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Abstract: In this study, the underlying traits of the new wave equation in extended (3+1) dimensions,
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1. Introduction

In light of its growing significance, researchers have placed a great deal of emphasis on studying
nonlinear partial differential equations (NPDEs). Multiple scientific areas, including hydrodynamics,
fluids, engineering, and other domains, have made use of these nonlinear equations [1–3]. Many
solitary waves associated with NPDEs have been identified in the search for exact solutions, especially
in disciplines such as nonlinear optics, quantum physics, plasma, and many others [4–6]. Scholars
have centered on solving these NPDEs using different analytical approaches. Among the notable
approaches are the sub-equation approach [7], Painlevé test [8], bilinear approach [9], auxiliary
equation method [10], modified auxiliary equation method [11, 12], and Lie symmetry approach [13].

The solitons which usually underpin the telecommunication sector are now of special interests.
Solitons also matter significantly as they are pivotal for the advancement of computer systems’
computing power while they present wide variety of applications. Such applications cover image
processing, data analysis, neurology and fluids, among other fields [14, 15]. The dynamics of the
solitons have been studied in great deal using a wide range of nonlinear equations including the
Fokas-Lenells equation [16], Manakov model [17], Sakovich model [18], Born-Infeld equation [19],
Schrödinger equation [20], complex short pulse equation [21], and the Wadati-Konno-Ichikawa
equation [22, 23].

The analysis of integrable equations in (3+1) dimensions has been getting greater exposure recently.
These equations are vital for deciphering the physics behind a number of industrial and scientific
phenomena. This rising demand has led to the development of multiple nonlinear extended equations,
among which are the modified Kadomtsev-Petviashvili (KP) equation and the Korteweg-de Vries
(KdV) equation.

Akinyemi [24] examined the equation in (2+1) dimensions:

AΩxt + aΩxx + b(Ω2)xx + cΩxxxx + dΩyy = 0, (1.1)

and its extended version, comprising two additional linear terms.

AΩxt + aΩxx + b(Ω2)xx + cΩxxxx + dΩyy + eΩty + hΩtt = 0, (1.2)

here, the constants A, a, b, c, d, e, and h in the given context are unrestricted real values. It is worth
highlighting that when A = e = d = 0, Eq (1.2) simplifies to the Boussinesq equation.

Ωtt + aΩxx + b(Ω2)xx + cΩxxxx = 0. (1.3)

Equations (1.1) and (1.2) have been demonstrated to exhibit Painlevé integrability, and their multiple
solitons have also been obtained [24]. In the ongoing study, our intention is to address an extended
version of Eq (1.2) [25].

Ωxt + aΩxx + b(Ω2)xx + cΩxxxx + dΩyy + eΩty + hΩtt + kΩxy + mΩxz = 0, (1.4)

where Ω = Ω(x, y, z, t). It is evident that Eq (1.4) is constructed by introducing two additional linear
terms, specifically kΩxy, and mΩxz to Eq (1.2). Furthermore, the coefficients a, b, c, d, e, h, k and m
are random real values. Wazwaz et al. [25] investigated the integrability criteria for the discussed
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model (1.4) through the use of the Painlevé test. The study concluded by analyzing a set of lump
solutions for the suggested equation. The suggested model is designed to aid numerous researchers
engaged in plasma physics and fluid mechanics by providing insights into the characteristics of
nonlinear waves occurring in various physical systems. Furthermore, this investigation will enhance
comprehension of the characteristics of nonlinear waves present in seas and oceans.

In this study, we undertake a comprehensive exploration of a nonlinear model (1.4), employing
two distinct but complementary methodologies: the sub-equation (SE) approach [7], and the Sardar
sub-equation (SSE) approach [26]. The SE approach yields results expressed in trigonometric and
hyperbolic functions. To deepen our understanding of the equation, we introduce the SSE approach
alongside the SE approach. The SSE approach, an extension of the SE approach, emerges as an
effective analytical tool for extracting precise solutions from nonlinear models. By employing the
SSE technique, bright, dark, dark-bright (combo), and periodic solitons are discovered and visually
portrayed using density plots, two dimensional and three dimensional plots. It is notable that Eq (1.4)
has never been addressed using the techniques outlined in this paper. The results of this study expand
theoretical comprehension in the domain of NPDEs.

A rising tide of attention has been devoted in recent years to the analysis of differential equation
(DE) dynamics via the facets of chaos and bifurcation. Dynamical systems find wide-ranging
applications in several domains, including economics, engineering, and biology [27, 28]. Bifurcation
analysis studies how an orbit evolves with respect to distinct parameters. Moreover, there has been a
noticeable emphasis on studying NPDEs when an outside periodic disturbance is involved. This focus
has led due to the realization that a fully integrable nonlinear model falls short in clarifying quasi-
periodic and chaotic features. On the contrary, these irregular patterns may be elicited by applying
an outward periodic disturbance to a nonlinear system. For instance, in their work, Riaz et al. [28]
investigated the dynamics of bifurcation, chaos, and solitons for the oskolkov equation. Similarly,
Rafiq et al. [29] studied the dynamic nature of shallow equations, and extracted the multi-wave solitons.
Furthermore, the study conducted by Hosseini et al. [30] concentrated on examining the sensitive and
dynamic features of the Schrödinger equation. In this work, we studied the chaotic phenomena of the
discussed equation through the presentation of two-dimensional plots, three-dimensional plots, time
plots, and Lyapunov exponents.
• Phase plots offer a graphic depiction of a planar system’s characteristics. They involve plotting

one state variable against another. Examining the structure of the resultant graph can furnish valuable
insights into the system’s dynamics, encompassing aspects such as periodicity, or inclination towards
chaos.
• A time plot refers to a set of points that are systematically accumulated over a specific time span.

In this method, the state variables of system undergo scrutiny, and if they exhibit irregular patterns,
they are classified as chaotic. Conversely, if these variables manifest periodicity, or quasi-periodic
tendencies, they are categorized as non-chaotic.
• Lyapunov exponents (LE) measure how a dynamic system reacts to changes in its initial

conditions, assessing the extent to which nearby trajectories either diverge or converge as time
progresses. Chaotic behavior is indicated by positive Lyapunov exponents, whereas negative exponents
signify stability. Through the computation of LE, we can ascertain whether a system demonstrates
chaotic feature or maintains a stable state.

These principles are widely applied in analyzing intricate systems across diverse fields, offering
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valuable insights into their dynamics, stability, and behavioral patterns. This research concentrates
on exploring a newly extended equation within a (3+1)-dimensional framework, examining it from
various perspectives. We employ the sub-equation and Sardar sub-equation techniques to derive
analytical solutions, investigate bifurcations at equilibrium points, utilize various chaos detection
methods to pinpoint chaotic behavior, and explore the sensitivity of the discussed model. Based on
our comprehension, this study seems to be an innovative contribution not previously encountered in
the available literature.

The structure of the manuscript is as follows: In Section 2, the description of SE method and SSE
method has been given. The mathematical analysis and the application of SE and SSE approaches for
finding soliton solutions of the model is presented in Section 3. Results obtained from the analysis are
discussed in Section 4. A comprehensive investigation of the dynamic characteristics of the proposed
equation, utilizing phase portraits of bifurcation, is conducted in Section 5. Chaotic phenomena is
explored in Section 6. In Section 7, sensitivity of the suggested equation is presented. Finally, the
conclusion is provided in the last section.

2. Description of proposed methods

In this section, two analytical techniques are examined: the SSE approach and the SE approach.
The detail description of the proposed techniques is given in this segment.

Step 1. Let us consider the NPDE as follows:

P(Ω,Ωt,Ωx,Ωy,Ωz,Ωxx,Ωtt, ...) = 0. (2.1)

Then, using the transformation Ω(x, y, z, t) = Ψ(γ1x + γ2y + γ3z + µt), Eq (2.1) is changed into an
ordinary DE as shown:

E = (Ψ,Ψ′,Ψ′′, ...) = 0. (2.2)

Step 2. The initial solution for these approaches is outlined below:

Ψ(ζ) =

j∑
i=0

σiΛ
i(ζ), (2.3)

here, σi, (i = 0, 1, 2, 3, ..., j) are random constants to be resolved.

2.1. Description of the SE approach

In this method, the function Λi(ζ) fulfils the following auxiliary equation,

Λ
′

(ζ) = β + δΛ2(ζ), β, δ ∈ R, (2.4)

here, β and δ are random constants to be assessed afterward. Equation (2.4) has the following solutions:

Case 1: If χ =
β

δ
< 0, then,

Λ1(ζ) = −
√
−χ tanh(δ

√
−χζ),

Λ2(ζ) = −
√
−χ coth(δ

√
−χζ),

Λ3(ζ) = −
√
−χ tanh(2δ

√
−χζ) ± ι

√
−χ sech(2δ

√
−χζ).

(2.5)
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Case 2: If χ =
β

δ
> 0, then,

Λ4(ζ) =
√
χ tan(δ

√
χζ),

Λ5(ζ) =
√
χ cot(δ

√
χζ),

Λ6(ζ) =
√
χ tan(2δ

√
χζ) ± ι

√
χ sec(2δ

√
χζ).

(2.6)

Case 3: If χ =
β

δ
= 0, then,

Λ7(ζ) = −
δ

ζ + ζ0
, ζ0 ∈ R. (2.7)

2.2. Description of the SSE approach

In this method, the function Λi(ζ) fulfils the following auxiliary equation,

Λ′(ζ) =
√
δ + αΛ(ζ)2 + λΛ(ζ)4, (2.8)

here, δ, α and λ are constants and Eq (2.8) presents solution as:

Case 1: If α > 0 and δ = 0, thenΛ±1 (ζ) = ±
√
−mnα

λ
sechmn(

√
αζ), (λ < 0),

Λ±2 (ζ) = ±
√mnα

λ
cschmn(

√
αζ), (λ > 0).

(2.9)

Here, sechmn(ζ) = 2
meζ+ne−ζ , csch(ζ) = 2

meζ−ne−ζ .

Case 2: If α < 0, λ > 0, and δ = 0, thenΛ±3 (ζ) = ±
√
−mnα

λ
secmn(

√
−αζ),

Λ±4 (ζ) = ±
√
−mnα

λ
cscmn(

√
−αζ).

(2.10)

Here, secmn(ζ) = 2
meιζ+ne−ιζ , csc(ζ) = 2

meιζ−ne−ιζ .

Case 3: If α < 0, λ > 0 and δ = α2

4λ , then

Λ±5 (ζ) = ±
√
−α
2λ tanhmn(

√
−α
2 ζ),

Λ±6 (ζ) = ±
√
−α
2λ cothmn(

√
−α
2 ζ),

Λ±7 (ζ) = ±
√
−α
2λ

(
tanhmn(

√
−2αζ) ± ι

√
mn sechmn(

√
−2αζ)

)
,

Λ±8 (ζ) = ±
√
−α
2λ

(
cothmn(

√
−2αζ) ±

√
mn cschmn(

√
−2αζ)

)
,

Λ±9 (ζ) = ±
√
−α
8λ

(
tanhmn(

√
−α
8 ζ) + cothmn(

√
−α
8 ζ)

)
.

(2.11)

Here, tanhmn(ζ) = meζ−ne−ζ
meζ+ne−ζ , coth(ζ) = meζ+ne−ζ

meζ−ne−ζ .

Case 4: If α > 0, λ > 0 and δ = α2

4λ , then

Λ±10(ζ) = ±
√

α
2λ tanmn(

√
α
2 ζ),

Λ±11(ζ) = ±
√

α
2λ cotmn(

√
α
2 ζ),

Λ±12(ζ) = ±
√

α
2λ

(
tanmn(

√
2αζ) ±

√
mn secmn(

√
2αζ)

)
,

Λ±13(ζ) = ±
√

α
2λ

(
cotmn(

√
2αζ) ±

√
mn cscmn(

√
2αζ)

)
,

Λ±14(ζ) = ±
√

α
8λ

(
tanmn(

√
α
8 ζ) + cotmn(

√
α
8 ζ)

)
.

(2.12)
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Here, tanmn(ζ) = −ιmeιζ−ne−ιζ
meιζ+ne−ιζ , cot(ζ) = ιmeιζ+ne−ιζ

meιζ−ne−ιζ with parameters m and n. Upon m = n = 1, they
become known trigonometric and hyperbolic functions.

Step 3. The positive integer j is determined by homogeneous balance approach.

Step 4. A system of equations for Λ′i s are generated by substituting Eq (2.4) from SE approach and
Eq (2.8) from SSE approach into Eq (2.2) and reducing the coefficients of Λi to zero. To determine the
solution of Eq (2.2), we then solve the resulting system using tools like Mathematica.

3. Mathematical analysis

The extended wave equation in (3+1) dimensions can be expressed as:

Ωxt + aΩxx + b(Ω2)xx + cΩxxxx + dΩyy + eΩty + hΩtt + kΩxy + mΩxz = 0. (3.1)

By assuming the traveling wave transformation as:

Ω(x, y, z, t) = Ψ(ζ), ζ = γ1x + γ2y + γ3z + µt. (3.2)

Here, Ψ(ζ) and µ represent the characteristics of the traveling wave, specifically referring to its shape
and velocity. Additionally, γ1, γ2, γ3 serve as random parameters. Upon substituting the expression
from Eq (3.2) into Eq (3.1), we obtain the resulting equation.

(cγ4
1)Ψ(4) + (γ1µ + aγ2

1 + dγ2
2 + eµγ2 + hµ2 + kγ1γ2 + mγ1γ3)Ψ′′ + 2bγ2

1ΨΨ′′ + 2bγ2
1(Ψ′)2 = 0. (3.3)

By integrating Eq (3.3) twice with respect to ζ, we acquire;

(cγ4
1)Ψ′′ + (γ1µ + aγ2

1 + dγ2
2 + eµγ2 + hµ2 + kγ1γ2 + mγ1γ3)Ψ + bγ2

1Ψ
2 = 0. (3.4)

This section is focused on the application of SSE approach and SE approach for extraction of
analytical solutions. By setting Ψ′′ equal to Ψ

2
in Eq (3.4), as j + 2 = 2 j, results j = 2.

3.1. Application of the SE approach

This section is focused on the application of SE approach for extraction of analytical solutions. The
initial solution in this case becomes:

Ψ(ζ) = σ0 + σ1Λ + σ2Λ
2. (3.5)

Using Eqs (3.5) and (2.4) into Eq (3.4) and solving the resulting system for σ0, σ1, σ2, and a, yields
the following solution:

σ0 =
−2cβδγ2

1

b
, σ1 = 0, σ2 =

−6cδ2γ2
1

b
,

a =
−dγ2

2 − mγ1γ3 − kγ1γ2 − 4cβδγ4
1 − µγ1 − eµγ2 − hµ2

γ2
1

. (3.6)

By putting above values in Eq (3.5) the solutions of Eq (1.4) are as follows:
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Case 1: If χ =
β

δ
< 0, then,

Ω1(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
−
√
−χ tanh(δ

√
−χζ)

)2

,

Ω2(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
−
√
−χ coth(δ

√
−χζ)

)2

,

Ω3(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
−
√
−χ tanh(2δ

√
−χζ) ± ι

√
−χ sech(2δ

√
−χζ)

)2

.

(3.7)

Case 2: If χ =
β

δ
> 0, then,

Ω4(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
√
χ tan(δ

√
χζ)

)2

,

Ω5(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
√
χ cot(δ

√
χζ)

)2

,

Ω6(x, y, z, t) =
−2cβδγ2

1
b −

6cδ2γ2
1

b

(
√
χ tan(2δ

√
χζ) ± ι

√
χ sec(2δ

√
χζ)

)2

.

(3.8)

Case 3: If χ =
β

δ
= 0, then,

Ω7(x, y, z, t) =
−2cβδγ2

1

b
−

6cδ2γ2
1

b

(
−

δ

ζ + ζ0

)2

, ζ0 ∈ R. (3.9)

In all above cases ζ = γ1x + γ2y + γ3z + µt.

3.2. Application of SSE approach

In this part, we employ the SSE method to solve Eq (3.4). The initial solution for j = 2 becomes:

Ψ(ζ) = σ0 + σ1Λ + σ2Λ
2, (3.10)

where σ0, σ1, and σ2 are constants to be extracted. Using Eqs (3.10) and (2.8) into Eq (3.4) and solving
the resulting system for σ0, σ1, σ2, and a, yields the following solution:

σ0 =
2
(
−α +

√
α2 − 3 δ λ

)
γ1

2c

b
, σ1 = 0, σ2 = −

6cλ γ1
2

b
,

a = −
4 cγ1

4
√
α2 − 3 δ λ + dγ2

2 + eµ γ2 + hµ2 + kγ1γ2 + mγ3γ1 + γ1µ

γ1
2 . (3.11)

By putting above values in Eq (3.10) the solutions of Eq (1.4) are as follows:

Case 1: If α > 0 and δ = 0, then
Ω±1 (x, y, z, t) =

2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(
±

√
−mnα

λ
sechmn(

√
αζ)

)2

, (λ < 0),

Ω±2 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(
±

√mnα
λ

cschmn(
√
αζ)

)2

, (λ > 0).
(3.12)
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Case 2: If α < 0, λ > 0, and δ = 0, then
Ω±3 (x, y, z, t) =

2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(
±

√
−mnα

λ
secmn(

√
−αζ)

)2

,

Ω±4 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(
±

√
−mnα

λ
cscmn(

√
−αζ)

)2

.
(3.13)

Case 3: If α < 0, λ > 0 and δ = α2

4λ , then

Ω±5 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(√
−α
2λ tanhmn(

√
−α
2 ζ)

)2

,

Ω±6 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(√
−α
2λ cothmn(

√
−α
2 ζ)

)2

,

Ω±7 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(√
−α
2λ

(
tanhmn(

√
−2αζ) ± ι

√
mn sechmn(

√
−2αζ)

) )2

,

Ω±8 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(√
−α
2λ

(
cothmn(

√
−2αζ) ±

√
mn cschmn(

√
−2αζ)

) )2

,

Ω±9 (x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

(
±

√
−α
8λ

(
tanhmn(

√
−α
8 ζ) + cothmn(

√
−α
8 ζ)

) )2

.

(3.14)

Case 4: If α > 0, λ > 0 and δ = α2

4λ , then

Ω±10(x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

( √
α
2λ tanmn(

√
α
2 ζ)

)2

,

Ω±11(x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

( √
α
2λ cotmn(

√
α
2 ζ)

)2

,

Ω±12(x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

( √
α
2λ

(
tanmn(

√
2αζ) ±

√
mn secmn(

√
2αζ)

) )2

,

Ω±13(x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

( √
α
2λ

(
cotmn(

√
2αζ) ±

√
mn cscmn(

√
2αζ)

) )2

,

Ω±14(x, y, z, t) =
2
(
−α+

√
α2−3 δ λ

)
γ1

2c

b −
6cλ γ1

2

b

( √
α
8λ

(
tanmn(

√
α
8 ζ) + cotmn(

√
α
8 ζ)

) )2

.

(3.15)

In all above cases ζ = γ1x + γ2y + γ3z + µt.

4. Results and discussions

In this part, we analyze the attributes of a varied set of acquired solutions. The first portion
examines the solutions to the proposed equation utilizing the SE method, whereas the subsequent
section investigates solutions to the suggested equation employing the SSE method. The visualization
of the results was conducted through three-dimensional, density, and two-dimensional plots. It is
important to highlight that within the suggested model, the velocity wave, µ, exhibits two unique
values, signifying the existence of dual-wave propagation within the nonlinear system, known as the
left-wave and right-wave, both propagating simultaneously.

4.1. Solutions by sub-equation approach

Initially, an array of soliton structures is generated by employing distinct parameter values through
the use of the SE technique. Furthermore, employing suitable parameter values has led to the
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observation of various distinct structures, including bright solitons, dark solitons, dark-bright(combo)
solitons, and singular periodic solitons. In Figure 1, the solution Ω1(x, y, z, t) is visually represented as
a bright soliton, where the central region exhibits higher intensity while the surrounding area displays
lower intensity. The parameter values for this representation are as follows: γ1 = γ2 = γ3 = b = 1,
c = −1, β = 0.1, δ = −0.2, z = 1.5, t = 2.1, and µ = 1.5. Moving to Figure 2, a 3D, density,
and 2D visualization of Ω1(x, y, z, t) is presented with a modified parameter c = 1, while all other
parameters remain the same as in the previous case, resulting in a recorded dark soliton identified by
a localized depression in the surrounding field. Dark solitons, which attract significant attention in
optics due to their stable transmission, are highlighted. Shifting to Figure 3, the solution |Ω3(x, y, z, t)|
is depicted as a dark-bright (combo) soliton, along with its 2D and density plots. Dark-bright solitons
combine both dark and bright features within their structure, featuring a localized region of decreased
intensity (dark soliton) embedded within a localized region of increased intensity (bright soliton). The
parameter values for this scenario are: γ1 = γ2 = γ3 = b = c = 1, β = 0.1, δ = −2, y = 0.5,
t = 0.1, and µ = 1.5. In Figure 4, the solution |Ω6(x, y, z, t)| is presented with the following parameters:
γ1 = γ2 = γ3 = b = c = 1, β = 2.1, δ = 0.2, y = 0.5, t = 0.1, resulting in singular periodic solitons
displaying discontinuity at the lower ends.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 1. Visual representation of the solution Ω1(x, y, z, t) through 3-dimensional, 2-
dimensional and density plots.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 2. Visual representation of the solution Ω1(x, y, z, t) through 3-dimensional, 2-
dimensional and density plots.
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(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 3. Visual representation of the solution Ω3(x, y, z, t) through 3-dimensional, 2-
dimensional and density plots.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 4. Visual representation of the solution Ω6(x, y, z, t) through 3-dimensional, 2-
dimensional and density plots.

4.2. Solutions by Sardar sub-equation approach

Second, diverse soliton structures are produced by employing distinct parameter values for each
outcome through the utilization of the SSE technique. Figure 5 illustrates a bright soliton, where the
central region exhibits higher intensity while the surrounding area displays lower intensity, along with
its 2D and density plot, for the solution |Ω±1 (x, y, z, t)| with the following parametric values: γ1 = γ2 =

γ3 = b = c = 1, α = 2, δ = 0, λ = −1, m = 2, n = 1.5, y = 0.5, z = 1 and µ = 1. In Figure 6,
dark soliton, identified by a localized depression in the surrounding field along with its 2D and density
plot, is presented for the solution |Ω±3 (x, y, z, t)| with the parametric value γ1 = γ2 = γ3 = b = 1,
c = −1, α = −0.2, δ = 0, λ = 0.5, m = 1.1, n = 1.1, y = 0.5, z = 1 and µ = 1.5. Bright
solitons, manifesting as concentrated intensity peaks amid a uniform background are showcased in
Figure 7 for the solution |Ω±5 (x, y, z, t)| with the parametric values: γ1 = γ2 = γ3 = b = c = 1,
α = −2, δ = 1, λ = 1, m = 2, n = 1.1, x = 0.5, z = 1 and µ = 1. Figure 8 presents combo
solitons for the solution |Ω±7 (x, y, z, t)| with the same parametric values as in previous case. Dark-bright
solitons combine both dark and bright features within their structure, featuring a localized region of
decreased intensity (dark soliton) embedded within a localized region of increased intensity (bright
soliton). Periodic solitons are reported in Figure 9 for the solution |Ω±12(x, y, z, t)| with the parametric
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values: γ1 = γ2 = γ3 = b = c = 1, α = 2, δ = 1, λ = 1, m = 2, n = 1.1, x = 0.5, z = 1 and µ = 0.5.
These solutions demonstrate a repetitive structure.

These visual depictions offer insights into the unique forms and attributes of diverse soliton
solutions. Solitons possess a remarkable quality in their resilience, a crucial aspect ensuring their
practical utility in optical communications. Moreover, these solutions showcase the ability to preserve
both their form and speed during extensive distances without dispersing or dissipating energy,
rendering them optimal for data transmission via optical fibers. They facilitate high-speed, long-
range communication with minimal distortion, playing an essential role in today’s telecommunications
landscape. Thanks to soliton technology, various social media platforms such as Twitter, Instagram,
Facebook, LinkedIn, email services, cell phones, and the internet enable seamless collaborations.
Additionally, soliton technology facilitates communication across continents and oceans. Examining
these solutions enables researchers to enhance their comprehension of the dynamics and traits exhibited
by solitons in nonlinear models.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 5. Visual representation of the solution |Ω±1 (x, y, z, t)| through 3-dimensional, 2-
dimensional and density plots.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 6. Visual representation of the solution |Ω±3 (x, y, z, t)| through 3-dimensional, 2-
dimensional and density plots.
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(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 7. Visual representation of the solution |Ω±5 (x, y, z, t)| through 3-dimensional, 2-
dimensional and density plots.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 8. Visual representation of the solution |Ω±7 (x, y, z, t)| through 3-dimensional, 2-
dimensional and density plots.

(a) 3D Plot (b) 2D Plot (c) Density Plot

Figure 9. Visual representation of the solution |Ω±12(x, y, z, t)| through 3-dimensional, 2-
dimensional and density plots.

AIMS Mathematics Volume 9, Issue 8, 20390–20412.



20402

5. Bifurcation phenomena

In this segment, we will analyze Eq (1.4) within the framework of bifurcation analysis [31]. Upon
employing the Galilean transformation to Eq (3.4), we derive the planar system as follows: dΨ

dζ = Γ,
dΓ
dζ = −$0Ψ −$1Ψ

2,
(5.1)

where

$0 =
(γ1µ + aγ2

1 + dγ2
2 + eµγ2 + hµ2 + kγ1γ2 + mγ1γ3)

cγ4
1

, $1 =
b

cγ2
1

.

The Hamiltonian of (5.1), is expressed as follows:

H(Ψ,Γ) =
Γ2

2
+$0

Ψ2

2
+$1

Ψ3

3
, (5.2)

which satisfies
∂H

∂Ψ
= −Γ′,

∂H

∂Γ
= Ψ′.

Examining the dynamic characteristics of (5.1) at its fixed points F j (where j = 1, 2) using bifurcation
theory. The fixed points for (5.1) are outlined below:

F1 = (0, 0),F2 = (
−$0

$1
, 0).

Furthermore, the Jacobian of the system will be:

J(Ψ,Γ) =

(
0 1

−$0 − 2$1Ψ 0

)
. (5.3)

The determinant and trace of (5.3) at the critical point F j are indicated by D and T , respectively,
and these values are provided as follows:

T = trace(J)|F j = 0, D = det(J)|F j = $0 + 2$1Ψ.

The fixed point is classified as a saddle when D < 0, a central point when D > 0 and T = 0, a cusp
when D = 0, and a node if D > 0 and T 2 − 4D > 0. Varied outcomes can be achieved by adjusting
the parameters.

• Case 1: Let $0 > 0, and $1 > 0.
For γ1 = γ2 = γ3 = m = b = a = h = d = µ = 1, k = e = d = −1, $0 = 1, and $1 = 1, system (5.1)

has two fixed points F1 = (0, 0) and F2 = (−1, 0). In this case, F1 is center and F2 is saddle. These
points are presented in Figure 10(a).

• Case 2: Let $0 < 0, and $1 < 0.
For γ1 = γ2 = γ3 = m = c = b = a = h = d = µ = 1, c = k = e = d = −1, $0 = −1, and $1 = −1,

system (5.1) has two fixed points F1 = (0, 0) and F2 = (−1, 0). In this case, F1 is saddle and F2 is
center. These points are presented in Figure 10(b).
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• Case 3: Let $0 < 0, and $1 > 0.

For γ1 = γ2 = γ3 = m = b = h = c = µ = 1, a = k = e = d = −1, $0 = −1, and $1 = 1,
system (5.1) has fixed points as F1 = (0, 0) and F2 = (1, 0). In this case, F1 is saddle and F2 is center.
These points are presented in Figure 11(a).

• Case 4: Let $0 > 0, and $1 < 0.

For γ1 = γ2 = γ3 = m = a = h = d = µ = 1, b = k = e = d = −1, σ0 = 1, and σ1 = −1, system (5.1)
has fixed points as F1 = (0, 0) and F2 = (1, 0). In this case, F1 is center and F2 is saddle. These points
are presented in Figutr 11(b).

(a) a (b) b

Figure 10. Phase plots for (5.1), when (a): $0 > 0 and $1 > 0, (b): $0 < 0 and $1 < 0.

(a) a (b) b

Figure 11. Phase plots for (5.1), when (a): $0 < 0 and $1 > 0, (b): $0 > 0 and $1 < 0.
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6. Chaotic phenomena

In this segment, we introduce an outward periodic force into system (5.1) to examine the dynamics
of both quasi-periodic and chaotic phenomena [32, 33]. The modified system can be expressed in the
following manner: 

dΨ
dζ = Γ,

dΓ
dζ = −$0Ψ −$1Ψ

2 + κ0 cos(G),

dG
dζ = θ.

(6.1)

The above system is autonomous with G = θζ. In the modified system (6.1), the perturbing force is
characterized by two components referred to as κ0 and θ. In this context, κ0 represents the amplitude,
while θ signifies the frequency of the disturbed term introduced into the (5.1). We have systematically
investigated the chaotic dynamics of (6.1) using various tools, including three-dimensional plots, time
plots, two-dimensional plots, and Lyapunov exponent. To gain deeper insights into this phenomenon,
we explore the influence of both amplitude κ0 and frequency θ, while maintaining the remaining
parameters constant at $0 = 2.5 and $1 = 1 throughout our analysis.

In Figures 12(a)–14(a), time plots, two and three dimensional plots are presented by selecting
κ0 = 0.02 and θ = 0.03. Under these parameter values, the system (6.1) exhibits periodic behavior.
Subsequently, a slight adjustment is made to these parameters, setting them to κ0 = 1.3 and θ = π.
Under these modified parameters, the system (6.1) exhibits quasi-periodic behavior, as visually
depicted in Figures 12(b)–14(b). Continuing our analysis, the amplitude is further increased to
κ0 = 3.7, and the frequency is raised to θ = 2π. In this scenario, system (6.1) demonstrates increased
irregularity, revealing a quasi-periodic-chaotic nature, as illustrated in Figures 12(c)–14(c). Advancing
further, the amplitude and frequency are adjusted to κ0 = 8.5 and θ = 3π. Under these values,
system (6.1) exhibits heightened randomness, unveiling a chaotic nature as depicted in Figures 12(d)–
14(d).

In the domain of dynamic systems, the Lyapunov exponent (LE) plays a crucial role in assessing the
pace at which successive trajectories within a system develop independently. This scalar value, serves
as a vital indicator of the system’s inherent chaos. A positive LE denotes a chaotic state in the system,
while a negative value indicates stability. In our analysis, we applied the Wolf method, incorporating
Gram-Schmidt orthogonalization, to compute the LE for the scrutinized system. Subsequently, we
visually represented the evolution of these exponents over time to gain insights into the dynamics of
the system (6.1). In Figures 15 and 16, we illustrate the LE obtained against the temporal evolution,
aiming to identify the chaotic phenomena of the modified system with parameters $0 = 2.5, $1 =

1, κ0 = 3.7, θ = 2π and initial condition (0.05, 0.05, 0.05), (0.1,0.1,0.1). Similarly in Figures 17
and 18, the LE is presented with modified parameters as κ0 = 8.4, θ = 3π and initial condition (0.3,
0.3, 0.3), and (0.5,0.5,0.5). This representation confirms the chaotic nature exhibited by the perturbed
system (6.1).

AIMS Mathematics Volume 9, Issue 8, 20390–20412.



20405

(a) κ0 = 0.02, θ = 0.03 (b) κ0 = 1.3, θ = π

(c) κ0 = 3.7, θ = 2π (d) κ0 = 8.4, θ = 3π

Figure 12. Detection of chaotic phenomena in the perturbed system (6.1) via time plots.

(a) κ0 = 0.02, θ = 0.03 (b) κ0 = 1.3, θ = π

(c) κ0 = 3.7, θ = 2π (d) κ0 = 8.4, θ = 3π

Figure 13. Detection of chaotic phenomena in the perturbed system (6.1) via two
dimensional plots.
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(a) κ0 = 0.02, θ = 0.03 (b) κ0 = 1.3, θ = π

(c) κ0 = 3.7, θ = 2π (d) κ0 = 8.4, θ = 3π

Figure 14. Detection of chaotic phenomena in the perturbed system (6.1) via three
dimensional plots.

Figure 15. Detection of chaos in the system (6.1) via Lyapunov exponent with initial
condition (0.05, 0.05, 0.05). $0 = 2.5, $1 = 1, κ0 = 3.7, θ = 2π.
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Figure 16. Detection of chaos in the system (6.1) via Lyapunov exponent with initial
condition (0.1, 0.1, 0.1). $0 = 2.5, $1 = 1, κ0 = 3.7, θ = 2π.

Figure 17. Detection of chaotic phenomena in the perturbed system (6.1) via Lyapunov
exponent with initial condition (0.3, 0.3, 0.3). $0 = 2.5, $1 = 1, κ0 = 8.4, θ = 3π.

Figure 18. Detection of chaotic phenomena in the perturbed system (6.1) via Lyapunov
exponent with initial condition (0.5, 0.5, 0.5). $0 = 2.5, $1 = 1, κ0 = 8.4, θ = 3π.
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7. Sensitivity analysis

In this section, we explore the response of the suggested equation to variations in initial conditions.
To assess the model’s sensitivity, we examine four distinct sets of initial conditions. Figure 19
illustrates four solutions: (Ψ,Γ) = (0.01, 0.01) in green, (Ψ,Γ) = (0.03, 0.01) in red, (Ψ,Γ) =

(0.05, 0.01) in black, and (Ψ,Γ) = (0.07, 0.01) in blue. Additionally, Figure 20 displays four
solutions: (Ψ,Γ) = (0.01, 0.01) in green, (Ψ,Γ) = (0.06, 0.06) in red, (Ψ,Γ) = (0.2, 0.2) in black,
and (Ψ,Γ) = (0.3, 0.3) in blue. It is apparent that even slight variations in the initial conditions can
lead to subtle shifts in the dynamics of the system (5.1). Alternatively, we can assert that the two
solution curves never overlap under any circumstances. Consequently, we infer that the proposed
system exhibits sensitivity, though it is not excessively so.

Figure 19. Sensitivity analysis across various initial values.

Figure 20. Sensitivity analysis across various initial values.

8. Conclusions

In brief, we delve into the extended integrable wave equation, a frequently employed concept in
plasma physics, fluids, and various scientific fields. Our main concern is to conduct a thorough
analysis of this equation, covering diverse facets such as the identification of solitons, examination
of bifurcation phenomena, chaos analysis, and an investigation into the sensitivity of the proposed
equation. At first, analytical solutions for the model under consideration were obtained using two
effective and powerful approaches: the sub-equation approach and the Sardar sub-equation approach.
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The suggested approaches offer a wide variety of solitons, such as bright, dark, combined dark-bright,
and periodic solitary solitons. Bright and dark solitons are characterized by their distinctive intensity
profiles; bright solitons exhibit a peak in intensity, whereas dark solitons display a dip. Additionally,
dark-bright solitons combine both dark and bright features within their structure, featuring a localized
region of decreased intensity (dark soliton) embedded within a localized region of increased intensity
(bright soliton). Periodic soliton solutions demonstrate a repetitive structure.

Subsequently, an analysis of the dynamical nature of the model was undertaken, encompassing
various aspects such as bifurcation, chaos, and sensitivity. Bifurcation has been examined at
critical points, and the dynamical system, subjected to an outward periodic force, revealed chaotic
phenomena. Chaotic behaviors has been illustrated through time plots, two-dimensional plots, three-
dimensional plots, and the presentation of Lyapunov exponents, as illustrated in Figures 10)–18.
The sensitivity analysis of the investigated model was executed utilizing the Runge-Kutta method.
Future investigations into the extended integrable wave equation using alternative approaches remain
a potential avenue for exploration. Thus, substantial research endeavors lie ahead to fully comprehend
and explore the capabilities of this model. Such investigations hold promise for unveiling new insights
and improving our comprehension of the behavior and characteristics of the discussed equation. Such
advancements could potentially pave the way for the development of more precise and effective
mathematical models and numerical techniques designed for solving this equation. The obtained
findings indicate the efficacy of the presented approaches for analyzing phase portraits and solitons
over a wider range of nonlinear systems.
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