) ± csch(

√
−4psξ)

)
,

X9(ξ) =
−1
2

√
−p
s

(
tanh(

1
2
√
−psξ) + coth(

1
2
√
−psξ)

)
.

Then, MKdVE-RVCs (2.2) has the hyperbolic function solution:

Z6(t, x) = −`

√
−p
s

(
tanh(

√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.14)

Z7(t, x) = −`

√
−p
s

(
coth(

√
−psξ(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.15)

Z8(t, x) = −`

√
−p
s

(
coth(

√
−4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

±csch(
√
−4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t, (2.16)

Z9(t, x) = −
`

2

√
−p
s

(
tanh(

1
2
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))
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+ coth(
1
2
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
e−

1
2σ

2t. (2.17)

Case 3. If p = 0, and s , 0, then the solution of Eq (2.4) is

X10(ξ) =
−1
sξ
.

Hence, the MKdVE-RVCs (2.2) have the rational function solution:

Z10(t, x) =
( −`

(skx +
akp`2

3

∫ t

0
e2σB(τ)−σ2τdτ)

)
e−

1
2σ

2t. (2.18)

2.2. JEF-method

We use here the JEF-method stated in [23]. Supposing the solutions of MKdVE-RVCs (2.2), with
N = 1, have the form

Z(t, x) = a0(t) + a1(t)J(η), (2.19)

where J(η) is one of the following elliptic functions: sn(ωη, ň), cn(ωη, ň), or dn(ωη, ň). Differentiating
Eq (2.19) with respect to t, x, and y, we get

Zt =
·
a0 +

·
a1J + ωλa1J′, Zx = ωka1J′,

Zxx = k2a1(B1J + B2J3), Zxxx = k3a1(B1 + 2B2J2)J′,

ZxZ
2 = ωka1(a2

1J2 + 2a0a1J + a2
0)J′, (2.20)

where B1 and B2 are constants depending on ω, ň, and they will be defined later. Plugging Eqs (2.19)
and (2.20) into MKdVE-RVCs (2.2). After that, by putting each coefficient of J′Jk equal to zero, we
acquire

J0 :
·
a0 +

1
2
σ2a0 = 0,

J1 :
·
a1 +

1
2
σ2a1 = 0,

J0J′ : ωa1[λ + bk3B1 + ka2
0A(t)] = 0,

JJ′ : 2ωka0a2
1A(t) = 0,

and
J2J′ : 2bωk3a1B2 + ωka3

1A(t) = 0.

We solve these equations to get

a0(t) = 0, a1 = `e−
1
2σ

2t, b =
−`2A(t)
2k2B2

e−σ
2t, λ(t) =

`2kB1

2B2
A(t)e−σ

2t,

where ` is a constant. Hence, the solution of the MKdVE-RVCs (2.2) is

Z(t, x) = `J(η), η = kx +
a`2kB1

2B2

∫ t

0
e2σB(τ)−σ2τdτ. (2.21)
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Let us now define J(η) as follows:
Set 1. If J(η) = sn(ωη, ň), then Eq (2.21) takes the form

Z(t, x) = `
(
sn(kωx +

aω`2kB1

2B2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
e−

1
2σ

2t, (2.22)

where
B1 = −ω2(1 + ň2) and B2 = 2ω2ň2.

Set 2. If J(η) = cn(ωη, ň), then Eq (2.21) takes the form

Z(t, x) = `
(
cn(kωx +

aω`2kB1

2B2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
e−

1
2σ

2t, (2.23)

where
B1 = ω2(1 − 2ň2) and B2 = −2ω2ň2.

Set 3. If J(η) = dn(ωη, ň), then Eq (2.21) takes the form

Z(t, x) = `
(
dn(kωx +

aω`2kB1

2B2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
e−

1
2σ

2t, (2.24)

where
B1 = ω2(2 − ň2) and B2 = −2ω2.

3. Exact solutions of stochastic MKdV equation

Now, we can use the solutions of MKdVE-RVCs (2.2) that we obtained in the previous section to
get the solutions of SMKdV Eq (1.1) as follows:

3.1. GREM-method

Substituting Eqs (2.9)–(2.18) into Eq (2.1), we get the solutions of SMKdV Eq (1.1) as:

Y1(t, x) = `

√
p
s

(
tan(
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.1)

Y2(t, x) = −`

√
p
s

(
cot(
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.2)

Y3(t, x) = `

√
p
s

(
tan(

√
4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

± sec(
√

4ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.3)

Y4(t, x) = −`

√
p
s

(
cot(

√
4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))
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± csc(
√

4ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.4)

Y5(t, x) = `

√
p
s

(
tan(

1
2
√

ps
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

− cot(
1
2
√

ps(kx +
akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.5)

for ps > 0,

Y6(t, x) = −`

√
−p
s

(
tanh(

√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.6)

Y7(t, x) = −`

√
−p
s

(
coth(

√
−psξ(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.7)

Y8(t, x) = −`

√
−p
s

(
coth(

√
−4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

±csch(
√
−4ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.8)

Y9(t, x) = −
`

2

√
−p
s

(
tanh(

1
2
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

+ coth(
1
2
√
−ps(kx +

akp`2

3s

∫ t

0
e2σB(τ)−σ2τdτ))

)
eσB(t)− 1

2σ
2t, (3.9)

for ps < 0, and

Y10(t, x) =
( −`

(skx +
akp`2

3

∫ t

0
e2σB(τ)−σ2τdτ)

)
eσB(t)− 1

2σ
2t, (3.10)

for p = 0 and s , 0.

Remark 1. Putting p = −1, s = a, `1 = −
√

c, k =
√
−c
2b , and σ = 0 (i.e., no noise) in Eqs (3.1)

and (3.2) we have the results stated in [11] as follows:

Y(t, x) =

√
c
a

tanh(

√
−c
2b

(x − ct))
)
,

and

Y(t, x) =

√
c
a

coth(

√
−c
2b

(x − ct))
)
.
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3.2. JEF-method

Substituting Eqs (2.22)–(2.24) into Eq (2.1), we have the SMKdV Eq (1.1):

Y(t, x) = `
(
sn(kωx −

aω`2k(1 + ň2)
4ň2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
eσB(t)− 1

2σ
2t, (3.11)

Y(t, x) = `
(
cn(kωx +

aω`2k(1 − 2ň2)
4ň2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
eσB(t)− 1

2σ
2t, (3.12)

and

Y(t, x) = `
(
dn(kωx −

aω`2k(2 − ň2)
4

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
eσB(t)− 1

2σ
2t. (3.13)

If ň→ 1, then the Eqs (3.11)–(3.13) become

Y(t, x) = `
(

tanh(kωx −
aω`2k

2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
eσB(t)− 1

2σ
2t, (3.14)

and

Y(t, x) = `
(
sech(kωx −

aω`2k
2

∫ t

0
e2σB(τ)−σ2τdτ, ň)

)
eσB(t)− 1

2σ
2t. (3.15)

4. Discussion and impacts of noise

4.1. Discussion

Here, we obtained the solutions of the SMKdV Eq (1.1). We used the METF and
JEF methods, which produced a wide range of solutions, including optical trigonometric
solutions (3.1)–(3.5), optical hyperbolic solutions (3.6)–(3.9), optical rational solution (3.10), and
optical elliptic solutions (3.11)–(3.13). Optical solutions are an effective tool for studying the behavior
of solutions to the modified KdV equations, as they provide a unique viewpoint on wave dynamics
and interactions in complex systems. Furthermore, optical solutions enable researchers to look at the
stability and nonlinear dynamics of solutions to MKdV equations. Using optical solutions, researchers
may investigate the system’s nonlinear effects, such as wave breaking and soliton formation, which are
important for understanding the solutions’ long-term behavior. By investigating the stability of optical
systems, researchers may gain a better understanding of the system’s behavior and make more accurate
predictions about its future evolution.

4.2. Impacts of noise

The impact of multiplicative noise on the exact solution of SMKdV Eq (1.1) is examined in this
section. For our knowledge, the key difference between the solutions provided here and the ones
acquired in [12] is the amplitude function Z(t, x). Here, Z(t, x) is a stochastic function, while Z(t, x)
is an assumed deterministic function in [12]. Numerous numerical simulations of various solutions
with different intensities of noise are shown. Figures 1–3 display the solutions Z(t, x) described in
Eqs (3.11), (3.14), and (3.15), respectively, for various amplitudes of noise σ as follows:
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(a) σ = 0 (b) σ = 0.1

(c) σ = 0.4 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.4, 1, 2

Figure 1. (a–e) show 3D-profile of Z(t, x) described in Eq (3.11) with k = 1, ` = ň =

0.5, a = ω = 1, x ∈ [−4, 4], t ∈ [0, 2], (f) exhibits 2D-profile of Eq (3.11) with distinct σ.
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(a) σ = 0 (b) σ = 0.1

(c) σ = 0.4 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.4, 1, 2

Figure 2. (a–e) display 3D-shape ofZ(t, x) described in Eq (3.14) with ` = ω = k = 1, a =

1, x ∈ [−4, 4], and t ∈ [0, 2], (f) exhibits 2D-shape of Eq (3.14) with different σ.
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(a) σ = 0 (b) σ = 0.1

(c) σ = 0.4 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.4, 1, 2

Figure 3. (a–e) show 3D-shape of Z(t, x) described in Eq (3.15) with ` = ω = k = 1, a =

1, x ∈ [−4, 4], and t ∈ [0, 2], (f) exhibits 2D-shape of Eq (3.15) with various σ.

Figures 1–3 show that when noise is ignored (i.e., σ = 0), numerous types of solutions emerge,
including optical periodic solutions, optical singular solutions, optical kink solutions, and so on. When
noise is introduced at σ = 0.1, 0.4, 1, 2, the surface flattens after some transit patterns. This result
shows how multiplicative Brownian motion affects the SMKdV Eq (1.1) solutions, stabilizing them
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around zero.

5. Conclusions

In this paper, we looked at the SMKdV Eq (1.1) driven by multiplicative noise in the Itô sense. By
using appropriate transformations, we converted the SMKdV equation to another MKdV equation
with random variable coefficients (MKdV-RVCs) (2.2). Using the GREM-method and the JEF-
method, we obtained a new stochastic exact solutions for MKdV-RVCs in the form of trigonometric,
hyperbolic, and rational functions. After that, we acquired the obtained solutions of SMKdV (1.1).
Moreover, we generated some previous solutions, such as the results reported in [11]. Because of
the importance of MKdV equation used in fluid dynamics, nonlinear optics, and plasma physics,
the acquired solutions are crucial in understanding several difficult physical processes. Finally, some
graphics were included to demonstrate the effect of the stochastic term on the stochastic exact solutions
of the SMKdV equation.
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