
AIMS Mathematics, 9(8): 20304–20325.

DOI: 10.3934/math.2024988

Received: 27 December 2023

Revised: 02 May 2024

Accepted: 23 May 2024

Published: 21 June 2024

https://www.aimspress.com/journal/Math

Research article

Nonce generation techniques in Schnorr multi-signatures: Exploring

EdDSA-inspired approaches

Nawras H. Sabbry and Alla Levina*

Faculty of Computer Technologies and Informatics, ETU “LETI” University, St. Petersburg, Russia

* Correspondence: Email: ablevina@etu.ru.

Abstract: This paper proposes a deterministic nonce generation technique to address the catastrophic

issues associated with nonce reuse in message signing and to enhance the efficiency of Schnorr

multi-signature schemes. Additionally, this research aims to reduce computational complexity and

bandwidth requirements in digital and multi-signature schemes while maintaining robust security

against common attacks. The proposed method was inspired by the EdDSA approach. The

methodology includes a comprehensive mathematical analysis of digital signature algorithms and a

rigorous examination of their vulnerabilities to well-known cryptographic attacks. This analysis

evaluates the effectiveness and robustness of the proposed nonce generation technique within the

frameworks of the Schnorr digital signature and the two-round MuSig schemes. Techniques and tools

employed in this research involve deterministically generating nonces by hashing the private key and

subsequently hashing the result with the message. Furthermore, it is proposed to exclude the public

nonce R from the challenge calculations and to allow signers to directly prove possession of their

secret keys through the aggregated public key, thereby eliminating the need for non-interactive

zero-knowledge (NIZK) proofs. The findings demonstrate significant reductions in computational

complexity and operational requirements, thereby improving bandwidth efficiency and making this

method well-suited for resource-constrained devices. The approach also exhibits strong resistance to

various attacks, including nonce reuse, key cancellation, rogue keys, and virtual machine rewinding.

Keywords: Schnorr multi-signatures; MuSig schemes; EdDSA; nonce generation technique

Mathematics Subject Classification: 11T71, 94A60

20305

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

1. Introduction

Digital signatures serve as a cornerstone of modern cryptographic practices, underpinning

the security and trustworthiness of digital communications, financial transactions, and

authentication processes.

The concept of digital signatures dates back to the 1970s, with the theoretical foundations laid

by public key cryptography. Whitfield Diffie and Martin Hellman first introduced the idea in their

seminal 1976 paper [1], paving the way for the development of various digital signature schemes.

The first practical implementation, the RSA algorithm, was developed in 1977 by Rivest, Shamir,

and Adleman [2]. It utilizes the computational difficulty of factoring large integers as the basis for

security. This was followed by the introduction of the digital signature algorithm (DSA) in the

early 1990s, which relies on the discrete logarithm problem [3]. Both schemes set the stage for

subsequent advancements and adaptations in digital signature technology. The Schnorr signature

scheme, introduced by Claus Schnorr [4], is distinguished by its simplicity and efficiency, particularly

in terms of verification speed and shorter signatures. Later, the Edwards-curve digital signature

algorithm (EdDSA) was developed to provide stronger security assurances and better performance

using twisted Edwards curves [5]. Each of these developments has contributed to the robust framework

within which digital signatures operate today, addressing various aspects of security and efficiency.

The evolution of digital signature schemes has been marked by a continuous quest for enhanced

security, efficiency, and practical applicability. In this context, a nonce (number used once) is a

random or pseudo-random number that must not be repeated with the same private key. However, the

challenge of securely generating nonces (a critical component in the signature process) remains a

pivotal concern that directly impacts the scheme’s security and operational viability. For instance, in

ECDSA (elliptic curve digital signature algorithm) and classic DSA, the uniqueness and secrecy of

the nonce are crucial; if a nonce is revealed, it can lead to straightforward attacks that recover the

private key. However, generating random nonces is fraught with challenges. The main vulnerability

lies in the quality of the randomness. This issue was notably exploited in the PlayStation 3 firmware

hack, where ECDSA nonces were predictably generated due to inadequate randomness, ultimately

leading to the compromise of the private signing key.

In the digital signature schemes, the elliptic curve digital signature algorithm (ECDSA) [6] and

the Edwards-curve digital signature algorithm (EdDSA) [7] have set benchmarks for security and

performance. Particularly, EdDSA's approach to deterministic nonce generation has garnered

attention for its ability to circumvent the pitfalls associated with random nonce generation, notably

the risks of randomness failures and the subsequent exposure to attacks that could compromise the

signer's private key. Therefore, the integration of deterministic nonce generation used in EdDSA's into

Schnorr signatures presents a promising avenue for enhancing the robustness and efficiency of these

protocols. Therefore, integrating deterministic nonce generation, as used in EdDSA, into Schnorr

signatures presents a promising avenue for enhancing the robustness and efficiency of these protocols.

Previous studies have highlighted various approaches to nonce generation, emphasizing the risks

associated with randomness failures. For instance, in their paper “Reusing Nonces in Schnorr

Signatures (and keeping it secure...)” (2018) [8], Beunardeau et al. discuss the problem of nonce reuse

in Schnorr signatures, which can reveal the secret signing key and compromise the security of the

signature scheme. To overcome this issue, the authors propose a variant of the Schnorr signature

scheme that allows for the reuse of nonces across multiple signatures while maintaining security. Their

20306

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

variant uses a prime modulus p such that p-1 has several different factors qi large enough to resist

birthday attacks and mutualizes exponentiation efforts to achieve faster and more resource-efficient

signatures. The authors also compare the performance of their scheme with classical Schnorr

signatures and present several pre-computation techniques to speed up modular exponentiation, which

is often the bottleneck in implementations of cryptographic systems.

It is worth noting that a lack of specific literature addressing the issue of nonce reuse attacks in

EdDSA digital signatures was identified, largely because EdDSA is resistant to such attacks when the

appropriate hashing function is chosen. Nonetheless, it is crucial to acknowledge that the security of

any digital signature scheme, including EdDSA, is not impervious to potential vulnerabilities. For

instance, fault attacks that exploit computational errors during the signature computation process [9],

as well as other types of attacks that are unrelated to nonce reuse, could pose significant risks.

In their paper “Non-interactive Half-Aggregation of EdDSA and Schnorr Signatures” (2021) [10],

Chalkias K., Garillot F., Kondi, Y., and Nikolaenko, V. offer a detailed investigation into

non-interactive aggregation techniques for EdDSA and Schnorr signatures, focusing on optimizing

signature aggregation for improved efficiency in cryptographic applications. The study delves into the

intricacies of compact signature schemes, discussing the advantages and challenges of reducing

signatures. By conducting thorough implementation and benchmarking analyses, the researchers

demonstrate the practicality and performance of the proposed aggregation constructions. The results

highlight the feasibility of the half-aggregation scheme and provide insights into the computational

overhead required to achieve provable security guarantees in signature aggregation. The authors detail

a methodology that not only enhances data compactness but also maintains the integrity and security of

the signatures against various cryptographic attacks, making it highly relevant to investigations into

the efficiency and security of Schnorr multi-signatures.

In another study, “Two-Round Stateless Deterministic Two-Party Schnorr Signatures from

Pseudorandom Correlation Functions” (2023) [11], Kondi, Y., Orlandi, C., & Roy, L. introduced a

novel protocol for two-party threshold Schnorr signatures that not only ensures stateless and

deterministic signing but also addresses the inefficiencies found in previous threshold protocols.

Utilizing pseudorandom correlation functions (PCFs), the study enhances both the security and

efficiency of distributed Schnorr signing. These PCFs enable the distribution of signing nonces in a

distributed, stateless, and deterministic manner, reducing the bandwidth cost per participant and

making the system more suitable for practical applications.

The research provides a comprehensive analysis of various techniques for distributing Schnorr

signatures, assessing key factors such as the number of rounds, bandwidth requirements, underlying

assumptions, and security guarantees. The proposed protocols are designed to achieve both covert and

full active security, offering robust protection against malicious actors under generic cryptographic

assumptions. This advancement showcases significant improvements in the field of distributed signing

protocols, particularly in how Schnorr signatures can be effectively and securely implemented in a

threshold setting.

The research paper titled “MuSig-DN: Schnorr Multi-Signatures with Verifiably Deterministic

Nonces” authored by Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille (2020) [12],

provides significant insights into nonce generation and its implications for digital signature algorithms.

The authors introduce a novel multi-signature scheme called MuSig-DN. This scheme utilizes

deterministic nonces, which are generated in a manner that effectively safeguards against virtual

machine rewinding attacks and nonce reuse attacks.

20307

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

One of the pivotal challenges existing in MuSig-DN is the inherent complexity associated with

deploying non-interactive zero-knowledge (NIZK) proofs to ascertain the deterministic generation of

nonces. These proofs, while integral for securing the protocol against specific attack vectors and

ensuring the determinism of nonce generation, introduce a notable layer of computational and

conceptual complexity. Specifically, the protocol necessitates the construction and verification of

NIZK proofs that each nonce was generated in accordance with the deterministic protocol. This

requirement not only amplifies the computational overhead but also increases the intricacy of

implementation, rendering the protocol less feasible for resource-constrained environments such as

hardware wallets, which are prevalent in cryptocurrency applications.

The paper “MuSig2: Simple Two-Round Schnorr Multi-Signatures” (2023) [13], authored by

Jonas Nick, Tim Ruffing, and Yannick Seurin, introduces a novel approach to multi-signatures by

proposing the MuSig2 scheme, which optimizes the digital signature process. The research conducted

in this paper focuses on enhancing the efficiency and security of multi-signature schemes, particularly

in the context of Schnorr signatures. By leveraging the concept of using multiple nonces in the signing

process, MuSig2 achieves significant improvements in security guarantees and performance metrics.

The key contributions of the paper include:

• Introducing MuSig2 as a two-round variant of the MuSig scheme eliminates the preliminary

commitment phase and enables signers to start the signing process directly with nonces.

• Utilizing a varying number of nonces (1, 2, or 4+) to cater to different security requirements

and cryptographic assumptions, such as the algebraic group model (AGM) and the one-more

discrete logarithm (OMDL) assumption in the random oracle model (ROM).

The results presented in the paper highlight the efficiency gains and security enhancements

achieved through the implementation of MuSig2, making it a valuable contribution to the field of

digital signatures and multi-signatures.

On the other hand, the novelty of this research is threefold: First, it integrates EdDSA-inspired

deterministic nonce generation into Schnorr multi-signatures, effectively combining EdDSA's

robustness with the flexibility and efficiency of Schnorr's signature aggregation. Second, it removes

the public nonce (R) from the challenge (c) calculations to ensure the uniqueness of each signature.

Third, it allows signers to directly verify possession of secret keys using the aggregated public key,

thereby enhancing bandwidth efficiency by eliminating the need for NIZK. This streamlined

approach significantly improves security and reduces computational complexity, particularly for

devices with constrained resources.

The primary motivation for this research is to address security vulnerabilities inherent in

Schnorr multi-signatures, specifically those arising from random nonce generation, such as key

cancellation, rogue keys, and nonce reuse attacks. Moreover, this study aims to enhance the

efficiency and practical applicability of Schnorr signatures in scenarios where computational

resources, memory, and bandwidth are limited.

The research methodology employed mathematical analysis of digital signature algorithms

(ECDSA, EdDSA, Schnorr, and MuSig (multi signature) and well-known attacks (such as nonce

reuse attacks, virtual machine rewinding attacks, key cancellation attacks, and rogue-key attacks) to

understand and assess the effectiveness of the proposed method in addressing various challenges and

ascertaining its efficiency. By analyzing the strengths and weaknesses of these digital signature

schemes and exploring new techniques, this study presents a novel approach that offers a level of

security comparable to that of EdDSA. Consequently, this research contributes to ongoing efforts to

20308

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

enhance the effectiveness and security of digital signatures.

This study met its objectives by addressing critical issues related to random nonce generation,

generating the nonce in a deterministic manner, reducing computational complexity, and decreasing

the amount of transmitted data combined with the NIZK proof to better utilize bandwidth.

The paper is organized as follows: Section 2 delves into the fundamentals of digital signatures,

covering key algorithms such as the elliptic curve digital signature algorithm (ECDSA), the

Edwards-curve digital signature algorithm (EdDSA), and the Schnorr digital signature algorithm.

Section 2.4 discusses signature aggregation. Section 3 describes the proposed contributions of this

research, and Section 4 concludes the findings presented in this study.

2. Digital signature basics

2.1. Elliptic curve digital signature algorithm ECDSA

Understanding the proposed method in this study requires a thorough explanation of the

ECDSA mechanism, as it is a fundamental cornerstone of our approach.

Signature generation and verification algorithms in ECDSA are as follows [6]:

Suppose a sender intends to send a message with a digital signature to a receiver. Initially, they

must agree on the curve parameters (E, G, n) and the hashing function H, where E represents the

elliptic curve equation used, G represents the elliptic curve base point (the generator point), a point on

the curve that generates a subgroup of large prime order n, and n represents the order of G. This means

that nG = O, where O is the identity element.

In addition to the shared parameters, the process of signature generation involves the following

variables: d𝐴, Q𝐴, and m. Here, d𝐴 represents the private key, which is randomly selected from the

interval [1, n-1]); Q𝐴 represents the public key, computed as d𝐴G; and m represents the message to be

signed and sent. Note that the letter 'A' in the variables d𝐴 and Q𝐴 signifies the sender, whom we

assume to be Alice.

For Alice to sign a message (m), she follows these steps [6]:

• Calculate e = H(m);

• Select a nonce integer “k” randomly from the range [1, n-1];

• Calculate the point (x1, y1) = kG;

• Calculate r ≡ x1 (mod n);

• Calculate s = k-1(e + rd𝐴);

• The signature is the pair (r, s). Thus, Alice will send the messages(m), Q𝐴, r and s to Bob.

Note that it is not only required for “k” to be secret, but it is also crucial to select a different “k” for

each signature.

Bob follows these steps to verify Alice’s signature:

• Calculate e=H(m);

• Calculate u1 ≡ es-1 (mod n) and u2 ≡ rs-1 (mod n);

• Calculate the point (x1, y1) = u1G+ u2Q𝐴;

• Alice’s signature is valid just if (x1, y1) ≡ kG.

Proof of the correctness of the algorithm:

(x1, y1) = u1G+ u2Q𝐴, since u1 ≡ es-1 (mod n) and u2 ≡ rs-1 (mod n), then:

(x1, y1) = es-1G+ rs-1Q𝐴 = s-1(eG + rQ𝐴) =
eG+r Q𝐴

𝑠
,

20309

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

since s = k-1(e + rd𝐴), then: (x1, y1) =
eG+r𝑄𝐴

𝐾−1(e+r𝑑𝐴)
 =

k(eG+r𝑄𝐴)

e+r𝑑𝐴
,

since Q𝐴= d𝐴G, then: (x1, y1) =
k(eG+rd𝐴G)

e+rd𝐴
 =

kG(e+rd𝐴)

(e+rd𝐴)
 = kG.

Note that the ECDSA is susceptible to the nonce reuse attack. This means that if Alice uses the

same nonce when signing different messages, an attacker, or the opponent (whom we will refer to as

Oscar), can potentially discover Alice's private key (d𝐴). If Alice reuses the same nonce for different

message signings, Oscar can carry out the following steps to expose Alice's private key (d𝐴):

If Oscar, who was listening to this conversation, can perform a subtraction operation between s1

and s2, the resulting outcome will reveal Alice’s private key (d𝐴) in the following manner:

s1- s2 = k-1(e1+ rd𝐴) – (k-1(e2+ rd𝐴)) = k-1e1+ k-1rd𝐴 - k-1e2- k-1rd𝐴 = k-1e1- k-1e2,

s1- s2 = k-1(e1 - e2) =
(e1− e2)

k
 , k =

e1−e2

s1−s2
 = (e1 - e2) (s1- s2)-1.

By knowing the nonce “k ”, Oscar now knows (s1, s2, e1=H (m1) and e2=H (m2)). By substituting

them into the equations for (s1 (or)s2), Oscar can obtain Alice’s private key (d𝐴) as follows:

s1 = k-1(e1 + rd𝐴), s1 =
(e1+rdA)

k
 , ks1= e1+ rd𝐴 , rd𝐴 = ks1 - e1 , d𝐴 =

ks1−e1

r
,

d𝐴= (ks1 - e1) r-1.

A nonce reuse attack, caused by a random number generator failure, was used to extract the

signing key for the PlayStation 3 gaming console [14]. Additionally, a failure in random number

generation caused users of the Android Bitcoin Wallet to lose their funds in August 2013 [15]. These

incidents emphasize the importance of robust and secure random number generation in cryptographic

systems. Thorough testing, evaluation, and implementation of reliable random number generators are

crucial to preventing such failures and associated risks.

2.2. Edwards-curve digital signature algorithm (EdDSA)

Understanding the proposed method in this study requires a thorough explanation of the EdDSA

mechanism, as it is one of the cornerstone fundamentals of our approach. The signature generation

and verification algorithms in EdDSA are as follows [5]:

Alice signing the message (m2):

(1) Calculate e2=H (m2);

(2) “k” will be the same as assumed.

(3) (x1, y1) = (x2, y2) = kG;

(4) “r” will be the same, r ≡ x1(mod n);

(5) Calculate s2= k-1(e2 + rd𝐴);

(6) (m2) signature is (r, s2).

Alice signs the message (m1):

(1) Calculate e1=H (m1);

(2) Select a nonce “k”;

(3) Calculate (x1, y1) = kG;

(4) Calculate r ≡ x1(mod n);

(5) Calculate s1= k-1(e1 + rd𝐴);

(6) (m1) signature is (r, s1).

20310

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

For Alice to sign a message (m), she follows these steps:

• Select a Private Key (secrete key “S𝑘”) and calculate the public key P𝑘=S𝑘G;

• Calculate h = H (S𝑘);

• Calculate the nonce (r) by concatenating (h) with the message (m) and calculate the hash

value for them, r = H (h || m), where || means concatenating h with m;

• Calculate R = x-coordinate of (rG);

• Calculate s = r + H (R||P𝑘||m)S𝑘;

• The signature is the pair (R, s), so Alice will send the message (m), P𝑘, R and s to Bob.

Bob follows these steps to verify Alice’s signature:

• Calculate s̃ = H (R||P𝑘|| m);

• Calculate V1 = sG, and V2 = R + P𝑘s̃;

• The signature is valid just if V1 = V2.

Proof of the correctness of the algorithm:

V2 = R + P𝑘s̃, R = rG and s̃= H (R||P𝑘||m), then:

V2 = rG + P𝑘H (R ||P𝑘|| m), since P𝑘= S𝑘G, then:

V2 = rG + S𝑘G H (R ||P𝑘|| m) = G (r + S𝑘H (R ||P𝑘|| m)),

since s = r + H (R ||P𝑘|| m)S𝑘, then: V2 = sG = V1.

As observed, EdDSA chooses the nonce deterministically as the hash of a part of the private key

and the message. Thus, once a private key is generated, EdDSA has no further need for a random

number generator to make signatures. In other words, EdDSA is resistant to nonce reuse attacks if an

appropriate hashing function is chosen.

However, it is essential to consider the implications of signing the same message multiple times,

leading to the reuse of the same nonce [7]. Repeating the signing process with the same message

multiple times utilizes the same nonce repeatedly. This occurs because neither the private key nor the

message changes, and hashing them multiple times results in the same hash value.

Nonetheless, this repetition does not compromise the security of the system. The reason lies in the

fact that the generated signatures remain identical. Consequently, if Oscar attempts to compare these

signatures, the result will be zero, indicating that they are indistinguishable.

For a more comprehensive understanding, let us examine the steps that Oscar might follow to

implement a nonce reuse attack:

Since the two signatures are identical, when Oscar subtracts (s1) from (s2), the result would be

zero (s1-s2= 0). Consequently, Oscar does not receive any benefit or information from these

duplicate signatures.

Alice signs the message (m1) again:

(1) “S𝑘” and P𝑘 are the same;

(2) h2=h1= H (S𝑘);

(3) r2=r1= H (h ||m1);

(4) R2=R1= (r1G) = (r2G);

(5) s2=s1= r2+ H (R2||P𝑘||m1)S𝑘.

(6) (m1) signature (R2,s2) = (R1,s1).

Alice signs the message (m1):

(1) Select “S𝑘” and calculate P𝑘=S𝑘G;

(2) Calculate h1= H (S𝑘);

(3) Calculate the nonce r1= H (h||m1);

(4) Calculate R1= x-coordinate of (r1G);

(5) Calculate s1= r1+ H (R||P𝑘||m1)S𝑘.

(6) (m1) signature (R1, s1).

20311

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

2.3. Schnorr digital signature algorithm

Understanding the proposed method in this study requires a thorough explanation of the Schnorr

Digital Signature Algorithm, as it is one of the cornerstone fundamentals of our approach. The

interesting aspect of Schnorr signatures lies in their linearity, which offers several advantageous

properties. Schnorr signatures follow a specific structure (s=r+ck), where (s) represents the signature,

(r) represents the random number, (c) represents the challenge, and (k) represents the secret key. This

construction also exhibits linearity, thereby aligning harmoniously with the linear nature of elliptic

curve mathematics. The linearity exhibited by Schnorr signatures adds to their appeal and suitability

for signature aggregation.

The signature generation and verification algorithms in Schnorr are as follows [16]:

For Alice to sign a message (m), she follows these steps:

• Given a cyclic group G of prime order p with generator g. select a private key (x) such that

0< x < p;

• Calculate the public key (X), such that X = gx;

• Choose a private nonce (r) randomly, such that 0 < r < p;

• Calculate public nonce R = gr;

• Calculate c =H (X, R, m);

• Calculate s≡(r + cx) mod p;

• The signature is the pair (R, s). So, Alice will send the message (m), Public Key (X), R and

s to Bob.

Bob can calculate (c) since he knows Alice’s public key (X), (R), and the message (m). Bob

considers Alice’s signature valid if gs = RX𝑐.

Proof of the correctness of the algorithm:

gs = RX𝑐, since R = gr and X= gx, then:

gs = gr (gx)c = gr+xc = gs, because s = r + xc.

Note that Schnorr is susceptible to the nonce reuse attack. Oscar can carry out the following

steps to expose Alice's private key (x) if she reuses the same nonce for different message signings:

If Oscar performs the subtraction operation between s1 and s2, the resulting outcome will reveal

Alice’s private key (x) in the following manner:

s1- s2 =r + c1x – (r + c2x) = r + c1x – r–c2x = c1x –c2x,

s1- s2 = x (c1–c2),

Alice signs the message (m2):

(1) The Private Key (x) is the same;

(2) The Public Key X = gx is the same;

(3) The nonce (r) is the same as we assumed;

(4) The R = gr is the same;

(5) Calculate c2=H (X, R, m2);

(6) Calculate s2=r +c2x.

Alice signs the message (m1):

(1) Select a Private Key (x);

(2) Calculate the Public Key X= gx;

(3) Choose a nonce (r) randomly;

(4) Calculate R = gr;

(5) Calculate c1=H (X, R, m1);

(6) Calculate s1=r +c1x.

20312

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

x =
s1−s2

c1−𝑐2
 = (s1- s2) (c1 – c2)-1.

By knowing all the parameters (s1, s2, c1=H (X, R, m1) and c2=H (X, R, m2)), Oscar can obtain

Alice’s private key (x).

2.4. Signature aggregation

To comprehend the reason behind the existence of three rounds in multi-signature schemes and

how the proposed methodology in this research can eliminate the second round by demonstrating the

knowledge of private keys, it is necessary to explain the basic principles related to signature

aggregation, its inherent weaknesses, and the potential for exploitation. First of all, it is essential to

familiarize oneself with some fundamental concepts.

The process for creating signatures consistently follows this recipe:

• Generate a secret nonce (r);

• Create a public nonce R, where R = rG;

• Alice sends the message (m), R, and the public key (P=private key(k)G) to Bob.

The actual signature is created by hashing the combination of all the public information above to

create a challenge, c = H(R||P||m). The hashing function is chosen so that (e) has the same range as

private keys.

The actual signature is created by hashing the combination of all the public information mentioned

above to create a challenge, c = H(R||P||m). The hashing function is chosen so that (e) has the same

range as the private keys. Now, the signature is constructed using the private information (s = r + ck).

Bob can calculate (c), since he already knows (m), (R), and (P). However, he doesn’t know the

private key or the nonce.

Given the equation sG = (r+ck) G, this expression is expanded to sG = rG + ckG. It is further

simplified to sG=rG + (kG)c. With R =rG and P= kG denoted, the equation simplifies to sG =R + Pc.

So, Bob needs to calculate (sG) and check if this calculated value matches the right-hand side of

the equation (R + Pc). Bob already has all the necessary information to perform these steps.

After a brief explanation of the approach used to create signatures and how the receiver can verify

their authenticity, let us now discuss signature aggregation:

To gain a simple understanding of this, let's explore the application of the linear property of

Schnorr signatures to create a two-of-two multi-signature. In this scenario, Alice and Bob want to

co-sign a message without completely trusting each other. They need a way to prove ownership of

their individual keys, and the combined signature is valid only if both Alice and Bob contribute to it.

Assuming private keys are denoted k𝑖 and public keys P𝑖. If we ask Alice and Bob to each supply

a nonce, we can try:

P𝑎𝑔𝑔 = P𝑎 + P𝑏, (1)

c = H (R𝑎||R𝑏||P𝑎||P𝑏|| m), (2)

s𝑎𝑔𝑔 = r𝑎+r𝑏+ (k𝑎+k𝑏) c, (3)

s𝑎𝑔𝑔= (r𝑎+ k𝑎c) + (r𝑏+k𝑏c) = s𝑎 + s𝑏. (4)

20313

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

It appears that both Alice and Bob have the ability to contribute their own (R) values. Additionally,

it is possible for anyone to create a two-of-two signature by combining these (R) values with the

corresponding public keys. However, it is crucial to note that this scheme suffers from a security

vulnerability known as the Key Cancellation Attack.

To understand the key cancellation attack, let us reconsider the previous scenario from a different

perspective. This time, Bob has prior knowledge of Alice's public key and public nonce. He waits until

she reveals them, then proceeds to deceive by claiming his public key is Pb
′= P𝑏 - P𝑎 and his public

nonce is Rb
′ = R𝑏 - R𝑎 . It is important to note that Bob does not possess the private keys

corresponding to these bogus values.

Despite this deception, everyone assumes that the aggregated signature expression remains s𝑎𝑔𝑔=

R𝑎+Rb
′ + c(P𝑎+Pb

′) in accordance with the aggregation scheme. However, Bob has the ability to create

this signature by himself.

To illustrate, we will utilize the equation (sG = R + Pc) to explain the vulnerability:

 s𝑎𝑔𝑔G = R𝑎+Rb
′ + c(P𝑎+ Pb

′) = R𝑎+ (R𝑏-R𝑎) + c (P𝑎+P𝑏-P𝑎) = R𝑏 + cP𝑏 = r𝑏G + ck𝑏G,

 s𝑎𝑔𝑔G = G (r𝑏+ ck𝑏),

 s𝑎𝑔𝑔= (r𝑏+ ck𝑏), Therefore, s𝑎𝑔𝑔= s𝑏.

Bob could be compelled to authenticate by signing a message, proving his knowledge of the

private keys. This method works, but it requires an additional round of messaging between parties. To

prevent this attack, the multi-signature method involves three rounds.

Design of the Schnorr multi-signature scheme:

The primary approach for designing a Schnorr multi-signature scheme can be described as follows:

Consider a scenario involving a group of (n) signers who intend to co-sign a given message (m).

Initially, each co-signer randomly calculates and shares a unique value R𝑖= gr𝑖 , where (g) is the generator

of the underlying group and r𝑖 is a randomly chosen exponent associated with each co-signer.

Subsequently, each cosigner proceeds to compute two values: R=∏ R𝑖
n
𝑖=1 and c = H (X̃, R, m).

Here, X̃ represents the product of the individual public keys, X𝑖, of all the cosigners, X̃= ∏ X𝑖
n
𝑖=1

(aggregated public key).

Moving on, the partial signature for each cosigner is computed as 𝑠𝑖 = 𝑟𝑖 + c𝑥𝑖 , where 𝑥𝑖

represents the secret key associated with cosigner i. Each cosigner independently calculates their

respective partial signature.

Finally, all partial signatures are merged into a single signature using the relation s ≡
∑ 𝑠𝑖(mod p𝑛

𝑖=1), where (p) is the group's prime modulus.

The verification process of a signature, denoted as (R, s), on a message (m), with respect to a set of

public keys {X1, ..., X𝑛}, can be expressed equivalently as the equation gs = RX̃.

It should be noted that this verification equation corresponds precisely to the verification equation

utilized in Schnorr signatures with respect to the public key represented by X̃. This particular property

is commonly referred to as key aggregation. However, it is essential to acknowledge that these

protocols are susceptible to a rogue-key attack [17]. This attack occurs when a malicious signer

deliberately sets their public key to X1= g𝑥1 (∏ X𝑖
n
𝑖=2)-1, thereby enabling the signer to generate

signatures for the individual public keys {X1, ..., X𝑛} independently.

MuSig signature scheme:

20314

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

MuSig is a Schnorr-based multi-signature scheme that allows a group of signers to produce a short,

joint signature on a common message. MuSig is provably secure in the plain public-key model.

The signature generation and verification algorithms in MuSig are as follows [18]:

MuSig is parameterized by group parameters (G, p, g) and three hash functions (Hcom, Hagg and

H𝑠𝑖𝑔). These three hash functions can be either identical or distinct, with the decision depending on the

desired security level. Utilizing distinct hash functions enhances the level of security.

- Round 1:

A group of (n) signers wants to co-sign a message (m). Let X1 and 𝑥1 be the public and private

keys of a specific signer, where X1= g𝑥1. Let X2, …, X𝑛 be the public keys of the other co-signers

and let (L) be the multi-set of all public keys involved in the signing process.

For i∈{1, …, n}, the signer computes a𝑖=Hagg (L, X𝑖) as well as the “aggregated” public key

X̃ = ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 .

- Round 2:

The signer generates a random private nonce r1, computes the public nonce R1= gr1 , and the

commitment t1= Hcom(R1), then sends t1 to all other cosigners.

Upon receiving the commitments t2, …, t𝑛 from other cosigners, the signer sends R1 to all other

cosigners. This ensures that the public nonce is not exposed until all commitments have been received.

Upon receiving R2, …, R𝑛 from other cosigners, the signer verifies that 𝑡𝑖=Hcom(Ri) for all

i∈{2, …, n}.

By sending the commitments first, the signers can ensure that no one can change their public

nonce after seeing the others. This prevents a rogue-key attack, as a malicious signer would need to

know the public nonces of the other signers in advance to construct a rogue public key. If any signer

detects a mismatch, they abort the protocol. This ensures that the signers are using the same set of

public nonces to compute the aggregated signature, which is important for the security and correctness

of MuSig.

- Round 3:

If all commitment and random challenge pairs can be verified with Hagg, the next step involves

computing R= ∏ 𝑅𝑖
𝑛
𝑖=1 , c = H𝑠𝑖𝑔(X̃, R, m) and s1 ≡ (r1+ ca1x1) mod p.

Signature s1 is sent to all other cosigners. Upon receiving s2, …, sn from other cosigners, the

signer can compute s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1 (mod p). The signature is the pair (R, s).

In order to verify the aggregated signature, the message (m), multi-set of public keys (L), (R), and

(s) will be sent to the receiver.

The receiver follows these steps to verify the aggregated signature:

• a𝑖=H𝑎𝑔𝑔 (L, Xi) for i∈{1, …, n};

• X̃= ∏ X𝑖
𝑎𝑖𝑛

𝑖=1 ;

• c = H𝑠𝑖𝑔 (X̃, R, m);

• The signature is accepted if gs = R ∏ X𝑖
𝑐𝑎𝑖𝑛

𝑖=1 = RX̃𝑐.

Proof of the correctness of the algorithm:

gs = R X̃𝑐, since R= ∏ 𝑅𝑖
𝑛
𝑖=1 = ∏ 𝑔𝑟𝑖𝑛

𝑖=1 , and since X̃ = ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 = ∏ (𝑔𝑥𝑖)𝑎𝑖𝑛
𝑖=1 , then:

gs = ∏ 𝑔𝑟𝑖𝑛
𝑖=1 ∏ (𝑔𝑥𝑖 𝑎𝑖)𝑐𝑛

𝑖=1 =∏ gr𝑖+𝑥𝑖a𝑖𝑐𝑛
𝑖=1 = gr1+𝑥1a1𝑐 + … + grn+𝑥nan𝑐 = 𝑔∑ 𝑠𝑖

𝑛
𝑖=1 = gs,

because s = ∑ 𝑠𝑖
𝑛
𝑖=1 .

This method is immune to key cancellation attacks and rogue key attacks, but it is vulnerable to

the nonce reuse attack. To understand how MuSig is susceptible to this attack, consider the scenario

20315

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

where Alice, among a group of cosigners, reuses the same nonce for signing different messages. In

this case, Oscar can carry out the following steps to expose Alice's private key (x):

If Oscar listens to this conversation, he can perform the subtraction operation between these

two signings (s1) and (𝑠1
⃓), and the resulting outcome will reveal Alice's private key (𝑥1) in the

following manner:

s1 - 𝑠1
⃓ = 𝑟1 + ca1𝑥1 – (𝑟1+ 𝑐⃓a1𝑥1) = 𝑟1 + ca1𝑥1 – 𝑟1 – 𝑐⃓a1𝑥1,

s1 - 𝑠1
⃓ = ca1𝑥1 – 𝑐⃓a1𝑥1 = a1𝑥1 (c – 𝑐⃓),

𝑥1 = (s1-𝑠1
⃓) (a1(c – 𝑐⃓))-1.

Since Oscar knows (s1, 𝑠1
⃓, R, m1 and m2) and can calculate c = Hsig (X̃, R, m1), 𝑐⃓= Hsig(X̃, R,

m2) and a1= Hagg (L, X1), he can then calculate Alice’s private key (𝑥1).

To gain a different perspective on the problem, we can examine it from an alternative angle. It is

essential to consider the following scenario where Alice and Bob try to co-sign a message (m1):

Alice signing the message (m2):

(1) The Private Key (𝑥1) is the same;

(2) The Public Key X1 is the same;

> Round_1:

(3) Calculate a1
⃓ = a1= Hagg (L, X1);

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ;

> Round_2:

(5) The nonce (𝑟1) is the same as assumed;

(6) 𝑅1
⃓= R1;

(7) Calculate 𝑡1
⃓=t1= Hcom(R1);

(8) Send 𝑡1
⃓ to other cosigners and

receivet2, …, t𝑛;

(9) Send 𝑅1
⃓ to other cosigners and

receive R2 , …, R𝑛 , then calculate and

check t𝑖;

> Round_3:

(10) Calculate:

• R= ∏ 𝑅𝑖
𝑛
𝑖=1 ;

• 𝑐⃓ = Hsig(X̃, R, m2);

• 𝑠1
⃓= 𝑟1+ 𝑐⃓a1𝑥1

• Send 𝑠1
⃓

 to other cosigners and

receive s𝑖 from them to

calculate:

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1

Alice signing the message (m1):

(1) Select a Private Key (𝑥1);

(2) Calculate the Public Key X1= g𝑥1;

> Round_1:

(3) Calculate a1= Hagg (L, X1);

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ;

> Round_2:

(5) Choose a nonce (𝑟1) randomly;

(6) Calculate R1= g𝑟1;

(7) Calculate t1= Hcom(R1);

(8) Send t1 to other cosigners and

receive t2, …, t𝑛;

(9) Send R1 to other cosigners and

receive R2, …, R𝑛, then calculate and

check t𝑖;

> Round_3:

(10) Calculate:

• R= ∏ 𝑅𝑖
𝑛
𝑖=1 ;

• c = Hsig (X̃, R, m1);

• s1 = 𝑟1 + ca1𝑥1

• Send s1 to other cosigners and

receive s𝑖 from them to

calculate:

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1

20316

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

If Oscar listens to this conversation, then he can perform the subtraction operation between Alice’s

two signatures. The resulting outcome will reveal Alice’s private key (𝑥1) in the following manner:

s1 - 𝑠1
⃓ = r1+ ca1𝑥1 - r1 - 𝑐⃓a1𝑥1 = ca1𝑥1 - 𝑐⃓a1𝑥1 = x1 a1 (c-𝑐⃓),

𝑥1 =
s1 − 𝑠1

⃓

a1(c−𝑐⃓)
 = (s1 - 𝑠1

⃓)(a1(c-𝑐⃓))-1.

This highlights the vulnerability of the MuSig protocol to nonce reuse attacks when the same

nonce is utilized in multiple signature operations.

Based on the previous explanation, the novelty in the MuSig signature scheme involves the

addition of the component 𝑎𝑖 to address the issue of key cancellation attacks in key aggregation for

multi-signature schemes. Additionally, the MuSig signature scheme adopts a three-round signing

process to counter rogue key attacks, which represent the main drawback of this method. As a result,

alternative models for multi-signature schemes that require only two rounds, such as MuSig-DN and

MuSig2, have been proposed.

As mentioned in the Introduction section [12], the complexity of the NIZK proof in the

MuSig-DN protocol renders it impractical for use on dedicated signing devices like hardware wallets,

which are typically employed for storing bitcoins.

Bob, Signing the message (m1):

(1) Select a Private Key (𝑥2);

(2) Calculate the Public Key X2 = g𝑥2;

(3) Choose the private nonce (r2)

randomly;

(4) Calculate the public nonce R2=gr2 ;

(5) Send R2 to Bob and receive R1;

(6) Calculate R=R1+R2;

(7) Calculate c =Hsig(X, R, m1);

(8) Calculate s2=r2+ ca2𝑥2;

(9) For any reason, the signing did not

complete.

(10) m1 signing process has been

resumed:

- Choose new nonce (𝑟2
⃓) randomly;

- Calculate 𝑅2
⃓ = 𝑔𝑟2

⃓
 and send to Alice

… etc.

Alice, Signing the message (m1):

(1) Select a Private Key (𝑥1);

(2) Calculate the Public Key X1= g𝑥1;

(3) Choose the private nonce (r1)

randomly;

(4) Calculate the public nonce R1=gr1;

(5) Send R1 to Bob and receive R2;

(6) Calculate R=R1+R2;

(7) Calculate c =Hsig(X, R, m1);

(8) Calculate s1=r1+ ca1𝑥1.

(9) Send s1 to Bob.

(10) For any reason, the signing did not

complete.

(11) m1 signing process has been

resumed.

(12) Send R1 to Bob again;

(13) Receive 𝑅2
⃓ from Bob;

(14) Computes:

• R̃ = R1 + 𝑅2
⃓;

• 𝑐⃓ = Hsig(X̃, R̃, m);

• 𝑠1
⃓= r1 + 𝑐⃓a1𝑥1

(15) Send 𝑠1
⃓ to Bob.

… etc.

20317

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

Additionally, according to the Introduction section of this study [13], MuSig2 can use different

numbers of nonces depending on the specific configuration:

• MuSig2 can use one nonce, but this configuration may have limitations in terms of

security guarantees.

• MuSig2 can use two nonces to be secure under the Algebraic One-More Discrete Logarithm

(AOMDL) assumption in the ROM when AGM is additionally assumed.

• MuSig2 can use four or more nonces to be proven secure under the (OMDL) assumption in the

ROM (Random Oracle Model).

Thus, each signer in MuSig2 provides a list of at least two nonces, which are then combined to

form the aggregate nonce for the signing operation.

In the ROM, each cosigner𝑖 utilizes four or more nonces (R𝑖
` , R𝑖

``, R𝑖
```, R𝑖

````, … , R𝑛
𝑛),. Then, the

cosigner𝑖 uses a random combination R𝑖= R𝑖
` (R𝑖

``)𝑏 (R𝑖
```)𝑏2

 (R𝑖
````)𝑏3

, where the exponent b is set by

hashing essentially the entire protocol input and transcript after the nonce exchange round (the

aggregated public key, the message, and the nonces of all signers):

b = H (X̃, m, (∏ R𝑖
`𝑛

𝑖=1 , ∏ R𝑖
``𝑛

𝑖=1 , ∏ R𝑖
```𝑛

𝑖=1 , ∏ R𝑖
````𝑛

𝑖=1 , …, ∏ R𝑖
𝑛𝑛

𝑖=1)). (5)

In the AGM, each cosigner𝑖 utilizes two nonces (R𝑖
` , R𝑖

``). Then, the cosigner𝑖 uses a random

combination R𝑖= R𝑖
` (R𝑖

``)𝑏, where b = H (X̃, m, (R1
` R2

` , R1
``R2

``)).

When using two or four nonces in the MuSig2 scheme, as compared to using a single nonce, there

is some additional computational complexity involved. This is because each signer, providing two or

four nonces in MuSig2, faces an overhead in combining these nonces to form the aggregate nonce.

This process involves additional computations to derive the scalar b via a hash function. Additionally,

the signer's complexity increases slightly due to the need to handle multiple nonces and perform the

necessary calculations for nonce aggregation.

3. Proposed contributions

This section elucidates the proposed solution for addressing the nonce generation problem

existing in Schnorr's Digital Signature and Schnorr's Multi Signature schemes, as explained in

Sections 2.3 and 2.4. The proposed solution includes:

• Utilizing a similar private key generation approach as seen in the digital signature algorithm

(EdDSA) to generate deterministic private nonces. This study suggests generating the private

nonce by combining the message with the hashed value of the private key (x).

• Excluding the public nonce (R) from the calculation of the challenge c =H𝑠𝑖𝑔(X, R, m). To

ensure the uniqueness of each signature, additional context and protocol-level safeguards akin

to those utilized in the EdDSA framework (which falls beyond the purview of this study)

should be implemented. This includes the integration of sequence numbers, timestamps, and

other session-specific data into the messages. These components, which operate externally to

the digital signature mechanism, are intended to mitigate certain attacks, notably replay attacks.

• In the proposed multi-signature scheme, the aggregated public key X̃ has been utilized

instead of a NIZK proof to demonstrate that the owner of the public keys knows the

corresponding secret keys. Therefore, if the aggregated public key X̃ matches any of the

public keys of one or more cosigners, then the signing process is rejected.

The process for implementing these solutions is described in two sections:

First: Schnorr Digital Signature algorithm:

20318

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

The signature generation and verification process in Schnorr is as follows:

To sign a message (m), Alice follows these steps:

• Select a Private Key (x) such that 0 < x < p;

• Calculate the Public Key (X), such that X = gx;

• Calculate h=H(x);

• Calculate the private nonce r = H (h||m);

• Calculate the public nonce R = gr;

• Calculate c =H (X, m);

• Calculate s≡ (r + cx) mod p;

• The signature is the pair (R, s). Thus, Alice will send the message (m), public key (X),

(R), and (s) to Bob.

Bob considers Alice’s signature valid only if gs = RX𝑐.

Proof of the correctness of the algorithm:

gs = RX𝑐, since R = gr and X= gx, then gs = gr (gx)c = gr+xc = gs, where s = r + xc.

In the current scenario, Alice is unable to sign two different messages using the same nonce.

This is because the private nonce changes when the message changes. However, if Alice signs the

same message twice, it implies that she is using the same nonce. This raises a concern about the

potential compromise of system security. For a more comprehensive understanding, let us examine

the steps that Oscar might follow to implement a nonce reuse attack:

This shows that the two signatures, s1 and s2, are identical, and subtracting one from the other

results in zero (s1-s2=0). Therefore, there is no benefit or information gained from duplicate signatures.

This means that the security of the system is not compromised when the same message is signed twice

with the same nonce. The proposed method effectively prevents nonce reuse attacks by

deterministically calculating the private nonce, ensuring it changes with each new message. Even if the

same message is signed multiple times, the process remains secure.

In addition, the proposed method for signing messages does not require storing any information

during the signing process. The necessary calculations can be made from the inputs and received

messages, eliminating the risk of manipulation through virtual machine rewinding attacks.

To prevent potential exploitation of collision probabilities, it is recommended to use appropriate

cryptographic hashing functions.

Alice signs the message (m1) again:

(1) The Private Key (𝑥1) is the same;

(2) The Public Key X1 is the same;

(3) h = H (𝑥1) is the same as we assumed;

(4) private nonce r2=r1= H (h||m1);

(5) Calculate the public nonce R2=R1;

(6) Calculate c2=c1=H (X1, m1);

(7) Calculate s1 = s2= r2+c2𝑥2;

(8) The signature is the pair (R1, s1).

Alice signs the message (m1):

(1) Select a Private Key (𝑥1);

(2) Calculate the Public Key X1= gx;

(3) Calculate h = H (𝑥1);

(4) Calculate private nonce r1=H(h||m1);

(5) Calculate the public nonce R1= gr1 ;

(6) Calculate c1=H (X1, m1);

(7) Calculate s1= r1+c1𝑥1;

(8) The signature is the pair (R1, s1).

20319

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

Second: Proposed multi-signature scheme:

In order to differentiate multi-signature schemes, the classification is as follows:

• Multi-signature schemes, wherein n-of-n signers are required to collectively produce a

valid signature.

• Threshold signature schemes wherein any subset of size t-of-n signers out of n total signers can

collectively produce a valid signature.

It should be noted that this section exclusively addresses multi-signature schemes.

The proposed multi-signature generation and verification scheme is as follows:

- Round 1:

A group of n signers want to co-sign a message m. Let X1 and 𝑥1 be the public and private key of

a specific signer, where X1=g𝑥1. Let X2, …, Xn be the public keys of the other co-signers, and let (L)

be the hash value of the multi-set of all public keys involved in the signing process, L=Hagg

(X1|| … || X𝑛):

• For i∈{1, …, n}, each signer computes the following: a𝑖 =Hagg (L, X𝑖), as well as the

aggregated public key: X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 . The signer must check if (X̃ = X𝑖
𝑎𝑖); if so, then the

signing operation is terminated.

• The signer calculates h=H𝑎𝑔𝑔(𝑥1), computes the private nonce r1= H𝑎𝑔𝑔(h||m), computes the

public nonce R1=gr1 , and sends R1 to all other co-signers and receives R2, …, Rn from

other co-signers.

- Round 2:

• Calculate c = H𝑠𝑖𝑔 (X̃, m) and s1 ≡ r1+ca1𝑥1 (mod p);

• Signature s1 is sent to all other co-signers. Upon receiving s2, …, s𝑛 from other co-signers,

they then calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1 and s ≡ ∑ 𝑠𝑖

𝑛
𝑖=1 (mod p). The signature will be the pair (R, s).

The message (m) and signature pair (R, s) will be sent to the receiver.

The receiver follows these steps to verify the aggregated signature:

• a𝑖=H𝑎𝑔𝑔(L, X𝑖) for i∈{1, …, n};

• X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ;

• c = H𝑠𝑖𝑔 (X̃, m);

• The signature is accepted if gs = R X̃𝑐.

Proof of the correctness of the algorithm:

gs = RX̃𝑐, since R= ∏ 𝑅𝑖
𝑛
𝑖=1 =∏ 𝑔𝑟𝑖𝑛

𝑖=1 , and since X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 = ∏ (𝑔𝑥𝑖)𝑎𝑖𝑛
𝑖=1 , then:

gs = ∏ 𝑔𝑟𝑖𝑛
𝑖=1 (∏ 𝑔𝑥𝑖𝑎𝑖𝑛

𝑖=1)𝑐 = ∏ gr𝑖+𝑥𝑖𝑎𝑖𝑐𝑛
𝑖=1 = gr1+𝑥11𝑐 + … + grn+𝑥n𝑎n𝑐,

gs =𝑔∑ 𝑠𝑖
𝑛
𝑖=1 = gs, because s = ∑ 𝑠𝑖

𝑛
𝑖=1 .

To enhance comprehension of the operational mechanism of the proposed method and its

resilience against the rogue key attack, a simple example is employed to elucidate it:

Suppose that Alice and Bob want to co-sign a message (m) and then send this multi-signature to

Robert (the receiver). The steps for the proposed multi-signature scheme are as follows:

- Round 1:

Let Xa and 𝑥a be the public and private keys of Alice, where Xa=g𝑥𝑎 , and let Xb and 𝑥b be the

public and private keys of Bob, where Xb=g𝑥𝑏, then L = Hagg (Xa||Xb):

• Alice computes a𝑎=Hagg (L, X𝑎), and because she already knows Bob's public key Xb (which

is publicly available), she can calculate a𝑏 = H(L|| Xb). After this, Alice calculates the

aggregated public key X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏 .

If Alice finds that X̃=X𝑏
𝑎𝑏 , then the protocol is terminated because the public key that Bob uses

is fake, equating to Xb= (g𝑥𝑏)𝑎𝑏 ∙ (X𝑎
𝑎𝑎)−1. This manipulation suggests Bob's attempt to execute a

20320

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

rogue key attack, exploiting his knowledge of Alice’s public key to undermine the integrity of the

aggregated public key, calculated as X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏= X𝑎
𝑎𝑎 ∙ g𝑥𝑏 ∙ (X𝑎

𝑎𝑎)−1 = g𝑥𝑏 = X𝑏
𝑎𝑏 . By halting

the signing process at this juncture, the protocol effectively prevents Bob from forging the

signature by nullifying Alice’s public key contribution, thus safeguarding against potential

signature forgery by Bob.

Similarly, Bob computes a𝑏=Hagg (L, X𝑏), and because he already knows Alice’s public key

Xa(which is publicly available), he can calculate a𝑎= H(L||Xa). After this, Bob calculates the

aggregated public key X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏 .

If Bob finds that X̃=X𝑏
𝑎𝑏 , then the protocol is terminated, indicating that Alice might be

attempting a rogue key attack.

• If neither Alice nor Bob are performing a rogue key attack, then the multi-signature steps will

proceed. Alice calculates h=H𝑎𝑔𝑔(𝑥a), private nonce r𝑎= H𝑎𝑔𝑔(h||m), Public nonce Ra=gr𝑎 , and

sends Ra to Bob and receives Rb from him, who calculated Rb in the same way as Alice did.

- Round 2:

• Alice calculates R = ∏ 𝑅𝑖
𝑛
𝑖=1 , c = H𝑠𝑖𝑔(X̃, m) and s𝑎 ≡ (r𝑎+𝑐a𝑎𝑥𝑎) mod p.

• Alice sends the signature s𝑎 to Bob and receiving s𝑏 from him, who calculates sb in the

same manner as Alice did.

• The aggregated signature will be s = s𝑎 + s𝑏 (mod p). Then, the multi-signature will be the

pair (R, s). Subsequently, the message (m) and the signature pair (R, s), will be sent to Robert.

Robert will consider the multi-signature to be valid only if gs = R X̃𝑐

When evaluating the efficacy of the proposed method against nonce reuse attacks, it should be

noted that Alice is unable to sign two different messages using the same nonce. This is because the

private nonce changes when the message does. However, if Alice signs the same message twice, it

indicates she is using the same nonce. This raises concern about whether this compromises the security

of the system.

Let us assess whether the security of the system would be compromised in instances where

Alice co-signs a message (m) twice with Bob while utilizing the same nonce:

Alice signs the same message (m) again:

(1) The Private Key (𝑥𝑎) is the same;

(2) The Public Key X𝑎 is the same

> Round_1;

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏),

 Calculate 𝑎a
⃓= a𝑎= H𝑎𝑔𝑔 (L, X𝑎);

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 is the same;

(5) h⃓= h = H (x);

(6) 𝑟a
⃓= r𝑎= H (h||m);

(7) Ra
⃓ =R𝑎= gr𝑎 , is the same;

Alice signs the message (m):

(1) Select a Private Key (𝑥𝑎);

(2) Calculate the Public Key X𝑎=g𝑥𝑎

> Round_1;

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏),

 Calculate a𝑎= H𝑎𝑔𝑔(L, X𝑎);

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏 ,

 Check if X̃=𝑋𝑏
𝑎𝑏;

(5) Calculates h=H (x);

(6) Calculate r𝑎= H (h||m);

20321

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

Since the two signatures (𝑠a
⃓ and s𝑎) are identical, this means that when Oscar subtracts one

signature (s𝑎) from the other (𝑠a
⃓), the result is zero (s𝑎-𝑠a

⃓=0). Consequently, this indicates that the

system's security remains uncompromised when signing the same message with the same nonce

multiple times, as the duplicate signatures yield no new information.

Now, the effectiveness of the proposed method in addressing the issue explained in the second

scenario in Section 2.4 will be assessed as follows:

Bob, signing the message (m):

(1) Select a Private Key (𝑥𝑏);

(2) Calculate the Public Key X𝑏 = g𝑥𝑏;

> Round_1;

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏)

 Calculate a𝑏= H𝑎𝑔𝑔 (L, X𝑏);

(4) Calculate X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏

 Check if X̃=𝑋𝑏
𝑎𝑏;

(5) Calculates h= H𝑎𝑔𝑔(𝑥𝑏);

(6) Calculate r𝑏 = H𝑎𝑔𝑔(h||m);

(7) Calculate the public nonce R𝑏=gr𝑏;

> Round_2;

(8) Send R𝑏 to Alice and receive R𝑎;

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1 = 𝑅𝑎 ∙ 𝑅𝑏,

c =H𝑠𝑖𝑔(X̃,m) and s𝑏=r𝑏+ ca𝑏𝑥𝑏;

(10) For any reason, the signing did not

complete.

(11) m signing process has been

resumed, Calculate:

Alice, signing the message (m):

(1) Select a Private Key (𝑥𝑎);

(2) Calculate the Public Key X𝑎= g𝑥𝑎;

> Round_1;

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏)

 Calculate a𝑎= H𝑎𝑔𝑔(L, X𝑎);

(4) Calculate X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏

 Check if X̃=𝑋𝑏
𝑎𝑏;

(5) Calculates h= H𝑎𝑔𝑔(𝑥𝑎);

(6) Calculate r𝑎= H𝑎𝑔𝑔(h||m);

(7) Calculate R𝑎= gr𝑎;

> Round_2;

(8) Send R𝑎 to Bob and receive R𝑏;

(9) Calculate:

• R = ∏ 𝑅𝑖
𝑛
𝑖=1 = 𝑅𝑎 ∙ 𝑅𝑏

• c = H𝑠𝑖𝑔(X̃,m)

• s𝑎=r𝑎+ ca𝑎𝑥𝑎

(10) Send s𝑎 to Bob and receive s𝑏.

(11) For any reason, the signing did

not complete.

(8) send Ra
⃓ to Bob and receive R𝑏;

> Round_2

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1 = Ra

⃓ ∙ 𝑅𝑏

= 𝑅𝑎 ∙ 𝑅𝑏, c = H𝑠𝑖𝑔 (X̃,m) and

𝑠a
⃓ = s𝑎= r𝑎+ ca𝑎𝑥𝑎,

Send s𝑎 to Bob and receive s𝑏 from

him, and the aggregated signature

will be:

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1 (mod p) = s𝑎 + s𝑏.

(7) Calculate R𝑎= gr𝑎;

(8) Send R𝑎 to Bob and receive R𝑏

> Round_2;

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1 = 𝑅𝑎 ∙ 𝑅𝑏,

c = H𝑠𝑖𝑔(X̃,m), and s𝑎= r𝑎+ ca𝑎𝑥𝑎,

Send s𝑎 to Bob and receive s𝑏 from

him, and the aggregated signature

will be:

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1 (mod p) = s𝑎 + s𝑏.

20322

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

In the suggested approach, Bob cannot choose different nonces for the same message. Even if Bob

attempts to do so intentionally, Alice will still sign the same message with the same unique nonce,

resulting in identical signatures. Specifically, the signatures (𝑠a
⃓ and s𝑎) are identical because we

excluded the public nonce from the challenge calculations. Consequently, subtracting one signature

from the other results in zero (s𝑎-𝑠a
⃓= 0). This means that Oscar gains no benefit or information from

these duplicate signatures.

Thus, the proposed method effectively thwarts nonce reuse attacks by deterministically

calculating and changing the private nonce for each new message. Additionally, the method does not

require storing any information during the signing process, as all necessary calculations can be derived

from the inputs and received messages. This eliminates the risk of manipulation through virtual

machine rewinding attacks. To mitigate the potential exploitation of collision probabilities, employing

suitable cryptographic hashing functions is recommended.

4. Conclusions

The method proposed to enhance the Schnorr digital signature and two-round MuSig shows

promise in achieving several important objectives. First, it improves the Schnorr digital signature by

combining the private key and the message through hashing, then it hashes the result again to generate

a private nonce, inspired by the method used in EdDSA.

The proposed method excludes the public nonce (R) from the challenge calculations (c=H𝑠𝑖𝑔(X, R,

m)), ensuring the uniqueness of each signature. Moreover, removing (R) from these calculations

reduces the computational complexity, a crucial factor in constrained resources devices where every

computational step matters. A significant advantage of this method is that it ensures the private nonce

will be different for each new message. Even if the same message is signed multiple times with the

same nonce, it will not make the system insecure, thus effectively solving the issue of random number

generation failures.

In multi-signature schemes, the proposed method compares to the MuSig signature scheme.

While MuSig is resistant to key cancellation and rogue key attacks, it involves three rounds and is

susceptible to nonce reuse attacks. In contrast, the proposed method is a two-round scheme that is

• a𝑏= H𝑎𝑔𝑔 (L, X𝑏),

• X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 , h=H𝑎𝑔𝑔(𝑥𝑏),

• 𝑟b
⃓= H𝑎𝑔𝑔(h||m) = r𝑏,

• 𝑅b
⃓ = 𝑔𝑟b

⃓
=R𝑏 and send to it

Alice and receive R𝑎 from him

… etc.

(12) m signing process has been resumed.

(13) Send same R𝑎 to Bob again and

receive 𝑅b
⃓ from Bob;

(14) Computes:

• R⃓= ∏ 𝑅𝑖
𝑛
𝑖=1 = 𝑅𝑎 ∙ 𝑅b

⃓,

• 𝑐⃓ = H𝑠𝑖𝑔(X̃,m) = c,

• 𝑠a
⃓= r𝑎 + 𝑐⃓a𝑎𝑥𝑎 = s𝑎.

(15) Send 𝑠a
⃓ to Bob and receive

… etc.

20323

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

immune to key cancellation, rogue key, and nonce reuse attacks, offering enhanced security with

lower computational complexity.

When compared to MuSig-DN, it is clear that MuSig-DN introduces inherent complexity due to

the necessity of deploying NIZK proofs to validate the deterministic generation of nonces. This

requirement not only increases computational overhead but also adds complexity to the

implementation, making the protocol less practical for devices with constrained resources. In contrast,

the proposed method utilizes the aggregated public key X̃ to demonstrate ownership of the

corresponding secret keys. This approach eliminates the need to compute and send NIZK proofs along

with signatures, leading to reduced computational complexity and bandwidth usage. Thus, the

proposed method is more efficient in terms of computational complexity and bandwidth utilization,

especially for devices with constrained resources.

Comparing the proposed method to MuSig2, the key difference lies in how they handle nonces.

MuSig2 allows for the use of multiple nonces based on a configured set where each signer needs to

provide at least two nonces. These nonces are then combined to create an aggregated nonce for the

signing process. Thus, generating and using multiple nonces in MuSig2 adds computational

complexity, particularly in deriving the scalar “b” using a hash function. Also, sending multiple nonces

in MuSig2 leads to higher bandwidth usage. In contrast, the proposed method employs only a single

nonce. This streamlined approach eliminates additional computational tasks and minimizes bandwidth

requirements, making the process more efficient and straightforward compared to MuSig2.

Although this study does not definitively assert superiority over the established and proven

MuSig-DN and MuSig2 methods, it represents a valuable contribution to ongoing efforts to improve

digital signature technology. In the proposed method, the public nonce (R) serves the receiver's

verification process to ensure the signature's validity. Additionally, the proposed method removes the

need to store any information between signing rounds, meaning signers don't have to remember details

such as the nonce or partial signature. They can generate these values again using public inputs and

messages. This benefit reduces storage and computational requirements for signers and enhances

resistance against virtual machine rewinding attacks. As a result, this approach prevents cheating in the

public keys, reduces computational complexity, and minimizes the amount of information sent

combined with NIZK proof, leading to better utilization of bandwidth.

Author contributions

Nawras H. Sabbry: Conceptualization, methodology, formal analysis, investigation, writing

(original draft preparation and visualization); Alla Levina: Supervision, writing (review and editing),

project administration, funding acquisition. All authors have read and agreed to the published version

of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was funded by the Ministry of Science and Higher Education of the Russian

Science Foundation (Project “Goszaadanie” No.075-00003-24-02, FSEE-2024-0003).

20324

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

1. W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22 (1976),

644–654. https://doi.org/10.1109/TIT.1976.1055638

2. R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key

cryptosystems, Commun. ACM, 21 (1978), 120–126. https://doi.org/10.1145/359340.359342

3. F. Pub, Digital signature standard (DSS), 1994. Available from:

https://csrc.nist.gov/pubs/fips/186/upd1/final

4. C. P. Schnorr, Efficient signature generation by smart cards. J. Cryptol., 4 (1991), 161–174.

https://doi.org/10.1007/BF00196725

5. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, B. Y. Yang, High-speed high-security

signatures, J. Cryptogr. Eng., 2 (2012), 77–89. https://doi.org/10.1007/s13389-012-0027-1

6. D. B. Johnson, A. Menezes, S. A. Vanstone, The elliptic curve digital signature algorithm

(ECDSA), Int. J. Inf. Secur., 1 (2001), 36–63.

7. S. Josefsson, I. Liusvaara, Edwards-curve digital signature algorithm (EdDSA), IRTF. RFC,

2017, 8032. https://doi.org/10.17487/RFC8032. ISSN 2070-1721

8. M. Beunardeau, A. Connolly, H. Ferradi, R. Géraud-Stewart, D. Naccache, D. Vergnaud,

Reusing nonces in Schnorr signatures, Pro. Cryptology-AFRI., 2017, 224–241.

https://doi.org/10.1007/978-3-319-66402-6_14

9. Y. Romailler, S. Pelissier, Practical fault attack against the Ed25519 and EdDSA signature schemes,

Proc. Workshop Fault Diag. Tole. Cryp., 2017, 17–24. https://doi.org/10.1109/FDTC.2017.12

10. K. Chalkias, F. Garillot, Y. Kondi, V. Nikolaenko, Non-interactive half-aggregation of EdDSA

and variants of Schnorr signatures, Lecture Notes Comp. Sci., 2021, 12704.

https://doi.org/10.1007/978-3-030-75539-3_24

11. Y. Kondi, C. Orlandi, L. Roy, Two-round stateless deterministic two-party Schnorr signatures

from pseudorandom correlation functions, Lecture Notes Comp. Sci., 2023, 14081.

https://doi.org/10.1007/978-3-031-38557-5_21

12. J. Nick, T. Ruffing, Y. Seurin, P. Wuille, MuSig-DN: Schnorr multi-signatures with verifiably

deterministic nonces, Conf. Comput. Commun. Security, 2020, 1717–1731.

https://doi.org/10.1145/3372297.3417236

13. J. Nick, T. Ruffing, Y. Seurin, MuSig2: Simple two-round Schnorr multi-signatures, Lecture Notes

Comp. Sci., 2021, 12825. https://doi.org/10.1007/978-3-030-84242-0_8

14. P. Q. Nguyen, I. E. Shparlinski, The insecurity of the elliptic curve digital signature algorithm

with partially known nonces, Des. Codes Cryptogr., 30 (2003), 201–217.

https://doi.org/10.1023/A:1025436905711

15. Online content: Android security vulnerability, 2013. Available from:

https://bitcoin.org/en/alert/2013-08-11-android

16. D. Boneh, Schnorr digital signature scheme, Lecture Notes Comp. Sci., 2005, 541–542.

https://doi.org/10.1007/0-387-23483-7_369

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359340.359342
https://csrc.nist.gov/pubs/fips/186/upd1/final
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.17487/RFC8032.%20ISSN%202070-1721
https://doi.org/10.1007/978-3-319-66402-6_14
https://doi.org/10.1109/FDTC.2017.12
https://doi.org/10.1007/978-3-030-75539-3_24
https://doi.org/10.1007/978-3-031-38557-5_21
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1023/A:1025436905711
https://bitcoin.org/en/alert/2013-08-11-android
https://doi.org/10.1007/0-387-23483-7_369

20325

AIMS Mathematics Volume 9, Issue 8, 20304–20325.

17. M. Michels, P. Horster, On the risk of disruption in several multiparty signature schemes,

Lecture Notes Comp. Sci., 1996.

18. G. Maxwell, A. Poelstra, Y. Seurin, P. Wuille, Simple Schnorr multi-signatures with applications to

Bitcoin, Des. Codes Cryptogr., 2019. https://doi.org/10.1007/s10623-019-00608-x

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

