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Abstract: The concept of contraction mappings plays a significant role in mathematics, particularly
in the study of fixed points and the existence of solutions for various equations. In this study, we
described two types of enriched contractions: enriched F-contraction and enriched F′-contraction
associated with u-fold averaged mapping, which are involved with Kirk’s iterative technique with
order u. The contractions extracted from this paper generalized and unified many previously common
super contractions. Furthermore, u-fold averaged mappings can be seen as a more general form
of both averaged mappings and double averaged mappings. Moreover, we demonstrated that the u-
fold averaged mapping with enriched contractions has a unique fixed point. Our work examined
the necessary conditions for the u-fold averaged mapping and weak enriched contractions to have
equal sets of fixed points. Additionally, we illustrated that an appropriate Kirk’s iterative algorithm
can effectively approximate a fixed point of a u-fold averaged mapping as well as the two enriched
contractions. Also, we delved into the well-posedness, limit shadowing property, and Ulam-Hyers
stability of the u-fold averaged mapping. Furthermore, we established necessary conditions that
guaranteed the periodic point property for each of the illustrated strengthened contractions. To
underscore the generality of our findings, we presented several examples that aligned with comparable
results found in the existing literature.
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Nomenclature

NEM→non-expansive mapping FP→fixed point
ECM→enriched contraction mapping MS→metric space
EKC→enriched Kannan contraction BS→Banach space
ECC→enriched Chatterjea contraction BC→Banach contraction
ECRRC→enriched Ćirić-Reich-Rus-contraction PO→Picard operator
EIKC→enriched interpolative Kannan-contraction KI→Kirk’s iteration
EICRRC→enriched interpolative Ćirić-Reich-Rus-contraction AM→averaged mapping
KIS→Krasnoselskii iterative scheme NS→normed space
HEF-C→hybrid enriched F-contraction UH→Ulam-Hyers
HEF′-C→hybrid enriched F′-contraction PPP→periodic point property

1. Introduction and basic facts

One of the most helpful methods for studying nonlinear equations, whether they be differential,
integral, or algebraic equations, is the contraction mapping principle. The idea is based on the fixed
point (FP) theorem, which states that every contraction mapping of a complete metric space (MS) to
itself will have a single FP. This FP can be found as the limit of an iteration scheme made up of repeated
images under the mapping of any arbitrary beginning point in the space. Since it is a constructive FP
theorem, the FP can be computed numerically using it.

Assume that Θ is a nonempty set of a Banach space (BS) Ω. A mapping ℑ : Θ → Θ is called a
non-expansive mapping (NEM), if for all ω, θ ∈ Θ, the inequality below holds:∥∥∥ℑω − ℑθ∥∥∥ ≤ ∥ω − θ∥ .
The FP of ℑ is an element ω∗ ∈ Θ, which satisfies an operator equation ℑω∗ = ω∗. The set of FPs of
the mapping ℑ is denoted by Fix

(
ℑ
)
. Let ω0 ∈ Ω be an arbitrary point, and the forward orbit of ω0 is

denoted by O
(
ℑ, ω0,∞

)
, and is described as the set

{
ω0,ℑ

m (ω0) : m ≥ 1
}
. The

set
{
ω,ℑ (ω) , · · · ,ℑm (ω)

}
will be described as O

{
ω,ℑ,m

}
. The mth iterate of the mapping ℑ is

described as ℑm = ℑm−1 ◦ ℑ, m ≥ 1, ℑ0 = I (where I is the identity mapping on Ω).
If Fix

(
ℑ
)
= {ω∗} and O

(
ℑ, ω0,∞

)
→ ω∗ as m → ∞, then the mapping ℑ is called a Picard

operator (PO). Moreover, if there is a constant ρ ∈ [0, 1) such that

d
(
ℑω,ℑθ

)
≤ ρd (ω, θ) ,

for all ω and θ belonging to a complete MS Ω, then the mapping ℑ : Ω → Ω is known as a Banach
contraction (BC) mapping. Clearly, the BC mapping converts to NEM if ρ = 1.As the limiting situation
of BC mappings, one can consider the NEMs. A BC mapping’s mth iterates are referred to as Picard’s
iterates. Any BC mapping constructed on a complete MS (Ω, d) is a PO, as per the BC principle [1].
Furthermore, Picard’s iterates can approximate the FP of the mapping ℑ for each ω0 ∈ Ω, but an NEM
ℑ does not produce a forward orbit that converges to ℑ’s FP. In other words, if ℑ : Θ→ Θ is an NEM,
then ℑmay not have an FP, may have more than one FP, or may even have a unique FP; in contrast, the
forward orbit created by a NEM will not converge to its FP. Therefore, other approximation methods
are required in order to estimate the FPs of NEMs. Additionally, a complex geometric structure of the
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underlying spaces is necessary for the FPs of NEMs to exist. Due to these factors, one of the main and
most active subfields of nonlinear analytic research is the study of NEMs.

Banach fixed-point theorem provides a powerful tool for establishing the existence and uniqueness
of fixed points in metric spaces, which has implications in optimization, inverse problems, and other
mathematical contexts, for more details, see [2–9]

Exact averaged iterations of the form ωm+1 = g
(
ωm,ℑωm+1

)
, m ≥ 1 have been used by numerous

writers. One well-known method is to create an averaged mapping (AM): If ℑϑ = (1 − ϑ)I + ϑℑ, then
an operator ℑϑ associated with ℑ and identity mapping I is an AM for a given operator ℑ on Ω and
ϑ ∈ (0, 1). This concept was first used in [10], when it was demonstrated that the forward orbit caused
by ℑϑ converges to an FP of ℑ under specific circumstances. The initial noteworthy outcome in this
regard was acquired by Krasnoselskii [11]. In the event that Θ represents a closed convex subset of a
uniformly convex BS and ℑ is an NEM on Θ into a compact subset of Θ, then the forward orbit of any
ω in Θ for ϑ = 0.5 converges to an FP of ℑ. Schaefer [12] demonstrated the aforementioned outcomes
for an arbitrary ϑ ∈ (0, 1). The same result was then presented by Edelstein [13] in the context of a
strictly convex BS, which is a broader concept than a uniformly convex BS. It is obvious that Picard’s
iteration method is generalized by Krasnoselskii’s iteration.

In 1971, Kirk [14] created a significant iteration technique called Kirk’s iteration (KI) scheme,
which is defined by

ωm = κ0ωm−1 + κ1ℑωm−1 + κ2ℑ
2ωm−1 + · · · + κuℑ

uωm−1,

where ω0 ∈ Θ, κ0 > 0, and for j = 1, 2, · · · u, κ j ≥ 0 with
∑u

j=1 κ j = 1.
KI method, in fact, is a forward orbit of the mapping ℧ : Θ→ Θ [14] described by

℧ = κ0I + κ1ℑ + κ2ℑ2 + · · · + κuℑ
u, (1.1)

where κ0 > 0, and for j = 1, 2, · · · u, κ j ≥ 0 with
∑u

j=1 κ j = 1. Undoubtedly, the mapping ℧ is a
generalization of the AM ℑϑ.

Kirk demonstrated that, under certain appropriate conditions, the set of FPs of the mapping ℧
corresponds with Fix(ℑ), and that the KI method converges to the FP of ℑ:

Theorem 1.1. [14] Assume that Θ is a convex subset of a BS Ω, and ℑ : Ω → Ω is a NEM. If
℧ : Ω→ Ω is a mapping described as in (1.1), then ℧ (ω) = ω if ℑ (ω) = ω.

The concept of enriched contractive mappings (ECMs) was recently introduced by Berinde and
Păcurar [15]. Let Ω be a BS, and the mapping ℑ : Ω → Ω is said to be ECM if there are τ ≥ 0 and
σ ∈ [0, τ + 1) in order that∥∥∥τ(ω − θ) + ℑω − ℑθ∥∥∥ ≤ σ ∥ω − θ∥ , for all ω, θ ∈ Ω.

They established the existence of an FP of an ECM, which may be roughly represented using a suitable
Krasnoselskii iterative scheme (KIS). To be more precise, the sequence {ℑm

ϑω0} can approximate the
FP of ℑ, which is also an FP of the AM ℑϑ with ϑ ∈ (0, 1] for each ω0 ∈ Ω.

Theorem 1.2. [15] Assume that ℑ : Ω → Ω is an ECM defined on a BS Ω. Then
∣∣∣Fix

(
ℑ
)∣∣∣ = 1, and

there is ϑ ∈ (0, 1] such that the KIS {ωm} iterated by

ωm = (1 − ϑ)ωm−1 + ϑℑωm−1, for all ω0 ∈ Ω, and m ≥ 0

converges to a unique FP of ℑ.
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It is important to note that only the displacements
∥∥∥ℑω − ℑθ∥∥∥ and ∥ω − θ∥ are included in the

enriched contraction mapping that Berinde and Păcurar [15] presented. Nonetheless, for every two
distinct points ω, θ ∈ Ω, there are four more displacements linked to a self-mapping ℑ, denoted
by

∥∥∥ω − ℑω∥∥∥,
∥∥∥θ − ℑθ∥∥∥,

∥∥∥ω − ℑθ∥∥∥ , and
∥∥∥θ − ℑω∥∥∥. More than one displacement is involved in a

number of well-known contraction mappings. For more details, see [16–27]. The authors in [28] have
proposed the concept of weak ECMs, which are an extension of AMs known as double AMs. Assume
that κ1 > 0, κ2 ≥ 0 with κ1 + κ2 = 1 and ℑ : Ω→ Ω is a mapping defined on a BS Ω. Double AM ℑκ1,κ2
is a mapping related to I, ℑ, and ℑ2 and is described as

ℑκ1,κ2 = (1 − κ1 − κ2)I + κ1ℑ + κ2ℑ2.

Clearly, ℑκ1,κ2 is more general than ℑϑ (ℑϑ = ℑκ1,0). Additionally, the mapping℧ in [14] of order u = 2
is a specific instance of the double AM ℑκ1,κ2 . A given mapping ℑ : Ω → Ω on a BS Ω is said to be a
weak ECM if there are τ, τ̃ ≥ 0 and ℓ ∈ [0, τ + τ̃ + 1) such that∥∥∥∥τ(ω − θ) + ℑω − ℑθ + τ̃ (ℑ2ω − ℑ2θ

)∥∥∥∥ ≤ ℓ ∥ω − θ∥ , for all ω, θ ∈ Ω.

According to the findings of [28], for every self-mapping ℑ on a closed convex subset of a BS that
satisfies the weak ECM, there exist κ1 > 0, κ2 ≥ 0 with κ1 + κ2 ∈ (0, 1] such that ℑκ1,κ2 has a unique FP
that can be approximated by a suitable KIS. We make reference to the next paragraph. Their theorem
was formulated as follows:

Theorem 1.3. [28] Assume that (Ω, ∥.∥) is a BS, Θ is a closed convex subset of Ω and ℑ : Θ→ Θ is a
weak ECM. Then, there are κ1 > 0, κ2 ≥ 0 with κ1 + κ2 ∈ (0, 1] such that the assertions below hold

(1)
∣∣∣Fix

(
ℑκ1,κ2

)∣∣∣ = 1;
(2) For any ω0 ∈ Θ, the iterated sequence {ωm} ⊂ Θ generated by

ωm = (1 − κ1 − κ2)ωm−1 + κ1ℑωm−1 + κ2ℑ
2ωm−1, for m ∈ N

converges to a unique FP of ℑκ1,κ2 .

KIS of order u, which is produced by a generalized ECM, appears to be a good way to unify the
FP results that have been described. This unification has two components: KIS of order more than two
is examined, and ECMs are generalized such that the many ECMs that currently exist are inferred as
specific examples.

So, in this article, two types of enriched contractions related to KIS with order u are described in
this paper: hybrid enriched F-contraction and hybrid enriched F′-contraction connected with u-fold
AM. The contractions taken from this paper unify and generalize a lot of super contractions that were
previously widespread. Additionally, one may consider u-fold ANs to be a more universal version of
double and AMs. Furthermore, we prove the existence of a unique FP for the u-fold AM with enriched
contractions. We investigate what requirements must be met in order for the weak hybrid ECMs and
the u-fold AM to have identical sets of FPs. In addition, we demonstrate how a suitable KIS can
efficiently approximate both the FP and the average of a u-fold mapping.
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2. Hybrid enriched contraction mappings

We begin by introducing two mapping families. Assume that F is the class of all mappings ℏ :
R4
+ → R+ that meet the requirements listed below:

(ℏ1) In every argument, ℏ is continuous;
(ℏ2) there is ζ ∈ [0, 1) such that if κ < ℏ (ϱ, κ, ϱ, ϱ + κ) or κ < ℏ (ϱ, κ, ϱ, κ) or κ < ℏ (κ, ϱ, ϱ, κ) or
κ < ℏ (κ, ϱ, ϱ, ϱ) , then for all κ, ϱ ∈ R+, κ ≤ ζϱ;

(ℏ3) ϑℏ (κ, ϱ, ξ, υ) ≤ ℏ (ϑκ, ϑϱ, ϑξ, ϑυ) , for ϑ > 0 and for all κ, ϱ, ξ, υ ∈ R+;
(ℏ4) if υ ≤ υ′, then ℏ (κ, ϱ, ξ, υ) ≤ ℏ (κ, ϱ, ξ, υ′) for all κ, ϱ, ξ, υ, υ′ ∈ R+.

To demonstrate that the family F is nonempty, we now provide some examples.

Example 2.1. It is simple to confirm that the mappings shown below are a part of class F:

(i) ℏ (κ, ϱ, ξ, υ) = κmax {κ + ϱ, ϱ + ξ, ξ + υ, κ + υ} , where κ ∈ [0, 1
2 );

(ii) ℏ (κ, ϱ, ξ, υ) = max κ {κ, ϱ, ξ, υ} , where κ ∈ [0, 1);
(iii) ℏ (κ, ϱ, ξ, υ) = max κ {ϱ, ξ, υ} , where κ ∈ [0, 1);
(iv) ℏ (κ, ϱ, ξ, υ) = κκ, where κ ∈ [0, 1);
(v) ℏ (κ, ϱ, ξ, υ) = κ (κ + ϱ) , where κ ∈ [0, 1

2 );
(vi) ℏ (κ, ϱ, ξ, υ) = κ (ξ + υ) , where κ ∈ [0, 1

2 );
(vii) ℏ (κ, ϱ, ξ, υ) = ξκυ1−κ, where κ ∈ (0, 1);

(viii) ℏ (κ, ϱ, ξ, υ) = κκ1ϱκ2ξκ3υ1−κ1−κ2−κ3 , where κ1, κ2, κ3 ∈ (0, 1) with κ1 + κ2 + κ3 < 1;
(ix) ℏ (κ, ϱ, ξ, υ) = κ1κ + κ2ϱ + κ3ξ + κ4υ, where κ1, κ2, κ3, κ4 ∈ [0, 1) with κ1 + κ2 + κ3 + κ4 = 1.

Assume that F′ is the class of all mappings ℏ : R4
+ → R+ that meet the requirements listed below:

(ℏ′1) In every argument, ℏ is continuous;
(ℏ′2) there is ζ ∈ [0, 1) such that if κ < ℏ (ϱ, ϱ + κ, 0, ϱ + κ) , or κ < ℏ (ϱ, κ, κ, κ) , or
κ < ℏ (ϱ, 0, 0, κ + ϱ) , or κ < ℏ (κ, ϱ, ϱ, ϱ) , then for all κ, ϱ ∈ R+, κ ≤ ζϱ;

(ℏ′3) ϑℏ (κ, ϱ, ξ, υ) ≤ ℏ (ϑκ, ϑϱ, ϑξ, ϑυ) , for ϑ > 0 and for all κ, ϱ, ξ, υ ∈ R+;
(ℏ′4) if υ ≤ υ′, then ℏ (κ, ϱ, ξ, υ) ≤ ℏ (κ, ϱ, ξ, υ′) for all κ, ϱ, ξ, υ, υ′ ∈ R+;
(ℏ′5) if κ ≤ ℏ (κ, κ, κ, κ) , then κ = 0.

To illustrate that the family F′ is nonempty, we consider the following examples:

Example 2.2. It is simple to confirm that the mappings shown below are a part of the family F′:

(i) ℏ (κ, ϱ, ξ, υ) = κmax {κ + ϱ, ϱ + ξ, ξ + υ, κ + υ} , where κ ∈ [0, 1
2 );

(ii) ℏ (κ, ϱ, ξ, υ) = κκ, where κ ∈ [0, 1);
(iii) ℏ (κ, ϱ, ξ, υ) = κ (ϱ + ξ) , where κ ∈ [0, 1

2 );
(iv) ℏ (κ, ϱ, ξ, υ) = κ (ξ + υ) , where κ ∈ [0, 1

2 );
(vi) ℏ (κ, ϱ, ξ, υ) = κ (κ + ϱ + ξ + υ) , where κ ∈ [0, 1

3 );
(vii) ℏ (κ, ϱ, ξ, υ) = κ (κϱξυ)

1
4 , where κ ∈ [0, 1);

(viii) ℏ (κ, ϱ, ξ, υ) = κ
√
κϱ, where κ ∈ [0, 1

3 ).

Here, we provide the u-fold AM using the mapping ℧ [14].
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Definition 2.1. Let Ω be a BS, Θ be a nonempty subset of Ω, and ℑ : Ω → Ω is a given mapping.
Describe the mapping ℑ̂ : Θ→ Θ associated with ℑ as

ℑ̂ = (1 − κ1 − κ2 − κ3 − · · · − κu) I + κ1ℑ + κ2ℑ2 + κ3ℑ
3 + · · · + κuℑ

u,

where κ j > 0,
∑u

j=1 κ j ∈ (0, 1], u ≥ 4, u ∈ N.We say that the mapping ℑ′ is u-fold AM.

Now, let us provide two concepts of ECMs.

Definition 2.2. Suppose that (Ω, ∥.∥) is a normed space (NS). We say that the mapping ℑ : Ω → Ω is
a hybrid enriched F-contraction (HEF-C) if there is ℏ ∈ F in order that for all ω, θ ∈ Ω, b j ∈ (0,∞),
j = 1, 2, · · · , u, u ≥ 4, u ∈ N, we get∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
≤ ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥) . (2.1)

Definition 2.3. Let (Ω, ∥.∥) be an NS. We say that the mapping ℑ : Ω → Ω is a hybrid enriched F′-
contraction (HEF′-C) if there is ℏ ∈ F′ in order that for all ω, θ ∈ Ω, b j ∈ (0,∞), j = 1, 2, · · · , u, u ≥ 4,
u ∈ N, we get∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
≤ ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥) . (2.2)

The definitions above are supported by the following examples:

Example 2.3. Assume that Ω = R is a usual NS and ℑ : [0,∞)→ [0,∞) is a given mapping described
as ℑω = ω3 for ω ∈ [0,∞). It is clear for b j =

1
3 , j = 1, 2, · · · , u, u ≥ 4, u ∈ N, and ℏ (κ, ϱ, ξ, υ) = κκ,

κ = 6
7 ∈ [0, 1) that ℑ is an HEF-C mapping. In fact, Definition 2.2 indicates that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
AIMS Mathematics Volume 9, Issue 8, 20413–20440.
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=

∥∥∥∥∥1
3

(ω − θ) +
(
ω

3
−
θ

3

)
+

1
3

(
ω

9
−
θ

9

)
+

1
3

(
ω

27
−
θ

27

)
+ · · · +

1
3u

(
ω

3u −
θ

3u

)∥∥∥∥∥
=

∥∥∥∥∥1
3

(ω − θ) +
1
3

(ω − θ) +
1

27
(ω − θ) +

1
81

(ω − θ) + · · · +
1

3u+1
(ω − θ)

∥∥∥∥∥
≤ 2 ∥ω − θ∥ ,

and

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ , ∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
= κ

 u∑
j=1

b j + 1

 ∥ω − θ∥
=

6
7

(
1 +

u
3

)
∥ω − θ∥

≥
6
7

(
1 +

4
3

)
∥ω − θ∥

= 2 ∥ω − θ∥ .

Hence, the inequality (2.1) holds. Therefore,ℑ is an HEF-C mapping andℑ has a unique FP 0 ∈ [0,∞).

Example 2.4. Assume that Ω = R is a usual NS and ℑ : [0,∞)→ [0,∞) is a given mapping described
asℑω = 1− ω3 forω ∈ [0,∞). It is clear for b j =

1
3 j , j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, and ℏ (κ, ϱ, ξ, υ) = κ

that ℑ is an HEF-C mapping. In fact, Definition 2.2 indicates that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
=

∥∥∥∥∥1
3

(ω − θ) +
1
3

(θ − ω) +
1
9

(
ω

9
−
θ

9

)
+

1
27

(
θ

27
−
ω

27

)
+ · · · +

1
3u (−1)u

(
ω

3u −
θ

3u

)∥∥∥∥∥
≤

u∑
j=1

(
1
3 j

)
∥ω − θ∥ ,

and

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ , ∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
=

 u∑
j=1

b j + 1

 ∥ω − θ∥
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=

(
1 +

1
3
+

1
32 + · · · +

1
3u

)
∥ω − θ∥

≥

(
1
3
+

1
32 + · · · +

1
3u

)
∥ω − θ∥

=

u∑
j=1

(
1
3 j

)
∥ω − θ∥ .

Hence, the inequality (2.1) is true and ℑ is an HEF-C mapping. Here, ℑ has a unique FP 3
4 ∈ [0,∞).

Example 2.5. Suppose that Ω = R is a usual NS, Λ =
[
−1, −1

3

]
∪

[
1, 1

3

]
⊆ Ω, and ℑ : Λ→ Λ is a given

mapping given by

ℑω =

 −ω, if ω ∈
[
−1, −1

3

]
,

1 − ω, if ω ∈
[

1
3 , 1

]
.

Then, for b j = 1, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, and ℏ (κ, ϱ, ξ, υ) = 1
5 (ξ + υ) , the mapping ℑ is an

HEF′-C.
To illustrate this, without loss of the generality, we consider ω, θ ∈ Λ with ω ≤ θ. We have the

following cases:
Case 1. For each ω, θ ∈

[
−1, −1

3

]
or ω, θ ∈

[
1
3 , 1

]
, the Definition 2.3 implies that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
= ∥(ω − θ) + (θ − ω) + (ω − θ) + (θ − ω) + · · · + (−1)u (ω − θ)∥

=

{
0, if u is odd,

∥ω − θ∥ , if u is even,

and

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
=

 1
5

[∥∥∥(u + 1) (θ − ω) + (u + 1)ω − u+1
2

∥∥∥ + ∥∥∥(u + 1) (ω − θ) + (u + 1)θ − u+1
2

∥∥∥] if u is odd,
1
5

[∥∥∥(u + 1) (θ − ω) + uω − u
2

∥∥∥ + ∥∥∥(u + 1) (ω − θ) + uθ − u
2

∥∥∥] if u is even,

≥

{ (u+1)
5 ∥θ − ω∥ if u is odd,

(u+2)
5 ∥θ − ω∥ if u is even,

≥

{
∥θ − ω∥ if u is odd,

6
5 ∥θ − ω∥ if u is even.
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Case 2. For all ω ∈
[
−1, −1

3

]
or θ ∈

[
1, 1

3

]
, we get∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)
+ b3

(
ℑ3ω − ℑ3θ

)
+ · · · + bu

(
ℑuω − ℑuθ

)∥∥∥∥
= ∥(ω − θ) + (θ − ω − 1) + (1 + ω − θ) + (θ − ω − 1) + · · · + (−1)u (1 + ω − θ)∥

=

{
1, if u is odd,

∥ω − θ∥ , if u is even,

and

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
=

 1
5

[∥∥∥(u + 1) (θ − ω) + (u + 1)ω − u+1
2

∥∥∥ + ∥∥∥(u + 1) (ω − θ) + (u + 1)θ − u+1
2

∥∥∥] if u is odd,
1
5

[∥∥∥(u + 1) (θ − ω) + uω − u
2

∥∥∥ + ∥∥∥(u + 1) (ω − θ) + uθ − u
2

∥∥∥] if u is even,

≥

{ (u+1)
5 ∥θ − ω∥ if u is odd,

(u+2)
5 ∥θ − ω∥ if u is even,

≥

{
∥θ − ω∥ if u is odd,

6
5 ∥θ − ω∥ if u is even.

Verifying the conditions in the aforementioned cases confirms the validity of (2.2). Therefore, ℑ
qualifies as an HEF′-C and 1

2 ∈
[

1
3 , 1

]
is a unique FP of ℑ.

Remark 2.1. The weak ECM in [28] is obtained if we select ℏ (κ, ϱ, ξ, υ) = κκ, 0 ≤ κ < 1, and b j = 0,
for j = 3, 4, · · · , u in Definition 2.2 or 2.3.

Hence, through the selection of suitable functions ℏ and values b j (for j = 1, 2, · · · , u), we can
derive modified weak enriched variants of the traditional contractions discussed, which, as far as we
are aware, have not been explored previously.

Definition 2.4. Describe ℏ ∈ F as ℏ (κ, ϱ, ξ, υ) = κ (ϱ + ξ) , 0 ≤ κ < 1
2 and b j = 0, for j = 3, 4, · · · , u

in Definition 2.2. Then, the mapping ℑ is called an enriched Kannan-contraction (EKC), that is, there
are b1, b2 > 0 and 0 ≤ κ < 1

2 such that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)∥∥∥∥
≤ κ

[∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)∥∥∥∥ + ∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)∥∥∥∥] ,
for all ω, θ ∈ Ω.
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Definition 2.5. Describe ℏ ∈ F as ℏ (κ, ϱ, ξ, υ) = κ (ϱ + ξ) , 0 ≤ κ < 1
2 and b j = 0, for j = 3, 4, · · · , u in

Definition 2.3. Then, the mapping ℑ is called an enriched Chatterjea-contraction (ECC), that is, there
are b1, b2 > 0 and 0 ≤ κ < 1

2 such that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)∥∥∥∥
≤ κ

[∥∥∥∥(1 + b1 + b2) (θ − ω) +
(
ω − ℑω

)
) + b2

(
ω − ℑ2ω

)∥∥∥∥
+

∥∥∥∥(1 + b1 + b2) (ω − θ) +
(
θ − ℑθ

)
) + b2

(
θ − ℑ2θ

)∥∥∥∥]
for all ω, θ ∈ Ω.

Definition 2.6. Describe ℏ ∈ F as ℏ (κ, ϱ, ξ, υ) = κκ + µ (ϱ + ξ) , κ, µ ≥ 0 with κ + 2µ < 1. Set b j = 0,
for j = 3, 4, · · · , u in Definition 2.2. Then, the mapping ℑ is called an enriched Ćirić-Reich-Rus-
contraction (ECRRC), that is, there are b1, b2 > 0 and κ, µ ≥ 0 with κ + 2µ < 1 such that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)∥∥∥∥
≤ κ ∥ω − θ∥ + µ

[∥∥∥∥(ω − ℑω)) + b2

(
ω − ℑ2ω

)∥∥∥∥ + ∥∥∥∥(θ − ℑθ)) + b2

(
θ − ℑ2θ

)∥∥∥∥]
for all ω, θ ∈ Ω.

Definition 2.7. Describe ℏ ∈ F as ℏ (κ, ϱ, ξ, υ) = ϱκξ1−κ, 0 < κ < 1 and put b j = 0, for j = 3, 4, · · · , u
in Definition 2.2. Then, the mapping ℑ is called an enriched interpolative Kannan-contraction (EIKC),
that is, there are b1, b2 > 0 and 0 < κ < 1 such that∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)∥∥∥∥
≤

∥∥∥∥(ω − ℑω)) + b2

(
ω − ℑ2ω

)∥∥∥∥κ ∥∥∥∥(θ − ℑθ)) + b2

(
θ − ℑ2θ

)∥∥∥∥1−κ

for all ω, θ ∈ Ω.

Definition 2.8. Describe ℏ ∈ F as ℏ (κ, ϱ, ξ, υ) = κκϱµξ1−κ−µ, 0 < κ, µ < 1 and put b j = 0, for
j = 3, 4, · · · , u in Definition 2.2. Then, the mapping ℑ is called an enriched interpolative Ćirić–Reich–
Rus-contraction (EICRRC), that is, there are b1, b2 > 0 and 0 < κ + µ < 1 with κ + 2µ < 1 such
that ∥∥∥∥b1 (ω − θ) + ℑω − ℑθ + b2

(
ℑ2ω − ℑ2θ

)∥∥∥∥
≤ ∥ω − θ∥κ

∥∥∥∥(ω − ℑω)) + b2

(
ω − ℑ2ω

)∥∥∥∥µ ∥∥∥∥(θ − ℑθ)) + b2

(
θ − ℑ2θ

)∥∥∥∥1−κ−µ

for all ω, θ ∈ Ω.

Remark 2.2. When b2 is set to 0 in Definitions 2.2 and 2.4–2.8, we derive enriched adaptations of the
ECM introduced by Berinde [15], Kanan [29], EIKC [30], and EICRRCs, respectively.

Let’s revisit the definitions of well-posedness, the limit shadowing property of a mapping, and the
Ulam-Hyers (UH) stability concerning the FP equation.

Assume that ℑ : Ω→ Ω is a mapping on an MS (Ω, d).
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Definition 2.9. The FP issue Fix(ℑ) is deemed well-posed when ℑ possesses a unique FP ω∗, and for
any sequence {ωm} in Ω where limm→∞ d(ωm,ℑωm) = 0, it follows that limm→∞ d(ωm, ω

∗) = 0.

Definition 2.10. The FP challenge Fix(ℑ) is considered to exhibit the limit shadowing property in Ω if
for any sequenceΩwhere limm→∞ d(ωm,ℑωm) = 0, there exists φ ∈ Ω such that limm→∞(ℑωm, ωm) = 0.

Definition 2.11. The FP equation ω = ℑω demonstrates UH stability if there exists a constant δ > 0
such that for every ϵ > 0 and each ϖ∗ ∈ Ω where d(ϖ∗,ℑϖ∗) ≤ ϵ, there exists ω∗ ∈ Ω satisfying
ℑω∗ = ω∗ and d(ω∗, ϖ∗) ≤ δϵ.

We begin with the outcome concerning the existence and uniqueness of an FP for a u-fold AM
associated with these two categories of hybrid enriched contractions within a BS context.

Theorem 2.1. Let Ω be a BS and ℑ : Ω → Ω be an HEF-C mapping. Then, there are κ j > 0,
j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 ∈ (0, 1] such that the assertions below are true:

(i) The m-fold AM ℑ̂ associated with ℑ owns a unique FP;
(ii) KI described as ωm = ℑ̂ωm−1, for any ω0 ∈ Ω, i.e., for m ∈ N, the sequence {ωm} defined by

ωm = (1 − κ1 − κ2 − κ3 − · · · − κu)ωm−1 + κ1ℑωm−1 + κ2ℑ
2ωm−1

+κ3ℑ
3ωm−1 + · · · + κuℑ

uωm−1

converges to a unique FP of ℑ̂.

Proof. Since ℑ is an HEF-C, there exist b j ≥ 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N fulfilling the
inequality (2.1). Consider κ1 = 1∑u

j=1 b j+1 > 0 and κs =
bs∑u

j=1 b j+1 ≥ 0, s = 2, 3, · · · , u. Then, the
inequality (2.1) can be written as∥∥∥∥∥∥

(
1 − κ2 − κ3 − · · · − κu

κ1
− 1

)
(ω − θ) + ℑω − ℑθ +

κ2
κ1

(
ℑ2ω − ℑ2θ

)
+
κ3
κ1

(
ℑ3ω − ℑ3θ

)
+ · · · +

κu
κ1

(
ℑuω − ℑuθ

)∥∥∥∥∥
≤ ℏ

(
1
κ1
∥ω − θ∥ ,∥∥∥∥∥(ω − ℑω) + κ2κ1 (

ω − ℑ2ω
)
+
κ3
κ1

(
ω − ℑ3ω

)
+ · · · +

κu
κ1

(
ω − ℑuω

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑθ) + κ2κ1 (
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑω) + κ2κ1 (
θ − ℑ2ω

)
+
κ3
κ1

(
θ − ℑ3ω

)
+ · · · +

κu
κ1

(
θ − ℑuω

)∥∥∥∥∥) ,
for ω, θ ∈ Ω. Because κ1 > 0 and (ℏ3) holds, we have∥∥∥∥(1 − κ1 − κ2 − κ3 − · · · − κu) (ω − θ) + κ1

(
ℑω − ℑθ

)
+ κ2

(
ℑ2ω − ℑ2θ

)
+κ3

(
ℑ3ω − ℑ3θ

)
+ · · · + κu

(
ℑuω − ℑuθ

)∥∥∥∥
AIMS Mathematics Volume 9, Issue 8, 20413–20440.



20424

≤ κ1ℏ

(
1
κ1
∥ω − θ∥ ,∥∥∥∥∥(ω − ℑω) + κ2κ1 (

ω − ℑ2ω
)
+
κ3
κ1

(
ω − ℑ3ω

)
+ · · · +

κu
κ1

(
ω − ℑuω

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑθ) + κ2κ1 (
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑθ) + κ2κ1 (
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥)
≤ ℏ (∥ω − θ∥ ,∥∥∥∥κ1 (

ω − ℑω
)
+ κ2

(
ω − ℑ2ω

)
+ κ3

(
ω − ℑ3ω

)
+ · · · + κu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥κ1 (
θ − ℑθ

)
+ κ2

(
θ − ℑ2θ

)
+ κ3

(
θ − ℑ3θ

)
+ · · · + κu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥κ1 (
θ − ℑω

)
+ κ2

(
θ − ℑ2ω

)
+ κ3

(
θ − ℑ3ω

)
+ · · · + κu

(
θ − ℑuω

)∥∥∥∥) .
This coupled with Definition 2.1, signifies that for ω, θ ∈ Ω,∥∥∥∥ℑ̂ω − ℑ̂θ∥∥∥∥ ≤ ℏ (∥ω − θ∥ , ∥∥∥∥ω − ℑ̂ω∥∥∥∥ , ∥∥∥∥θ − ℑ̂θ∥∥∥∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥) . (2.3)

Assume that ω0 ∈ Ω is an arbitrary element and describe the sequence {ωm}m∈N as ωm = ℑ̂
mω0 for

m ≥ 1. Setting ω = ωm and θ = ωm−1 in (2.3), and using (ℏ4), one can write

∥ωm+1 − ωm∥ ≤ ℏ (∥ωm − ωm−1∥ , ∥ωm − ωm+1∥ , ∥ωm−1 − ωm∥ , ∥ωm−1 − ωm+1∥)

≤ ℏ

(
∥ωm − ωm−1∥ , ∥ωm − ωm+1∥ , ∥ωm−1 − ωm∥ ,

∥ωm−1 − ωm∥ + ∥ωm − ωm+1∥

)
.

By the condition (ℏ2), there is ζ ∈ [0, 1) such that

∥ωm+1 − ωm∥ ≤ ζ ∥ωm − ωm−1∥ .

Through iterating this procedure, we deduce that

∥ωm+1 − ωm∥ ≤ ζ
m ∥ω1 − ω0∥ .

Next, for j,m ≥ 1, one has∥∥∥ωm+ j − ωm

∥∥∥ ≤ ∥∥∥ωm+ j − ωm+ j−1

∥∥∥ + ∥∥∥ωm+ j−1 − ωm+ j−2

∥∥∥ + · · · + ∥ωm+1 − ωm∥

≤
(
ζm+ j−1 + ζm+ j−2 + · · · + ζm

)
∥ω1 − ω0∥

=
ζm

(
1 − ζ j

)
1 − ζ

∥ω1 − ω0∥ ,

which implies that the sequence {ωm} is a Cauchy sequence in Ω. Thus, there is ω∗ ∈ Ω such that
limm→∞ ωm = ω

∗.

Now, setting ω = ω∗ and θ = ωm in (2.3), we can write∥∥∥∥ℑ̂ω∗ − ℑ̂ωm

∥∥∥∥ ≤ ℏ (∥ω∗ − ωm∥ ,
∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ , ∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥) . (2.4)
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Letting m→ ∞ in (2.4), we have∥∥∥∥ℑ̂ω∗ − ω∗∥∥∥∥ ≤ ℏ (∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥) .
From the conditions (ℏ1) and (ℏ2), we have∥∥∥∥ℑ̂ω∗ − ω∗∥∥∥∥ ≤ ℏ (∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥)

≤ ζ ∥ω∗ − ω∗∥ = 0.

Thus, ℑ̂ω∗ = ω∗. For the uniqueness, assume that η1 and η2 are distinct FPs of ℑ̂. Putting ω = η1

and θ = η2 in (2.3), we get

∥η1 − η2∥ =
∥∥∥∥ℑ̂η1 − ℑ̂η2

∥∥∥∥
≤ ℏ

(
∥η1 − η2∥ ,

∥∥∥η1 − ℑ
′η1

∥∥∥ , ∥∥∥η2 − ℑ
′η2

∥∥∥ , ∥∥∥η2 − ℑ
′η1

∥∥∥)
= ℏ (∥η1 − η2∥ , ∥η1 − η1∥ , ∥η2 − η2∥ , ∥η2 − η1∥)

= ℏ (∥η1 − η2∥ , 0, 0, ∥η2 − η1∥)

≤ ζ.0 = 0,

which implies that η1 = η2. This completes the proof. □

Theorem 2.2. LetΩ be a BS and ℑ : Ω→ Ω be an HEF′-C. Then, there exist κ j > 0, j = 1, 2, 3, · · · , u,
u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] such that the following assertions hold:

(i) The m-fold AM ℑ̂ associated with ℑ possesses a unique FP;
(ii) KI defined by ωm = ℑ̂ωm−1, for any ω0 ∈ Ω, converges to a unique FP of ℑ̂.

Proof. Because ℑ is an HEF′-C, there exist b j ≥ 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N justifying the
inequality (2.2). Assume that κ1 = 1∑u

j=1 b j+1 > 0 and κs =
bs∑u

j=1 b j+1 ≥ 0, s = 2, 3, · · · , u. Then, the
inequality (2.1) takes the form∥∥∥∥∥∥

(
1 − κ2 − κ3 − · · · − κu

κ1
− 1

)
(ω − θ) + ℑω − ℑθ +

κ2
κ1

(
ℑ2ω − ℑ2θ

)
+
κ3
κ1

(
ℑ3ω − ℑ3θ

)
+ · · · +

κu
κ1

(
ℑuω − ℑuθ

)∥∥∥∥∥
≤ ℏ

(
1
κ1
∥ω − θ∥ ,∥∥∥∥∥ 1

κ1
(θ − ω) +

(
ω − ℑω

)
+
κ2
κ1

(
ω − ℑ2ω

)
+
κ3
κ1

(
ω − ℑ3ω

)
+ · · · +

κu
κ1

(
ω − ℑuω

)∥∥∥∥∥ ,∥∥∥∥∥ 1
κ1

(ω − θ) +
(
θ − ℑθ

)
+
κ2
κ1

(
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑω) + κ2κ1 (
θ − ℑ2ω

)
+
κ3
κ1

(
θ − ℑ3ω

)
+ · · · +

κu
κ1

(
θ − ℑuω

)∥∥∥∥∥) ,
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for ω, θ ∈ Ω. As κ1 > 0 and (ℏ′3) holds, we get∥∥∥∥(1 − κ1 − κ2 − κ3 − · · · − κu) (ω − θ) + κ1
(
ℑω − ℑ

)
θ + κ2

(
ℑ2ω − ℑ2θ

)
+κ3

(
ℑ3ω − ℑ3θ

)
+ · · · + κu

(
ℑuω − ℑuθ

)∥∥∥∥
≤ κ1ℏ

(
1
κ1
∥ω − θ∥ ,∥∥∥∥∥ 1

κ1
(θ − ω) +

(
ω − ℑω

)
+
κ2
κ1

(
ω − ℑ2ω

)
+
κ3
κ1

(
ω − ℑ3ω

)
+ · · · +

κu
κ1

(
ω − ℑuω

)∥∥∥∥∥ ,∥∥∥∥∥ 1
κ1

(ω − θ) +
(
θ − ℑθ

)
+
κ2
κ1

(
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑω) + κ2κ1 (
θ − ℑ2ω

)
+
κ3
κ1

(
θ − ℑ3ω

)
+ · · · +

κu
κ1

(
θ − ℑuω

)∥∥∥∥∥) ,
≤ ℏ (∥ω − θ∥ ,∥∥∥∥(θ − ω) + κ1

(
ω − ℑω

)
+ κ2

(
ω − ℑ2ω

)
+ κ3

(
ω − ℑ3ω

)
+ · · · + κu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(ω − θ) + κ1
(
θ − ℑθ

)
+ κ2

(
θ − ℑ2θ

)
+ κ3

(
θ − ℑ3θ

)
+ · · · + κu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥κ1 (
θ − ℑω

)
+ κ2

(
θ − ℑ2ω

)
+ κ3

(
θ − ℑ3ω

)
+ · · · + κu

(
θ − ℑuω

)∥∥∥∥) .
This coupled with Definition 2.1, signifies that for ω, θ ∈ Ω,∥∥∥∥ℑ̂ω − ℑ̂θ∥∥∥∥ ≤ ℏ (∥ω − θ∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥ , ∥∥∥∥ω − ℑ̂θ∥∥∥∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥) . (2.5)

Let ω0 ∈ Ω be an arbitrary element and define the sequence {ωm}m∈N as ωm = ℑ̂
mω0 for m ≥ 1. Putting

ω = ωm and θ = ωm−1 in (2.5), and using (ℏ′4), we can write

∥ωm+1 − ωm∥ ≤ ℏ (∥ωm − ωm−1∥ , ∥ωm−1 − ωm+1∥ , ∥ωm − ωm∥ , ∥ωm−1 − ωm+1∥)

≤ ℏ

(
∥ωm − ωm−1∥ , ∥ωm−1 − ωm∥ + ∥ωm − ωm+1∥ , 0,

∥ωm−1 − ωm∥ + ∥ωm − ωm+1∥

)
.

By the condition (ℏ′2), there is ζ ∈ [0, 1) such that

∥ωm+1 − ωm∥ ≤ ζ ∥ωm−1 − ωm∥ .

Repeating this process, we have

∥ωm+1 − ωm∥ ≤ ζ
m ∥ω1 − ω0∥ .

Next, for j,m ≥ 1, one has∥∥∥ωm+ j − ωm

∥∥∥ ≤ ∥∥∥ωm+ j − ωm+ j−1

∥∥∥ + ∥∥∥ωm+ j−1 − ωm+ j−2

∥∥∥ + · · · + ∥ωm+1 − ωm∥

≤
(
ζm+ j−1 + ζm+ j−2 + · · · + ζm

)
∥ω1 − ω0∥

=
ζm

(
1 − ζ j

)
1 − ζ

∥ω1 − ω0∥ ,
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which implies that the sequence {ωm} is a Cauchy sequence in Ω. Thus, there is ω∗ ∈ Ω such that
limm→∞ ωm = ω

∗.

Now, setting ω = ω∗ and θ = ωm in (2.5), we can write∥∥∥∥ℑ̂ω∗ − ℑ̂ωm

∥∥∥∥ ≤ ℏ (∥ω∗ − ωm∥ ,
∥∥∥∥ωm − ℑ̂ω

∗

∥∥∥∥ , ∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥ , ∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥) . (2.6)

When m→ ∞ in (2.6), we have∥∥∥∥ℑ̂ω∗ − ω∗∥∥∥∥ ≤ ℏ (∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥) .
From the conditions (ℏ′1) and (ℏ′2), we get∥∥∥∥ℑ̂ω∗ − ω∗∥∥∥∥ ≤ ℏ (∥ω∗ − ω∗∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥)

≤ ζ ∥ω∗ − ω∗∥ = 0.

and ℑ̂ω∗ = ω∗.
Finally, assume that η1 and η2 are distinct FPs of ℑ′. Putting ω = η1 and θ = η2 in (2.5), we get

∥η1 − η2∥ =
∥∥∥∥ℑ̂η1 − ℑ̂η2

∥∥∥∥
≤ ℏ

(
∥η1 − η2∥ ,

∥∥∥η2 − ℑ
′η1

∥∥∥ , ∥∥∥η1 − ℑ
′η2

∥∥∥ , ∥∥∥η2 − ℑ
′η1

∥∥∥)
= ℏ (∥η1 − η2∥ , ∥η2 − η1∥ , ∥η1 − η2∥ , ∥η2 − η1∥)

By (ℏ′5), we deduce that ∥η1 − η2∥ = 0. Thus, ℑ̂ has a unique FP. □

Remark 2.3. In Theorems 2.1 and 2.2, if we take ℏ (κ, ϱ, ξ, υ) = κκ, κ ∈ [0, 1), and b j = 0, j =
3, 4, · · · u, we have Theorem 2.3 in [28].

Corollary 2.1. Let Ω be a BS and ℑ : Ω → Ω is an EKC (or ECRRC, ECC, EIKC, EICRRC). Then
there are κ1, κ2 > 0 with κ1 + κ2 ∈ (0, 1] such that the assertions below are true:

(i) The 2−fold AM ℑκ1,κ2 owns a unique FP;
(ii) KI {ωm} defined by ωm = ℑκ1,κ2ωm−1, for any ω0 ∈ Ω, that is, the sequence {ωm} described as

ωm = (1 − κ1 − κ2)ωm−1 + κ1ℑωm−1 + κ2ℑ
2ωm−1, m ∈ N

converges to a unique FP of ℑκ1,κ2 .

Proof. The proof can be simplified as follows:

- Choosing ℏ (κ, ϱ, ξ, υ) = κ (ϱ + ξ) , where κ ∈ [0, 1
2 ) in Theorem 2.1, we have the FP theorems for

EKC.
- Selecting ℏ (κ, ϱ, ξ, υ) = ρκ + σ (ϱ + ξ) , ρ, σ ∈ [0, 1) with ρ + 2σ < 1 in Theorem 2.1, we have

the FP theorems for ECRRC.
- Taking ℏ (κ, ϱ, ξ, υ) = κκξ1−κ,where κ ∈ (0, 1) in Theorem 2.1, we have the FP theorems for EIKC.
- Putting ℏ (κ, ϱ, ξ, υ) = κκϱλξ1−κ−λ, where κ, λ ∈ (0, 1) with κ + λ < 1 in Theorem 2.1, we have the

FP theorems for EICRRC.
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- Setting ℏ (κ, ϱ, ξ, υ) = κ (ϱ + ξ) , where κ ∈ [0, 1
2 ) in Theorem 2.2, we have the FP theorems for

ECC.

□

Remark 2.4. In Corollary 2.1, if we put κ2 = 0, we get the FP theorems corresponding to EKC, ECC,
ECRRC, EIKC, and EICRRC in [30–32].

Next, we require the subsequent definitions and notations:

Definition 2.12. [33] Assume that (Ω, ∥.∥) is an NS and ℑ : Ω→ Ω is a given mapping. The diameter
of a set B, represented as ϕ[B], is described as

{
sup ∥ω − θ∥ : ω, θ ∈ B

}
, where B is a bounded subset

of Ω.

An NS (Ω, ∥.∥) is termed as ℑ−orbital BS if every Cauchy sequence within Q(ℑ, ω,∞) for a given
ω ∈ Ω converges in Ω.

We will now demonstrate the lemmas below for the category of HEF-Cs (or HEF′-Cs).

Lemma 2.1. Let (Ω, ∥.∥) be an NS and ℑ : Ω → Ω be an HEF-C mapping (or HEF′-C mapping).
Assume that the following statements hold:

(S ) For each HEF-C, there is δ ∈ [0, 1) such that

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
≤ δmax


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥


or
(S ′) for each HEF-C, there is δ ∈ [0, 1) such that

ℏ


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,
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 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥ ,∥∥∥∥(θ − ℑω) + b2

(
θ − ℑ2ω

)
+ b3

(
θ − ℑ3ω

)
+ · · · + bu

(
θ − ℑuω

)∥∥∥∥)
≤ δmax


 u∑

j=1

b j + 1

 ∥ω − θ∥ ,∥∥∥∥(ω − ℑω) + b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥ ,∥∥∥∥(θ − ℑθ) + b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (θ − ω) +
(
ω − ℑω

)
+ b2

(
ω − ℑ2ω

)
+ b3

(
ω − ℑ3ω

)
+ · · · + bu

(
ω − ℑuω

)∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥
 u∑

j=1

b j + 1

 (ω − θ) +
(
θ − ℑθ

)
+ b2

(
θ − ℑ2θ

)
+ b3

(
θ − ℑ3θ

)
+ · · · + bu

(
θ − ℑuθ

)∥∥∥∥∥∥∥


for all ω, θ ∈ Ω, b j ∈ (0,∞), j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N.

Then, there exist κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with
∑u

j=1 κ j ∈ (0, 1] so that for each ω ∈ Ω
and for all r, l ∈ {1, 2, 3, · · · ,m} for a positive integer m, we have∥∥∥∥ℑ̂rω − ℑ̂lω

∥∥∥∥ ≤ δϕ [Q (
ℑ′, ω,m

)]
,

where ℑ̂ is the u-fold AM linked to an HEF-C (or HEF′-C).

Proof. As ℑ is a HEF-C, there is b j ∈ (0,∞), j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, fulfilling the
inequality (1.1). Consider κ1 = 1∑u

j=1 b j+1 > 0 and κs =
bs∑u

j=1 b j+1 ≥ 0, s = 2, 3, · · · , u. Then, the
inequality (2.1) takes the form∥∥∥∥∥∥

(
1 − κ2 − κ3 − · · · − κu

κ1
− 1

)
(ω − θ) + ℑω − ℑθ +

κ2
κ1

(
ℑ2ω − ℑ2θ

)
+
κ3
κ1

(
ℑ3ω − ℑ3θ

)
+ · · · +

κu
κ1

(
ℑuω − ℑuθ

)∥∥∥∥∥
≤ ℏ

(
1
κ1
∥ω − θ∥ ,∥∥∥∥∥(ω − ℑω) + κ2κ1 (

ω − ℑ2ω
)
+
κ3
κ1

(
ω − ℑ3ω

)
+ · · · +

κu
κ1

(
ω − ℑuω

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑθ) + κ2κ1 (
θ − ℑ2θ

)
+
κ3
κ1

(
θ − ℑ3θ

)
+ · · · +

κu
κ1

(
θ − ℑuθ

)∥∥∥∥∥ ,∥∥∥∥∥(θ − ℑω) + κ2κ1 (
θ − ℑ2ω

)
+
κ3
κ1

(
θ − ℑ3ω

)
+ · · · +

κu
κ1

(
θ − ℑuω

)∥∥∥∥∥) .
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With the help of Assertion (S ), the above inequality reduces to∥∥∥∥ℑ̂ω − ℑ̂θ∥∥∥∥ ≤ ℏ (∥ω − θ∥ , ∥∥∥∥ω − ℑ̂ω∥∥∥∥ , ∥∥∥∥θ − ℑ̂θ∥∥∥∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥)
≤ c max

{
∥ω − θ∥ ,

∥∥∥∥ω − ℑ̂ω∥∥∥∥ , ∥∥∥∥θ − ℑ̂θ∥∥∥∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥ , ∥∥∥∥ω − ℑ̂θ∥∥∥∥} . (2.7)

For a fixed positive integer m, assume that ω ∈ Ω is an arbitrary point. From (2.7), we get∥∥∥∥ℑ̂rω − ℑ̂lω
∥∥∥∥ = ∥∥∥∥ℑ̂ℑ̂r−1ω − ℑ̂ℑ̂l−1ω

∥∥∥∥
≤ c max


∥∥∥∥ℑ̂r−1ω − ℑ̂l−1ω

∥∥∥∥ , ∥∥∥∥ℑ̂r−1ω − ℑ̂rω
∥∥∥∥ , ∥∥∥∥ℑ̂l−1ω − ℑ̂lω

∥∥∥∥ ,∥∥∥∥ℑ̂l−1ω − ℑ̂rω
∥∥∥∥ , ∥∥∥∥ℑ̂r−1ω − ℑ̂lω

∥∥∥∥
 ,

which yields ∥∥∥∥ℑ̂rω − ℑ̂lω
∥∥∥∥ ≤ δϕ [Q(ℑ̂, ω,m)

]
.

A comparable conclusion for HEF′-C with Assertion (S ′) can be reached by employing reasoning akin
to the ones mentioned earlier. □

Remark 2.5. Based on Lemma 2.1, if ℑ is an HEF-C (or HEF′-C) and ω ∈ Ω, then for any positive
integer m, there exists s ≤ m such that∥∥∥∥ω − ℑ̂sω

∥∥∥∥ = ϕ [Q(ℑ̂, ω,m)
]
.

Lemma 2.2. Let (Ω, ∥.∥) be an NS and ℑ : Ω → Ω be an HEF-C (or HEF′-C). For a positive integer
m, assume that there exists δ ∈ [0, 1) such that Assertion (S ) (or (S ′)) is verified. Then, there are
κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] so that

ϕ
[
Q

(
ℑ̂, ω,∞

)]
≤

1
1 − δ

∥∥∥∥ω − ℑ̂ω∥∥∥∥ , for all ω ∈ Ω,

where ℑ̂ is the u-fold AM linked to a HEF-C (or HEF′-C).

Proof. Because ℑ is an HEF-C, there is b j ∈ (0,∞), j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, fulfilling the
inequality (1.1). Consider κ1 = 1∑u

j=1 b j+1 > 0 and κs =
bs∑u

j=1 b j+1 ≥ 0, s = 2, 3, · · · , u.

Assume that ω ∈ Ω is an arbitrary element. Since the sequence
{
ϕ
[
Q(ℑ̂, ω,m)

]}
is increasing, we

get
ϕ
[
Q(ℑ̂, ω,∞)

]
= sup

{
ϕ
[
Q(ℑ̂, ω,m)

]
: m ∈ N

}
.

Then (2.7) is fulfilled if we prove that

ϕ
[
Q

(
ℑ̂, ω,m

)]
≤

1
1 − δ

∥∥∥∥ω − ℑ̂ω∥∥∥∥ , m ∈ N.

Assume that m is a positive integer. Utilizing Remark 2.5 there is ℑ̂sω ∈ Q
(
ℑ̂, ω,m

)
, where s ∈ [1,m]

in order that ∥∥∥∥ω − ℑ̂sω
∥∥∥∥ = ϕ [Q(ℑ̂, ω,m)

]
.
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It follows from the triangle inequality and Lemma 2.1 that∥∥∥∥ω − ℑ̂sω
∥∥∥∥ ≤ ∥∥∥∥ω − ℑ̂ω∥∥∥∥ + ∥∥∥∥ℑ̂ω − ℑ̂sω

∥∥∥∥
≤

∥∥∥∥ω − ℑ̂ω∥∥∥∥ + δϕ [Q(ℑ̂, ω,m)
]

=
∥∥∥∥ω − ℑ̂ω∥∥∥∥ + δ ∥∥∥∥ω − ℑ̂sω

∥∥∥∥ .
Hence,

ϕ
[
Q(ℑ̂, ω,m)

]
=

∥∥∥∥ω − ℑ̂sω
∥∥∥∥ ≤ 1

1 − δ

∥∥∥∥ω − ℑ̂ω∥∥∥∥ , for all m ∈ N.

A comparable conclusion for HEF′-C with Assertion (S ′) can be reached by employing reasoning akin
to the ones mentioned earlier. □

Theorem 2.3. Let ℑ be an HEF′-C (or HEF′-C) on an NS (Ω, ∥.∥) . For a positive integer m, assume
that there exists δ ∈ [0, 1) such that Assertion (S ) (or (S ′)) is satisfied. Then, there are κ j > 0,
j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] so that the assumptions below hold, provided that

Ω is a ℑ̂−orbital BS:

(i) The m-fold AM ℑ̂ associated with ℑ has a unique FP;
(ii) KI defined by ωm = ℑ̂ωm−1, for any ω0 ∈ Ω converges to a unique FP of ℑ̂.

Proof. Utilizing reasoning akin to that in the proof of Lemma 2.1, for κ1 = 1∑u
j=1 b j+1 > 0 and κs =

bs∑u
j=1 b j+1 ≥ 0, s = 2, 3, · · · , u, one has

∥∥∥∥ℑ̂ω − ℑ̂θ∥∥∥∥ ≤ c max
{
∥ω − θ∥ ,

∥∥∥∥ω − ℑ̂ω∥∥∥∥ , ∥∥∥∥θ − ℑ̂θ∥∥∥∥ , ∥∥∥∥θ − ℑ̂ω∥∥∥∥ , ∥∥∥∥ω − ℑ̂θ∥∥∥∥} . (2.8)

Consider ω0 ∈ Ω. Describe the KI {ωm} as ωm = ℑ̂ωm−1 = ℑ̂
mω0, m ∈ N.

Next, we demonstrate that the sequence of iterates {ωm} forms a Cauchy sequence. Assume that m
and j are positive integers with j < m. From Lemma 2.1, one can write∥∥∥ω j − ωm

∥∥∥ = ∥∥∥∥ℑ̂ jω0 − ℑ̂
mω0

∥∥∥∥
=

∥∥∥∥ℑ̂ℑ̂ j−1ω0 − ℑ̂ℑ̂
m−1ω0

∥∥∥∥
=

∥∥∥∥ℑ̂ω j−1 − ℑ̂
m− j−1ω j−1

∥∥∥∥
≤ δϕ

[
Q(ℑ̂, ω j−1,m − j + 1)

]
.

It follows from Remark 2.5 that there is an integer z, z ∈ [1,m − j + 1] in order that∥∥∥ω j−1 − ω j+z−1

∥∥∥ = ϕ [Q(ℑ̂, ω j−1,m − j + 1)
]
.

Utilizing Lemma 2.1, we get ∥∥∥ω j−1 − ω j+z−1

∥∥∥ = ∥∥∥∥ℑ̂ω j−2 − ℑ̂
z+1ω j−2

∥∥∥∥
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≤ δϕ
[
Q(ℑ̂, ω j−2, z + 1)

]
,

which yields ∥∥∥ω j−1 − ω j+z−1

∥∥∥ ≤ δϕ [Q(ℑ̂, ω j−2,m − j + 2)
]
.

Thus, one can write∥∥∥ω j − ωm

∥∥∥ ≤ δϕ [Q(ℑ̂, ω j−1,m − j + 1)
]
≤ δ2ϕ

[
Q(ℑ̂, ω j−2,m − j + 2)

]
.

Continuing with this process, we obtain∥∥∥ω j − ωm

∥∥∥ ≤ δϕ [Q(ℑ̂, ω j−1,m − j + 1)
]
≤ · · · ≤ δ jϕ

[
Q(ℑ̂, ω0,m)

]
.

Applying Lemma 2.2, we have ∥∥∥ω j − ωm

∥∥∥ ≤ δ j

1 − δ

∥∥∥∥ω0 − ℑ̂ω0

∥∥∥∥ . (2.9)

Passing m → ∞ in (2.9), we conclude that {ωm} forms a Cauchy sequence. As Ω is a ℑ̂−orbital BS,
there is ω∗ ∈ Ω such that ωm → ω

∗ as m→ ∞. Clearly,∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ ≤ ∥ω∗ − ωm+1∥ +
∥∥∥∥ωm+1 − ℑ̂ω

∗

∥∥∥∥
= ∥ω∗ − ωm+1∥ +

∥∥∥∥ℑ̂ωm − ℑ̂ω
∗

∥∥∥∥
≤ ∥ω∗ − ωm+1∥ + δmax

 ∥ωm − ω
∗∥ , ∥ωm − ωm+1∥ ,

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ ,
∥ω∗ − ωm+1∥ ,

∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥


≤ ∥ω∗ − ωm+1∥ + δ

 ∥ωm − ω
∗∥ + ∥ωm − ωm+1∥ +

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥
+ ∥ω∗ − ωm+1∥ +

∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥
 .

Hence, ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ ≤ 1
1 − 2δ

{(1 + δ) ∥ω∗ − ωm+1∥ + δ ∥ωm − ω
∗∥ + δ ∥ωm − ωm+1∥}

Since ωm → ω
∗ as m → ∞, we have

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ = 0. Thus, ω∗ = ℑ̂ω∗, that is, ω∗ is a FP of ℑ̂. The
uniqueness follows immediately from (2.8).

A comparable conclusion for HEF′-C with Assertion (S ′) can be reached by employing reasoning
akin to the ones mentioned earlier. □

Subsequently, we will examine the well-posedness and limit shadowing property for each category
of hybrid enriched contractions defined in this context.

Theorem 2.4. Let Ω be a BS. Then, Fix
(
ℑ̂
)

is well posed, provided that ℑ is an HEF-C mapping.

Proof. Thanks to Theorem 2.1, ℑ̂ has a unique FP ω∗ in Ω. Assume that limm→∞

∥∥∥∥ℑ̂ωm − ωm

∥∥∥∥ = 0.
By (2.3), we get

∥ωm − ω
∗∥ ≤

∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ + ∥∥∥∥ℑ̂ωm − ω
∗

∥∥∥∥
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=
∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ + ∥∥∥∥ℑ̂ωm − ℑ̂ω
∗

∥∥∥∥
≤

∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥
+ℏ

(
∥ωm − ω

∗∥ ,
∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ωm

∥∥∥∥) .
Letting m→ ∞ in the above inequality, we have

lim
m→∞
∥ωm − ω

∗∥ ≤ ℏ
(

lim
m→∞
∥ωm − ω

∗∥ , 0, 0, 0
)
.

Using (ℏ2), there is ζ ∈ [0, 1) such that limm→∞ ∥ωm − ω
∗∥ ≤ ζ.0,which leads to limm→∞ ∥ωm − ω

∗∥ = 0,
thereby establishing the result. □

Theorem 2.5. Let Ω be a BS. Then, Fix
(
ℑ̂
)

is well posed, provided that ℑ is an HEF′-C mapping.

Proof. The conclusion can be derived by employing reasoning analogous to that in the proof of
Theorem 2.4. □

Theorem 2.6. Let Ω be a BS and ℑ be a HEF-C (resp., HEF′-C). Then, Fix
(
ℑ̂
)

exhibits the limit
shadowing property in Ω.

Proof. From Theorem 2.1 (resp., Theorem 2.2), we conclude that ℑ̂ owns a unique FP ω∗ in Ω. Hence,
ℑ̂mω∗ = ω∗ for any m ∈ N, assume that limm→∞

∥∥∥∥ℑ̂ωm − ωm

∥∥∥∥ = 0. It is clear that∥∥∥∥ωm − ℑ̂
mω∗

∥∥∥∥ = ∥ωm − ω
∗∥

≤

∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ + ∥∥∥∥ℑ̂ωm − ℑ̂ω
∗

∥∥∥∥
≤

∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥
+ℏ

(
∥ωm − ω

∗∥ ,
∥∥∥∥ωm − ℑ̂ωm

∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ωm

∥∥∥∥)(
resp., ℏ

(
∥ωm − ω

∗∥ ,
∥∥∥∥ω∗ − ℑ̂ωm

∥∥∥∥ , ∥∥∥∥ωm − ℑ̂ω
∗

∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂ωm

∥∥∥∥)) .
Setting m→ ∞ in the above inequality, and we have

lim
m→∞

∥∥∥∥ωm − ℑ̂
mω∗

∥∥∥∥ ≤ ℏ ( lim
m→∞
∥ωm − ω

∗∥ , 0, 0, 0
)

(
resp., ℏ

(
limm→∞ ∥ωm − ω

∗∥ , limm→∞ ∥ω
∗ − ωm+1∥ ,

limm→∞ ∥ωm − ω
∗∥ , limm→∞ ∥ω

∗ − ωm+1∥

))
.

By (ℏ2)
(
resp.,

(
ℏ′5

))
, we have limm→∞

∥∥∥∥ωm − ℑ̂
mω∗

∥∥∥∥ = 0, and this completes the proof. □

To study UH stablility, we introduce the following theorems:

Theorem 2.7. Let Ω be a BS and ℑ be an HEF-C that fulfills the condition below:

(ℏ5) there is ζ ∈ (0, 1) so that ℏ (κ, ϱ, ξ, υ) ≤ ζκ + ξ for all κ, ϱ, ξ, υ ∈ R+.
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Then, the FP equation ℑ̂ω = ω is UH stable.

Proof. Thanks to Theorem 2.1, ℑ̂ has a unique FP ω∗ in Ω. Let ϵ > 0 and υ∗ ∈ Ω be an ϵ−solution, i.e.,∥∥∥∥υ∗ − ℑ̂υ∗∥∥∥∥ ≤ ϵ.
As ω∗ ∈ Ω and

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ = 0 ≤ ϵ, then ω∗ ∈ Ω is an ϵ−solution too. Using (ℏ5), we have

∥ω∗ − υ∗∥ =
∥∥∥∥ℑ̂ω∗ − υ∗∥∥∥∥

≤

∥∥∥∥ℑ̂ω∗ − ℑ̂υ∗∥∥∥∥ + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ℏ

(
∥ω∗ − υ∗∥ ,

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥υ∗ − ℑ̂υ∗∥∥∥∥ , ∥∥∥∥υ∗ − ℑ̂ω∗∥∥∥∥) + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
= ℏ

(
∥ω∗ − υ∗∥ , 0,

∥∥∥∥υ∗ − ℑ̂υ∗∥∥∥∥ , ∥υ∗ − ω∗∥) + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ζ ∥ω∗ − υ∗∥ + 2

∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ζ ∥ω∗ − υ∗∥ + 2ϵ,

which yields
∥ω∗ − υ∗∥ ≤ Uϵ,

where U = 1
1−ζ . Hence, the result is proved. □

Theorem 2.8. Let Ω be a BS and ℑ be an HEF′-C that fulfills the condition below:

(ℏ′6) there is ζ ∈ (0, 1
3 ) so that ℏ (κ, ϱ, ξ, υ) ≤ ζ (2κ + ξ) for all κ, ϱ, ξ, υ ∈ R+.

Then, the FP equation ℑ̂ω = ω is UH stable.

Proof. Thanks to Theorem 2.2, ℑ̂ has a unique FP ω∗ in Ω. Let ϵ > 0 and υ∗ ∈ Ω be an ϵ−solution, i.e.,∥∥∥∥υ∗ − ℑ̂υ∗∥∥∥∥ ≤ ϵ.
As ω∗ ∈ Ω and

∥∥∥∥ω∗ − ℑ̂ω∗∥∥∥∥ = 0 ≤ ϵ, then ω∗ ∈ Ω is an ϵ−solution too. Using (ℏ′6), we can write

∥ω∗ − υ∗∥ =
∥∥∥∥ℑ̂ω∗ − υ∗∥∥∥∥

≤

∥∥∥∥ℑ̂ω∗ − ℑ̂υ∗∥∥∥∥ + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ℏ

(
∥ω∗ − υ∗∥ ,

∥∥∥∥υ∗ − ℑ̂ω∗∥∥∥∥ , ∥∥∥∥ω∗ − ℑ̂υ∗∥∥∥∥ , ∥∥∥∥υ∗ − ℑ̂ω∗∥∥∥∥) + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ζ

(
2 ∥ω∗ − υ∗∥ +

∥∥∥∥ω∗ − ℑ̂υ∗∥∥∥∥) + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ ζ

(
2 ∥ω∗ − υ∗∥ +

(
∥ω∗ − υ∗∥ +

∥∥∥∥υ∗ − ℑ̂υ∗∥∥∥∥)) + ∥∥∥∥ℑ̂υ∗ − υ∗∥∥∥∥
≤ 3ζ ∥ω∗ − υ∗∥ + (1 + ζ)ϵ,

which yields
∥ω∗ − υ∗∥ ≤ Uϵ,

where U = 1+ζ
1−3ζ . Hence, the result is proved. □
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3. The relation between Fix
(
ℑ
)

and Fix
(
ℑ̂
)

Assuming the existence of an FP of a u-fold AM linked to an HEF-C mapping ℑ (or HEF′-C), we
aim to investigate essential conditions for the equivalence of FP sets between the u-fold AM and the
related ECM.

We will commence with the subsequent observation, established for AMsℑϑ and double AMsℑκ1,κ2 .

Remark 3.1. Assume that ℑ is a self-mapping on an NSΩ. For κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N,
with

∑u
j=1 ∈ (0, 1], the u-fold AM ℑ̂ : Ω→ Ω linked to ℑ is described as

ℑ̂ = (1 − κ1 − κ2 − κ3 − · · · − κu) I + κ1ℑ + κ2ℑ2 + κ3ℑ
3 + · · · + κuℑ

u,

and has the property Fix(ℑ) ⊆ Fix(ℑ̂).

Next, we analyze the conditions ensuring the equivalence of Fix(ℑ) and Fix(ℑ̂).

Theorem 3.1. Let Ω be a BS and ℑ be an HEF-C (resp., HEF′-C). Suppose that κ j > 0,
j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] fulfilling the following hypothesis:

(H1) for all h j ∈ (0, 1), j = 1, 2, 3, · · · , u with
∑u

j=1 h j ∈ [0, 1) and κ ∈ Fix(ℑ̂),

∥∥∥κ − ℑκ∥∥∥ ≤ ∥∥∥∥∥∥∥κ −
1 − u∑

j=2

h j

ℑκ − h2ℑ
2κ − h3ℑ

3κ − · · · − huℑ
uκ

∥∥∥∥∥∥∥ . (3.1)

Then, Fix(ℑ) = Fix(ℑ̂).

Proof. We know from Remark 3.1 that Fix(ℑ) ⊆ Fix(ℑ̂). To demonstrate the reverse, suppose Fix(ℑ̂)
is not empty. Otherwise, the conclusion is self-evident. According to Theorem 2.1 (resp., Theorem
2.2), we obtain Fix(ℑ̂) , ∅. If κ ∈ Fix(ℑ̂), then there is κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with∑u

j=1 κ j ∈ (0, 1] such that

κ = (1 − κ1 − κ2 − κ3 − · · · − κu) κ + κ1ℑκ + κ2ℑ2κ + κ3ℑ
3κ + · · · + κuℑ

uκ.

Put h j =
κ j∑u
j=1 κ j
, j = 1, 2, 3, · · · , u, in (3.1), and we have∥∥∥κ − ℑκ∥∥∥

≤

∥∥∥∥∥∥κ − κ1∑u
j=1 κ j

ℑκ −
κ2∑u
j=1 κ j

ℑ2κ −
κ3∑u
j=1 κ j

ℑ3κ − · · · −
κu∑u
j=1 κ j

ℑuκ

∥∥∥∥∥∥
=

1∑u
j=1 κ j

∥∥∥κ − (1 − κ1 − κ2 − κ3 − · · · − κu) z − κ1ℑκ − κ2ℑ2κ − κ3ℑ
3κ − · · · − κuℑ

uκ
∥∥∥

=
∥∥∥∥κ − ℑ̂κ∥∥∥∥ = 0.

Hence, κ ∈ Fix
(
ℑ
)
. Therefore Fix(ℑ) = Fix(ℑ̂). □

We can also obtain equality between Fix(ℑ) and Fix(ℑ̂) in another way, as follows:
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Theorem 3.2. Let Ω be a BS and ℑ be an HEF-C (resp., HEF′-C). Suppose that there exist κ j > 0,
j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] and ϑ ∈ [0, 1) such that

(H2) for all ω ∈ Ω, we get ∥∥∥∥ℑ̂ω − ℑω∥∥∥∥ ≤ ϑ ∥∥∥ω − ℑω∥∥∥ .
Then, Fix(ℑ) = Fix(ℑ̂).

Proof. From Remark 3.1, we have Fix(ℑ) ⊆ Fix(ℑ̂). Based on Theorem 2.1 (resp., Theorem 2.2), we
conclude that Fix(ℑ̂) , ∅. If κ ∈ Fix(ℑ̂), one has∥∥∥κ − ℑκ∥∥∥ = ∥∥∥∥ℑ̂κ − ℑκ∥∥∥∥ ≤ ϑ ∥∥∥κ − ℑκ∥∥∥ ,
which implies that

∥∥∥κ − ℑκ∥∥∥ = 0. Thus, κ ∈ Fix
(
ℑ
)
. Hence, Fix(ℑ̂) ⊆ Fix(ℑ). Hence Fix(ℑ) =

Fix(ℑ̂). □

Subsequently, we derive an approximation of an FP for an HEF-C (resp., HEF′-C) by employing
the KI method for ℑ̂.

Theorem 3.3. Let Ω be a BS and ℑ be an HEF-C (resp., HEF′-C). Suppose that (H1) or (H2) are
satisfied. Then,

(i) ℑ possesses a unique FP in Ω;
(ii) KI defined by ωm = ℑ̂ωm−1, for any ω0 ∈ Ω converges to a unique FP of ℑ.

Proof. According to Theorem 2.1 (resp., Theorem 2.2), there are κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4,
u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] such that ℑ̂ is described as

ℑ̂ = (1 − κ1 − κ2 − κ3 − · · · − κu) I + κ1ℑ + κ2ℑ2 + κ3ℑ + · · · + κuℑ
u

and has a unique FP ω∗ ∈ Ω, which can be achieved through KI (2.1) for ω0 ∈ Ω. Since
κ j ( j = 1, 2, 3, · · · , u) fulfills hypothesis (H1) or (H2), the result follows immediately by Theorem 3.1
or Theorem 3.2. □

We finish this manuscript with revisiting the concept of the periodic point property (PPP) for a
self-mapping ℑ described on Ω.

Definition 3.1. Assume that Ω is a nonempty set. We say that a mapping ℑ : Ω→ Ω has the PPP Ξ if
for every m ∈ N, Fix(ℑ) = Fix(ℑm).

Remark 3.2. (i) For all m ∈ N, Fix(ℑ) ⊂ Fix(ℑm). Nevertheless, the reverse is not necessarily valid
in all cases.

(ii) The mapping ℑ owns the PPP Ξ if ℑϑ owns the PPP Ξ; indeed, Fix(ℑ) = Fix(ℑϑ).

Now, we investigate the conditions that ensure a self-mapping ℑ, which meets the hybrid ECM, and
possesses the PPP Ξ.

Lemma 3.1. Assume thatΩ is a BS and ℑ is an HEF-C (resp., HEF′-C). Assume also there are κ j > 0,
j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, with

∑u
j=1 κ j ∈ (0, 1] and
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(H) for all ϵ > 0, there are ω, θ ∈ Ω so that∥∥∥∥ω − ℑ̂θ∥∥∥∥ < ϵ ⇒ ∥∥∥∥ω − ℑ̂ jθ
∥∥∥∥ < ϵj , j = 1, 2, · · · , u.

Then, the FP of ℑ aligns with that of ℑ̂ j ( j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N) .

Proof. Thanks to Theorem 2.1 (resp., Theorem 2.2), there are κ j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N,
with

∑u
j=1 κ j ∈ (0, 1] such that ℑ̂ owns a unique FP ω∗ ∈ Ω and the KI defined by ωm = ℑ̂ωm−1, m ∈ N

converges to a unique FP of ℑ. Therefore, for every ϵ
j > 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, there is

M( j) ∈ N with m( j) ≥ M( j) such that

0 <
∥∥∥∥ω∗ − ℑ̂ωm( j)

∥∥∥∥ ≤ ϵj , j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N.

Using Hypothesis (H), for m( j) ≥ M( j), one has∥∥∥ω∗ − ℑ jωm( j)

∥∥∥ ≤ ϵ
j
, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N.

Put W = max {M(1),M(2), · · · ,M(u)} . For m > W, we can write

∥∥∥∥ω∗ − ℑ̂ωm

∥∥∥∥ =
∥∥∥∥∥∥∥

u∑
j=1

κ j

(
ω∗ − ℑ jωm

)∥∥∥∥∥∥∥
≤

u∑
j=1

∥∥∥∥κ j

(
ω∗ − ℑ jωm

)∥∥∥∥
≤

u∑
j=1

κ j
ϵ

j
≤

u∑
j=1

κ jϵ = ϵ.

Hence,
∥∥∥ω∗ − ℑ jωm

∥∥∥→ 0, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N as m→ ∞ and for an arbitrary ϵ. Therefore,
ω∗ is an FP of ℑ j, j = 1, 2, 3, · · · , u, u ≥ 4, u ∈ N, and this aligns with the FP of ℑ̂. □

Theorem 3.4. Let Ω be a BS and ℑ be an HEF-C (resp., HEF′-C). If the hypotheses (H1) or (H1) and
(H) are satisfied, then ℑ admits the PPP Ξ.

Proof. The proof follows immediately from Theorem 3.3 and Lemma 3.1. □

4. Conclusions

In this paper, we examine the necessary conditions for the u-fold AM and weakly enriched
contractions to have equal sets of FPs. Additionally, we illustrate that an appropriate KI algorithm can
effectively approximate an FP of a u-fold AM as well as the two enriched contractions. Also, we
delve into the well-posedness, limit shadowing property, and UH stability of the u-fold AM.
Furthermore, we establish necessary conditions that guarantee the PPP for each of the illustrated,
strengthened contractions.
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