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Abstract: The strong geodetic number of a graph and its edge counterpart are recent variations of
the pioneering geodetic number problem. Covering every vertex and edge of 𝐺, respectively, using a
minimum number of vertices and the geodesics connecting them, while ensuring that one geodesic is
fixed between each pair of these vertices, is the objective of the strong geodetic number problem and its
edge version. This paper investigates the strong geodetic number of the lexicographic product involving
graph classes that include complete graph 𝐾𝑚, path 𝑃𝑚, cycle 𝐶𝑚 and star 𝐾1, 𝑚 paired with 𝑃𝑛 and
with 𝐶𝑛. Furthermore, the parameter is studied in the lexicographic product of, arbitrary trees with
diameter-2 graphs whose geodetic number is equal to 2, 𝐾𝑛− 𝑒 with 𝐾2 and their converses. Upper and
lower bounds for the parameter are established for the lexicographic product of general graphs and in
addition, the edge variant of the aforementioned problem is studied in certain lexicographic products.
The strong geodetic parameters considered in this paper have pivotal applications in social network
problems, thereby making them indispensable in the realm of graph theoretical research. This work
contributes to the expansion of the current state of research pertaining to strong geodetic parameters in
product graphs.

Keywords: strong geodetic number; lexicographic product; strong edge geodetic number; shortest
path
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1. Introduction

Geodesics are crucial in graph theory, and they serve as the basis for numerous research problems
[1–8]. The geodetic number of a graph, as introduced by Harary et al., is a significant invariant in
graph theory, associated with the notion of geodesic convexity [9, 10]. It entails the determination
of a minimum cardinality set of vertices capable of covering all the vertices of a given graph, along
with the associated isometric paths that link these selected vertices. Applications of this seminal graph
theoretic parameter are due in location theory, convexity theory and game theory [9]. The problem
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was proved to be NP-hard for general graphs [11] and NP-complete for chordal and chordal bipartite
graphs [12]. Recent research on this concept includes, geodetic convexity in Kneser graphs [13],
Mycielskian of graphs [14], the study of geodetic number in complimentary prisms [15], tree derived
architectures [16] and partial grids [17].

Various forms of path convexities discussed in literature include geodesic convexity, detour
convexity, monophonic convexity and triangle-path convexity. Geodetic number of a graph is an
invariant of geodesic convexity otherwise called as metric convexity [10]. Several variants of this
parameter were introduced and investigated [18–22] and one such variant namely the strong geodetic
number was proposed in light of its application in simulating a problem on social networks [21]. The
same concept could be used to model the position of bus terminals inside a city, aiding with facility
location. Though the underlying motive of the problem is similar to the geodetic number, it gets
more complex, as here the geodesics connecting the vertices are fixed between each of its pairs. The
problem was investigated in grid like structures and the complicacy in determining the exact value
of the parameter for an arbitrary grid, which is the simplest Cartesian product graph, is indicated
in [23]. NP-completeness of the problem has been established [21] and various graph classes have
been explored [23–26]. Interestingly, the edge variant was introduced first and its NP-completeness
was proved [22]. The edge variant has received significant attention in the recent years, and it has been
studied in the Cartesian [27] and corona product of graphs [28], complete multipartite graphs [29]. It
would be relevant to emphasise here that, determining the strong edge geodetic number of the Cartesian
product 𝑃𝑚 □ 𝑃𝑛, is an open problem [27]. We have obtained the strong edge geodetic number of the
lexicographic product of paths.

Almost all branches of mathematics utilise the concept of products to combine or break down their
fundamental structures. There are four standard products in graph theory, each with a unique range
of applications and theoretical explanations [30]. The Cartesian and lexicographic products are two
significant instances of graph operations, which facilitate the construction of larger graphs from smaller
graphs. The larger graphs are intricately connected to those of the related smaller graphs with respect
to many characteristics [31]. Lexicographic product initially termed as composition was introduced by
Harary [32] and there have been many research investigations on the lexicographic product of graphs
concerning various graph theoretic parameters [33–38]. Furthermore, lexicographic product of graphs
has been studied in the context of generalised distance spectrum [39] and Gromov hyperbolicity [40].

With respect to the study of geodetic parameters in product graphs, the lexicographic product of
graphs was explored in the context of the geodetic number problem [41]. The strong geodetic problem
has been studied in the Cartesian product of graphs, resulting in an upper bound for the parameter.
However, the general lower bound was posed as a conjecture [26]. Gledel et al. introduced a new
parameter namely, the strong geodetic core number, and using this concept an improved upper bound
on the strong geodetic number of Cartesian products was obtained [42]. The corona and join of graphs
have been investigated for the strong geodetic number [43]. This work intends to bridge the gap by
investigating the lexicographic product of graphs in relation to the strong geodetic parameters, which
has not yet been done. As a result, in our study, we have established exact values for general classes of
graphs and also lower and upper bounds for the parameter.

The subsequent sections of the paper are organised as follows. Definitions and basic concepts are
compiled in Section 2. In Section 3, we provide bounds for Sg(G[H]) and proceed with the study of
the parameter on certain lexicographic products such as 𝐺 [𝐾𝑛], where 𝐺 is a general graph, 𝐺 [𝑃𝑛]
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and 𝐺 [𝐶𝑛] where 𝐺 is isomorphic to any of the graphs 𝑃𝑚, 𝐶𝑚, 𝐾1, 𝑚 and 𝐾𝑚. Furthermore, we have
determined the strong geodetic number of the lexicographic product of, arbitrary trees with graphs of
diameter and geodetic number both equal to two, 𝐾𝑛 − 𝑒 with 𝐾2 and their converses. In Section 4,
the lexicographic product of certain graphs including 𝐾𝑚 [𝑃𝑛], 𝑃𝑚 [𝐾𝑛] and 𝑃𝑚 [𝑃𝑛] are studied with
respect to the edge version of the parameter and the paper is concluded in Section 5.

2. Basic concepts

Let 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) be a connected graph with |𝑉 (𝐺) | ≥ 2, where the vertex and edge sets of
𝐺 are denoted as 𝑉 (𝐺) and 𝐸 (𝐺), respectively. The order of 𝐺 is the number of vertices in 𝐺. An
arrangement of non-repetitive vertices connected through edges is a path. The length of the shortest
path connecting two vertices 𝑠1 and 𝑠2 determines the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between the 2 vertices [44]. A geodesic
or an isometric path refers to a shortest path. The length of any longest geodesic from a vertex 𝑠 ∈ 𝑉
is the eccentricity 𝑒(𝑠) of 𝑠 and the maximum of the eccentricities of all of the vertices in 𝐺 is the
diameter of 𝐺 denoted as 𝑑𝑖𝑎𝑚(𝐺) [44]. If 𝑒(𝑠) = 𝑑𝑖𝑎𝑚(𝐺), then 𝑠 is referred to as a 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙
𝑣𝑒𝑟𝑡𝑒𝑥 [44]. Neighbours of a vertex 𝑠, denoted as 𝑁 [𝑠] are the set of vertices adjacent to 𝑠. Extreme
vertices also known as simplicial vertices are those vertices whose neighbours induce a subgraph which
is complete [44]. A graph 𝐺 is geodetic if there is one unique isometric path connecting every pair
of vertices in 𝐺 [44]. If a vertex 𝑠 in a graph 𝐺 lies on a 𝑡 − 𝑡 ′ geodesic in 𝐺 for any two vertices 𝑡
and 𝑡

′
, then the pair of vertices (𝑡, 𝑡 ′) is said to geodominate 𝑠 [9]. Antipodal vertices are the 2 vertices

which are farthest from each other [44]. A graph 𝐺 is termed as an extreme geodesic graph if every
vertex in 𝐺 lies on an 𝑠 − 𝑡 geodesic, where 𝑠 and 𝑡 are extreme vertices in 𝐺 [45]. If every vertex
of 𝐺 is covered by the geodesics joining any 2 vertices in 𝜂, then 𝜂 is said to be a geodetic cover of
𝐺. The geodetic cover of least cardinality and the least cardinality of its geodetic covers are referred
to as the geodetic basis of 𝐺 and the geodetic number 𝑔(𝐺), respectively [44]. A set 𝜂𝑆𝑔 ⊆ 𝑉 is
called a strong geodetic set of 𝐺, if all the vertices in 𝑉 (𝐺)\𝜂𝑆𝑔 are covered using geodesics that are
fixed between the elements of 𝜂𝑆𝑔, in a manner that every pair of vertices in 𝜂𝑆𝑔 is assigned a unique
geodesic. If we denote 𝐼̃ [(𝑠, 𝑡)] as the geodesic that is fixed between 2 vertices 𝑠 and 𝑡 of 𝜂𝑆𝑔 and
𝐼̃ [𝜂𝑆𝑔] = { 𝐼̃ [(𝑠, 𝑡)] : 𝑠, 𝑡 ∈ 𝜂𝑆𝑔}, then 𝜂𝑆𝑔 is called a strong geodetic set if 𝑉 ( 𝐼̃ [𝜂𝑆𝑔]) = 𝑉 (𝐺). The least
order of such a set is referred to as the strong geodetic number Sg(G) and any such set of least order is
called the strong geodetic basis [21]. A strong edge geodetic cover of 𝐺 is a set 𝜂𝑆𝑔𝑒 ⊆ 𝑉 (𝐺) such that
for each pair (𝑠1, 𝑠2) ∈ 𝜂𝑆𝑔𝑒 , there corresponds a fixed shortest 𝑠1 − 𝑠2 path 𝑃𝑠1𝑠2 and the union of the
edges in all such paths is equal to 𝐸 (𝐺). The strong edge geodetic number of 𝐺, denoted as S𝑔𝑒(G), is
the minimum cardinality of such covers in 𝐺 [22].
𝐾𝑛, 𝑃𝑛, 𝐶𝑛 and 𝐾1, 𝑛 denote the complete graph, path, cycle and star, respectively on 𝑛 vertices.

Definition 2.1. An edge 𝑒 = 𝑠𝑡 in 𝐺 is called a unique edge, if it belongs to a unique geodesic joining
any 2 vertices 𝑠 and 𝑡 in 𝐺.

Theorem 2.2. [43] For a graph 𝐺 with |𝑉 (𝐺) | ≥ 2, Sg(G) = 2 if and only if 𝐺 is a path.

Remark 2.3. [9] 𝑔(𝑃𝑛) = 2, 𝑔(𝐾𝑛) = 𝑛, and 𝑔(𝐾1, 𝑛) = 𝑛.

Remark 2.4. [9]

𝑔(𝐶𝑛) =
{

3, if n is odd;

2, if n is even.
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Definition 2.5. [30] The lexicographic product of 𝐺 and 𝐻 is the graph 𝐺 [𝐻], where

𝑉 (𝐺 [𝐻]) = {(𝑠, 𝑡) | 𝑠 ∈ 𝑉 (𝐺), 𝑡 ∈ 𝑉 (𝐻)},
𝐸 (𝐺 [𝐻]) = {(𝑠, 𝑡) (𝑠′ , 𝑡 ′) | 𝑠𝑠′ ∈ 𝐸 (𝐺) or 𝑠 = 𝑠

′
and 𝑡𝑡

′ ∈ 𝐸 (𝐻)}

The graph 𝐺 [𝐻] consists of 2 layers: The 𝐻-layer (a horizontal layer) and 𝐺-layer (a vertical
layer). For a vertex 𝑠 ∈ 𝑉 (𝐺), we define the 𝐻-layer 𝑠𝐻 = {(𝑠, 𝑡) ∈ 𝑉 (𝐺 [𝐻]) | 𝑡 ∈ 𝑉 (𝐻)} and
similarly for 𝑡 ∈ 𝑉 (𝐻), the 𝐺-layer 𝐺 𝑡 = {(𝑠, 𝑡) ∈ 𝑉 (𝐺 [𝐻]) | 𝑠 ∈ 𝑉 (𝐺)}.

The following remark is evident from Definition 2.5.

Remark 2.6. Consider 2 vertices in𝐺 [𝐻] with their first coordinates to be same. The distance between
those vertices depends on the second coordinate of the vertices and is 1 if they are adjacent in 𝐻,
otherwise it is 2.

Remark 2.7. Consider 2 vertices (𝑠1, 𝑡1) and (𝑠2, 𝑡2) in 𝐺 [𝐻]. The distance between the 2 vertices is
the distance between 𝑠1 and 𝑠2 in 𝐺, i.e., 𝑑𝐺 [𝐻] [(𝑠1, 𝑡1), (𝑠2, 𝑡2)] = 𝑑𝐺 [(𝑠1, 𝑠2)].

Remark 2.8. [30] The lexicographic product is not commutative.

It could be seen from Figures 1(a) and 1(b) that 𝑃5 [𝑃3] and 𝑃3 [𝑃5] are not isomorphic with
𝑆𝑔(𝑃5 [𝑃3]) = 4 and 𝑆𝑔(𝑃3 [𝑃5]) = 6.

Throughout this paper, we abbreviate a geodetic set as 𝑔-set, a strong geodetic set as 𝑆𝑔-set and its
corresponding edge variant as 𝑆𝑔𝑒-set, a geodetic basis as 𝑔-basis, a strong geodetic basis as 𝑆𝑔-basis
and its corresponding edge variant as 𝑆𝑔𝑒-basis.

(a) (b) (c)

Figure 1. Coloured vertices denote: (a) the 𝑆𝑔-basis of 𝑃5 [𝑃3]; (b) the 𝑆𝑔-basis of 𝑃3 [𝑃5];
(c) the 𝑆𝑔-basis of 𝐶6 [𝐾2].

3. The strong geodetic number of certain lexicographic products

Bounds for Sg(G[H]) are established in this section. Moreover, 𝑆𝑔(𝐺 [𝐾𝑛]) and the strong geodetic
number of the lexicographic product of some general graphs including 𝐾𝑚, 𝑃𝑚, 𝐶𝑚, 𝐾1, 𝑚 with 𝑃𝑛 and
with 𝐶𝑛 are determined. It could be seen that, the strong geodetic number for the graphs considered is
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dependent on the geodetic number of one of the elements in the product. The strong geodetic number
of the cartesian product of 𝐾𝑛−𝑒 with 𝐾2 was explored in [26] and it was proved that 𝑆𝑔((𝐾𝑛−𝑒) □𝐾2)
= 𝑆𝑔(𝐾𝑛−𝑒) = 𝑛−1. We have computed 𝑆𝑔((𝐾𝑛−𝑒) [𝐾2]) = 2𝑛−4, and it is evident that it is not equal
to 𝑆𝑔(𝐾𝑛 − 𝑒). The geodetic number of the lexicographic product of arbitrary trees with diameter-2
graphs whose geodetic number is equal to 2 was determined in [41]. We have computed 𝑆𝑔(𝐺 [𝐻])
when 𝐺 and 𝐻 are isomorphic to these graphs and we have also studied the parameter in the converse
of both the aforementioned products.

The following result is obtained directly from Remark 2.7.

Proposition 3.1. Two vertices (𝑠1, 𝑡1) and (𝑠2, 𝑡2) of 𝐺 [𝐻] are antipodal if and only if 𝑠1 and 𝑠2 are
antipodal in 𝐺.

Proposition 3.2. Any geodesic in 𝐺 [𝐻] connecting the vertices lying in different 𝐻-layers traverses
either vertically or diagonally.

Proof. Consider two vertices (𝑠1, 𝑡1) and (𝑠2, 𝑡2) in 𝐺 [𝐻] that lie in different 𝐻-layers say, 𝑠1𝐻 and
𝑠2𝐻. Let 𝑃 be the geodesic which connects the 2 vertices. Suppose if 𝑃 traverses through a horizontal
edge, then 𝑑𝐺 [𝐻] [(𝑠1, 𝑡1), (𝑠2, 𝑡2)] = 𝑑𝐺 [(𝑠1, 𝑠2)] + 1, a contradiction, by Remark 2.7. □

Theorem 3.3. 𝑆𝑔(𝐺 [𝐻]) ≥ 4.

Proof. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) and 𝐼̃ (𝜂𝑆𝑔 (𝐺 [𝐻])) denote an 𝑆𝑔-basis of 𝐺 [𝐻] and the geodesics that are fixed
between the vertices in 𝜂𝑆𝑔 (𝐺 [𝐻]), respectively. Assume that 𝑆𝑔(𝐺 [𝐻]) < 4. Then, it should be
either 2 or 3. As 𝐺 and 𝐻 are non-trivial connected graphs, 𝐺 [𝐻] cannot be a path and hence by
Theorem 2.2, 𝑆𝑔(𝐺 [𝐻]) must be more than 2. Let (𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠3, 𝑡3) be the three elements of
𝜂𝑆𝑔 (𝐺 [𝐻]). Now, three cases arise.
Case 1: 𝑠1 = 𝑠2 = 𝑠3 = 𝑠 (say).

Clearly, the vertices (𝑠, 𝑡1), (𝑠, 𝑡2) and (𝑠, 𝑡3) must lie in the same 𝐻-layer and denote the layer as
𝑠𝐻.

By Remark 2.6, 𝑑𝐺 [𝐻] [(𝑠, 𝑡𝑖), (𝑠, 𝑡 𝑗 )] is either 1 or 2 for every 1 ≤ 𝑖, 𝑗 ≤ 3, and 𝑖 ≠ 𝑗 .

(a) (b)

Figure 2. Schematic representation for Subcase 1.1 in Theorem 3.3.

Subcase 1.1: 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡2)] = 1.
Then, 𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 2 (see Figure 2(a)) and 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] = 2. For if,

𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 1, then (𝑠, 𝑡2) becomes an internal vertex of the (𝑠, 𝑡1) ∼ (𝑠, 𝑡3) geodesic by
our assumption and hence, (𝑠, 𝑡2) need not be included in 𝜂𝑆𝑔 (𝐺 [𝐻]). Also, if 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)]
= 1, then (𝑠, 𝑡3) is another horizontal neighbour of (𝑠, 𝑡1) and since (𝑠, 𝑡2) is already a neighbour of
of (𝑠, 𝑡1) which is included in 𝜂𝑆𝑔 (𝐺 [𝐻]), (𝑠, 𝑡1) becomes an internal vertex of the (𝑠, 𝑡2) ∼ (𝑠, 𝑡3)
geodesic by our assumption and hence it need not be included in 𝜂𝑆𝑔 (𝐺 [𝐻]).
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Now, we proceed to prove that 𝑆𝑔(𝐺 [𝐻]) ≥ 4. Choose another vertex 𝑠𝑘 ∈ 𝑉 (𝐺) in such a way
that its corresponding vertices (𝑠𝑘 , 𝑡1), (𝑠𝑘 , 𝑡2) and (𝑠𝑘 , 𝑡3) in 𝐺 [𝐻], lie in 𝑠𝑘𝐻. Let (𝑠𝑘 , 𝑡1) be an
internal vertex in 𝐼̃ [(𝑠, 𝑡2), (𝑠, 𝑡3)] using the geodesic (𝑠, 𝑡2) ∼ (𝑠𝑘 , 𝑡1) ∼ (𝑠, 𝑡3) and let (𝑠𝑘 , 𝑡2) be the
vertex covered in the 𝑠𝑘𝐻-layer by using the geodesic (𝑠, 𝑡1) ∼ (𝑠𝑘 , 𝑡2) ∼ (𝑠, 𝑡3). Then, the vertex
(𝑠𝑘 , 𝑡3) would be left uncovered in the 𝑠𝑘𝐻-layer, a contradiction. See Figure 2(b). Similarly, when we
consider all the pairs in 𝑑𝐺 [𝐻] [(𝑠, 𝑡𝑖), (𝑠, 𝑡 𝑗 )], 1 ≤ 𝑖, 𝑗 ≤ 3, and 𝑖 ≠ 𝑗 , we get a contradiction.

(a) (b)

(c) (d)

Figure 3. Schematic representation for Subcase 1.2 in Theorem 3.3.

Subcase 1.2: 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡2)] = 2.
Then, 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] and 𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] are either 1 or 2. We consider all the

possible cases. If 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] = 1, and 𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 1, and then only one
additional vertex from 𝐺 [𝐻] could be covered by the (𝑠, 𝑡1) ∼ (𝑠, 𝑡2) geodesic. Refer Figure 3(a).
If 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] = 1, and 𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 2, then 2 vertices each are covered by the
geodesics (𝑠, 𝑡1) ∼ (𝑠, 𝑡2) and (𝑠, 𝑡2) ∼ (𝑠, 𝑡3). See Figure 3(b). If 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] = 2, and
𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 1, then 2 vertices each are covered by the geodesics (𝑠, 𝑡1) ∼ (𝑠, 𝑡2) and (𝑠, 𝑡1)
∼ (𝑠, 𝑡3). See Figure 3(c). If 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡3)] = 2, and 𝑑𝐺 [𝐻] [(𝑠, 𝑡2), (𝑠, 𝑡3)] = 2, then three
vertices are covered by the geodesics (𝑠, 𝑡1) ∼ (𝑠, 𝑡2), (𝑠, 𝑡1) ∼ (𝑠, 𝑡3), and (𝑠, 𝑡2) ∼ (𝑠, 𝑡3). See Figure
3(d). In Figures 3(a)–3(d), the red-coloured vertices are the vertices that are chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]), the
vertices coloured in blue depicts the vertices that are geodominated and the vertices with no colour are
the ones that are left uncovered. In all the cases, if the covered vertices belong to 𝑠𝐻, then the vertical
neighbours of all the vertices considered in 𝜂𝑆𝑔 (𝐺 [𝐻]) would be left uncovered, a contradiction. If the
vertices that are covered belong to different 𝐻-layers other than 𝑠𝐻, then the horizontal neighbours of
the vertices (𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠3, 𝑡3) in 𝑠𝐻 would be left uncovered, a contradiction.
Case 2: 𝑠1 = 𝑠2 ≠ 𝑠3.

Let 𝑠1 = 𝑠2 = 𝑠 (say). Then, (𝑠, 𝑡1) and (𝑠, 𝑡2) lie in the same 𝐻-layer and (𝑠3, 𝑡3) lies in another
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𝐻-layer. By Remark 2.6, 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡2)] = 1 or 2. Now, two subcases arise.
Subcase 2.1: 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡2)] = 1.

By Proposition 3.2, the geodesic which connects the vertex (𝑠3, 𝑡3) with the vertices (𝑠, 𝑡1) and
(𝑠, 𝑡2) in the 𝑠𝐻 layer traverses either diagonally or vertically. Hence, the neighbouring vertices of
(𝑠3, 𝑡3) in the layer 𝑠3𝐻 could not be covered, a contradiction. In Figure 4(a), the vertices coloured in
red are the elements of 𝜂𝑆𝑔 (𝐺 [𝐻]), and the vertices that are not coloured are the uncovered vertices.
Subcase 2.2: 𝑑𝐺 [𝐻] [(𝑠, 𝑡1), (𝑠, 𝑡2)] = 2.

The geodesic which connects the vertex (𝑠3, 𝑡3) with the vertices (𝑠, 𝑡1) and (𝑠, 𝑡2) in the 𝑠𝐻 layer
could cover only an extra vertex (𝑠, 𝑡𝑖) in the 𝑠𝐻 layer along with the vertices covered in the Subcase
2.1. Hence, the neighbouring vertices of (𝑠3, 𝑡3) in the layer 𝑠3𝐻 could not be covered, a contradiction.
In Figure 4(b), the vertices coloured in red are the elements of 𝜂𝑆𝑔 (𝐺 [𝐻]), the blue-coloured ones are
the geodominated vertices, and the vertices that are not coloured are the uncovered vertices.

(a) (b)

Figure 4. Schematic representation for (a) Subcase 2.1 in Theorem 3.3 (b) Subcase 2.2 in
Theorem 3.3.

The case 𝑠1 ≠ 𝑠2 = 𝑠3 is similar to Case 2, and hence, we omit the proof.
Case 3: 𝑠1 ≠ 𝑠2 ≠ 𝑠3.

By Proposition 3.2, the geodesic connecting the vertices (𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠3, 𝑡3) traverses either
vertically or diagonally and hence the neighbours of these vertices in their respective 𝐻-layers would
be left uncovered, a contradiction. See Figure 5, where the members of 𝜂𝑆𝑔 (𝐺 [𝐻]) are depicted in red
colour, the blue-coloured vertices are geodominated and the uncoloured vertices are the ones that are
left uncovered.

Figure 5. Schematic representation for Case 3 in Theorem 3.3.

□
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Two of the lexicographic product graphs with strong geodetic number equal to 4 are depicted in
Figures 1(a) and 1(c).

Theorem 3.4. If 𝐺 is a graph of order 𝑚 ≥ 4, and 𝐻 is neither a complete graph nor a complete
bipartite graph of order 𝑛 ≥ 4, then, 𝑆𝑔(𝐺 [𝐻]) ≤ 𝑆𝑔(𝐺){⌊ 𝑛2⌋ + 1}.

Proof. Let 𝜂𝑆𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑘 }, 𝑘 ≤ 𝑚 represent an 𝑆𝑔-basis of 𝐺. Define 𝑇 = (𝜂𝑆𝑔 (𝐺) ×
𝑉 (𝐻)) − {(𝑠𝑖, 𝑡 𝑗 ) | (𝑠𝑖, 𝑡 𝑗 ) ∈ even 𝐺-layer}. Evidently, |𝑇 | = 𝑆𝑔(𝐺){⌊ 𝑛2⌋ + 1}. The geodesics that are
fixed between the vertices in 𝑇 cover 𝑉 (𝐺 [𝐻]). 𝑆𝑔(𝐺 [𝐻]) ≤ 𝑆𝑔(𝐺){⌊ 𝑛2⌋ + 1}. □

Lemma 3.5. For graphs 𝐺 and 𝐻 of orders 𝑚 and 𝑛, respectively, 𝑚, 𝑛 ≥ 5, any 𝑆𝑔-set of 𝐺 [𝐻]
contains at least ⌈𝑛2⌉ vertices that lie in alternate 𝐺-layers, from the first 𝐻-layer.

Proof. Let 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, and 𝑉 (𝐻) = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) represent an
𝑆𝑔-set of 𝐺 [𝐻]. To choose vertices in 𝜂𝑆𝑔 (𝐺 [𝐻]), we start with a pair of vertices that are antipodal.
By Remark 2.6, any 2 vertices in the same 𝐻-layer in𝐺 [𝐻] are connected by geodesics of length either
1 or 2. Let (𝑠1, 𝑡1) and (𝑠𝑘 , 𝑡𝑘 ) be antipodal vertices in 𝐺 [𝐻] lying in 𝑠1𝐻 and 𝑠𝑘𝐻 respectively. By
Proposition 3.2, the geodesic connecting these 2 vertices covers only the vertices in 𝐺 [𝐻] lying in the
𝐻-layers that are positioned in between 𝑠1𝐻 and 𝑠𝑘𝐻. Also this implies that the vertices lying in the
𝑠1𝐻-layer could be covered only by a geodesic that connects vertices in the 𝑠1𝐻-layer. Since the length
of a geodesic that connects any two vertices in the 𝑠1𝐻-layer is atmost 2, every alternate vertex in the
𝑠1𝐻-layer must be chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]). Hence, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ ⌈𝑛2⌉. □

Lemma 3.6. Let 𝐺 and 𝐻 be graphs of orders 𝑚, 𝑛 respectively, 𝑚, 𝑛 ≥ 5. Any 𝑆𝑔-set of 𝐺 [𝐻]
contains at least |𝜂𝑔 (𝐺) | vertices from the first 𝐺-layer.

Proof. Let 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚} and 𝑉 (𝐻) = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}. Let 𝜂𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3,
. . . , 𝑠𝑙}, 𝑙 ≤ 𝑚 represent a 𝑔-basis of 𝐺 and 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡1), (𝑠2, 𝑡2), (𝑠3, 𝑡3), . . . , (𝑠𝑘 , 𝑡𝑘 )},
𝑘 ≤ 𝑚 represent an 𝑆𝑔-set of 𝐺 [𝐻]. Assume that 𝜂𝑆𝑔 (𝐺 [𝐻]) contains less than |𝜂𝑔 (𝐺) | vertices
from the first 𝐺-layer. This implies that a vertex say (𝑠 𝑗 , 𝑡1), where 𝑠 𝑗 is a member of 𝜂𝑔 (𝐺) does
not belong to 𝜂𝑆𝑔 (𝐺 [𝐻]). Since (𝑠1, 𝑡1) ∈ 𝜂𝑆𝑔 (𝐺 [𝐻]), all of the alternate vertices in 𝑠1𝐻 should be
chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]), by Lemma 3.5. The geodesics that connect (𝑠1, 𝑡1) and the remaining vertices
in 𝜂𝑆𝑔 (𝐺 [𝐻]) does not cover (𝑠 𝑗 , 𝑡1). Also (𝑠 𝑗 , 𝑡1) is not geodominated by any of the pair of vertices
in 𝜂𝑆𝑔 (𝐺 [𝐻]). Thus, if a vertex (𝑠 𝑗 , 𝑡1) from 𝐺 [𝐻] where 𝑠 𝑗 ∈ 𝜂𝑔 (𝐺), is not included in 𝜂𝑆𝑔 (𝐺 [𝐻]),
then (𝑠 𝑗 , 𝑡1) and the vertices lying in 𝑠 𝑗𝐻 are left uncovered by the geodesics connecting the remaining
vertices in 𝜂𝑆𝑔 (𝐺 [𝐻]), a contradiction. □

Lemma 3.7. If 𝐺 and 𝐻 are graphs of orders 𝑚 and 𝑛, respectively, 𝑚, 𝑛 ≥ 5, and if 𝐺 contains 𝑘
pendant vertices, then, any 𝑆𝑔-set of 𝐺 [𝐻] contains at least 𝑘 vertices.

Proof. A pendant vertex in 𝐺 is a member of any 𝑆𝑔-basis of 𝐺. Hence, by Lemma 3.6, the proof
follows directly. □
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(a) (b)

(c)

Figure 6. The red coloured vertices denote the vertices that are chosen in 𝜂𝑆𝑔 (𝐺 [𝐾𝑛]), blue
coloured vertices denote the geodominated vertices and the uncoloured vertices are the

uncovered vertices.

Theorem 3.8. If 𝐺 is a graph and 𝐻 is isomorphic to 𝐾𝑛 where |𝑉 (𝐺) |, |𝑉 (𝐻) | ≥ 4, then 𝑆𝑔(𝐺 [𝐻])
= 𝑔(𝐺) |𝑉 (𝐻) |.
Proof. Let 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, 𝑉 (𝐻) = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}. Let 𝜂𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . .
, 𝑠𝑘 }, 𝑘 ≤ 𝑚 be a 𝑔-basis of 𝐺 and 𝜂𝑆𝑔 (𝐺 [𝐻]) represent an 𝑆𝑔-basis of 𝐺 [𝐻]. We now claim that
𝑆𝑔(𝐺 [𝐾𝑛]) ≥ 𝑔(𝐺) |𝑉 (𝐻) |. By Lemma 3.6, 𝑆𝑔(𝐺 [𝐾𝑛]) ≥ 𝑔(𝐺) and by Lemma 3.5, every alternate
vertex from 𝑠1𝐻 must be chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]). The geodesics connecting these vertices could cover
only vertices in the 𝐻-layers, 𝑠𝑥𝐻, 𝑠𝑥 ∉ {𝑠1, 𝑠2, 𝑠3 . . . , 𝑠𝑘 } as illustrated in Figure 6(a). Hence, the
vertices of 𝐺 [𝐾𝑛] whose first coordinate is an element of the geodetic basis of 𝐺 should be chosen
from the alternate 𝐺-layers also. Refer Figure 6(b). Therefore, 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡1), (𝑠1, 𝑡3), (𝑠1, 𝑡5),

AIMS Mathematics Volume 9, Issue 8, 20367–20389.



20376

. . . , (𝑠1, 𝑡𝑙), (𝑠2, 𝑡1), (𝑠2, 𝑡3), (𝑠2, 𝑡5), . . . , (𝑠2, 𝑡𝑙), (𝑠3, 𝑡1), (𝑠3, 𝑡3), (𝑠3, 𝑡5), . . . , (𝑠3, 𝑡𝑙), . . . , (𝑠𝑘 , 𝑡1),
(𝑠𝑘 , 𝑡3), (𝑠𝑘 , 𝑡5), . . . , (𝑠𝑘 , 𝑡𝑙)}, where 𝑙 ∈ {1, 3, 5, . . . , 𝑛 − 2, 𝑛}, if 𝑛 is odd and 𝑙 ∈ {1, 3, 5, . . . , 𝑛 − 1,
𝑛}, if 𝑛 is even.

When geodesics are fixed between these vertices, the following conditions arise:

• The vertical or the slanting geodesics could cover all the vertices that lie in the 𝐻-layers 𝑠𝑥𝐻, 𝑠𝑥
∉ {𝑠1, 𝑠2, 𝑠3 . . . , 𝑠𝑘 }. See Figure 6 (b).
• As the vertices in 𝑠𝑙𝐻, 𝑠𝑙 ∈ {𝑠1, 𝑠2, 𝑠3 . . . , 𝑠𝑘 } are adjacent with each other, the vertices {(𝑠𝑖, 𝑡2),
(𝑠𝑖, 𝑡4), (𝑠𝑖, 𝑡6), . . ., (𝑠𝑖, 𝑡𝑛−1)}, 1 ≤ 𝑖 ≤ 𝑘 , when 𝑛 is odd and the vertices {(𝑠𝑖, 𝑡2), (𝑠𝑖, 𝑡4), (𝑠𝑖,
𝑡6), . . ., (𝑠𝑖, 𝑡𝑛−2)}, 1 ≤ 𝑖 ≤ 𝑘 , when 𝑛 is even are not covered by any of the geodesics. See Figure
6(b).

To cover the remaining uncovered vertices, every vertex in 𝑠1𝐻, 𝑠2𝐻, . . . , 𝑠𝑘𝐻 must be chosen in
𝜂𝑆𝑔 (𝐺 [𝐻]) as shown in Figure 6 (c). Hence, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ 𝑔(𝐺) |𝑉 (𝐻) |.

For the upper bound, set 𝜂𝑆𝑔 (𝐺 [𝐻]) = (𝜂𝑔 (𝐺) × 𝑉 (𝐻)). Clearly |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 𝑔(𝐺) |𝑉 (𝐻) |.
We claim that 𝜂𝑆𝑔 (𝐺 [𝐻]) is an 𝑆𝑔-set of 𝐺 [𝐻]. This is proved by initially fixing vertical geodesics
between vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]) in the same 𝐺-layers in a similar manner as they could be fixed in 𝐺
between the first coordinate of these vertices, which are members of 𝜂𝑔 (𝐺). Refer Figure 7(a), where
the darkened edges constitute the geodesic connecting the chosen vertices. Subsequently, the geodesics
are fixed between the vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]) that lie in different 𝐺-layers as shown in Figure 7(b). This
approach ensures that the uncovered vertices in each 𝐺-layer are covered and hence, 𝑉 (𝐺 [𝐻]) is
covered. Therefore, 𝑆𝑔(𝐺 [𝐻]) ≤ 𝑔(𝐺) |𝑉 (𝐻) |. □

(a) (b)

Figure 7. The red-coloured vertices denote the vertices that are chosen in 𝜂𝑆𝑔 (𝐶4 [𝐾4]),
blue coloured vertices denote the geodominated vertices, and the uncoloured vertices are the

uncovered vertices.

Corollary 3.9. For an extreme geodesic graph 𝐺, and 𝐻 is isomorphic to 𝐾𝑛, 𝑆𝑔(𝐺 [𝐾𝑛]) =
𝑆𝑔(𝐺) |𝑉 (𝐻) |.

Proof. Since 𝐺 is an extreme geodesic graph, the set of all extreme vertices of 𝐺 forms a unique
𝑔-basis and an 𝑆𝑔-basis of 𝐺. Hence, by Theorem 3.8, the result follows. □
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Theorem 3.10. For 𝑚, 𝑛 ≥ 5, if 𝐺 is isomorphic to one of 𝑃𝑚, 𝐶𝑚, 𝐾𝑚, 𝐾1, 𝑚 and if 𝐻 is isomorphic to

𝑃𝑛, then 𝑆𝑔(𝐺 [𝐻])=
{
𝑔(𝐺) ⌈𝑛2⌉, n is odd;

𝑔(𝐺) ( 𝑛2 + 1), n is even.

Proof. Assume that 𝐺 and 𝐻 are two graphs with 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, and 𝑉 (𝐻) = {𝑡1, 𝑡2, 𝑡3,
. . . , 𝑡𝑛}, respectively. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) be a set which represents an 𝑆𝑔-set of 𝐺 [𝐻], 𝜂𝑔 (𝐺) denote the
𝑔-basis of 𝐺, and 𝐼̃ (𝜂𝑔 (𝐺)) denote the geodesics that are fixed between the vertices in 𝜂𝑔 (𝐺).
Case 1: 𝐺 � 𝑃𝑚, 𝐻 � 𝑃𝑛, 𝑛 is odd.

By Remark 2.3, we know that 𝑔(𝑃𝑛) = 2. Let 𝜂𝑔 (𝐺) = {𝑠1, 𝑠2} be a set which represents a 𝑔-basis
of 𝐺. By Proposition 3.1, (𝑠1, 𝑡1), and (𝑠2, 𝑡1) are antipodal vertices in 𝐺 [𝐻]. Also since there are
only 2 antipodal vertices in 𝐺, the antipodal vertices in 𝐺 [𝐻] lie in 𝑠1𝐻 and 𝑠2𝐻. By Lemma 3.5,
every alternate vertex from 𝑠1𝐻 should be chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]), and since vertices in 𝑠2𝐻 could not
be covered by any vertical or slanting geodesic, every alternate vertex from 𝑠2𝐻 should be chosen in
𝜂𝑆𝑔 (𝐺 [𝐻]). Hence, by Lemma 3.5 and Lemma 3.6, 𝑆𝑔(𝑃𝑚 [𝑃𝑛]) ≥ 2⌈𝑛2⌉.

Now, choose 𝜂𝑆𝑔 (𝐺 [𝐻]) = (𝜂𝑔 (𝐺) × 𝑉 (𝐻)) − {(𝑠1, 𝑡 𝑗 ), (𝑠2, 𝑡 𝑗 ) | 𝑗 = 2, 4, 6, . . . 𝑛 − 1}. Evidently,
|𝜂𝑆𝑔 (𝐺 [𝐻]) | = 2⌈𝑛2⌉. We claim that 𝜂𝑆𝑔 (𝐺 [𝐻]) is an 𝑆𝑔-set of 𝐺 [𝐻]. This could be proved by fixing
one geodesic between each pair of vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]) in a 𝐺-layer in a similar manner as they
could be fixed between the first coordinate of these vertices, which are members of 𝜂𝑔 (𝐺) and clearly
these geodesics are vertical geodesics. The vertices that are left uncovered in that 𝐺-layer are covered
by the isometric paths that are fixed between vertices that lie in different 𝐺-layers. However, those
vertices lying in the even 𝐺-layers, 𝐺 𝑡2𝑖 are possibly left uncovered. Now, the slanting geodesics of the
form (𝑠𝑖, 𝑡 𝑗 ) ∼ (𝑠𝑖+𝑎, 𝑡 𝑗+𝑏) ∼ (𝑠𝑖′ , 𝑡 𝑗 ′ ), for some 𝑎, 𝑏 and 𝑠𝑖, 𝑠𝑖′ ∈ 𝜂𝑔 (𝐺) cover the remaining vertices.
By using this approach 𝑉 (𝑃𝑚 [𝑃𝑛]) is covered and hence 𝑆𝑔(𝑃𝑚 [𝑃𝑛]) ≤ 2⌈𝑛2⌉.

When 𝑛 is even, the proof for the lower bound is analogous to the case when 𝑛 is odd and for finding
the upper bound, choose 𝜂𝑆𝑔 (𝐺 [𝐻]) = (𝜂𝑔 (𝐺) ×𝑉 (𝐻)) − {(𝑠1, 𝑡 𝑗 ), (𝑠2, 𝑡 𝑗 ) | 𝑗 = 2, 4, 6, . . . 𝑛− 2}. This
approach ensures that 𝑉 (𝑃𝑚 [𝑃𝑛]) is covered and 𝑆𝑔(𝑃𝑚 [𝑃𝑛]) ≤ 2( 𝑛2 + 1).
Case 2: 𝐺 � 𝐶𝑚, 𝐻 � 𝑃𝑛, both 𝑚 and 𝑛 are odd.

By Remark 2.4, we know that 𝑔(𝐶𝑚) = 3. Let 𝜂𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3} be a 𝑔-basis of 𝐺. We claim
that 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ 3⌈𝑛2⌉. By Lemma 3.5, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ ⌈𝑛2⌉. Suppose if ⌈𝑛2⌉ ≤ 𝜂𝑆𝑔 (𝐺 [𝐻]) < 3⌈𝑛2⌉.
Without loss of generality, we assume 𝜂𝑆𝑔 (𝐺 [𝐻]) = 2⌈𝑛2⌉. This implies that only 2 vertices say (𝑠1, 𝑡1)
and (𝑠2, 𝑡1) that are antipodal in 𝐺 [𝐻] are chosen from the two 𝐻-layers say 𝑠1𝐻 and 𝑠2𝐻 and atleast
⌈𝑛2⌉ alternative vertices are chosen from 𝑠1𝐻 and 𝑠2𝐻 in 𝜂𝑆𝑔 (𝐺 [𝐻]). The geodesics are fixed among
these vertices in a similar manner as they could be fixed in 𝐺 between the first coordinate of these
vertices, which are members of 𝜂𝑔 (𝐺). The uncovered vertices in the upper half portion of 𝐺 [𝐻]
are covered by the horizontal and vertical isometric paths between the chosen vertices lying in the
different 𝐺 and 𝐻-layers. However, the vertices lying in 𝑠3𝐻 are left uncovered. Hence, by Lemma 3.5
and Lemma 3.6, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ 3⌈𝑛2⌉.

Now, choose 𝜂𝑆𝑔 (𝐺 [𝐻]) = (𝜂𝑔 (𝐺) × 𝑉 (𝐻)) − {(𝑠𝑖, 𝑡 𝑗 ), where (𝑠𝑖, 𝑡 𝑗 ) lies in the alternate (even)
𝐺-layers}. Clearly, |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 3⌈𝑛2⌉. We claim that 𝜂𝑆𝑔 (𝐺 [𝐻]) is an 𝑆𝑔-set of 𝐺 [𝐻]. To establish
this, the geodesics in the 𝐺-layers are initially fixed among the vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]) in a similar
manner as the geodesics could be fixed between the first coordinate of these vertices, which are
members of 𝜂𝑔 (𝐺). The vertices that are left uncovered in that 𝐺-layer are covered by the isometric
paths that are fixed between vertices that lie in different 𝐺-layers. Also, the vertices lying in the even
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𝐺-layers, 𝐺 𝑡2𝑖 would not be covered. These vertices are of two types viz., those lying in the 𝐻-layers,
𝑠𝑖𝐻, 𝑠𝑖 ∈ 𝜂𝑔 (𝐺), and those lying in the 𝐻-layers, 𝑠𝑘𝐻, 𝑠𝑘 ∉ 𝜂𝑔 (𝐺). To cover the vertices lying in
the 𝐻-layers, 𝑠𝑖𝐻, 𝑠𝑖 ∈ 𝜂𝑔 (𝐺), fix the geodesics (𝑠1, 𝑡1) ∼ (𝑠1, 𝑡3), (𝑠1, 𝑡3) ∼ (𝑠1, 𝑡5), . . . , (𝑠1, 𝑡𝑛−2)
∼ (𝑠1, 𝑡𝑛). The vertices lying in the 𝐻-layers, 𝑠𝑘𝐻, 𝑠𝑘 ∉ 𝜂𝑔 (𝐺), are such that the alternate vertices
(𝑠𝑘 , 𝑡1), (𝑠𝑘 , 𝑡3), . . . , (𝑠𝑘 , 𝑡𝑛−2), (𝑠𝑘 , 𝑡𝑛) are already covered by the geodesics that were fixed as they
were fixed in 𝐺 between the first coordinate of these vertices, which are members of 𝜂𝑔 (𝐺). Now, the
slanting geodesics of the form (𝑠𝑖, 𝑡 𝑗 ) ∼ (𝑠𝑖+𝑎, 𝑡 𝑗+𝑏) ∼ (𝑠𝑖′ , 𝑡 𝑗 ′ ), for some 𝑎 and 𝑏 and 𝑠𝑖, 𝑠𝑖′ ∈ 𝜂𝑔 (𝐺)
cover the remaining vertices. By using this approach every vertex of 𝐶𝑚 [𝑃𝑛] is covered and therefore
𝑆𝑔(𝐶𝑚 [𝑃𝑛]) ≤ 3⌈𝑛2⌉.

Similarly, it can be proved that 𝑆𝑔(𝐶𝑚 [𝑃𝑛]) = 2⌈𝑛2⌉, when 𝑚 and 𝑛 are even and odd, respectively.
The proof for the cases when 𝑚 and 𝑛 are odd and even respectively and both 𝑚 and 𝑛 are even are
analogous to the previous case.
Case 3: 𝐺 � 𝐾𝑚, 𝐻 � 𝑃𝑛, 𝑛 is odd.

By Remark 2.3, we know that 𝑔(𝐾𝑚) = 𝑚. By Lemma 3.5, 𝑆𝑔(𝐾𝑚 [𝑃𝑛]) ≥ ⌈𝑛/2⌉, and by
Lemma 3.6, all the 𝑚 vertices from 𝐺 𝑡1 need to be chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]). Hence, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ 𝑚.
The geodesics connecting the 𝑚 vertices (from 𝐺 𝑡1) to the ⌈𝑛/2⌉ vertices (from 𝑠1𝐻) traverse either
diagonally or vertically. Hence, by Proposition 3.2, except for the ⌈𝑛/2⌉ vertices lying in 𝑠1𝐻, the
other vertices positioned in the remaining 𝐻-layers would be left uncovered. Every alternative vertex
from the 𝐻 layers 𝑠2𝐻, 𝑠3𝐻, . . . , 𝑠𝑚𝐻 must be chosen in any 𝑆𝑔-set of 𝐺 [𝐻] in order to cover these
vertices. Therefore, |𝜂𝑆𝑔 (𝐺 [𝐻]) | ≥ 𝑚⌈𝑛/2⌉.

For the upper bound, we choose the set 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡1), (𝑠1, 𝑡3), (𝑠1, 𝑡5), . . . , (𝑠1, 𝑡𝑙), (𝑠2, 𝑡1),
(𝑠2, 𝑡3), (𝑠2, 𝑡5), . . . , (𝑠2, 𝑡𝑙), (𝑠3, 𝑡1), (𝑠3, 𝑡3), (𝑠3, 𝑡5), . . . , (𝑠3, 𝑡𝑙), . . . , (𝑠𝑘 , 𝑡1), (𝑠𝑘 , 𝑡3), (𝑠𝑘 , 𝑡5), . . . ,
(𝑠𝑘 , 𝑡𝑙)}, where 𝑙 ∈ {1, 3, 5, . . . , 𝑛 − 2, 𝑛}, when 𝑛 is odd.

When 𝑛 is even, the lower bound could be obtained similarly. Choose the set 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡1),
(𝑠1, 𝑡3), (𝑠1, 𝑡5), . . . , (𝑠1, 𝑡𝑙), (𝑠2, 𝑡1), (𝑠2, 𝑡3), (𝑠2, 𝑡5), . . . , (𝑠2, 𝑡𝑙), (𝑠3, 𝑡1), (𝑠3, 𝑡3), (𝑠3, 𝑡5), . . . ,
(𝑠3, 𝑡𝑙), . . ., (𝑠𝑘 , 𝑡1), (𝑠𝑘 , 𝑡3), (𝑠𝑘 , 𝑡5), . . . , (𝑠𝑘 , 𝑡𝑙)}, 𝑙 ∈ {1, 3, 5, . . . , 𝑛 − 1, 𝑛}. Figure 8 depicts 𝐾4 [𝑃4]
along with its 𝑆𝑔-basis. 𝑉 (𝐺 [𝐻]) could be covered by the geodesics connecting these vertices and
|𝜂𝑆𝑔 (𝐺 [𝐻]) | = 𝑚(𝑛/2 + 1). Hence, 𝑆𝑔(𝐾𝑚 [𝑃𝑛]) ≤ 𝑚(𝑛/2 + 1). □

Figure 8. Coloured vertices denote the 𝑆𝑔-basis of 𝐾4 [𝑃4].
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Theorem 3.11. For 𝑚, 𝑛 ≥ 5, if 𝐺 is isomorphic to one of 𝑃𝑚, 𝐶𝑚, 𝐾𝑚, 𝐾1, 𝑚 and if 𝐻 is isomorphic to
𝐶𝑛, then 𝑆𝑔(𝐺 [𝐻])= 𝑔(𝐺) ⌈𝑛2⌉.

Proof. Assume that 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, 𝐻 � 𝐶𝑛 and 𝑉 (𝐻) ={𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}. Let
𝜂𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑘 } be a 𝑔-basis of 𝐺. Using Lemma 3.5, 𝑆𝑔(𝐺 [𝐻]) ≥ ⌈𝑛2⌉, and by Lemma
3.6, 𝑆𝑔(𝐺 [𝐻]) ≥ |𝜂𝑔 (𝐺) |. The geodesics connecting the vertices from 𝐺 𝑡1 to the ⌈𝑛/2⌉ vertices in
𝑠1𝐻 traverse either diagonally or vertically. Hence, by Proposition 3.2, except for the ⌈𝑛/2⌉ vertices
lying in 𝑠1𝐻, the remaining vertices from the other 𝐻-layers would be left uncovered. To cover these
vertices, every alternate vertex from 𝑠2𝐻, 𝑠3𝐻, . . . , 𝑠𝑘𝐻 must be chosen in any 𝑆𝑔-set of 𝐺 [𝐻], and
hence, 𝑆𝑔(𝐺 [𝐻]) ≥ 𝑔(𝐺) ⌈𝑛/2⌉. Now, we proceed to derive the upper bound.
Case 1: 𝐺 � 𝑃𝑚, 𝑚 is odd.
Subcase 1.1: 𝑛 is odd.

Set 𝜂𝑆𝑔 (𝐺 [𝐻]) = (𝜂𝑔 (𝐺) × 𝑉 (𝐻)) − {(𝑠𝑖, 𝑡 𝑗 ), where (𝑠𝑖, 𝑡 𝑗 ) lies in the alternate (even) 𝐺-layers}.
Clearly, |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 3⌈𝑛/2⌉. Our claim is that 𝜂𝑆𝑔 (𝐺 [𝐻]) is an 𝑆𝑔-set of 𝐺 [𝐻]. The geodesics in
𝐺-layers are fixed between vertices from 𝜂𝑆𝑔 (𝐺 [𝐻]) in the similar manner as they could be fixed in
𝐺 between the first coordinate of these vertices, which are members of 𝜂𝑔 (𝐺). The possible vertices
that are uncovered are those lying in the even 𝐺-layers, 𝐺 𝑡2𝑖 . These vertices are of 2 types: those
lying in the 𝐻-layers, 𝑠𝑖𝐻, 𝑠𝑖 ∈ 𝜂𝑔 (𝐺), and those lying in the 𝐻-layers, 𝑠𝑘𝐻, 𝑠𝑘 ∉ 𝜂𝑔 (𝐺). To cover the
vertices lying in the 𝐻-layers, 𝑠𝑖𝐻, 𝑠𝑖 ∈ 𝜂𝑔 (𝐺), fix the geodesics (𝑠1, 𝑡1) ∼ (𝑠1, 𝑡3), (𝑠1, 𝑡3) ∼ (𝑠1, 𝑡5),
. . . , (𝑠1, 𝑡𝑛−2) ∼ (𝑠1, 𝑡𝑛). The vertices lying in the 𝐻-layers of the form 𝑠𝑘𝐻, 𝑠𝑘 ∉ 𝜂𝑔 (𝐺), are such
that the alternate vertices (𝑠𝑘 , 𝑡1), (𝑠𝑘 , 𝑡3), . . . , (𝑠𝑘 , 𝑡𝑛−2), (𝑠𝑘 , 𝑡𝑛) are already covered by geodesics that
were fixed as it could be done in 𝐺 between the first coordinate of these vertices, which are members
of 𝜂𝑔 (𝐺). Now, the geodesics of the form (𝑠𝑖, 𝑡 𝑗 ) ∼ (𝑠𝑖+𝑝, 𝑡 𝑗+𝑞) ∼ (𝑠𝑖′ , 𝑡 𝑗 ′ ), for some 𝑝 and 𝑞 cover the
remaining vertices in 𝑠𝑘𝐻. By this approach, 𝑉 (𝐺 [𝐻]) is covered and therefore 𝑆𝑔(𝐺 [𝐻]) ≤ 3⌈ 𝑛2⌉.

The proof is analogous for the remaining cases and hence it is omitted. □

Lemma 3.12. Let 𝐺 � (𝐾𝑛 − 𝑒), 𝑛 ≥ 4 and 𝐻 � 𝐾2. If 𝑠 is a simplicial vertex in 𝐺, then the vertices
of the form (𝑠, 𝑡) in 𝐺 [𝐻] where 𝑡 ∈ 𝑉 (𝐻) are simplicial vertices in 𝐺 [𝐻].

Proof. Let 𝑉 (𝐾𝑛 − 𝑒) = {𝑢, 𝑣, 𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛−2}, where 𝑒 = 𝑢𝑣, and let 𝑉 (𝐾2) = {𝑡1, 𝑡2}. 𝑉 ((𝐾𝑛 −
𝑒) [𝐾2]) = {(𝑢, 𝑡1), (𝑢, 𝑡2), (𝑣, 𝑡1), (𝑣, 𝑡2), (𝑠1, 𝑡1), (𝑠1, 𝑡2), (𝑠2, 𝑡1), (𝑠2, 𝑡2), . . . , (𝑠𝑛−2, 𝑡1), (𝑠𝑛−2, 𝑡2)}. It
could be verified that, 𝑢 and 𝑣 are simplicial vertices in 𝐾𝑛 − 𝑒. Since, for all 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑁 (𝑠𝑖, 𝑡1)
and 𝑁 (𝑠𝑖, 𝑡2) are equal, (𝑠𝑖, 𝑡1) and (𝑠𝑖, 𝑡2) are called as twins. By definition of lexicographic product of
graphs, every vertex in 𝐺 𝑡1 except the vertices (𝑢, 𝑡1) and (𝑣, 𝑡1) are adjacent with each other and also
with their twins in 𝐺 𝑡2 . Similarly every vertex except the vertices (𝑢, 𝑡2) and (𝑣, 𝑡2) in 𝐺 𝑡2 are adjacent
with each other and with their twins in 𝐺 𝑡1 . Hence ⟨𝑁 (𝑢, 𝑡1)⟩, ⟨𝑁 (𝑢, 𝑡2)⟩, ⟨𝑁 (𝑣, 𝑡1)⟩ and ⟨𝑁 (𝑣, 𝑡2)⟩ are
cliques that are isomorphic to 𝐾2𝑛−3, which implies that the vertices (𝑢, 𝑡1), (𝑢, 𝑡2), (𝑣, 𝑡1) and (𝑣, 𝑡2)
are simplicial in 𝐺 [𝐻]. □

Theorem 3.13. If 𝐺 � (𝐾𝑛 − 𝑒), 𝑛 ≥ 4, and 𝐻 � 𝐾2, then 𝑆𝑔(𝐺 [𝐻]) = 2𝑛 − 4.

Proof. Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐺), and 𝑉 (𝐺) = {𝑢, 𝑣, 𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛−2}. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) = {𝑢𝐻, 𝑣𝐻,
𝑠3𝐻, 𝑠4𝐻, . . . , 𝑠𝑛−2𝐻} be an 𝑆𝑔-set of 𝐺 [𝐻]. The geodesics that are fixed between these vertices cover
the vertices in 𝐺 [𝐻]. Evidently, |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 4 + 2(𝑛 − 4) = 2𝑛 − 4. Hence, 𝑆𝑔(𝐺 [𝐻]) ≤ 2𝑛 − 4.

As 𝑢 and 𝑣 are simplicial vertices in 𝐺, by Lemma 3.12, 𝑢𝐻 and 𝑣𝐻 are simplicial vertices in
𝐺 [𝐻], and hence they should be included in 𝜂𝑆𝑔 (𝐺 [𝐻]). 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑢, 1), (𝑢, 2), (𝑣, 1), (𝑣, 2)}.
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The diameter of 𝐺 is 2, and hence, by Proposition 3.1, the diameter of 𝐺 [𝐻] is two. Therefore, the
geodesics connecting the vertices in 𝜂𝑆𝑔 (𝐺 [𝐻]) could cover only four other vertices from 2 𝐻-layers
say, 𝑠1𝐻 and 𝑠2𝐻. It could be seen that, 𝐺 [𝐻] − {𝑢𝐻, 𝑣𝐻, 𝑠1𝐻, 𝑠2𝐻} � 𝐾2(𝑛−4) , and hence along with
the previously chosen vertices, every vertex from 𝐺 [𝐻] − {𝑢𝐻, 𝑣𝐻, 𝑠1𝐻, 𝑠2𝐻} should be chosen in
𝜂𝑆𝑔 (𝐺 [𝐻]). Figure 9(a) depicts (𝐾5 − 𝑒) [𝐾2] along with its 𝑆𝑔-basis. Evidently, |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 4 +
2(𝑛 − 4) = 2𝑛 − 4. Therefore, 𝑆𝑔(𝐺 [𝐻]) ≥ 2𝑛 − 4. □

(a) (b)

Figure 9. Coloured vertices denote: (a) the 𝑆𝑔-basis of (𝐾5 − 𝑒) [𝐾2]; (b) the 𝑆𝑔-basis of
𝐾2 [𝐾5 − 𝑒] .

Theorem 3.14. If 𝐺 is an arbitrary tree with 𝑉 (𝐺) ≥ 3, and 𝐻 is a graph with 𝑔(𝐻) = 𝑑𝑖𝑎𝑚(𝐻) = 2,
then 𝑆𝑔(𝐺 [𝐻]) = 𝑆𝑔(𝐺)𝑆𝑔(𝐻).

Proof. Assume that 𝐺 is a tree with 𝑙 leaves. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) be an 𝑆𝑔-basis of 𝐺 [𝐻]. We know
that the set of pendant vertices of 𝐺 forms an 𝑆𝑔-basis of 𝐺. Let 𝜂𝑆𝑔 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑙} be
an 𝑆𝑔-basis of 𝐺 and 𝜂𝑆𝑔 (𝐻) = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑘 } be an 𝑆𝑔-basis of 𝐻 for which 𝑔(𝐻) = 𝑑𝑖𝑎𝑚(𝐻)
= 2. Set 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡1), (𝑠1, 𝑡2), (𝑠1, 𝑡3), . . . , (𝑠1, 𝑡𝑘 ), (𝑠2, 𝑡1), (𝑠2, 𝑡2), (𝑠2, 𝑡3), . . . , (𝑠2, 𝑡𝑘 ),
. . . , (𝑠𝑙 , 𝑡1), (𝑠𝑙 , 𝑡2), (𝑠𝑙 , 𝑡3), . . . , (𝑠𝑙 , 𝑡𝑘 )}. i.e., set 𝜂𝑆𝑔 (𝐺 [𝐻]) = 𝜂𝑆𝑔 (𝐺) × 𝜂𝑆𝑔 (𝐻). To show that
𝜂𝑆𝑔 (𝐺) × 𝜂𝑆𝑔 (𝐻) is an 𝑆𝑔-set of 𝐺 [𝐻], initially the geodesics are fixed in the 𝐻-layers connecting the
vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]) similar to the manner as they were fixed in 𝐼̃ [𝜂𝑆𝑔 (𝐻)]. The uncovered vertices
are those that are located in between the 𝐻-layers, 𝑠𝑖𝐻 and 𝑠 𝑗𝐻, where 1 ≤ 𝑖, 𝑗 ≤ 𝑙. To cover those
vertices, the geodesics are fixed in 𝐺-layers between the vertices in 𝜂𝑆𝑔 (𝐺 [𝐻]) similar to the manner
as it is done in 𝐼̃ [𝜂𝑆𝑔 (𝐺)]. The further uncovered vertices are covered by the geodesics connecting
the vertices that lie in 2 different 𝐺-layers. This procedure ensures that 𝑉 (𝐺 [𝐻]) is covered. Hence,
𝜂𝑆𝑔 (𝐺 [𝐻]) ≤ 𝑆𝑔(𝐺)𝑆𝑔(𝐻).

To derive the lower bound, we prove two claims. First, we claim that, 𝜂𝑆𝑔 (𝐺 [𝐻]) ⋂ 𝑠𝑧𝐻 ≠ 𝜙,
where 𝑠𝑧 ∈ 𝜂𝑆𝑔 (𝐺). Suppose if 𝜂𝑆𝑔 (𝐺 [𝐻]) ⋂ 𝑠𝑧𝐻 = 𝜙, then 𝜂𝑆𝑔 (𝐺 [𝐻]) does not contain vertices
from 𝑠𝑧𝐻, where 𝑠𝑧 ∈ 𝜂𝑆𝑔 (𝐺). By Remark 2.7, we know that if 𝑠1 and 𝑠2 are antipodal vertices in 𝐺,
then (𝑠1, 𝑡 𝑗 ) and (𝑠2, 𝑡 𝑗 ) are antipodal vertices in 𝐺 [𝐻]. But by our assumption, if a pair of vertices
(𝑠𝑥 , 𝑡 𝑗 ) and (𝑠𝑦, 𝑡 𝑗 ) are included in 𝜂𝑆𝑔 (𝐺 [𝐻]), then 𝑠𝑥 and 𝑠𝑦 are non-pendant vertices in 𝐺 for some
𝑥, 𝑦 and hence the geodesics connecting vertices from 𝜂𝑆𝑔 (𝐺 [𝐻]) are not the longest ones in 𝐺 [𝐻].
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This implies that some of the vertices in the 𝐺-layers would not be covered by any of the geodesics
connecting the vertices from 𝜂𝑆𝑔 (𝐺 [𝐻]), a contradiction to 𝜂𝑆𝑔 (𝐺 [𝐻]). Hence, 𝜂𝑆𝑔 (𝐺 [𝐻]) ⋂ 𝑠𝑧𝐻 ≠

𝜙, where 𝑠𝑧 ∈ 𝜂𝑆𝑔 (𝐺).
Our next claim is that 𝜂𝑆𝑔 (𝐺 [𝐻]) ⋂ 𝐺 𝑡𝑧 ≠ 𝜙, where 𝑡𝑧 ∈ 𝜂𝑆𝑔 (𝐻). Suppose if 𝜂𝑆𝑔 (𝐺 [𝐻]) ⋂ 𝐺 𝑡𝑧 =

𝜙, for every 𝑡𝑧 ∈ 𝜂𝑆𝑔 (𝐻). Then, 𝜂𝑆𝑔 (𝐺 [𝐻]) consists of vertices of the form (𝑠𝑝, 𝑡𝑞) where 𝑠𝑝 ∈ 𝜂𝑆𝑔 (𝐺)
and 𝑡𝑞 ∉ 𝜂𝑆𝑔 (𝐻). By Remark 2.6, the distance between any 2 vertices in 𝑠𝑝𝐻 is at most 2. Since
𝑑𝑖𝑎𝑚(𝐻) = 2, by our assumption, the vertices in 𝑠𝑝𝐻 that are not included in 𝜂𝑆𝑔 (𝐺 [𝐻]) could not be
covered by a horizontal geodesic. Further it could be observed that the vertices in 𝑠𝑝𝐻 could not be
internal vertices of any vertical or slanting geodesic as 𝑠𝑝 ∈ 𝜂𝑆𝑔 (𝐺). This implies that the neighbours
of (𝑠𝑝, 𝑡𝑞) in 𝑠𝑝𝐻 could not be covered by any geodesic connecting the vertices of 𝜂𝑆𝑔 (𝐺 [𝐻]), a
contradiction to 𝜂𝑆𝑔 (𝐺 [𝐻]). Hence, 𝜂𝑆𝑔 (𝐺 [𝐻]) ≥ 𝑆𝑔(𝐺)𝑆𝑔(𝐻) and 𝑆𝑔(𝐺 [𝐻]) = 𝑆𝑔(𝐺)𝑆𝑔(𝐻). □

Now, we obtain the results by swapping 𝐺 and 𝐻 in Theorems 3.13 and 3.14. Since the
lexicographic product of graphs is not commutative, these results add importance.

Theorem 3.15. If 𝐺 � 𝐾2 and 𝐻 � 𝐾𝑛 − 𝑒, 𝑛 ≥ 4, then 𝑆𝑔(𝐺 [𝐻]) = 2(𝑛 − 1).

Proof. Let 𝑉 (𝐺) = {𝑠1, 𝑠2}, 𝑉 (𝐻) = {𝑢, 𝑣, 𝑡1, 𝑡2, . . . , 𝑡𝑛−2}, where 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐻). Let 𝜂𝑆𝑔 (𝐺 [𝐻])
denote an 𝑆𝑔-set of 𝐺 [𝐻]. It is evident that 𝐺 [𝐻] − {(𝑠1, 𝑢), (𝑠1, 𝑣), (𝑠2, 𝑢), (𝑠2, 𝑣)} � 𝐾2(𝑛−2) . The
length of the longest geodesic in 𝐺 [𝐻] is 2 and those geodesics in 𝐺 [𝐻] are the ones connecting the
vertices (𝑠1, 𝑢), (𝑠1, 𝑣) and (𝑠2, 𝑢), (𝑠2, 𝑣). Two vertices from 𝐾2(𝑛−2) are covered by these geodesics.
Hence, the aforementioned four vertices should be included in 𝜂𝑆𝑔 (𝐺 [𝐻]) along with the 2(𝑛 − 2) − 2
vertices from 𝐺 [𝐻] − {(𝑠1, 𝑢), (𝑠1, 𝑣), (𝑠2, 𝑢), (𝑠2, 𝑣)}. Figure 9(b) depicts 𝐾2 [𝐾5 − 𝑒] along with its
𝑆𝑔-basis. |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 4 + 2(𝑛 − 2) − 2 = 2(𝑛 − 1), and 𝑆𝑔(𝐺 [𝐻]) ≥ 2(𝑛 − 1).

Choose 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑢), (𝑠1, 𝑣), (𝑠2, 𝑢), (𝑠2, 𝑣)}
⋃
{(𝑠1, 𝑡𝑖) : 2 ≤ 𝑖 ≤ 𝑛 − 2}

⋃
{(𝑠2, 𝑡 𝑗 ) : 2 ≤ 𝑗

≤ 𝑛 − 2}. Clearly, |𝜂𝑆𝑔 (𝐺 [𝐻]) | = 2(𝑛 − 1), and when geodesics are fixed between each pair of vertices
in 𝜂𝑆𝑔 (𝐺 [𝐻]), 𝑉 (𝐺 [𝐻]) is covered. Hence, 𝑆𝑔(𝐺 [𝐻]) ≤ 2(𝑛 − 1). □

The term 2-geodesic used in Theorem 3.16 refers to a geodesic of length 2.

Theorem 3.16. If 𝐺 is a diameter-2 graph with 𝑔(𝐺) = 2, 𝑉 (𝐺) ≥ 4, and 𝐻 is any arbitrary tree
with 𝑉 (𝐻) ≥ 8, then 𝑆𝑔(𝐺 [𝐻]) = 2( |𝐿 | + ⌈𝐴/2⌉), where 𝐿 denotes the set of pendant vertices of 𝐻, 𝐴
denotes the set of consecutive non-pendant vertices of 𝐻 that are left uncovered after fixing 2-geodesics
between every pair of vertices in 𝐿, where at least one vertex in 𝐴 is the neighbour of a pendant vertex,
|𝐿 | ≥ 3 and |𝐴| > 3.

Proof. Let 𝐿 denote the set of all pendant vertices of 𝐻 and 𝐴 denote the set of consecutive non-
pendant vertices of 𝐻 that are left uncovered after fixing 2-geodesics between every pair of vertices
in 𝐿. Let 𝜂𝑆𝑔 (𝐺 [𝐻]) denote an 𝑆𝑔-set of 𝐺 [𝐻]. Since 𝐺 is a diameter-2 graph, by Remark 2.7, the
distance between any two antipodal vertices in 𝐺 [𝐻] is 2. Hence, throughout the proof, we consider
that the vertices to be chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]) are from the 𝐻-layers 𝑠1𝐻 and 𝑠2𝐻 where 𝑠1 and 𝑠2 are
antipodal in 𝐺. We first claim that the set of vertices in 𝐺 [𝐻] of the form (𝑠1, 𝑡 𝑗 ) and (𝑠2, 𝑡 𝑗 ), where
𝑡 𝑗 is a pendant vertex in 𝐻 should be included in 𝜂𝑆𝑔 (𝐺 [𝐻]). Suppose if the vertices of the above
form are not included in 𝜂𝑆𝑔 (𝐺 [𝐻]). Then, the vertices (𝑠𝑖, 𝑡 𝑗 ), where 𝑡 𝑗 is a non-pendant vertex in 𝐻
should be included in 𝜂𝑆𝑔 (𝐺 [𝐻]) from 𝑠1𝐻 and 𝑠2𝐻. We know that in a tree, a pendant vertex could
not be an internal vertex of a geodesic connecting any 2 non-pendant vertices of the tree. Also, each
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vertex in 𝑠1𝐻 and 𝑠2𝐻 either belongs to 𝜂𝑆𝑔 (𝐺 [𝐻]) or is an internal vertex of a geodesic connecting
any 2 vertices in 𝑠1𝐻 and 𝑠2𝐻, respectively, i.e., Vertices in 𝑠1𝐻 and 𝑠2𝐻 could not be internal vertices
of a geodesic connecting 2 vertices from 𝑠1𝐻 and 𝑠2𝐻, respectively. Hence, if the vertices of the form
(𝑠1, 𝑡 𝑗 ) and (𝑠2, 𝑡 𝑗 ), where 𝑡 𝑗 is a pendant vertex in 𝐻 is not included in 𝜂𝑆𝑔 (𝐺 [𝐻]), then those vertices
could not be covered by any geodesic connecting the vertices of 𝑠1𝐻 and 𝑠2𝐻. Next, we claim that along
with the 2|𝐿 | vertices, at least 2⌈𝐴/2⌉ vertices should be included in 𝜂𝑆𝑔 (𝐺 [𝐻]). Since the distance
between any 2 vertices in 𝑠1𝐻 is at most 2, the set of vertices {(𝑠1, 𝑡 𝑗 ): 𝑡 𝑗 is not an internal vertex of a
2-geodesic connecting vertices in 𝐿} could not be covered by any geodesic connecting the vertices of
𝑠1𝐻 and, similarly, the set of vertices {(𝑠2, 𝑡 𝑗 ): 𝑡 𝑗 is not an internal vertex of a 2-geodesic connecting
vertices in 𝐿} could not be covered by any geodesic connecting the vertices of 𝑠2𝐻 in 𝐺 [𝐻]. Hence,
the vertices (𝑠1, 𝑡𝑢), (𝑠2, 𝑡𝑢), where 𝑡𝑢 is an alternate non-pendant vertex in 𝐻, that is left uncovered by
the 2-geodesics connecting vertices in 𝐿, should be chosen from 𝑠1𝐻 and 𝑠2𝐻. Therefore, 𝑆𝑔(𝐺 [𝐻])
≥ 2( |𝐿 | + ⌈𝐴/2⌉).

(a)

(b)

(c)

(d)

Figure 10. Illustration for choosing the vertices in 𝐻 as mentioned in Theorem 3.16.

We now proceed to derive the upper bound. For convenience, we consider 𝐻 and choose the suitable
vertices in 𝐻, and then the corresponding vertices in 𝐺 [𝐻] are chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]). Initially, choose
the pendant vertices of 𝐻. See Figure 10(a). Now, set 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡𝑢), (𝑠2, 𝑡𝑢) | 𝑡𝑢 ∈ 𝐿}. Fix
2-geodesics between each pair of vertices of 𝐿. In Figure 10(b), the vertices covered by the 2-geodesics
connecting the pendant vertices are shown in blue colour. If the distance between a pair of vertices in 𝐿
is greater than 2, then we consider the non-pendant vertices between that pair of vertices as uncovered
and those vertices are collected in the set 𝐴. In Figure 10(c), the vertices 𝑡2, 𝑡3, 𝑡4 and 𝑡5 are collected
in 𝐴. Now, set 𝜂𝑆𝑔 (𝐺 [𝐻]) = {(𝑠1, 𝑡𝑢), (𝑠2, 𝑡𝑢) | 𝑡𝑢 ∈ 𝐿}

⋃
{(𝑠1, 𝑡𝑥), (𝑠1, 𝑡𝑦), (𝑠2, 𝑡𝑥), (𝑠2, 𝑡𝑦) | 𝑡𝑥 , 𝑡𝑦 ∈ 𝐴

and 𝑑𝐻 (𝑡𝑥 , 𝑡𝑦) = 2 in 𝐻}. Among the vertices of 𝐴, vertices, such as 𝑡𝑥 and 𝑡𝑦 where 𝑑𝐻 (𝑡𝑥 , 𝑡𝑦) = 2, are
considered and their corresponding vertices in 𝐺 [𝐻] are chosen in 𝜂𝑆𝑔 (𝐺 [𝐻]). In Figure 10(d), the
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finally chosen vertices are coloured in red and the covered vertices are the blue-coloured ones. When
the horizontal geodesics are fixed between the vertices chosen in 𝑠1𝐻 and 𝑠2𝐻 all the vertices in 𝑠1𝐻

and 𝑠2𝐻, respectively, are geodominated and the vertical and slanting geodesics that are fixed between
the vertices of 𝑠1𝐻 and 𝑠2𝐻 geodominate all of the vertices in the remaining 𝐻-layers. In this way,
every vertex of 𝐺 [𝐻] is covered. Hence, 𝑆𝑔(𝐺 [𝐻]) ≤ 2( |𝐿 | + ⌈𝐴/2⌉).

Figure 11 depicts the lexicographic product of a graph 𝐺, whose diameter and geodetic number are
both equal to 2 with an arbitrary tree along with its 𝑆𝑔-basis.

□

Figure 11. Coloured vertices denote the strong geodetic basis of 𝐺 [𝐻], where 𝐺 � 𝐾4 − 𝑒
and 𝐻 is an arbitrary tree

4. The strong edge geodetic number of certain lexicographic products

The strong edge geodetic number of the lexicographic product of certain general graphs that include
𝐾𝑚 [𝑃𝑛], 𝑃𝑚 [𝐾𝑛] and 𝑃𝑚 [𝑃𝑛] are determined in this section.

As 𝑆𝑔𝑒 (𝐺) ≥ 𝑆𝑔(𝐺) for a graph 𝐺, the following result is obtained directly from Theorem 3.3.

Theorem 4.1. 𝑆𝑔𝑒 (𝐺 [𝐻]) ≥ 4.

Theorem 4.2. For graphs 𝐺 and 𝐻 of orders 𝑚 ≥ 5 and 𝑛 ≥ 5, respectively, 𝑆𝑔𝑒 (𝐺 [𝐻])= 𝑚𝑛 if either

• 𝐺 is isomorphic to 𝐾𝑚 and 𝐻 is isomorphic to 𝑃𝑛, or
• 𝐺 is isomorphic to 𝑃𝑚 and 𝐻 is isomorphic to 𝐾𝑛.

Proof. Let𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, 𝑉 (𝐻) = {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}, and 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) denote an 𝑆𝑔𝑒-set
of 𝐺 [𝐻].
Case 1: 𝐺 � 𝐾𝑚, 𝐻 � 𝑃𝑛. Every vertical edge 𝑒 = ((𝑠1, 𝑡1), (𝑠2, 𝑡1)) in 𝐺 [𝐻] is covered only by a
geodesic connecting its end vertices, i.e., both (𝑠1, 𝑡1) and (𝑠2, 𝑡1) have to be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]).
This implies that all the 𝑚𝑛 vertices have to be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]). Also, if a vertex say (𝑠 𝑗 , 𝑡 𝑗 ) is
not included in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]), then the edges incident with that vertex would be left uncovered. Hence,
𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) is an 𝑆𝑔𝑒-set of minimum cardinality and 𝑆𝑔𝑒 (𝐺 [𝐻]) = 𝑚𝑛.
Case 2: 𝐺 � 𝑃𝑚 and 𝐻 � 𝐾𝑛. The horizontal edge 𝑒 = ((𝑠1, 𝑡1), (𝑠1, 𝑡2)) in 𝐺 [𝐻] is covered by a
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geodesic connecting its end vertices, i.e., both (𝑠1, 𝑡1) and (𝑠1, 𝑡2) have to be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]),
and hence, all the 𝑚𝑛 vertices have to be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]). Suppose a vertex say (𝑠 𝑗 , 𝑡 𝑗 ) is
not included in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) then the edges incident with that vertex remains uncovered. Hence,
𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) is an 𝑆𝑔𝑒-set of minimum cardinality and 𝑆𝑔𝑒 (𝐺 [𝐻]) = 𝑚𝑛.

□

(a) (b)

(c) (d)

Figure 12. Coloured vertices denote the elements of 𝜂𝑆𝑔𝑒 (𝑃5 [𝑃5]) and the darkened and
dotted lines denote the various geodesics that are fixed between the vertices in 𝜂𝑆𝑔𝑒 (𝑃5 [𝑃5]).

Theorem 4.3. Let 𝐺 and 𝐻 be isomorphic to the paths of orders 𝑚 ≥ 5 and 𝑛 ≥ 5, respectively.

𝑆𝑔𝑒 (𝐺 [𝐻]) =
{

2𝑛 + (𝑚 − 2) ⌈𝑛2⌉, if n is odd;

2𝑛 + (𝑚 − 2) ( 𝑛2 + 1), if n is even.

Proof. Assume that 𝑉 (𝐺) = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑚}, 𝑉 (𝐻) ={𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛}, and 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) is an
𝑆𝑔𝑒-set of 𝐺 [𝐻]. Evidently, there are 𝑚 𝐻-layers and 𝑛 𝐺-layers in 𝑃𝑚 [𝑃𝑛]. We begin by proving
the lower bound. The vertices lying in the first and the last 𝐻-layers, i.e., 𝑠1𝐻 and 𝑠𝑚𝐻 are peripheral
vertices and the edges that are incident with the vertices in these 2 layers are unique edges. These
edges lie in the beginning and end of the geodesics. Hence, to cover those edges, all of the vertices
lying in 𝑠1𝐻 and 𝑠𝑚𝐻 need to be chosen in any 𝑆𝑔𝑒-set of 𝐺. Hence, 𝑆𝑔𝑒 (𝑃𝑚 [𝑃𝑛]) ≥ 2𝑛.
Case 1: 𝑛 is odd.
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We consider the remaining 𝑚 − 2 𝐻-layers, since vertices lying in 𝑠1𝐻 and 𝑠𝑚𝐻 are already selected
in the 𝑆𝑔𝑒-set. Every horizontal edge in 𝐺 [𝐻] is a unique edge, and hence, every alternate vertex in all
the 𝑚 − 2 𝐻-layers must be chosen to cover the horizontal edges. The vertical and slanting edges are
covered by the slanting geodesics that connects the vertices (𝑠𝑖, 𝑡 𝑗 ), (𝑠𝑖+𝑞, 𝑡 𝑗+𝑟), where 1 ≤ 𝑖, 𝑖 + 𝑞 ≤ 𝑚,
and 1 ≤ 𝑗 , 𝑗 + 𝑟 ≤ 𝑛. Since there are ⌈𝑛/2⌉ alternate 𝐺-layers starting from 𝐺 𝑡1 , and 𝑚 − 2 vertices
in each 𝐺-layer, 𝑆𝑔𝑒 (𝑃𝑚 [𝑃𝑛]) ≥ 2𝑛 + (𝑚 − 2) ⌈𝑛/2⌉. The different geodesics covering the edges of
𝑃5 [𝑃5] are shown in Figures 12 and 13.

(a) (b)

(c) (d)

Figure 13. Coloured vertices denote the elements of 𝜂𝑆𝑔𝑒 (𝑃5 [𝑃5]) and the darkened lines
denote the various geodesics that are fixed between the vertices in 𝜂𝑆𝑔𝑒 (𝑃5 [𝑃5]).

Case 2: 𝑛 is even.
We consider the 𝑚 − 2 𝐻-layers in 𝐺 [𝐻]. As mentioned in Case 1, alternate vertices from all the

𝑚−2 𝐻-layers should be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]). Since 𝑛 is even, there are 𝑛/2 alternate 𝐺-layers. The
last vertex in each 𝐻-layer should be chosen in 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]), as the horizontal edge incident with it is
a unique edge. Hence, 𝑆𝑔𝑒 (𝑃𝑚 [𝑃𝑛]) ≥ 2𝑛 + (𝑚 − 2) ((𝑛/2) + 1).

To derive the upper bound, consider the set 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) = (𝑉 (𝐺) × 𝑉 (𝐻)) − {(𝑠𝑖, 𝑡 𝑗 )}, where

• (𝑠𝑖, 𝑡 𝑗 ) ∈ {(𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−2 , 𝐺 𝑡𝑛)
⋂

𝑠2𝐻, (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−2 , 𝐺 𝑡𝑛) ⋂ 𝑠3𝐻, (𝐺 𝑡2 ,
𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−2 , 𝐺 𝑡𝑛) ⋂ 𝑠4𝐻, . . . , (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−2 , 𝐺 𝑡𝑛) ⋂ 𝑠𝑚−2𝐻, (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 ,
. . . , 𝐺 𝑡𝑛−2 , 𝐺 𝑡𝑛) ⋂ 𝑠𝑚−1𝐻}, when 𝑛 is even.
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• (𝑠𝑖, 𝑡 𝑗 ) ∈ {(𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−3 , 𝐺 𝑡𝑛−1) ⋂ 𝑠2𝐻, (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−3 , 𝐺 𝑡𝑛−1) ⋂ 𝑠3𝐻, (𝐺 𝑡2 ,
𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−3 , 𝐺 𝑡𝑛−1) ⋂ 𝑠4𝐻, . . . , (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 , . . . , 𝐺 𝑡𝑛−3 , 𝐺 𝑡𝑛−1) ⋂ 𝑠𝑚−2𝐻, (𝐺 𝑡2 , 𝐺 𝑡4 , 𝐺 𝑡6 ,
. . . , 𝐺 𝑡𝑛−3 , 𝐺 𝑡𝑛−1) ⋂ 𝑠𝑚−1𝐻}, when 𝑛 is odd.

Clearly, 𝜂𝑆𝑔𝑒 (𝐺 [𝐻]) =
{

2𝑛 + (𝑚 − 2) ⌈𝑛2⌉ 𝑛 is odd,
2𝑛 + (𝑚 − 2) ( 𝑛2 + 1) 𝑛 is even,

and all the edges of 𝐺 [𝐻] are covered by fixing one geodesic between each pair of vertices in

𝜂𝑆𝑔𝑒 (𝐺 [𝐻]). Hence, 𝑆𝑔𝑒 (𝑃𝑚 [𝑃𝑛]) ≤
{

2𝑛 + (𝑚 − 2) ⌈𝑛2⌉ 𝑛 is odd,
2𝑛 + (𝑚 − 2) ( 𝑛2 + 1) 𝑛 is even.

□

5. Conclusions

We have studied the strong geodetic number and its edge counterpart in the lexicographic product of
graphs𝐺 and 𝐻. Lower bound for 𝑆𝑔(𝐺 [𝐻]) has been established and since 𝑆𝑔𝑒 (𝐺 [𝐻]) ≥ 𝑆𝑔(𝐺 [𝐻]),
the lower bound holds for the edge variant as well. An upper bound for 𝑆𝑔(𝐺 [𝐻]) is derived, where 𝐺
is general graph and 𝐻 is neither a complete graph nor a complete bipartite graph. We have determined
𝑆𝑔(𝐺 [𝐻]) for certain graph classes including 𝑃𝑚, 𝐶𝑚, 𝐾𝑚, 𝐾1,𝑚, diameter-2 graphs whose geodetic
number is 2, arbitrary trees, and 𝐾𝑛−𝑒. We have observed that the strong geodetic number is dependent
on the geodetic number of one of the factor graphs involved in the product. Further, 𝑆𝑔𝑒 (𝐾𝑚 [𝑃𝑛]),
𝑆𝑔𝑒 (𝑃𝑚 [𝐾𝑛]) and 𝑆𝑔𝑒 (𝑃𝑚 [𝑃𝑛]) are determined.

Although determining 𝑆𝑔(𝐺 [𝐻]) for general graphs𝐺 and 𝐻 is the final objective, finding an upper
bound for general graphs is itself a quite challenging problem. The strong edge geodetic problem is
yet to be solved for 𝐺 [𝐻] where 𝐺 and 𝐻 are general graphs. Though the parameter is explored in
the Cartesian product 𝐺 □ 𝐻, the strong edge geodetic number of 𝑃𝑚 □ 𝑃𝑛 is still open. Other product
graphs including strong product and direct product of graphs are also unexplored with respect to the
strong geodetic parameters.
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