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1. Introduction

Fractional calculus (FC) deals with the derivatives and integrals of fractional orders [1, 2]. It can
be used to find many complicated objects’ essential properties and memory effects [3]. Converting
classical derivatives and integrals into non-integer order has been used in several recent FC applications
to study the dynamics of large-scale physical processes [4–8]. Signal processing, mathematical
biology, flow models, relaxation, and viscoelasticity are some engineering and physical study fields that
utilize it. The study of nonlinear processes is fundamental to many academic and technical disciplines.
These include thermodynamics, chemical kinetics, computational biology, quantum mechanics, fluid
dynamics, nonlinear spectroscopy, and solid-state physics [9,10]. These higher-order nonlinear partial
differential equations (PDEs) establish the concept of nonlinearity concept. Numerous high-order
evolution equations exist, encompassing both nonlinear and dispersion combinations. One notable
example is the family of Kawahara equations [11–16], which have gained significant traction in
recent years due to their practical applications. This family holds considerable significance and
utility in elucidating various nonlinear phenomena within physical and engineering systems. They
are instrumental in comprehending the mechanisms underlying the propagation and generation of
nonlinear waves in diverse plasma systems. Primary events are explained by the nonlinear concepts
of all physical systems [17, 18]. The studies cover diverse areas such as credit rating algorithms,
digital integrators, control systems for autonomous underwater vehicles (AUVs), stabilization of high-
order systems, and analysis of stochastic linear complementarity problems [19–21]. These works
contribute to various fields including finance, industrial electronics, autonomous systems, control
theory, mathematics, and cybernetics [22–24]. These studies not only contribute to the theoretical
understanding of complex systems but also offer practical solutions applicable to real-world scenarios.
Moreover, they demonstrate the interdisciplinary nature of modern research, where concepts from
mathematics, engineering, and computer science converge to address contemporary challenges and
drive innovation across various domains [25, 26].

The renowned dispersive classical Kaup-Kupershmidt equation [27] was first proposed by Kaup
in 1980 and revised by Kupershmidt in 1994 [28]. This work focuses on the time-fractional modified
Kaup-Kupershmidt (KK) equation. By applying the fractional-order Kaup-Kupershmidt equation, we
analyze nonlinear dispersive waves and how capillary gravity waves behave. The nonlinear fifth-order
evolution equation is as follows:

Dp
Ω
φ(δ,Ω) −

∂5φ(δ,Ω)
∂δ5 − 5φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 −

25
2
∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 − 5φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0, (1.1)

where 0 < p ≤ 1.
Studying the traditional Kaup-Kupershmidt equation has received a lot of attention recently. There

are four distinct methods that, when used separately, may provide solitary and soliton wave solutions to
generic nonlinear evolution equations. Soliton solutions were created by Ablowitz and Clarkson using
the inverse scattering method to study physically relevant nonlinear equations. Tam and Hu followed
Hirota’s method and used Mathematica to get the same result. As an example of an integrable Henon-
Heiles system, Musette and Verhoeven published the fifth-order Kaup-Kupershmidt equation.

Consider the following fifth-order equation of Sawada-Kotera and Ito as follows:

AIMS Mathematics Volume 9, Issue 8, 20441–20466.



20443

Dp
Ω
φ(δ,Ω) +

∂5φ(δ,Ω)
∂δ5 + 15φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 + 15

∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 + 45φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0, (1.2)

and

Dp
Ω
φ(δ,Ω) +

∂5φ(δ,Ω)
∂δ5 + 3φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 + 6

∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 + 2φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0. (1.3)

The FC has been widely used in many fields during the last 30 years, including physics, fluid dynamics,
chemical physics, electrical networks, control theory of dynamical systems, and many more. Numerous
academics in this area are now preoccupied with pursuing precise strategies for solving the resulting
nonlinear model, which includes fractional order.

Many researchers have applied different analytical and numerical methods, such as the Adomian
Decomposition Method (ADM) [29], the Variational Iteration Method (VIM) [30, 31], and the
Homotopy Perturbation Method (HPM) [32–34]. One strong analytical technique for solving nonlinear
differential equations is the Homotopy Analysis Method (HAM) [35]. The q-Homotopy Analysis
Method, a modified HAM, was recently presented in [36]. Many more techniques are used to
accurately and precisely solve higher order nonlinear PDEs [37, 38]. Analytical solutions of the time-
fractional Sawada-Kotera and time-fractional Ito equations utilizing the Aboodh residual power series
method (ARPSM) have not been attempted as far as we are concerned.

Omar Abu Arqub established RPSM in 2013 [39]. The Taylor series and the residual error
function are combined to generate it. An infinite convergence series [40] provides the solution for
DEs. In response to numerous differential equations (DEs), including Boussinesq DEs, fuzzy DEs,
KdV Burger’s equation, and many others, modern RPSM algorithms have been devised to generate
approximation solutions that are both efficient and accurate [41–47].

A novel methodology was devised to address fractional-order differential equations (FODEs) by
integrating two highly effective techniques. The methods above comprise the categories that are
comprised of the Sumudu transform in conjunction with the following: the Shehu transformation
and the Adomian decomposition method; the Laplace transform with RPSM [48]; the natural
transform [49]; and the homotopy perturbation approach [50]. For further details on integrating the two
methods, please refer to [51–53]. In this study, we will employ an innovative combination technique
known as the ARPSM, which will allow us to obtain both precise and approximative solutions for
time-fractional partial differential equations (PDEs).

In this paper, we use the ARPSM to solve the Kaup-Kupershmidt equation, Ito equation, and
Sawada-Kotera equation of time fractional. We compare the approximate solution via ARPSM of
these equations with the exact solution. Furthermore, the graphical illustration for different fractional
orders is compared and contrasted with the exact solution.

2. Foundations

Definition 2.1. [54] Let us assume that φ(δ,Ω) is an exponentially ordered piecewise continuous
function. The Aboodh transform (AT) may be described as follows, assuming τ ≥ 0 for φ(δ,Ω).

A[φ(δ,Ω)] = Ψ(δ, ξ) =
1
ξ

∫ ∞

0
φ(δ,Ω)e−ΩξdΩ, r1 ≤ ξ ≤ r2.
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In particular, the Aboodh inverse transform (AIT) is defined as follows:

A−1[Ψ(δ, ξ)] = φ(δ,Ω) =
1

2πi

∫ u+i∞

u−i∞
Ψ(δ,Ω)ξeΩξdΩ,

where δ = (δ1, δ2, · · · , δp) ∈ R and p ∈ N.

Lemma 2.1. [55,56] φ1(δ,Ω) and φ2(δ,Ω) are two functions. They are considered to be exponentially
ordered and piecewise continuous on [0,∞[. Let A[φ1(δ,Ω)] = Ψ1(δ,Ω), A[φ2(δ,Ω)] = Ψ2(δ,Ω) and
χ1, χ2 are constants. As a result, the following features are true:

(1) A[χ1φ1(δ,Ω) + χ2φ2(δ,Ω)] = χ1Ψ1(δ, ξ) + χ2Ψ2(δ,Ω),
(2) A−1[χ1Ψ1(δ,Ω) + χ2Ψ2(δ,Ω)] = χ1φ1(δ, ξ) + χ2φ2(δ,Ω),
(3) A[Jp

Ω
φ(δ,Ω)] =

Ψ(δ,ξ)
ξp ,

(4) A[Dp
Ω
φ(δ,Ω)] = ξpΨ(δ, ξ) −

∑r−1
K=0

φK (δ,0)
ξK−p+2 , r − 1 < p ≤ r, r ∈ N.

Definition 2.2. [57] The fractional derivative of φ(δ,Ω) is defined in terms of order p, according to
the Caputo.

Dp
Ω
φ(δ,Ω) = Jm−p

Ω
φ(m)(δ,Ω), r ≥ 0, m − 1 < p ≤ m,

where δ = (δ1, δ2, · · · , δp) ∈ Rp and m, p ∈ R, Jm−p
Ω

is the R-L integral of φ(δ,Ω).

Definition 2.3. [58] The structure of the power series representation reads

∞∑
r=0

~r(δ)(Ω −Ω0)rp = ~0(Ω −Ω0)0 + ~1(Ω −Ω0)p + ~2(Ω −Ω0)2p + · · · ,

where δ = (δ1, δ2, · · · , δp) ∈ Rp and p ∈ N. Multiple fractional power series (MFPS) are series about
Ω0 in which Ω is variable and the series coefficients are ~r(δ)′s.

Lemma 2.2. Let us assume that φ(δ,Ω) is the exponential order function. The AT in this instance is
represented by the equation A[φ(δ,Ω)] = Ψ(δ, ξ). Hence,

A[Drp
Ω
φ(δ,Ω)] = ξrpΨ(δ, ξ) −

r−1∑
j=0

ξp(r− j)−2D jp
Ω
φ(δ, 0), 0 < p ≤ 1, (2.1)

where δ = (δ1, δ2, · · · , δp) ∈ Rp and p ∈ N and Drp
Ω

= Dp
Ω
.Dp

Ω
. · · · .Dp

Ω
(r − times).

Proof. We prove Eq (2.2) via induction. Using r = 1 in Eq (2.2) yields the following outcomes:

A[D2p
Ω
φ(δ,Ω)] = ξ2pΨ(δ, ξ) − ξ2p−2φ(δ, 0) − ξp−2Dp

Ω
φ(δ, 0).

Lemma 2.1(4) states that for r = 1, Eq (2.2) is valid. Upon putting r = 2 in Eq (2.2), we get

A[D2p
r φ(δ,Ω)] = ξ2pΨ(δ, ξ) − ξ2p−2φ(δ, 0) − ξp−2Dp

Ω
φ(δ, 0). (2.2)

Left-hand side (L.H.S.) of Eq (2.2) allows us to infer

L.H.S = A[D2p
Ω
φ(δ,Ω)]. (2.3)
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The expressions of Eq (2.3) can be written in the following form:

L.H.S = A[Dp
Ω

(Dp
Ω
φ(δ,Ω))]. (2.4)

Assume
z(δ,Ω) = Dp

Ω
φ(δ,Ω). (2.5)

Thus, Eq (2.4) becomes
L.H.S = A[Dp

Ω
z(δ,Ω)]. (2.6)

Equation (2.6) is changed as a consequence of using the Caputo derivative.

L.H.S = A[J1−pz
′

(δ,Ω)]. (2.7)

The R-L integral for AT, which is given in Eq (2.7), may be used to deduce the following:

L.H.S =
A[z

′

(δ,Ω)]
ξ1−p . (2.8)

The present form of Eq (2.8) is obtained by using the differential characteristic of the AT.

L.H.S = ξpZ(δ, ξ) −
z(δ, 0)
ξ2−p , (2.9)

From Eq (2.5), we obtain:

Z(δ, ξ) = ξpΨ(δ, ξ) −
φ(δ, 0)
ξ2−p ,

where A[z(δ,Ω)] = Z(δ, ξ). Therefore, Eq (2.9) is transformed to

L.H.S = ξ2pΨ(δ, ξ) −
φ(δ, 0)
ξ2−2p −

Dp
Ω
φ(δ, 0)
ξ2−p . (2.10)

At r = K, Eqs (2.2) and (2.10) become compatible. Assuming that Eq (2.2) is valid for r = K.
Consequently, we put r = K in Eq (2.2):

A[DK p
Ω
φ(δ,Ω)] = ξK pΨ(δ, ξ) −

K−1∑
j=0

ξp(K− j)−2D jp
Ω

D jp
Ω
φ(δ, 0), 0 < p ≤ 1. (2.11)

Illustrating Eq (2.2) for the value of r = K + 1 is the next step. Equation (2.2) allows us to write

A[D(K+1)p
Ω

φ(δ,Ω)] = ξ(K+1)pΨ(δ, ξ) −
K∑

j=0

ξp((K+1)− j)−2D jp
Ω
φ(δ, 0). (2.12)

Examining L.H.S of Eq (2.12)’s which give us the following result

L.H.S = A[DK p
Ω

(DK p
Ω

)]. (2.13)

Let
DK p

Ω
= g(δ,Ω).
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By Eq (2.13), we drive
L.H.S = A[Dp

Ω
g(δ,Ω)]. (2.14)

The following outcomes are obtained by using the Caputo derivative and R-L integral to Eq (2.14).

L.H.S = ξpA[DK p
Ω
φ(δ,Ω)] −

g(δ, 0)
ξ2−p . (2.15)

We utilize Eq (2.11) to get Eq (2.15).

L.H.S = ξrpΨ(δ, ξ) −
r−1∑
j=0

ξp(r− j)−2D jp
Ω
φ(δ, 0), (2.16)

Furthermore, using Eq (2.16), the following result is achieved.

L.H.S = A[Drp
Ω
φ(δ, 0)].

Equation (2.2) holds for r = K + 1. By mathematical induction, Eq (2.2) is thus valid for all positive
integers. �

The following lemma provides a new insight into multiple fractional Taylor’s series (MFTS). The
ATIM, which will be covered in more detail later on, will benefit from this formula.

Lemma 2.3. Assume that the exponential order function to be φ(δ,Ω). In A[φ(δ,Ω)] = Ψ(ξ, δ) is the
AT for φ(δ,Ω). The AT MFTS representation is as follows:

Ψ(δ, ξ) =

∞∑
r=0

~r(δ)
ξrp+2 , ξ > 0, (2.17)

where, δ = (s1, δ2, · · · , δp) ∈ Rp, p ∈ N.

Proof. Let’s examine the fractional order expression for Taylor’s series:

φ(δ,Ω) = ~0(δ) + ~1(δ)
Ωp

Γ[p + 1]
+ +~2(δ)

Ω2p

Γ[2p + 1]
+ · · · (2.18)

The following equality is obtained by applying the AT to Eq (2.18):

A
[
φ(δ,Ω)

]
= A [~0(δ)] + A

[
~1(δ)

Ωp

Γ[p + 1]

]
+ A

[
~1(δ)

Ω2p

Γ[2p + 1]

]
+ · · ·

The AT’s features are used to do this.

A
[
φ(δ,Ω)

]
= ~0(δ)

1
ξ2 + ~1(δ)

Γ[p + 1]
Γ[p + 1]

1
ξp+2 + ~2(δ)

Γ[2p + 1]
Γ[2p + 1]

1
ξ2p+2 · · ·

Consequently, we get (2.17), which is an AT special instance of Taylor’s series. �

Lemma 2.4. The MFPS may be represented as A[φ(δ,Ω)] = Ψ(δ, ξ) using the new form of Taylor’s
series (2.17).

~0(δ) = lim
ξ→∞

ξ2Ψ(δ, ξ) = φ(δ, 0). (2.19)
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Proof. The following is determined using Taylor’s series in its newly modified form:

~0(δ) = ξ2Ψ(δ, ξ) −
~1(δ)
ξp −

~2(δ)
ξ2p − · · · (2.20)

By using limξ→∞ to Eq (2.19) and performing a quick calculation, the required result, (2.20), may be
achieved. �

Theorem 2.5. In MFPS notation, the function A[φ(δ,Ω)] = Ψ(δ, ξ) may be written as follows:

Ψ(δ, ξ) =

∞∑
0

~r(δ)
ξrp+2 , ξ > 0,

where δ = (δ1, δ2, · · · , δp) ∈ Rp and p ∈ N. Then we have

~r(δ) = Dξp
r φ(δ, 0),

where, Drp
ξ = Dp

ξ .D
p
ξ . · · · .D

p
ξ (r − times).

Proof. The following is the new Taylor’s series:

~1(δ) = ξp+2Ψ(δ, ξ) − ξp~0(δ) −
~2(δ)
ξp −

~3(δ)
ξ2p − · · · (2.21)

limξ→∞, is applied to Eq (2.21), we get

~1(δ) = lim
ξ→∞

(ξp+2Ψ(δ, ξ) − ξp~0(δ)) − lim
ξ→∞

~2(δ)
ξp − lim

ξ→∞

~3(δ)
ξ2p − · · ·

We get the following equivalence by taking the limit:

~1(δ) = lim
ξ→∞

(ξp+2Ψ(δ, ξ) − ξp~0(δ)). (2.22)

Upon using Lemma 2.2 to solve Eq (2.22), the following outcome is obtained:

~1(δ) = lim
ξ→∞

(ξ2A[Dp
ξφ(δ, ξ)](ξ)). (2.23)

Furthermore, Lemma 2.3 is applied to Eq (2.23) to convert it into the following form:

~1(δ) = Dp
ξφ(δ, 0).

Once again use the new form of Taylor’s series and assuming limit ξ → ∞, we get

~2(δ) = ξ2p+2Ψ(δ, ξ) − ξ2p~0(δ) − ξp~1(δ) −
~3(δ)
ξp − · · ·

Lemma 2.3 yields the following outcome:

~2(δ) = lim
ξ→∞

ξ2(ξ2pΨ(δ, ξ) − ξ2p−2~0(δ) − ξp−2~1(δ)). (2.24)
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Lemmas 2.2 and 2.4 are used to translate Eq (2.24) into the following form:

~2(δ) = D2p
ξ φ(δ, 0).

The following outcomes are obtained by using the same procedure on the new Taylor’s series:

~3(δ) = lim
ξ→∞

ξ2(A[D2p
ξ φ(δ, p)](ξ)).

Using Lemma 2.4, the final equation is obtained

~3(δ) = D3p
ξ φ(δ, 0).

In general
~r(δ) = Drp

ξ φ(δ, 0).

Consequently, the proof ends here. �

The conditions under which Taylor’s series in its modified form will converge are explained and
established in the following theorem.

Theorem 2.6. Lemma 2.3 provides the formula for multiple fractional Taylor’s, which may be
expressed as follows: A[φ(δ,Ω)] = Ψ(δ, ξ). When |ξaA[D(K+1)p

Ω
φ(δ,Ω)]| ≤ T, for all 0 < ξ ≤ s

and 0 < p ≤ 1, the residual RK(δ, ξ) of the new MFTS is satisfied with the following inequality:

|RK(δ, ξ)| ≤
T

ξ(K=1)p+2 , 0 < ξ ≤ s.

Proof. Assume A[Drp
Ω
φ(δ,Ω)](ξ) is defined on 0 < ξ ≤ s for r = 0, 1, 2, · · · ,K + 1. Proceed with the

assumption that |ξ2A[DΩK+1φ(δ, tau)]| ≤ T, on 0 < ξ ≤ s. Establish the relation below using the new
Taylor’s series:

RK(δ, ξ) = Ψ(δ, ξ) −
K∑

r=0

~r(δ)
ξrp+2 . (2.25)

Theorem 2.5 is used to transform Eq (2.25) into the following form:

RK(δ, ξ) = Ψ(δ, ξ) −
K∑

r=0

Drp
Ω
φ(δ, 0)
ξrp+2 . (2.26)

Simply multiply ξ(K+1)a+2 on both sides to solve Eq (2.26).

ξ(K+1)p+2RK(δ, ξ) = ξ2(ξ(K+1)pΨ(δ, ξ) −
K∑

r=0

ξ(K+1−r)p−2Drp
Ω
φ(δ, 0)). (2.27)

Applying Lemma 2.2 to Eq (2.27) yields

ξ(K+1)p+2RK(δ, ξ) = ξ2A[D(K+1)p
Ω

φ(δ,Ω)]. (2.28)

Taking absolute of Eq (2.28) yields

|ξ(K+1)p+2RK(δ, ξ)| = |ξ2A[D(K+1)p
Ω

φ(δ,Ω)]|. (2.29)
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The following outcome may be obtained by applying the conditions given in Eq (2.29):

−T
ξ(K+1)p+2 ≤ RK(δ, ξ) ≤

T
ξ(K+1)p+2 . (2.30)

To get the required outcome, we use Eq (2.30)

|RK(δ, ξ)| ≤
T

ξ(K+1)p+2 .

As a result, we develop novel requirements for series convergence. �

3. Methodology

3.1. The ARPSM technique for solve time-fractional PDEs

This section discusses the ARPSM collection of rules that we used to develop our overall model
solution.
Step 1. When we simplify the general equation, we get

Dqp
Ω
φ(δ,Ω) + ϑ(δ)N(φ) − ζ(δ, φ) = 0. (3.1)

Step 2. Applying AT to Eq (3.1) yields:

A[Dqp
Ω
φ(δ,Ω) + ϑ(δ)N(φ) − ζ(δ, φ)] = 0. (3.2)

Lemma 2.2 will be used to convert Eq (3.2) into the following form:

Ψ(δ, s) =

q−1∑
j=0

D j
Ω
φ(δ, 0)

sqp+2 −
ϑ(δ)Y(s)

sqp +
F(δ, s)

sqp , (3.3)

where, A[ζ(δ, φ)] = F(δ, s), A[N(φ)] = Y(s).
Step 3. The expression for the solution to Eq (3.3) reads:

Ψ(δ, s) =

∞∑
r=0

~r(δ)
srp+2 , s > 0.

Step 4. The following steps are necessary:

~0(δ) = lim
s→∞

s2Ψ(δ, s) = φ(δ, 0).

Applying Theorem 2.6 yields the following result:

~1(δ) = Dp
Ω
φ(δ, 0),

~2(δ) = D2p
Ω
φ(δ, 0),

...
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~w(δ) = Dwp
Ω
φ(δ, 0).

Step 5. The following formula may be used to get the Ψ(δ, s) series after the Kth truncation:

ΨK(δ, s) =

K∑
r=0

~r(δ)
srp+2 , s > 0,

ΨK(δ, s) =
~0(δ)

s2 +
~1(δ)
sp+2 + · · · +

~w(δ)
swp+2 +

K∑
r=w+1

~r(δ)
srp+2 .

Step 6. The Aboodh residual function (ARF) from (3.3) and the Kth-truncated ARF must be taken into
account separately for the following results:

ARes(δ, s) = Ψ(δ, s) −
q−1∑
j=0

D j
Ω
φ(δ, 0)

s jp+2 +
ϑ(δ)Y(s)

s jp −
F(δ, s)

s jp ,

and

AResK(δ, s) = ΨK(δ, s) −
q−1∑
j=0

D j
Ω
φ(δ, 0)

s jp+2 +
ϑ(δ)Y(s)

s jp −
F(δ, s)

s jp . (3.4)

Step 7. Rather than using its expansion form, ΨK(δ, s) should be substituted in Eq (3.4)

AResK(δ, s) =
(~0(δ)

s2 +
~1(δ)
sp+2 + · · · +

~w(δ)
swp+2 +

K∑
r=w+1

~r(δ)
srp+2

)
−

q−1∑
j=0

D j
Ω
φ(δ, 0)

s jp+2 +
ϑ(δ)Y(s)

s jp −
F(δ, s)

s jp .

(3.5)

Step 8. Multiply each side of Eq (3.5) by sK p+2 to get the following outcome

sK p+2AResK(δ, s) =sK p+2
(~0(δ)

s2 +
~1(δ)
sp+2 + · · · +

~w(δ)
swp+2 +

K∑
r=w+1

~r(δ)
srp+2

−

q−1∑
j=0

D j
Ω
φ(δ, 0)

s jp+2 +
ϑ(δ)Y(s)

s jp −
F(δ, s)

s jp

)
.

(3.6)

Step 9. Assuming that lims→∞, we can calculate Eq (3.6) to derive the following:

lim
s→∞

sK p+2AResK(δ, s) = lim
s→∞

sK p+2
(~0(δ)

s2 +
~1(δ)
sp+2 + · · · +

~w(δ)
swp+2 +

K∑
r=w+1

~r(δ)
srp+2

−

q−1∑
j=0

D j
Ω
φ(δ, 0)

s jp+2 +
ϑ(δ)Y(s)

s jp −
F(δ, s)

s jp

)
.

Step 10. The value of ~K(δ) may be obtained by solving the provided equation

lim
s→∞

(sK p+2AResK(δ, s)) = 0,
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where K = w + 1,w + 2, · · ·
Step 11. To obtain the K-approximate solution of Eq (3.3), substitute the values of ~K(δ) with a Ψ(δ, s)
series that has been truncated.
Step 12. To get the K-approximation solution Solve ΨK(δ, s) using the AIT and obtain the required
function φK(δ,Ω).

3.1.1. Problem 1

Consider the time-fractional Sawada-Kotera equation:

Dp
Ω
φ(δ,Ω) +

∂5φ(δ,Ω)
∂δ5 + 15φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 + 15

∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 + 45φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0, (3.7)

with the following IC:
φ(δ, 0) = 2k2sech2(k(δ − a)). (3.8)

Remember that the exact solution of Eq (3.7) for integer-order reads

φ(δ,Ω) = 2k2sech2
(
k
(
−a − 16k4Ω + δ

))
. (3.9)

Using Eq (3.8) and applying AT to Eq (3.7) yields

φ(δ, s) −
2k2sech2(k(δ − a))

s2 +
1
sp

[∂5φ(δ, s)
∂δ5

]
+

15
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
+

15
sp AΩ

[∂A−1
Ω
φ(δ, s)
∂δ

× A−1
Ω

∂2φ(δ, s)
∂δ2

]
+

45
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0.

(3.10)

Thus, the following are the kth-truncated term series:

φ(δ, s) =
2k2sech2(k(δ − a))

s2 +

k∑
r=1

fr(δ, s)
srp+1 , r = 1, 2, 3, 4, · · · (3.11)

The ARF is given by:

AΩRes(δ, s) = φ(δ, s) −
2k2sech2(k(δ − a))

s2 +
1
sp

[∂5φ(δ, s)
∂δ5

]
+

15
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
+

15
sp AΩ

[∂A−1
Ω
φ(δ, s)
∂δ

× A−1
Ω

∂2φ(δ, s)
∂δ2

]
+

45
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0,

(3.12)

and the kth-LRFs as:

AΩResk(δ, s) = φk(δ, s) −
2k2sech2(k(δ − a))

s2 +
1
sp

[∂5φk(δ, s)
∂δ5

]
+

15
sp AΩ

[
A−1

Ω φk(δ, s) ×
∂3A−1

Ω
φk(δ, s)
∂δ3

]
+

15
sp AΩ

[∂A−1
Ω
φk(δ, s)
∂δ

× A−1
Ω

∂2φk(δ, s)
∂δ2

]
+

45
sp AΩ

[
A−1

Ω φ
2
k(δ, s) ×

∂A−1
Ω
φk(δ, s)
∂δ

]
= 0,

(3.13)
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Finding the values of fr(δ, s) for r = 1, 2, 3, ... need some computation. Follow this procedure, take
the rth-ARF Eq (3.13) and substitute it for the rth-truncated series Eq (3.11), and we solve the relation
lims→∞(srp+1) by multiplying the resultant equation by srp+1. AΩResφ,r(δ, s)) = 0, and r = 1, 2, 3, · · · .
A few of the terms that we obtain are as follows:

f1(δ, s) = 64k7 tanh(k(δ − a))sech2(k(δ − a)), (3.14)

f2(δ, s) = 1024k12(cosh(2k(δ − a)) − 2)sech4(k(δ − a)), (3.15)

and so on.
Put fr(δ, s), for r = 1, 2, 3, · · · , in Eq (3.11):

φ(δ, s) =
2k2sech2(k(δ − a))

s2 +
64k7 tanh(k(δ − a))sech2(k(δ − a))

sp+1

+
1024k12(cosh(2k(δ − a)) − 2)sech4(k(δ − a))

s2p+1 + · · ·

(3.16)

Applying AIT on the above equation, we finally obtain the following approximation:

φ(δ,Ω) = 2k2sech2(k(δ − a)) +
64k7Ωp tanh(k(δ − a))sech2(k(δ − a))

Γ(p + 1)

+
1024k12Ω2p(cosh(2k(δ − a)) − 2)sech4(k(δ − a))

Γ(2p + 1)
+ · · ·

(3.17)

Initially, we conduct a numerical and graphical comparison between the deduced
approximations (3.17) and the exact solution (3.9) for the integer case (specifically, for p = 1). This
comparison aims to assess the accuracy and efficiency of these approximations, thereby confirming
the effectiveness of the used approach and its stability across various parameters associated with the
problem being investigated. Figure 1 compares the approximation (3.17) for p = 1 and the exact
solution (3.9) for the integer case. It is clear from this figure that there is complete harmony between
the two solutions, which enhances the accuracy and efficiency of the deduced approximations. This, in
turn, prompts us to study the effect of the fractional parameter on the behavior of these approximations,
and we are convinced of the accuracy of the obtained results. In order to investigate the impact of
the fractional parameter on the characteristics of the obtained approximations, which subsequently
characterize the solitary waves, we conducted an analysis of this approximation, as depicted in
Figure 2. Based on this figure, it is evident that the fractional parameter significantly influences the
behavior and characteristics of the solitary waves. Consequently, the fractional parameter has unveiled
previously unknown aspects of solitary waves, so exerting a substantial influence on elucidating
numerous nonlinear phenomena, encompassing practical applications, natural phenomena, and space
observations.

Table 1 offers a sufficient qualitative comparison of the derived approximations using ARPSM for
different values of the fractional parameter. Therefore, the combined results of the figures and table
assist in discussing whether the ARPSM effectively solves the Sawada-Kotera equation under various
conditions, which may provide valuable feedback for further studies and results.

AIMS Mathematics Volume 9, Issue 8, 20441–20466.



20453

Figure 1. Comparing the approximation (3.17) and the exact solution (3.9) to the problem
(3.7) for the integer case, i.e., for p = 1: (a) three-dimensional graphic for the approximation
(3.17) and the exact solution (3.9) and (b) two-dimensional graphic for the approximation
(3.17) and the exact solution (3.9) at Ω = 0.01. Here, k = 0.5 and a = 4.

Figure 2. The approximation (3.17) is plotted vs the fractional parameter p: (a) three-
dimensional graphic for p = 0.05, (b) three-dimensional graphic for p = 0.1, (c) three-
dimensional graphic for p = 1, and (d) two-dimensional graphic for various values of p at
Ω = 0.01. Here, k = 0.5 and a = 4.
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Table 1. The impact of fractional parameter on the approximation (3.17) for Ω = 0.1 and
k = 0.2.

δ ARPS Mp=0.54 ARPS Mp=0.74 ARPS Mp=1.00 Exact Errorp=1.00

1.0 0.0568245 0.0568641 0.0568949 0.0568949 6.206861×10−12

1.1 0.0580446 0.0580839 0.0581145 0.0581145 6.418809×10−12

1.2 0.0592564 0.0592954 0.0593258 0.0593258 6.613508×10−12

1.3 0.0604577 0.0604963 0.0605265 0.0605265 6.788715×10−12

1.4 0.0616461 0.0616842 0.0617140 0.0617140 6.942293×10−12

1.5 0.0628190 0.0628567 0.0628860 0.0628860 7.071995×10−12

1.6 0.0639742 0.0640112 0.0640400 0.0640400 7.175801×10−12

1.7 0.0651088 0.0651452 0.0651735 0.0651735 7.251588×10−12

1.8 0.0662205 0.0662561 0.0662838 0.0662838 7.297551×10−12

1.9 0.0673066 0.0673413 0.0673683 0.0673683 7.311873×10−12

2.0 0.0683645 0.0683982 0.0684245 0.0684245 7.293124×10−12

3.1.2. Problem 2

Consider the Ito time-fractional equation:

Dp
Ω
φ(δ,Ω) +

∂5φ(δ,Ω)
∂δ5 + 3φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 + 6

∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 + 2φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0, (3.18)

with the following IC:
φ(δ, 0) = 20k2 − 30k2 tanh2(kδ). (3.19)

Remember that the exact solution of problem (3.18) for integer-order reads

φ(δ,Ω) = 20k2 − 30k2 tanh2
(
kδ − 96k4Ω

)
. (3.20)

Using Eq (3.19) and applying AT to Eq (3.18) yields

φ(δ, s) −
20k2 − 30k2 tanh2(kδ)

s2 +
1
sp

[∂5φ(δ, s)
∂δ5

]
+

3
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
+

6
sp AΩ

[
A−1

Ω

∂φ(δ, s)
∂δ

×
∂2A−1

Ω
φ(δ, s)
∂δ2

]
+

2
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0,

(3.21)

Thus, the following are the kth-truncated term series:

φ(δ, s) =
20k2 − 30k2 tanh2(kδ)

s2 +

k∑
r=1

fr(δ, s)
srp+1 , r = 1, 2, 3, 4, · · · (3.22)

The ARF reads:

AΩRes(δ, s) = φ(δ, s) −
20k2 − 30k2 tanh2(kδ)

s2 +
1
sp

[∂5φ(δ, s)
∂δ5

]
+

3
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
+

6
sp AΩ

[
A−1

Ω

∂φ(δ, s)
∂δ

×
∂2A−1

Ω
φ(δ, s)
∂δ2

]
+

2
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0,

(3.23)
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and the kth-LRFs as:

AΩResk(δ, s) = φk(δ, s) −
20k2 − 30k2 tanh2(kδ)

s2 +
1
sp

[∂5φk(δ, s)
∂δ5

]
+

3
sp AΩ

[
A−1

Ω φk(δ, s) ×
∂3A−1

Ω
φk(δ, s)
∂δ3

]
+

6
sp AΩ

[
A−1

Ω

∂φk(δ, s)
∂δ

×
∂2A−1

Ω
φk(δ, s)
∂δ2

]
+

2
sp AΩ

[
A−1

Ω φ
2
k(δ, s) ×

∂A−1
Ω
φk(δ, s)
∂δ

]
= 0,

(3.24)

Finding the values of fr(δ, s) for r = 1, 2, 3, ... need some computation. Follow this procedure, take
the rth-Aboodh residual function Eq (3.24) and substitute it for the rth-truncated series Eq (3.22), and
we solve the relation lims→∞(srp+1) by multiplying the resultant equation by srp+1. AΩResφ,r(δ, s)) = 0,
and r = 1, 2, 3, · · · . A few of the terms that we obtain are as follows:

f1(δ, s) = 64k7 tanh(k(δ − a))sech2(k(δ − a)), (3.25)

f2(δ, s) = 1024k12(cosh(2k(δ − a)) − 2)sech4(k(δ − a)), (3.26)

and so on.
Put fr(δ, s), for r = 1, 2, 3, · · · , in Eq (3.22):

φ(δ, s) =
2k2sech2(k(δ − a))

s2 +
64k7 tanh(k(δ − a))sech2(k(δ − a))

sp+1

+
1024k12(cosh(2k(δ − a)) − 2)sech4(k(δ − a))

s2p+1 + · · ·

(3.27)

Applying AIT to the above equation yields the following approximation

φ(δ,Ω) = 2k2sech2(k(δ − a)) +
64k7Ωp tanh(k(δ − a))sech2(k(δ − a))

Γ(p + 1)

+
1024k12t2p(cosh(2k(δ − a)) − 2)sech4(k(δ − a))

Γ(2p + 1)
+ · · ·

(3.28)

For the integer case, i.e., for p = 1, Figure 3 presents a comparison between the exact solution (3.20)
of problem 2 and the derived approximation (3.28). It is observed that there is excellent agreement
between the two solutions, which enhances the high accuracy of the derived approximations. The
general behavior of the approximation (3.28) versus various values for the fractional parameter is
depicted in Figure 4, which includes both two and three-dimensional representations. Furthermore,
these demonstrations in Figure 4 will provide a comprehensive understanding of how the variable p
influences the dynamics of the derivedÂ approximations. Table 2 adequately presents the qualitative
comparison of the obtained approximations using ARPSM for various values of the fractional
parameter. Subjection to the fractional order, a lower and a higher value, brings the shape and properties
of the solution, influencing the change of behavior. The exact graph modeling of the analytical
solutions is critical in determining the errors and variability analyzed using such models. Hence, the
collective findings from Figures 3 and 4 and Table 2 aid in evaluating the efficacy of the ARPSM in
solving the Ito time-fractional equation across different scenarios, thereby offering valuable insights
for future research and outcomes.
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Figure 3. Comparing the approximation (3.28) and the exact solution (3.20) to the problem
(3.18) for the integer case, i.e., for p = 1: (a) three-dimensional graphic for the approximation
(3.28) and the exact solution (3.20) and (b) two-dimensional graphic for the approximation
(3.28) and the exact solution (3.20) at Ω = 0.01. Here, k = 0.5.

Figure 4. The approximation (3.28) is plotted vs the fractional parameter p: (a) three-
dimensional graphic for p = 0.35, (b) three-dimensional graphic for p = 0.45, (c) three-
dimensional graphic for p = 1, and (d) two-dimensional graphic for various values of p at
Ω = 0.01. Here, k = 0.5.
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Table 2. The impact of fractional parameter on the approximation (3.28) for Ω = 0.01 and
k = 0.1.

δ ARPS Mp=0.54 ARPS Mp=0.74 ARPS Mp=1.00 Exact Errorp=1.00

1.0 0.197025 0.197022 0.197020 0.197026 5.112834×10−6

1.1 0.196405 0.196401 0.196400 0.196405 5.608732×10−6

1.2 0.195727 0.195724 0.195722 0.195728 6.100225×10−6

1.3 0.194993 0.194989 0.194987 0.194994 6.586942×10−6

1.4 0.194203 0.194199 0.194197 0.194204 7.068523×10−6

1.5 0.193358 0.193353 0.193351 0.193358 7.544614×10−6

1.6 0.192458 0.192452 0.192450 0.192458 8.014870×10−6

1.7 0.191503 0.191498 0.191495 0.191504 8.478957×10−6

1.8 0.190495 0.190490 0.190487 0.190496 8.936550×10−6

1.9 0.189435 0.189429 0.189426 0.189436 9.387335×10−6

2.0 0.188323 0.188317 0.188314 0.188324 9.831007×10−6

3.1.3. Problem 3

Consider the nonlinear time-fractional Kaup-Kupershmidt equation:

Dp
Ω
φ(δ,Ω) −

∂5φ(δ,Ω)
∂δ5 − 5φ(δ,Ω)

∂3φ(δ,Ω)
∂δ3 −

25
2
∂φ(δ,Ω)
∂δ

∂2φ(δ,Ω)
∂δ2 − 5φ2(δ,Ω)

∂φ(δ,Ω)
∂δ

= 0, (3.29)

with the following IC:

φ(δ, 0) =
24k2

ekδ + 1
−

24k2(
ekδ + 1

)2 − 2k2. (3.30)

Remember that the exact solution of problem (3.30) for integer-order reads

φ(δ,Ω) =
24k2

e11k2Ω+kδ + 1
−

24k2(
e11k2Ω+kδ + 1

)2 − 2k2. (3.31)

Using Eq (3.30) and applying AT to Eq (3.29) yields

φ(δ, s) −

24k2

ekδ+1 −
24k2

(ekδ+1)2 − 2k2

s2 −
1
sp

[∂5φ(δ, s)
∂δ5

]
−

5
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
−

25
2

1
sp AΩ

[
A−1

Ω

∂φ(δ, s)
∂δ

×
∂2A−1

Ω
φ(δ, s)
∂δ2

]
−

5
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0,

(3.32)

Thus, the following are the kth-truncated term series:

φ(δ, s) =

24k2

ekδ+1 −
24k2

(ekδ+1)2 − 2k2

s2 +

k∑
r=1

fr(δ, s)
srp+1 , r = 1, 2, 3, 4, · · · (3.33)
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The ARF is as follows:

AΩRes(δ, s) = φ(δ, s) −

24k2

ekδ+1 −
24k2

(ekδ+1)2 − 2k2

s2 −
1
sp

[∂5φ(δ, s)
∂δ5

]
−

5
sp AΩ

[
A−1

Ω φ(δ, s) ×
∂3A−1

Ω
φ(δ, s)
∂δ3

]
−

25
2

1
sp AΩ

[
A−1

Ω

∂φ(δ, s)
∂δ

×
∂2A−1

Ω
φ(δ, s)
∂δ2

]
−

5
sp AΩ

[
A−1

Ω φ
2(δ, s) ×

∂A−1
Ω
φ(δ, s)
∂δ

]
= 0,

(3.34)

and the kth-LRFs as:

AΩResk(δ, s) = φk(δ, s) −

24k2

ekδ+1 −
24k2

(ekδ+1)2 − 2k2

s2 −
1
sp

[∂5φk(δ, s)
∂δ5

]
−

5
sp AΩ

[
A−1

Ω φk(δ, s) ×
∂3A−1

Ω
φk(δ, s)
∂δ3

]
−

25
2

1
sp AΩ

[
A−1

Ω

∂φk(δ, s)
∂δ

×
∂2A−1

Ω
φk(δ, s)
∂δ2

]
−

5
sp AΩ

[
A−1

Ω φ
2
k(δ, s) ×

∂A−1
Ω
φk(δ, s)
∂δ

]
= 0,

(3.35)

Finding the values of fr(δ, s) for r = 1, 2, 3, ... need some computation. Follow this procedure, take
the rth-Aboodh residual function Eq (3.35) and substitute it for the rth-truncated series Eq (3.33), and
we solve the relation lims→∞(srp+1) by multiplying the resultant equation by srp+1. AΩResφ,r(δ, s)) = 0,
and r = 1, 2, 3, · · · . A few of the terms that we obtain are as follows:

f1(δ, s) = −
(
72k7ekδ

(
− 49ekδ + 194e2kδ − 194e3kδ + 49e4kδ + 3e5kδ − 3

))
/
(
ekδ + 1

)7
, (3.36)

f2(δ, s) =
(
216k12ekδ

(
− 684ekδ + 78693e2kδ − 1183952e3kδ + 5210386e4kδ − 8383752e5kδ

+ 5210386e6kδ − 1183952e7kδ + 78693e8kδ − 684e9kδ + 9e10kδ + 9
))
/
(
ekδ + 1

)12
,

(3.37)

and so on.
Put fr(δ, s), for r = 1, 2, 3, · · · , in Eq (3.33):

φ(δ, s) =
( 24k2

ekδ + 1
−

24k2(
ekδ + 1

)2 − 2k2
)
/
(
s2

)
−

(
72k7ekδ

(
− 49ekδ + 194e2kδ − 194e3kδ + 49e4kδ + 3e5kδ

− 3
))
/
((

ekδ + 1
)7

sp+1
)

+
(
216k12ekδ

(
− 684ekδ + 78693e2kδ − 1183952e3kδ + 5210386e4kδ − 8383752e5kδ

+ 5210386e6kδ − 1183952e7kδ + 78693e8kδ − 684e9kδ + 9e10kδ + 9
))
/
((

ekδ + 1
)12

s2p+1
)

+ · · ·

(3.38)

Applying AIT on the above equation, we finally get the following approximation:

φ(δ,Ω) =
( 24k2

ekδ + 1
−

24k2(
ekδ + 1

)2 − 2k2
)
−

(
72Ωpk7ekδ

(
− 49ekδ + 194e2kδ − 194e3kδ + 49e4kδ + 3e5kδ

− 3
))
/
((

ekδ + 1
)7

Γ(p + 1)
)

+
(
216Ω2pk12ekδ

(
− 684ekδ + 78693e2kδ − 1183952e3kδ + 5210386e4kδ

− 8383752e5kδ + 5210386e6kδ − 1183952e7kδ + 78693e8kδ − 684e9kδ + 9e10kδ

+ 9
))
/
((

ekδ + 1
)12

Γ(2p + 1)
)

+ · · ·

(3.39)
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Figure 5 compares the derived approximation (3.39) for the nonlinear time-fractional Kaup-
Kupershmidt issue at p=1 and its exact solution (3.31) for the integer case. The visual representation
presented above depicts the analytical solutions graphically and offers valuable insights into the
system’s behavior being investigated. Furthermore, the numerical analysis of the approximation (3.39)
is conducted against the fractional parameter, as depicted in Figure 6. This analysis helps identify
the system’s analytical approximation behavior and understand the mechanism of the nonlinear
phenomena described by this approximation. Table 3 shows a statistical analysis of several fractional
values for the approximation (3.39). The statistical analysis of various fractional values for the
approximation (3.39) is presented in Table 3. Quantitative analysis can determine convergence
accuracy and which method is more suitable for solving such problems.

Table 3. The impact of fractional parameter on the approximation (3.39) for Ω = 0.01.

δ ARPS Mp=0.54 ARPS Mp=0.74 ARPS Mp=1.00 Exact Errorp=1.00

1.0 0.0398503 0.0398503 0.0398503 0.0398469 3.308740×10−6

1.1 0.0398189 0.0398189 0.0398189 0.0398152 3.635238×10−6

1.2 0.0397845 0.0397845 0.0397845 0.0397806 3.961010×10−6

1.3 0.0397472 0.0397472 0.0397472 0.0397429 4.285991×10−6

1.4 0.0397070 0.0397070 0.0397070 0.0397024 4.610117×10−6

1.5 0.0396638 0.0396638 0.0396638 0.0396588 4.933324×10−6

1.6 0.0396177 0.0396176 0.0396176 0.0396124 5.255549×10−6

1.7 0.0395686 0.0395686 0.0395686 0.0395630 5.576729×10−6

1.8 0.0395166 0.0395166 0.0395166 0.0395107 5.896801×10−6

1.9 0.0394618 0.0394618 0.0394617 0.0394555 6.215704×10−6

2.0 0.0394040 0.0394040 0.0394040 0.0393974 6.533376×10−6

Figure 5. Comparing the approximation (3.39) and the exact solution (3.31) to the problem
(3.29) for the integer case, i.e., for p = 1: (a) three-dimensional graphic for the approximation
(3.39) and the exact solution (3.31) and (b) two-dimensional graphic for the approximation
(3.39) and the exact solution (3.31) at Ω = 0.01. Here, k = 0.65.
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Figure 6. The approximation (3.39) is plotted vs the fractional parameter p: (a) three-
dimensional graphic for p = 0.35, (b) three-dimensional graphic for p = 0.45, (c) three-
dimensional graphic for p = 1, and (d) two-dimensional graphic for various values of p at
Ω = 0.01. Here, k = 0.65.

4. Conclusions

In conclusion, the utilization of the Aboodh residual power series method, in conjunction with
the Caputo operator, presented a viable and pragmatic methodology for examining and resolving
different types of time-fractional differential equations, including the Sawada-Kotera equation, Ito
equation, and Kaup-Kupershmidt equation. The study showcased the potential application of
the recommended analytical procedures in obtaining analytical solutions for fractional differential
equations and generating traveling wave solutions. It was found that the suggested approaches can
be applied to a range of more complicated and higher-order nonlinearity systems. The analysis and
discussion of all generated approximations for the three given problems yielded significant findings.
These approximations were compared to the exact solutions for the integer case, a crucial step in
validating their accuracy. The analytical findings demonstrated a high level of concurrence between the
estimations and the precise solutions, thereby underscoring the importance of the suggested approach
in examining diverse fractional evolution equations. Therefore, these methods have successfully solved
and analyzed the most complicated problems, enhancing their bright future in modeling many of the
most complex issues related to natural, engineering, and physical phenomena.

The findings of this work contribute to the expansion of understanding regarding fractional order
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partial differential equations (PDEs) and present practical methodologies for analytical applications
in any model that incorporates fractional derivatives. Significantly, this study highlights the pressing
need to employ novel methods within fractional calculus approaches to enhance comprehension of the
domain of nonlinear dynamics and mathematical physics.

5. Future works

The results of our study have not only showcased the precision, effectiveness, and adaptability of the
methodologies used but also hold the potential to revolutionize the way we approach the most intricate
problems. These methodologies can be effectively used for analyzing and solving several issues
related to nonlinear plasma physics and fluid mechanics. Therefore, the proposed methodology can be
utilized to investigate the impact of fractional parameters on the propagation characteristics of solitary
waves, shock waves, and rogue waves, which are described by various evolution equations, including
Korteweg-De Vries-type equations [59–61], Burgers equations [62, 63], and nonlinear Schrodinger-
type equations [64, 65] in their fractional forms.
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