AIMS Mathematics, 9(8): 20350-20366.
DOI:10.3934/math.2024990
AIMS Mathematics Received: 26 April 2024

Revised: 09 June 2024

Accepted: 17 June 2024
https://www.aimspress.com/journal/Math Published: 24 June 2024

Research article

Practical generalized finite-time synchronization of duplex networks with
quantized and delayed couplings via intermittent control

Ting Yang, Li Cao and Wanli Zhang*

College of Computer and Information Science, Chongqing Normal University, Chongqing 401331,
China

* Correspondence: Email: mathwlzhang@163.com.

Abstract: This paper investigates the practical generalized finite-time synchronization (PGFETS) of
duplex networks with quantized and delayed couplings. Given that continuous transmission of signals
will increase the load and cost of communication, we introduce quantized couplings in the model.
Then, via the theorem of finite-time stability, the PGFETS is proposed based on the fact that PGFETS
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1. Introduction

In the past, most of the research hotspots of complex networks theory focused on single-layer
networks [1-4]. Considering that single-layer networks cannot describe the structure of two or more
interconnected networks, many academics are now focusing on the structural model of multilayer
networks [5—-8], which is one of the most active topics in the field of complex networks research in
recent years. Among them, the duplex networks (DNs) models can precisely depict the information
exchange between two layers and accurately reflect the coupling relationship between layers. For
example, Xu et al. [5] investigated the intralayer and interlayer quasi-synchronization of two-layer
multi-weighted networks. The authors in [6] analyzed the interlayer synchronization for duplex
networks by event-dependent intermittent control. At present, the research on DNs has made important
progress and has been excellently applied in social networks analysis, transportation networks, and so
on. And because the data information is transmitted over a network link, it is required to be quantized
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into a limited number of bits before transmission. This promotes us to study the stability and control
of DNs with quantized couplings.

Many academics have assumed that all nodes between systems have exactly the same dynamics
while studying the dynamical behaviors of complex networks. However, considering the complexity
and changing topological nature of network structure, nodes in the networks usually have different
dynamics. Thus, generalized synchronization has been proposed to study the synchronization of
network systems with the identical or different dynamics, and some theoretical results have been
investigated in [9-12]. Unlike other types of synchronization, generalized synchronization introduces
a vector function between the systems, allowing the systems to exhibit richer dynamics. In particular,
it can also be used to extend the coexistence of different synchronization types. Yang et al. [9]
considered the generalized lag-synchronization of systems with uncertain parameters and unknown
perturbations. Zheng et al. [10] investigated the generalized projective lag synchronization criteria
of neural networks with delay. Nevertheless, most of the studies mentioned above have focused on
the generalized synchronization of single-layer networks, while fewer studies have been conducted
on multilayer networks. To our knowledge, in reality the states of systems usually converge to a
neighborhood of the origin and not to the origin. From above, it can be seen that it is significant to
explore the practical generalized finite-time synchronization (PGFETS) of DNs in this paper.

Obviously, a suitable control scheme is the key to achieve synchronization of the systems, which
affects not only the settling time but also the synchronization performance. The control methods
that are presented currently contain state feedback control [13], adaptive control [14], event-triggered
control [15], intermittent control [16-20], etc., where intermittent control is a typical discontinuous
control strategy. It is the discontinuity in working time that makes intermittent control less expensive
to control and more suitable for practical applications. Furthermore, we introduce a quantizer in the
controller to further conserve communication resources and improve communication efficiency. For
example, the finite-time control issue of a class of hybrid systems under quantized intermittent control
is proposed in [18]. In [19], the authors discussed the finite-time synchronization of stochastic complex
networks via quantized aperiodically intermittent control. However, chattering is inevitable in the
controllers with sign function designed above. In conclusion, this paper designs intermittent control
methods without sign function, which effectively mitigate chattering phenomenon.

Motivated by the points discussed above, this paper explores the PGFETS of DNs with quantized
and delayed couplings via intermittent control, and the following are the main highlights:

(1) To better capture the characteristics of realistic multiplex networks, a class of DNs with
quantized and delayed couplings is considered in this study.

(2) Consider that in reality the error system will not converge to the origin ideally, but rather in an
interval of the origin. Then, the PGFETS is presented in this paper.

(3) The quantized intermittent control strategies without sign function are utilized in this paper,
which save the channel resources and control costs.

The outline of the remaining parts is organized as: Section 2 presents the system model and
preliminary works. In Section 3, the PGFETS issue of DNs is discussed, and sufficient conditions
are obtained through the control schemes. To verify the validity of the results, numerical examples are
shown in Section 4. Finally, Section 5 draws the conclusions.

Notations: In this paper, R,R", R N denote the set of real numbers, the vector space with n-
dimensional, the set of n X m matrices, and the set of natural numbers, respectively. diag(-) represents
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the diagonal matrix. I, is the n-dimensional unit matrix. || - || denotes the 2-norm of a vector or matrix.
The superscript symbol 7 and —1 indicate the transposition and inverse. Amax(-)(0r Ayin(+)) is the largest
(or smallest) eigenvalue of a matrix. ® represents the Kronecker product.

2. Preliminaries

A class of DNs with quantized and delayed couplings under control is constructed below:

! N

3.(0) = =€8,(1) + D’ (B"D,(t = o{(0) + p” X @] F*@,(t = o5 (1)) + V(w, (1) = F.(0) + 1] (1),
=1

N
() = =Cuw,(1) + Dg“(Pw,(r — o7 () + p 21 @) 5w, (1 — o5 (®)) + T((1) — w,(1)) + uP(D),
p=
2.1

where 1,7 € N = {1,2,...,N},%,(t), w,(t) € R" denote the state vectors of the ith nodes in ¥-layer
and w-layer, respectively. € = diag(c, ¢,...,¢,), D € RP". g?@() : R™ — R™ is the activation
function, where ¥(w) denotes ¥-layer or w-layer. F’“@(.) is the quantizer defined below. B’ =
[P, p2, o], where p) € Rk = 1,2,...,m, B9t — (1) = [p!9,(t — o (1)), p20,(t -
V() ..., 000t =TT, Bw,(t—0(1)) = [p{w,(t — (D), Py w,(t = T (D)), . ..., Pow,(t— ()]
g"(B?9,(1 — V(1)) = [67 PVt — oV (®), Y (P39,(t — V(D)) ..., % (PhI,(t — TV (ON], g (B w, (1 -
o9(1) = [aY (P w,(t -0 (1)), a5y (5w, (1= (D)), . . ., 82 (Paw,(t— o ()))]". p”“ denotes the coupling
strength, the outer coupling matrix of each layer represented by A’ = (o)) € RNV with ) >
0 (1 # ) if node 1 is related to node j, otherwise, a/z(“’) =0, and @' = - Zfil, " afz(“’). Y represents

(1) is time-varying delay satisfying

the inner coupling matrix of the nodes within two layers. o
9

Qﬁ%w)a?(”)(t)_ iw;f’f(“’), o"f(‘“)(t)ﬂ(i) 5"19(“’) < l.ﬂ(gle %?a%plingwc)lelay 0'129(‘*’)(0 satisfies 0 < ag(”)(t? < 0'2(“’),
0, (1) £ 0, < 1. Let oy = max{o; ", 0, "} 1, (2) is the controller to be determined. The
initial conditions of DNs (2.1) are 9,(t) = ¢”(t) € C([-0”  ,0],R"), w,(t) = ¢“(t) € C([-0,, 0], R").

A quantizer F?“(0) : R —» ¥ = {+y; : y; = {"yo,7 = 0,%1,+2,...,} U {0} with vy > 0. For
Yo € R, the quantizer F?“)(0) is designed as:

Vs if ﬁ)@ <o< ﬁyﬁ
Fr () = {0, if 0=0,
—F @) (—p), if 0<0,

in which 0 = }fg,o < ¢ < 1. Refer to [21], where there is a Filippov solution A € [-0,d) that
makes 7@ (0) = (1 + A)o. Let F“(z) = (F"“ ), F" ), ....F" @), 1T =
(F ") NF "z, - F YOz for z, € R, x > 0.

It can be said that the networks (2.1) obtain synchronization when the states of nodes in ¥-layer
converges to the identical state s”(¢), while all states in w-layer reach the identical state s“(¢). Hence,

the target systems are modeled as

{éﬂ(t) = —Cs"(t) + D" (P’s"(t — o] (1))) + V(s°(1) — " (1)),

(2.2)
59(1) = —Cs“(1) + D (Ps“(t — o4(1))) + Y(s" (1) — s°(1)),

with the initial conditions s”(t) = &(¢) € C([-c?,0],R"), s“(r) = “(t) € C([-0*, 0], R"), and other
parameters remain the same as in systems (2.1).
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Remark 1. Systems (2.1) consider the quantized couplings and the different connections of network
systems. It is more general than the single-layer networks in [1, 2] and two-layer networks without
quantized couplings such as [5-7].

Below, we provide the assumptions, lemmas, and definitions needed for this article before getting
the theoretical results.

Definition 1. The PGFETS between networks (2.1) and (2.2) with respect to the vector map ¥(-) :
R" — R" is said to be realized, if there exist constants 2 > 0 and 7 > 0 such that

lim |19,(t) - Y(" @)l < W, and [I9,(5) — (" ()| < W, for 1 > T,
=7y

lim [lw, (1) = $(s" ()] < W, and Jlw, (1) = Y(s"O)I| < W, for £ > T,
=7y

where 1 € N, 7 is the settling time.

Remark 2. From Definition 1, it is clear that the finite-time synchronization in [3-5] is a special case
of generalized finite-time synchronization when /(5”@ (1)) = s"“)(¢). However, it is not applicable for
system nodes with different dynamic characteristics in reality. Consequently, the study of PGFETS is
of more practical interest.

Assumption 1. For ¢”“(.) : R* — R”, there are nonnegative constants £” and £* that meet
llg”(@,(1)) = 6" ("I < LONF,(1) = " @I, 16°(w, (1) — §“(s“D)I| < L llw, () = s“(D)]].

Assumption 2. Let 0 < g < 1 and € > 0, then there is a continuous function f : [0, c0) — [0, co) with
f(0) > 0, for any 0 < u < t, that satisfies

FO) - f) < —& f (F(5)'ds.
-

Lemma 1. [22] There is a positive definite matrix Q € R™" such that
2h]Qb, < b QY + 51 Q 'y,

for any by, b, € R".
Lemma 2. [23] Given that v, v,,...,vy 20,0 < < 1,4 > 1, then

N N

N N
Z vf‘ > (Z v,)*!, and Z vfz > Nl_gz(Z V).
=1 =1

=1 =1

Lemma 3. [24] For any N € R, 8> 1, there is
b
0 < IN| < Ntanh(8N) + ,E
where b = 0.2785.
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Lemma 4. [25] For vy, 1,,...,yy € R”, there exists 0 < p < 2, which satisfies

4
0 l17 + 1l 4+ <= + oIl = Al + [all® + - + llywl)2.

Definition 2. [26] Function V(x) : R* — R is called C-regular if V(x) is:
(i) regular in R";

(i) positive definite, i.e., V(x) > 0 for x # 0 and V(0) = 0;

(iii) radially unbounded, i.e., V(x) — +oo as ||x]| = +oo.

Lemma 5. [27] Suppose that there exists a strict increasing time sequence {f;}ien, Which satisfies

fh = 0, klim fy = +oo. Let us take £,t = [to, t2k+1)’£/[ = [tors1, T2k42), 5}( = b1 — b, 3,1 = b2 = b1,

—+400

and V() : R" — R is C-regular, satisfying:
: ~01V(t) — 0, VO(t) + 00, tEEL,
V<19 (1) = 02V¥(1) + 00 ]
osV() + 0. regl,

in which ¢ € [0, +o0), ¢ € (0, 1), 09, 01, 02, and o3 are positive constants. Furthermore, if there exists a
k € N such that

T(k) = (2(k — 1) + Ae) exp(=¢; I}) — Ae < 0,

1
then there exists a constant 7 > 0 satisfying V(7) < (ﬁ)w fort > 7, and

1 1
Tr=ty +—In(—Z=k,—-1)+1),
£ = by, ry n(Ae( ) )

where ¢1 = (1 - SO)QI, ¢2 = (1 - SO)Q26? ¢3 = (1 - XO)Q?)’ ¢4 = (1 - Q)QZa o€ (Oa 1)’ € = z_?’ € = z_:, and

€ > & with Ae = ¢ — 6, E(k— 1) = (VI™2(0) + &) exp ( ZZ;(I)(—¢1(t2q+1 — thy) + @3(t2g42 — rg+1))) With
to=t1 =t =0,k =min{k € N: I'(k) <0}

3. Main results

Based on the Lyapunov stability theorem, the PGFETS criteria of DNs are established by utilizing
intermittent controllers in this part.

Let ¢7(t) = (¢1(0),65(0), ...,s0(t)" = 3,() = (" (1)), s2(1) = (s5(D), 5D, ..., () = w,(t) -
Y(s“(t)) € R", and combine systems (2.1) and (2.2). The error systems are deduced as

HORELAOR U0
= —CI,(t) + D" (P9, (t — o (1)) + p” i @’ F(@D (1 — oY1) + L(w, (1) - 9,(1))
—TI5( = €s"(1) + Dg” (P”s” (1 - crﬁ’(t))])_+ T(s“() = s" (1) + ) (1),
¢ =) - 150
= —Cuw,(1) + D’ (P w,(t — o7(D)) + p* /é @5 (w,(t — 05(1)) + T(.(1) — w, (1))

— 15 (= €s“(t) + Dg“(Ps(t — o(1) + T(s” (1) — (1)) + u(1),

(3.1
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where H’(Z, H$ are the Jacobian matrices of the functions ¥(s”()) and y/(s“(f)), respectively, which are
defined as

[ WED) W) W) ] W) () W1 ()

8t (1) asy(ny T a8l FEA0) T B ()
WD) G ©) W (S (1) W (@) (1) W (s (D)

Hz _ 6511?0) (')s?(t) 651,?0) ’ H:;/) _ 35‘1‘:(0 35‘2:”(1) | 195%(0
WD) (5" (D)) (s (1)) Wn(s“(1) O (s (1)) W (s2(1)

as7(1) ol ol 95y (1) oy T 050

The intermittent controllers are formulated as

(1) = {“90@ ~ RIF (P (1) - (& () ON* — 1) tanh(BF(s7(1)), 1€ £},

—0%(t) - RIF' (7 (1)) — % tanh(BF (s (1)), tefl, 3.2)
() = —0°(f) — RUF(s2(1) — n(F(s(1)))» — n? tanh(BF“(s(1)), 1€ £},
’ —0°(1) — RF(s2(1) — 2 tanh(BF(s“(1))), tefl,

where 7]119(“'), ng(‘“), ?%’19(‘”) , ‘Rg(w) are positive constants, y1 < x2, X1, X2 are positive odd constants, 8

is defined as in Lemma 3, and £,t, £,I are the same as that in Lemma 5. Take @%(f) = —Gy(s”(¢)) +
D" (W(P”s” (1~ ] (1)) + T (W(s°(0)) = (" (1)) ~ T~ Cs" (1) + D" (Ps” (1~ 07 (1)) + T(s°(1) = 5" (1)),
O“(1) = ~CyY(s°(1)) + D (Y(Ps”(t — oy (1)) + T(W(s" (1) = (s°(1) — TT5 (= €s(1) + D (P ( —
oy (1)) + T (" (1) — “(1))).

Remark 3. It is worth mentioning that compared with the intermittent control in [16, 17], the above
controllers (3.2) are without sign function, which effectively weakens the chattering phenomenon
caused by the sign function. In addition, considering the quantization of information effectively reduces
the control cost and alleviates the communication congestion.

Let ' (B7s)(t = o)) = ¢"(B"9,(t — o)1) = ¢’ @B’ (t = o] (1))), F*(B s (t = o7(1) =
0“(Bw,(t =0 (1)) = g (Y(Bs (t =), F (STt =05 (1) = F'(I,(1 =5 (1) = F* W(s(t =5 (D)),
‘5"”(g;"(t —05(1)) = F(w,(t — g5(1)) — F°W(s(t — 05(1)))), then systems (3.1) can be converted into
~Csl(t) + DF"(P’s)(t = o (1)) + p” g]l al & (st = a§()) + V(s (1) — 67(1)
~RIE (7 (1) =] (F’(s) O)© - 75 tanh(BF’ (57 (1)), tetl,

—Cs?(t) + D' (B (1 - oV (1))) + p” ,é ! F (st - D)) + (1) - s7(1)
~RIF"(s] (1) - nj tanh(BF’ (57 (1)), tefl
—C¢ (1) + DI“(PUs(t — (1)) + p* Jé T (et — o5(0))) + LT (1) — s (1))
—RYFU(s (1)) — Y (F(sy )% - 175 tanh(BF“(s°(1))), tetl,
—Ce (1) + D (PUsr(t — o7 (1)) + p é @’ FU (s (1 — o5(0))) + LT (1) — s (1))

—RIF(s(1)) — 1 tanh(BF(7 (1)), tekl

HOE

$r() =

(3.3)
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Theorem 1. Under Assumptions 1 — 2, there exist positive constants oy, 01, 02, 03, &, 0 € (0, 1), %119(“’),
‘Rﬁ(“’) ﬁ(“’) 'ﬁ(“’) (i =1,2),and a k € N, and the following factors are fulfilled:

T(k) = (E(k — 1) + Ae) exp(—¢; T}) — Ae < 0, (3.4)
~ 20in(©) + 1+ p" (1 + ) + 1 = Ain(YT + 1) + Ao (YTL) + 7 exp(0100“)
Z—ﬁ(w) ) 2F1?(w) )
—L A exp(o10 ) - % - 2R7“(1-9) <0, (3.5)
9 o 27.115*(@
(L7 A TP = (1 = 5) + —— <0, (3.6)
27
P"O (0 + ) Anan (@) = 13 (1 = 33 + —— <0, (3.7)
E

— 03 = 24min(€) + 1+ p" (1 4 9) + 1 = Apin (YT + ) + A (L7 L) + 7 exp(o107)
+ 1 exploioy) - 271 - 9) <0, (5-5)
(L") Anax RPN = (1 = () < 0, (3.9)
P" (1 + ) Aax(G") = 11 = 55 < 0, (3.10)
where G") = (AW A @ I, gy = —"Nb“}?””, o = min2 %1 - (9)% 25 -
gy ﬁ—’%-ﬂ“{iﬂ wz w 7 50 (aw
A, 27 (rl exp(o10))” 2,272 (r) exp(o105))” 2,72 " (rl exp(0107] R 792 %0 (1]

exp(glo"z"))_xa;z }. Moreover, ﬁl Sk, o1, G2, B3, G4, €, 6, Ae, Z(k — 1), k, are defined as those in
Lemma 5 and p = 722 ‘+X2 . Then, networks (2.1) and networks (2.2) are able to achieve PGFETS through

the controllers (3.2) and the settling time is 7, = ty, + - 7 Lin (L Bk, — D+ 1).

Proof. Construct the Lyapunov functional as:

V(@) =Vi(@) + Va(0) + Va() + Va(t) + Vs(2) + Vs(0),

N 1 N
Vi) =3 ;@, @)'s/0.Va(0) = 5 ;(gﬂr))%:“(r),
BN f
Vi =3 Yy expleic) | explei(s = )l (5) s (s
l]=vl t 1
Vi) =3 3" A explos?) , Pl = DS9S] ()
=1 =o(
1 S w w t w T w
Vs =3 el | explor(s = ) ) sl s
1 l]=vl t 1
Vo(t) =3 D s exp(@io) | exploi(s = D) () s (s)ds. (3.11)

=1 =03 (1)

When ¢ € :,E,t, differentiating V/(¥) yields

Vi) = Z(g?(r)) SHOE 91V1<r>+—2(g:’(t» ¢/ (1)
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N
=—oVi() + % ;@?(t))%:’(r)
N
£ 3 6PN (~ €l (1) + DT (BT 1~ (1))
1=1

N
+p" ) alF )1~ ) + (s (r) — 67 (1)

J=1
— RIFS1) - 0 (F (1)) - 1l tanh(BF (67 (1)))). (3.12)
It’s obvious to gain
N N
DO (=€) < ~Amin(©) D lIs? DIP. (3.13)
=1 =1
By Assumption 1 and Lemma 1 , it has
N 1 N
D) D3 B - ol (1) < 3 D UISTOIF + (L Ao DD Pl (¢ = L aDIP). (3.14)
= =1

Moreover, it derives from Lemma 1 that
N
PCAD T Z U A1)
=1

N N
<> me +0)(57 () et = (1)
=1 y=1

=p' A+ (") (A" @ L)s" (1 — 73 (1)
1 1
<p’(1+ 3)§(§ﬂ(t))T§ﬂ(t) +p"(1 + a)i(gﬂ(t — ) (AN A" @ 1)s" (1 — 73 (1)

(1 +0) & "(1+9 N
sl - DS i + 20,06 Y sl - i, (3-15)
1=1 =1

2

where ¢(1) = (5] (1), 6, (1), ..., sy ().
Same as above, a simple derivation yields

Z(g O () - 67 (1)) = Z(g?m) Ts(1) Z(g O sl (0

N 1 N
<3 2, (O /0 + (L@ TG D) = 5 D @) (T + 1)l )
=1 =1

l\.)l*—‘ 7

N 1 N
<5 (1= Auin(0T +1) 3 I OIF + 5 (F70) Y s OIF. (3.16)
=1 =1

| =
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It’s not hard to get
N N
= D (SO RIF (@) < —RI1-9) Y Il @)IP. (3.17)
— =1

Employing Lemma 2 and 0 < ’% < 1, it follows that

N N
=SSO G O <—gld-9)e )]y (shen) =
_1 ot l_lxlk:; al X102
=1

By simple calculation via Lemma 3, we get

N N n
= > (6! @)} tanh(BF (@) < = nf D D (Sh(n) tanh(B(1 - D)5 (1)))

=1 k=1
9, NND
= Z] ; Q)
<- VIl an Pyt + 2 (3.19)
? ’ B -8 '

The inequalities (3.13)—(3.19) guarantee that
. 1 &
Vi) < Vi) + 5 Z [01 = 2Amin(©) + 1 + p"(1 + )

1 N
+ 1= Ayin(Y" + 1) = 2R7(1 = D)]lIsT DI + E/lmax(TTT) Z s ()l

L 50 T a2 = 9 9 2 p’(1+9) 9 % 9 9 2
+ 5L A (DT DB PN AGEEAON R >;||gl (t - )|

=1

Nbn? Ko nl & e
- V2 (5 an, O + o2 gy S ) (3.20)
ﬁ(l ) 2 =1
Similar to V;(¢),
1 N
Vo) < = @1Va(0) + 5 3 01 = 2uin(©) + 1+ (1 +)
=1

1
1= Ain(T7 4+ 1) = 2R7(1 = )]s I + Amdm‘r)z]ng, OIP

=1

+5L ) Anax (DT DB ; s (t = oY O)IP + ——5— 2 Anax(G ); llsy*(t = o5 I
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w 2 an;) 2)( X 2)(2
(Zucl(r)n) = )—2 A -9y G an,(t)n) : (3.21)

Next, take the derivative of V3(¢), which reaches that
1 N
CCERTACCEEDY (1 exptia s/ OIF = exp-e1a)1 = FDls! ¢ = L e)IP)

=—oVi() + 5 Z (! exp@raDlis! IF = r{(1 = 3Dlis? (1 = T )IP). (3.22)

Then, by Assumption 2 and Lemma 4, we get

_19 N
—Z((c:’u»%?(r) (67— o)) !t = (1)
—rl(Z f HORHOD e (3.23)
Combining (3.22) and (3.23) yields

. 1 &
Vi) <= Va0 + 5 ) ( explea s 0IF = r(1 = oD’ ¢ = o e)IP)
=1

19 N
- LY UST O Nl - ?(r»n)—rl(z f ) )ds) T (3.24)
=1

o (t)
With the same analysis as above, we obtain

= =

. 1 & 2 2
Vi) <= aaVa + 3 Z] (o»g exp(o10) — %)Hg}’(r)uz — (-l - %)Hg?a - ag(t))nz)
ﬁZf(&ﬁ»(MJ%, (3.25)

2r¢ 2r¢
Vs(t) < - o1 Vs + 5 Z((n exp(oi0) = ~ DS OIF = (1 - 1) - =Lllg? ¢ = 4 )P

—rl(Z f (62(s) s (s)ds) 5, (3.26)

N f (g:"(s»%f’(s)ds)%. (3.27)
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Refer to conditions (3.5)—(3.7), formulas (3.20)—(3.21) and (3.24)—(3.27), we have

6
Vo =) Vil
i=1

1 N
<=oVi)+ 5 ) [01 = 240in(©) + 14 p"(1+0) + 1= A (17 + 1) + A (7T
1=1

2’719 27‘129 o ) 2
+ 1l explorer]) = =L+ exploiod) - =2 = 2R{(1 - )]s/ O]

1
+ E[(-Eﬁ)z/lmax(:DTD)”EBﬁ”z — (1~ Z lls? (z = oY (O)I?

1 270 1 & ;
+ 510"+ DG = (1 = 08) + 2] Z} ls? ¢ = 3 @NIF = V235 Z] 7 ()17

nNbn) s
+ — WA —am Y, (1)
) !
1 N
~0Va® + 5 ) 101 = 20in(©) + 1+ 9701 +0) + 1= Ain(T7 4 1) + A (7T
1=1

) 7~

w w 21"1 w w 21’2 w w 2
+ 17 expl(e10) = —- + 1§ exp(e10%) - == = 2R{(1 = D)llst 0]

+ 2 1(L A D DIBP (1 - ) L0 Zl] Is(t — ()P

2K & 1 & ;
+5 [p“’(l ) Ana(G) = 151 = 09) + =2] ) llst’ (= S OIF = V2055 3 s OIF)?
=1 =1

ann‘z" 2 2 ” a) X]z;);z -
B(1-0) S

—oV3() -7 /2 (ry eXP(910'1)) et V™2 (1)
X1tx2

=01V = 2 ( explororh) RV, ()
X1tx2

— o1 Vs(t) = 72 (Y explora?)) = VT (1)

+

Xl“(z

— o1Vt = 782 5 (1 explora®)) = V™ (1)
X1+tx2
<-01V() — 0.V 22 (1) + 0. (3.28)

With the same analytical procedure as above, for ¢t € £,I, in view of conditions (3.8)—(3.10), it is
granted that

6
V() = Vi
P
<—01V(0) + (01 +03)Vi(D) + (01 + 03)Va(0)
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N

+ % Z [ - Q3 - 2/lmin((£) + 1 +pﬂ(1 + a) + 1 - /lmin(TT + T) + ﬂmax(TTT)
+ ¥ exp(o10)) + ) exploioh) — 2RI (1 - 9)]lls? (¢)II?

1 N
+ 5[(£ﬂ>hmax<ﬂb)|mﬂ||2 ~ (1 -7 Z ls”(z — )P
+ = [pﬁ(l + N Anax(G”) — 15 (1 = 5] Z ls”(t — oS @I

1 il 1 anT]

_ U 9 2 3 2

V2 (5 Z IR + 2555

N
Z = 2in(©) + 1+ p?(1 +0) + 1 = Ain( LT + L) + Aan (Y7T)
=1

NI'—‘

+ 1 exp(o107) + 15 exp(010%) = 2R3 (1 = )]l (1)1

1 N
+ 5[(£“’)2/lmax(DT®)ll‘13“’||2 -1 =a7)] Z s (t = oY (DI

=1

1 N
+ E[p“’(l + ) Amax(G¥) = 15 (1 = 03] Z It = a5 (DI

=1

w 1 N w 244 anng)
- V(s Z s OIP)* + 2

B - 0)
—01V(®) + (01 + 03)V() + 00
=03V (1) + 0o- (3.29)
In view of Lemma 5, condition (3.4), and 1nequahtles (3.28)—(3.29), one has V(¢) < (Q (13 )Xl*iz
then Vl(t) = (Q (1-0) ))(lﬂ/2 and VZ(I) (Q (1-0) )Xlﬂ/2 " ”gl (t)” < \/_(Qz(l 5))X1+X2 ||gl (t)” <
V2(=2 ol 5))X1+X2 1 € N fort > 7. It follows from Definition 1 that there is a settling time 7, at
which the PGFETS of systems (2.1) and (2.2) is ensured. This concludes the proof. O

Remark 4. Note that the two-layer networks have been studied in [6, 7], and they belong to the
problem of finite time synchronization for the error system, i.e., 1i1’71’_1 V(t) = 0, T is a settling time.
=7y

Nevertheless, real systems cannot be strictly synchronized by various external factors, and the system
states may oscillate in a certain region. Hence, the results in this paper are more consistent with real
systems.

Corollary 1. Suppose Assumptions 1-2 hold if the mapping function y(s*“(£)) = Hs"“)(t), where
H is a nonzero constant. Given positive constants oy, 01, 02, 03, & 6 € (0,1), ‘Rﬁ(“’) "Rﬁ(“'), :9(‘”),
'?(‘”)(l = 1,2),and a k € N such that (3.4)—(3.10) hold, the parameters are similar to those in Theorem 1.
Then, DNs (2.1) and (2.2) under controllers (3.2) can achieve finite-time projective synchronization.
Moreover, it is a special case when H = —1, and the finite-time anti-synchronization is reached.
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4. Numerical example

A numerical simulation is cited to corroborate the validity of Theorem 1. Take n = m =
3,N = 5, the time step is 0.001, and consider the systems (2.2) with s?(0) (0.8,-0.5,0.4)7,
5“(0) = (-0.2,-0.3,0.8)". a?(t) = o{(t) = 0.01. One has (7? =0y = 0.01,&11’ =0y = 0. ’(x) =
(tanh(x;), sin(x,), —1.5 tanh(x3))”, while g“(x) = (tanh(x,), sin(x,), —2.5 tanh(x3))” for x = (31, x2, ¥3)7,
thus Assumption 1 is satisfied with £? = 1.5, L% = 2.5. € = diag(1.9,1.5,1), T = diag(1,1, 1),
PB? = diag(1, 1, 1),P* = diag(1,0, 1), and

25 0 2
=16 19 29 |

1.5 -1.5 -0.8

The trajectories of DNs (2.2) are demonstrated in Figure 1. Obviously, they are both chaotic.

$50 S0 50 ) $200)

(a) (b)
Figure 1. Chaotic trajectories of DNs (2.2) with s?(0) = (0.8,-0.5,0.4)" and s°(0) =
(-0.2,-0.3,0.8)".

In this paper, we consider DNs (2.1) with five nodes, the parameters are taken as p” = 5, p* = 6,
o) = 09(t) = 0.02 with o = 0% = 0.02,55 =75 =0,

-0.15 0.1 0 0 0.05 -0.15 0.1 0 0 0.05
0.05 -0.15 0.05 0.05 0 0.05 -0.1 0.05 0 0
A = 0 0.15 -03 0.15 0 ,AY = 0 0.05 -0.1 0.05 0 ,
0 0.05 0.15 -0.25 0.05 0 0 0.05 -0.05 0
0.2 0 0 0.05 -0.25 0.05 0 0 0 -0.05

and others are consistent with systems (2.2). Then, we consider the PGFETS between DNs (2.1)
and (2.2) with y(s"@(1)) = (]2 (1))%, (55 (1)), (3’ (1))*)" . There is a sequence {; e satisfying the
first control width #;1 —#; = 0.15, and the second control width 5, — 2141 = 0.05. The time sequence
is depicted in Figure 2, where the different control intervals are presented alternately. The control
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parameters of DNs (2.1) are chosenas y; = Lyo =3,7) =n¥ =n) =0y =2. Lety, = 1, £ =0.6,6 =
0.65, € = 5, B = 4000, then Assumption 2 is satisfied. In Theorem 1, we select o; = 10, o3 = 16, and
take rf =51, rY =141, rg =1.5,r9 =05, ?11’ =09,7 =1, ?g =0.6,7 =0.3, ‘le =48.6, R =115,
‘Rg = 32, ‘R‘z” = 98. Then, by a simple calculation, one has g, = 0.0042, g, = 0.0548, the left side
of formula (3.5) is less than 0, and the condition (3.5) is satisfied. Similarly, conditions (3.6)—(3.10)
hold. From above, we can get ¢; = 3.3333,¢, = 0.0119, ¢35 = 5.3333, ¢, = 0.0183, then ¢ = 0.0036,
e = 0.0034, that is, € > e is satisfied. In addition, one has I'(48) = —1.4269 x 107® < 0, satisfying
condition (3.4). Then, Figure 3 shows the trajectories of ||g}9(t)|| and |[¢“(?)]| (1 = 1,2,3,4,5). It can be
seen that unlike other results in previous literatures, Figure 3 shows that after a period of time, ||g?(t)||
and ||s(¢)|| will converge to a neighborhood near the origin instead of the origin. This means that the
systems achieve PGFETS by Definition 1. Further, it concludes that DNs (2.1) with controllers (3.2)
can be synchronized into networks (2.2) within 7, = 9.7497. By Lemma 5, it has that V(¢) < 0.1016,
then V(1) < 0.1016 and V,(¢) < 0.1016. As a result, [ls?(1)|| < W = 0.4509, |ls“(®)|| < W = 0.4509 for
t > 7. In other words, the PGFETS of DNs (2.1) and (2.2) is achieved.

12

0.8

0.6

041

0.2

. . .
0.5 1 15 2
t

Figure 2. The time sequence.

6 T T T 6 T T
.~ 0.25 - 01
5 N 0.2 ] 1 5¢ i
~ =~ M~ ]
4 = 0.15 1 4 =
w ~ 0 -
; S P | v
S 3 ~ o1 1 a3 0
= 0.65 0.7 0.75 - 0.45 0.5 0.55

-

<" @)l
o =
sz @1

o 0.2 0.4 06 08 1 o 0.2 0.4 06 0.8 1
t t

(a) (b)
Figure 3. The trajectories of ||s?(¢)|| and lls“@Il 2 = 1,2,3,4,5) under controllers (3.2).

1
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5. Conclusions

To sum up, this brief considers the PGFETS for a class of DNs with quantized and delayed
couplings. Via the finite-time stability theory, the PGFETS is proposed. Based on the Lyapunov
functionals and 2-norm, some synchronization criteria have been established by adopting quantized
intermittent control methods without sign function. Here, those criteria guarantee the DNs can be
synchronized within a neighborhood of the origin in a finite time, which is different from some existing
results. The introduction of quantizer effectively alleviates the communication burden and reduces
control cost. Moreover, the designed controllers minimize the effects of chattering generated by the
sign function. Finally, numerical simulations demonstrate the correctness and reasonableness of the
new results. Note that DNs can be expanded to multiplex networks which can be used to describe
more complex real systems. In the future, our research direction is to extend our proposed criteria to
multiplex networks.
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