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Abstract: This paper proposes a deterministic nonce generation technique to address the catastrophic 

issues associated with nonce reuse in message signing and to enhance the efficiency of Schnorr 

multi-signature schemes. Additionally, this research aims to reduce computational complexity and 

bandwidth requirements in digital and multi-signature schemes while maintaining robust security 

against common attacks. The proposed method was inspired by the EdDSA approach. The 

methodology includes a comprehensive mathematical analysis of digital signature algorithms and a 

rigorous examination of their vulnerabilities to well-known cryptographic attacks. This analysis 

evaluates the effectiveness and robustness of the proposed nonce generation technique within the 

frameworks of the Schnorr digital signature and the two-round MuSig schemes. Techniques and tools 

employed in this research involve deterministically generating nonces by hashing the private key and 

subsequently hashing the result with the message. Furthermore, it is proposed to exclude the public 

nonce R from the challenge calculations and to allow signers to directly prove possession of their 

secret keys through the aggregated public key, thereby eliminating the need for non-interactive 

zero-knowledge (NIZK) proofs. The findings demonstrate significant reductions in computational 

complexity and operational requirements, thereby improving bandwidth efficiency and making this 

method well-suited for resource-constrained devices. The approach also exhibits strong resistance to 

various attacks, including nonce reuse, key cancellation, rogue keys, and virtual machine rewinding. 
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1. Introduction 

Digital signatures serve as a cornerstone of modern cryptographic practices, underpinning 

the security and trustworthiness of digital communications, financial transactions, and 

authentication processes. 

The concept of digital signatures dates back to the 1970s, with the theoretical foundations laid 

by public key cryptography. Whitfield Diffie and Martin Hellman first introduced the idea in their 

seminal 1976 paper [1], paving the way for the development of various digital signature schemes. 

The first practical implementation, the RSA algorithm, was developed in 1977 by Rivest, Shamir, 

and Adleman [2]. It utilizes the computational difficulty of factoring large integers as the basis for 

security. This was followed by the introduction of the digital signature algorithm (DSA) in the 

early 1990s, which relies on the discrete logarithm problem [3]. Both schemes set the stage for 

subsequent advancements and adaptations in digital signature technology. The Schnorr signature 

scheme, introduced by Claus Schnorr [4], is distinguished by its simplicity and efficiency, particularly 

in terms of verification speed and shorter signatures. Later, the Edwards-curve digital signature 

algorithm (EdDSA) was developed to provide stronger security assurances and better performance 

using twisted Edwards curves [5]. Each of these developments has contributed to the robust framework 

within which digital signatures operate today, addressing various aspects of security and efficiency. 

The evolution of digital signature schemes has been marked by a continuous quest for enhanced 

security, efficiency, and practical applicability. In this context, a nonce (number used once) is a 

random or pseudo-random number that must not be repeated with the same private key. However, the 

challenge of securely generating nonces (a critical component in the signature process) remains a 

pivotal concern that directly impacts the scheme’s security and operational viability. For instance, in 

ECDSA (elliptic curve digital signature algorithm) and classic DSA, the uniqueness and secrecy of 

the nonce are crucial; if a nonce is revealed, it can lead to straightforward attacks that recover the 

private key. However, generating random nonces is fraught with challenges. The main vulnerability 

lies in the quality of the randomness. This issue was notably exploited in the PlayStation 3 firmware 

hack, where ECDSA nonces were predictably generated due to inadequate randomness, ultimately 

leading to the compromise of the private signing key. 

In the digital signature schemes, the elliptic curve digital signature algorithm (ECDSA) [6] and 

the Edwards-curve digital signature algorithm (EdDSA) [7] have set benchmarks for security and 

performance. Particularly, EdDSA's approach to deterministic nonce generation has garnered 

attention for its ability to circumvent the pitfalls associated with random nonce generation, notably 

the risks of randomness failures and the subsequent exposure to attacks that could compromise the 

signer's private key. Therefore, the integration of deterministic nonce generation used in EdDSA's into 

Schnorr signatures presents a promising avenue for enhancing the robustness and efficiency of these 

protocols. Therefore, integrating deterministic nonce generation, as used in EdDSA, into Schnorr 

signatures presents a promising avenue for enhancing the robustness and efficiency of these protocols. 

Previous studies have highlighted various approaches to nonce generation, emphasizing the risks 

associated with randomness failures. For instance, in their paper “Reusing Nonces in Schnorr 

Signatures (and keeping it secure...)” (2018) [8], Beunardeau et al. discuss the problem of nonce reuse 

in Schnorr signatures, which can reveal the secret signing key and compromise the security of the 

signature scheme. To overcome this issue, the authors propose a variant of the Schnorr signature 

scheme that allows for the reuse of nonces across multiple signatures while maintaining security. Their 
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variant uses a prime modulus p such that p-1 has several different factors qi large enough to resist 

birthday attacks and mutualizes exponentiation efforts to achieve faster and more resource-efficient 

signatures. The authors also compare the performance of their scheme with classical Schnorr 

signatures and present several pre-computation techniques to speed up modular exponentiation, which 

is often the bottleneck in implementations of cryptographic systems. 

It is worth noting that a lack of specific literature addressing the issue of nonce reuse attacks in 

EdDSA digital signatures was identified, largely because EdDSA is resistant to such attacks when the 

appropriate hashing function is chosen. Nonetheless, it is crucial to acknowledge that the security of 

any digital signature scheme, including EdDSA, is not impervious to potential vulnerabilities. For 

instance, fault attacks that exploit computational errors during the signature computation process [9], 

as well as other types of attacks that are unrelated to nonce reuse, could pose significant risks. 

In their paper “Non-interactive Half-Aggregation of EdDSA and Schnorr Signatures” (2021) [10], 

Chalkias K., Garillot F., Kondi, Y., and Nikolaenko, V. offer a detailed investigation into 

non-interactive aggregation techniques for EdDSA and Schnorr signatures, focusing on optimizing 

signature aggregation for improved efficiency in cryptographic applications. The study delves into the 

intricacies of compact signature schemes, discussing the advantages and challenges of reducing 

signatures. By conducting thorough implementation and benchmarking analyses, the researchers 

demonstrate the practicality and performance of the proposed aggregation constructions. The results 

highlight the feasibility of the half-aggregation scheme and provide insights into the computational 

overhead required to achieve provable security guarantees in signature aggregation. The authors detail 

a methodology that not only enhances data compactness but also maintains the integrity and security of 

the signatures against various cryptographic attacks, making it highly relevant to investigations into 

the efficiency and security of Schnorr multi-signatures. 

In another study, “Two-Round Stateless Deterministic Two-Party Schnorr Signatures from 

Pseudorandom Correlation Functions” (2023) [11], Kondi, Y., Orlandi, C., & Roy, L. introduced a 

novel protocol for two-party threshold Schnorr signatures that not only ensures stateless and 

deterministic signing but also addresses the inefficiencies found in previous threshold protocols. 

Utilizing pseudorandom correlation functions (PCFs), the study enhances both the security and 

efficiency of distributed Schnorr signing. These PCFs enable the distribution of signing nonces in a 

distributed, stateless, and deterministic manner, reducing the bandwidth cost per participant and 

making the system more suitable for practical applications. 

The research provides a comprehensive analysis of various techniques for distributing Schnorr 

signatures, assessing key factors such as the number of rounds, bandwidth requirements, underlying 

assumptions, and security guarantees. The proposed protocols are designed to achieve both covert and 

full active security, offering robust protection against malicious actors under generic cryptographic 

assumptions. This advancement showcases significant improvements in the field of distributed signing 

protocols, particularly in how Schnorr signatures can be effectively and securely implemented in a 

threshold setting. 

The research paper titled “MuSig-DN: Schnorr Multi-Signatures with Verifiably Deterministic 

Nonces” authored by Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille (2020) [12], 

provides significant insights into nonce generation and its implications for digital signature algorithms. 

The authors introduce a novel multi-signature scheme called MuSig-DN. This scheme utilizes 

deterministic nonces, which are generated in a manner that effectively safeguards against virtual 

machine rewinding attacks and nonce reuse attacks. 
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One of the pivotal challenges existing in MuSig-DN is the inherent complexity associated with 

deploying non-interactive zero-knowledge (NIZK) proofs to ascertain the deterministic generation of 

nonces. These proofs, while integral for securing the protocol against specific attack vectors and 

ensuring the determinism of nonce generation, introduce a notable layer of computational and 

conceptual complexity. Specifically, the protocol necessitates the construction and verification of 

NIZK proofs that each nonce was generated in accordance with the deterministic protocol. This 

requirement not only amplifies the computational overhead but also increases the intricacy of 

implementation, rendering the protocol less feasible for resource-constrained environments such as 

hardware wallets, which are prevalent in cryptocurrency applications. 

The paper “MuSig2: Simple Two-Round Schnorr Multi-Signatures” (2023) [13], authored by 

Jonas Nick, Tim Ruffing, and Yannick Seurin, introduces a novel approach to multi-signatures by 

proposing the MuSig2 scheme, which optimizes the digital signature process. The research conducted 

in this paper focuses on enhancing the efficiency and security of multi-signature schemes, particularly 

in the context of Schnorr signatures. By leveraging the concept of using multiple nonces in the signing 

process, MuSig2 achieves significant improvements in security guarantees and performance metrics. 

The key contributions of the paper include: 

• Introducing MuSig2 as a two-round variant of the MuSig scheme eliminates the preliminary 

commitment phase and enables signers to start the signing process directly with nonces. 

• Utilizing a varying number of nonces (1, 2, or 4+) to cater to different security requirements 

and cryptographic assumptions, such as the algebraic group model (AGM) and the one-more 

discrete logarithm (OMDL) assumption in the random oracle model (ROM). 

The results presented in the paper highlight the efficiency gains and security enhancements 

achieved through the implementation of MuSig2, making it a valuable contribution to the field of 

digital signatures and multi-signatures. 

On the other hand, the novelty of this research is threefold: First, it integrates EdDSA-inspired 

deterministic nonce generation into Schnorr multi-signatures, effectively combining EdDSA's 

robustness with the flexibility and efficiency of Schnorr's signature aggregation. Second, it removes 

the public nonce (R) from the challenge (c) calculations to ensure the uniqueness of each signature. 

Third, it allows signers to directly verify possession of secret keys using the aggregated public key, 

thereby enhancing bandwidth efficiency by eliminating the need for NIZK. This streamlined 

approach significantly improves security and reduces computational complexity, particularly for 

devices with constrained resources. 

The primary motivation for this research is to address security vulnerabilities inherent in 

Schnorr multi-signatures, specifically those arising from random nonce generation, such as key 

cancellation, rogue keys, and nonce reuse attacks. Moreover, this study aims to enhance the 

efficiency and practical applicability of Schnorr signatures in scenarios where computational 

resources, memory, and bandwidth are limited. 

The research methodology employed mathematical analysis of digital signature algorithms 

(ECDSA, EdDSA, Schnorr, and MuSig (multi signature) and well-known attacks (such as nonce 

reuse attacks, virtual machine rewinding attacks, key cancellation attacks, and rogue-key attacks) to 

understand and assess the effectiveness of the proposed method in addressing various challenges and 

ascertaining its efficiency. By analyzing the strengths and weaknesses of these digital signature 

schemes and exploring new techniques, this study presents a novel approach that offers a level of 

security comparable to that of EdDSA. Consequently, this research contributes to ongoing efforts to 
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enhance the effectiveness and security of digital signatures. 

This study met its objectives by addressing critical issues related to random nonce generation, 

generating the nonce in a deterministic manner, reducing computational complexity, and decreasing 

the amount of transmitted data combined with the NIZK proof to better utilize bandwidth. 

The paper is organized as follows: Section 2 delves into the fundamentals of digital signatures, 

covering key algorithms such as the elliptic curve digital signature algorithm (ECDSA), the 

Edwards-curve digital signature algorithm (EdDSA), and the Schnorr digital signature algorithm. 

Section 2.4 discusses signature aggregation. Section 3 describes the proposed contributions of this 

research, and Section 4 concludes the findings presented in this study. 

2. Digital signature basics 

2.1. Elliptic curve digital signature algorithm ECDSA 

Understanding the proposed method in this study requires a thorough explanation of the 

ECDSA mechanism, as it is a fundamental cornerstone of our approach. 

Signature generation and verification algorithms in ECDSA are as follows [6]: 

Suppose a sender intends to send a message with a digital signature to a receiver. Initially, they 

must agree on the curve parameters (E, G, n) and the hashing function H, where E represents the 

elliptic curve equation used, G represents the elliptic curve base point (the generator point), a point on 

the curve that generates a subgroup of large prime order n, and n represents the order of G. This means 

that nG = O, where O is the identity element. 

In addition to the shared parameters, the process of signature generation involves the following 

variables: d𝐴, Q𝐴, and m. Here, d𝐴 represents the private key, which is randomly selected from the 

interval [1, n-1]); Q𝐴 represents the public key, computed as d𝐴G; and m represents the message to be 

signed and sent. Note that the letter 'A' in the variables d𝐴 and Q𝐴 signifies the sender, whom we 

assume to be Alice. 

For Alice to sign a message (m), she follows these steps [6]: 

• Calculate e = H(m); 

• Select a nonce integer “k” randomly from the range [1, n-1]; 

• Calculate the point (x1, y1) = kG; 

• Calculate r ≡ x1 (mod n); 

• Calculate s = k-1(e + rd𝐴); 

• The signature is the pair (r, s). Thus, Alice will send the messages(m), Q𝐴, r and s to Bob. 

Note that it is not only required for “k” to be secret, but it is also crucial to select a different “k” for 

each signature. 

Bob follows these steps to verify Alice’s signature: 

• Calculate e=H(m); 

• Calculate u1 ≡ es-1 (mod n) and u2 ≡ rs-1 (mod n); 

• Calculate the point (x1, y1) = u1G+ u2Q𝐴; 

• Alice’s signature is valid just if (x1, y1) ≡ kG. 

Proof of the correctness of the algorithm: 

(x1, y1) = u1G+ u2Q𝐴, since u1 ≡ es-1 (mod n) and u2 ≡ rs-1 (mod n), then: 

(x1, y1) = es-1G+ rs-1Q𝐴 = s-1(eG + rQ𝐴) = 
eG+r Q𝐴

𝑠
, 
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since s = k-1(e + rd𝐴), then: (x1, y1) = 
eG+r𝑄𝐴

𝐾−1(e+r𝑑𝐴)
 = 

k(eG+r𝑄𝐴)

e+r𝑑𝐴
, 

since Q𝐴= d𝐴G, then: (x1, y1) = 
k(eG+rd𝐴G)

e+rd𝐴
 = 

kG(e+rd𝐴)

(e+rd𝐴)
 = kG. 

Note that the ECDSA is susceptible to the nonce reuse attack. This means that if Alice uses the 

same nonce when signing different messages, an attacker, or the opponent (whom we will refer to as 

Oscar), can potentially discover Alice's private key (d𝐴). If Alice reuses the same nonce for different 

message signings, Oscar can carry out the following steps to expose Alice's private key (d𝐴): 

 

If Oscar, who was listening to this conversation, can perform a subtraction operation between s1 

and s2, the resulting outcome will reveal Alice’s private key (d𝐴) in the following manner: 

s1- s2 = k-1(e1+ rd𝐴) – (k-1(e2+ rd𝐴)) = k-1e1+ k-1rd𝐴 - k-1e2- k-1rd𝐴 = k-1e1- k-1e2, 

s1- s2 = k-1(e1 - e2) = 
(e1− e2)

k
 , k = 

e1−e2

s1−s2
 = (e1 - e2) (s1- s2)-1. 

By knowing the nonce  “k ”, Oscar now knows (s1, s2, e1=H (m1) and e2=H (m2)). By substituting 

them into the equations for (s1 ( or )s2), Oscar can obtain Alice’s private key (d𝐴) as follows: 

s1 = k-1(e1 + rd𝐴), s1 = 
(e1+rdA)

k
 , ks1= e1+ rd𝐴 , rd𝐴 = ks1 - e1 , d𝐴 = 

ks1−e1

r
, 

d𝐴= (ks1 - e1) r-1. 

A nonce reuse attack, caused by a random number generator failure, was used to extract the 

signing key for the PlayStation 3 gaming console [14]. Additionally, a failure in random number 

generation caused users of the Android Bitcoin Wallet to lose their funds in August 2013 [15]. These 

incidents emphasize the importance of robust and secure random number generation in cryptographic 

systems. Thorough testing, evaluation, and implementation of reliable random number generators are 

crucial to preventing such failures and associated risks. 

2.2. Edwards-curve digital signature algorithm (EdDSA) 

Understanding the proposed method in this study requires a thorough explanation of the EdDSA 

mechanism, as it is one of the cornerstone fundamentals of our approach. The signature generation 

and verification algorithms in EdDSA are as follows [5]: 

Alice signing the message (m2): 

(1) Calculate e2=H (m2); 

(2) “k” will be the same as assumed. 

(3) (x1, y1) = (x2, y2) = kG; 

(4) “r” will be the same, r ≡ x1(mod n); 

(5) Calculate s2= k-1(e2 + rd𝐴); 

(6) (m2) signature is (r, s2). 

Alice signs the message (m1): 

(1) Calculate e1=H (m1); 

(2) Select a nonce “k”; 

(3) Calculate (x1, y1) = kG; 

(4) Calculate r ≡ x1(mod n); 

(5) Calculate s1= k-1(e1 + rd𝐴); 

(6) (m1) signature is (r, s1). 
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For Alice to sign a message (m), she follows these steps: 

• Select a Private Key (secrete key “S𝑘”) and calculate the public key P𝑘=S𝑘G; 

• Calculate h = H (S𝑘); 

• Calculate the nonce (r) by concatenating (h) with the message (m) and calculate the hash 

value for them, r = H (h || m), where || means concatenating h with m; 

• Calculate R = x-coordinate of (rG); 

• Calculate s = r + H (R||P𝑘||m)S𝑘; 

• The signature is the pair (R, s), so Alice will send the message (m), P𝑘, R and s to Bob. 

Bob follows these steps to verify Alice’s signature: 

• Calculate s̃ = H (R||P𝑘|| m); 

• Calculate V1 = sG, and V2 = R + P𝑘s̃; 

• The signature is valid just if V1 = V2. 

Proof of the correctness of the algorithm: 

V2 = R + P𝑘s̃, R = rG and s̃= H (R||P𝑘||m), then: 

V2 = rG + P𝑘H (R ||P𝑘|| m), since P𝑘= S𝑘G, then: 

V2 = rG + S𝑘G H (R ||P𝑘|| m) = G (r + S𝑘H (R ||P𝑘|| m)), 

since s = r + H (R ||P𝑘|| m)S𝑘, then: V2 = sG = V1. 

As observed, EdDSA chooses the nonce deterministically as the hash of a part of the private key 

and the message. Thus, once a private key is generated, EdDSA has no further need for a random 

number generator to make signatures. In other words, EdDSA is resistant to nonce reuse attacks if an 

appropriate hashing function is chosen. 

However, it is essential to consider the implications of signing the same message multiple times, 

leading to the reuse of the same nonce [7]. Repeating the signing process with the same message 

multiple times utilizes the same nonce repeatedly. This occurs because neither the private key nor the 

message changes, and hashing them multiple times results in the same hash value. 

Nonetheless, this repetition does not compromise the security of the system. The reason lies in the 

fact that the generated signatures remain identical. Consequently, if Oscar attempts to compare these 

signatures, the result will be zero, indicating that they are indistinguishable. 

For a more comprehensive understanding, let us examine the steps that Oscar might follow to 

implement a nonce reuse attack: 

 

Since the two signatures are identical, when Oscar subtracts (s1) from (s2), the result would be 

zero (s1-s2= 0). Consequently, Oscar does not receive any benefit or information from these 

duplicate signatures. 

Alice signs the message (m1) again: 

(1) “S𝑘” and P𝑘 are the same; 

(2) h2=h1= H (S𝑘); 

(3) r2=r1= H (h ||m1); 

(4) R2=R1= (r1G) = (r2G); 

(5) s2=s1= r2+ H (R2||P𝑘||m1)S𝑘. 

(6) (m1) signature (R2,s2) = (R1,s1). 

 

Alice signs the message (m1): 

(1) Select “S𝑘” and calculate P𝑘=S𝑘G; 

(2) Calculate h1= H (S𝑘); 

(3) Calculate the nonce r1= H (h||m1); 

(4) Calculate R1= x-coordinate of (r1G); 

(5) Calculate s1= r1+ H (R||P𝑘||m1)S𝑘. 

(6) (m1) signature (R1, s1). 
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2.3. Schnorr digital signature algorithm 

Understanding the proposed method in this study requires a thorough explanation of the Schnorr 

Digital Signature Algorithm, as it is one of the cornerstone fundamentals of our approach. The 

interesting aspect of Schnorr signatures lies in their linearity, which offers several advantageous 

properties. Schnorr signatures follow a specific structure (s=r+ck), where (s) represents the signature, 

(r) represents the random number, (c) represents the challenge, and (k) represents the secret key. This 

construction also exhibits linearity, thereby aligning harmoniously with the linear nature of elliptic 

curve mathematics. The linearity exhibited by Schnorr signatures adds to their appeal and suitability 

for signature aggregation. 

The signature generation and verification algorithms in Schnorr are as follows [16]: 

For Alice to sign a message (m), she follows these steps: 

• Given a cyclic group G of prime order p with generator g. select a private key (x) such that 

0< x < p; 

• Calculate the public key (X), such that X = gx; 

• Choose a private nonce (r) randomly, such that 0 < r < p; 

• Calculate public nonce R = gr; 

• Calculate c =H (X, R, m); 

• Calculate s≡(r + cx) mod p; 

• The signature is the pair (R, s). So, Alice will send the message (m), Public Key (X), R and 

s to Bob. 

Bob can calculate (c) since he knows Alice’s public key (X), (R), and the message (m). Bob 

considers Alice’s signature valid if gs = RX𝑐. 

Proof of the correctness of the algorithm: 

gs = RX𝑐, since R = gr and X= gx, then: 

gs = gr (gx)c = gr+xc = gs, because s = r + xc. 

Note that Schnorr is susceptible to the nonce reuse attack. Oscar can carry out the following 

steps to expose Alice's private key (x) if she reuses the same nonce for different message signings: 

 

If Oscar performs the subtraction operation between s1 and s2, the resulting outcome will reveal 

Alice’s private key (x) in the following manner: 

s1- s2 =r + c1x – (r + c2x) = r + c1x – r–c2x = c1x –c2x, 

s1- s2 = x (c1–c2), 

Alice signs the message (m2): 

(1) The Private Key (x) is the same; 

(2) The Public Key X = gx is the same; 

(3) The nonce (r) is the same as we assumed; 

(4) The R = gr is the same; 

(5) Calculate c2=H (X, R, m2); 

(6) Calculate s2=r +c2x. 

 

Alice signs the message (m1): 

(1) Select a Private Key (x); 

(2) Calculate the Public Key X= gx; 

(3) Choose a nonce (r) randomly; 

(4) Calculate R = gr; 

(5) Calculate c1=H (X, R, m1); 

(6) Calculate s1=r +c1x. 
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x = 
s1−s2

c1−𝑐2
 = (s1- s2) (c1 – c2)-1. 

By knowing all the parameters (s1, s2, c1=H (X, R, m1) and c2=H (X, R, m2)), Oscar can obtain 

Alice’s private key (x). 

2.4. Signature aggregation 

To comprehend the reason behind the existence of three rounds in multi-signature schemes and 

how the proposed methodology in this research can eliminate the second round by demonstrating the 

knowledge of private keys, it is necessary to explain the basic principles related to signature 

aggregation, its inherent weaknesses, and the potential for exploitation. First of all, it is essential to 

familiarize oneself with some fundamental concepts. 

The process for creating signatures consistently follows this recipe: 

• Generate a secret nonce (r); 

• Create a public nonce R, where R = rG; 

• Alice sends the message (m), R, and the public key (P=private key(k)G) to Bob. 

The actual signature is created by hashing the combination of all the public information above to 

create a challenge, c = H(R||P||m). The hashing function is chosen so that (e) has the same range as 

private keys. 

The actual signature is created by hashing the combination of all the public information mentioned 

above to create a challenge, c = H(R||P||m). The hashing function is chosen so that (e) has the same 

range as the private keys. Now, the signature is constructed using the private information (s = r + ck). 

Bob can calculate (c), since he already knows (m), (R), and (P). However, he doesn’t know the 

private key or the nonce. 

Given the equation sG = (r+ck) G, this expression is expanded to sG = rG + ckG. It is further 

simplified to sG=rG + (kG)c. With R =rG and P= kG denoted, the equation simplifies to sG =R + Pc. 

So, Bob needs to calculate (sG) and check if this calculated value matches the right-hand side of 

the equation (R + Pc). Bob already has all the necessary information to perform these steps. 

After a brief explanation of the approach used to create signatures and how the receiver can verify 

their authenticity, let us now discuss signature aggregation: 

To gain a simple understanding of this, let's explore the application of the linear property of 

Schnorr signatures to create a two-of-two multi-signature. In this scenario, Alice and Bob want to 

co-sign a message without completely trusting each other. They need a way to prove ownership of 

their individual keys, and the combined signature is valid only if both Alice and Bob contribute to it. 

Assuming private keys are denoted k𝑖 and public keys P𝑖. If we ask Alice and Bob to each supply 

a nonce, we can try: 

P𝑎𝑔𝑔 = P𝑎 + P𝑏, (1) 

c = H (R𝑎||R𝑏||P𝑎||P𝑏|| m), (2) 

s𝑎𝑔𝑔 = r𝑎+r𝑏+ (k𝑎+k𝑏) c, (3) 

s𝑎𝑔𝑔= (r𝑎+ k𝑎c) + (r𝑏+k𝑏c) = s𝑎 + s𝑏. (4) 



20313 

AIMS Mathematics  Volume 9, Issue 8, 20304–20325. 

It appears that both Alice and Bob have the ability to contribute their own (R) values. Additionally, 

it is possible for anyone to create a two-of-two signature by combining these (R) values with the 

corresponding public keys. However, it is crucial to note that this scheme suffers from a security 

vulnerability known as the Key Cancellation Attack. 

To understand the key cancellation attack, let us reconsider the previous scenario from a different 

perspective. This time, Bob has prior knowledge of Alice's public key and public nonce. He waits until 

she reveals them, then proceeds to deceive by claiming his public key is Pb
′= P𝑏 - P𝑎 and his public 

nonce is Rb
′ = R𝑏  - R𝑎 . It is important to note that Bob does not possess the private keys 

corresponding to these bogus values. 

Despite this deception, everyone assumes that the aggregated signature expression remains s𝑎𝑔𝑔= 

R𝑎+Rb
′ + c(P𝑎+Pb

′) in accordance with the aggregation scheme. However, Bob has the ability to create 

this signature by himself. 

To illustrate, we will utilize the equation (sG = R + Pc) to explain the vulnerability: 

      s𝑎𝑔𝑔G = R𝑎+Rb
′ + c(P𝑎+ Pb

′) = R𝑎+ (R𝑏-R𝑎) + c (P𝑎+P𝑏-P𝑎) = R𝑏 + cP𝑏 = r𝑏G + ck𝑏G, 

  s𝑎𝑔𝑔G = G (r𝑏+ ck𝑏), 

  s𝑎𝑔𝑔= (r𝑏+ ck𝑏), Therefore, s𝑎𝑔𝑔= s𝑏. 

Bob could be compelled to authenticate by signing a message, proving his knowledge of the 

private keys. This method works, but it requires an additional round of messaging between parties. To 

prevent this attack, the multi-signature method involves three rounds. 

Design of the Schnorr multi-signature scheme: 

The primary approach for designing a Schnorr multi-signature scheme can be described as follows: 

Consider a scenario involving a group of (n) signers who intend to co-sign a given message (m). 

Initially, each co-signer randomly calculates and shares a unique value R𝑖= gr𝑖 , where (g) is the generator 

of the underlying group and r𝑖 is a randomly chosen exponent associated with each co-signer. 

Subsequently, each cosigner proceeds to compute two values: R=∏ R𝑖
n
𝑖=1  and c = H (X̃, R, m). 

Here, X̃ represents the product of the individual public keys, X𝑖, of all the cosigners, X̃= ∏ X𝑖
n
𝑖=1  

(aggregated public key). 

Moving on, the partial signature for each cosigner is computed as 𝑠𝑖 = 𝑟𝑖 + c𝑥𝑖 , where 𝑥𝑖 

represents the secret key associated with cosigner i. Each cosigner independently calculates their 

respective partial signature. 

Finally, all partial signatures are merged into a single signature using the relation s ≡
∑ 𝑠𝑖(mod p𝑛

𝑖=1 ), where (p) is the group's prime modulus. 

The verification process of a signature, denoted as (R, s), on a message (m), with respect to a set of 

public keys {X1, ..., X𝑛}, can be expressed equivalently as the equation gs = RX̃. 

It should be noted that this verification equation corresponds precisely to the verification equation 

utilized in Schnorr signatures with respect to the public key represented by X̃. This particular property 

is commonly referred to as key aggregation. However, it is essential to acknowledge that these 

protocols are susceptible to a rogue-key attack [17]. This attack occurs when a malicious signer 

deliberately sets their public key to X1= g𝑥1 (∏ X𝑖
n
𝑖=2 )-1, thereby enabling the signer to generate 

signatures for the individual public keys {X1, ..., X𝑛} independently. 

MuSig signature scheme: 
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MuSig is a Schnorr-based multi-signature scheme that allows a group of signers to produce a short, 

joint signature on a common message. MuSig is provably secure in the plain public-key model. 

The signature generation and verification algorithms in MuSig are as follows [18]: 

MuSig is parameterized by group parameters (G, p, g) and three hash functions (Hcom, Hagg and 

H𝑠𝑖𝑔). These three hash functions can be either identical or distinct, with the decision depending on the 

desired security level. Utilizing distinct hash functions enhances the level of security. 

- Round 1: 

A group of (n) signers wants to co-sign a message (m). Let X1 and 𝑥1 be the public and private 

keys of a specific signer, where X1= g𝑥1. Let X2, …, X𝑛 be the public keys of the other co-signers 

and let (L) be the multi-set of all public keys involved in the signing process. 

For i∈{1, …, n}, the signer computes a𝑖=Hagg (L, X𝑖) as well as the “aggregated” public key 

X̃ = ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 . 

- Round 2: 

The signer generates a random private nonce r1, computes the public nonce R1= gr1 , and the 

commitment t1= Hcom(R1), then sends t1 to all other cosigners. 

Upon receiving the commitments t2, …, t𝑛 from other cosigners, the signer sends R1 to all other 

cosigners. This ensures that the public nonce is not exposed until all commitments have been received. 

Upon receiving R2, …, R𝑛 from other cosigners, the signer verifies that 𝑡𝑖=Hcom(Ri) for all 

i∈{2, …, n}. 

By sending the commitments first, the signers can ensure that no one can change their public 

nonce after seeing the others. This prevents a rogue-key attack, as a malicious signer would need to 

know the public nonces of the other signers in advance to construct a rogue public key. If any signer 

detects a mismatch, they abort the protocol. This ensures that the signers are using the same set of 

public nonces to compute the aggregated signature, which is important for the security and correctness 

of MuSig. 

- Round 3: 

If all commitment and random challenge pairs can be verified with Hagg, the next step involves 

computing R= ∏ 𝑅𝑖
𝑛
𝑖=1 , c = H𝑠𝑖𝑔(X̃, R, m) and s1 ≡ (r1+ ca1x1) mod p. 

Signature s1 is sent to all other cosigners. Upon receiving s2, …, sn from other cosigners, the 

signer can compute s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1 (mod p). The signature is the pair (R, s). 

In order to verify the aggregated signature, the message (m), multi-set of public keys (L), (R), and 

(s) will be sent to the receiver. 

The receiver follows these steps to verify the aggregated signature: 

• a𝑖=H𝑎𝑔𝑔 (L, Xi) for i∈{1, …, n}; 

• X̃= ∏ X𝑖
𝑎𝑖𝑛

𝑖=1 ; 

• c = H𝑠𝑖𝑔 (X̃, R, m); 

• The signature is accepted if gs = R ∏ X𝑖
𝑐𝑎𝑖𝑛

𝑖=1 = RX̃𝑐. 

Proof of the correctness of the algorithm: 

gs = R X̃𝑐, since R= ∏ 𝑅𝑖
𝑛
𝑖=1  = ∏ 𝑔𝑟𝑖𝑛

𝑖=1 , and since X̃ = ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  = ∏ (𝑔𝑥𝑖)𝑎𝑖𝑛
𝑖=1  , then: 

gs = ∏ 𝑔𝑟𝑖𝑛
𝑖=1 ∏ (𝑔𝑥𝑖 𝑎𝑖)𝑐𝑛

𝑖=1 =∏ gr𝑖+𝑥𝑖a𝑖𝑐𝑛
𝑖=1  = gr1+𝑥1a1𝑐 + … + grn+𝑥nan𝑐  = 𝑔∑ 𝑠𝑖

𝑛
𝑖=1  = gs, 

because s = ∑ 𝑠𝑖
𝑛
𝑖=1 . 

This method is immune to key cancellation attacks and rogue key attacks, but it is vulnerable to 

the nonce reuse attack. To understand how MuSig is susceptible to this attack, consider the scenario 
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where Alice, among a group of cosigners, reuses the same nonce for signing different messages. In 

this case, Oscar can carry out the following steps to expose Alice's private key (x): 

 

If Oscar listens to this conversation, he can perform the subtraction operation between these 

two signings (s1) and (𝑠1
⃓), and the resulting outcome will reveal Alice's private key (𝑥1) in the 

following manner: 

s1 - 𝑠1
⃓ = 𝑟1 + ca1𝑥1 – (𝑟1+ 𝑐⃓a1𝑥1) = 𝑟1 + ca1𝑥1 – 𝑟1 – 𝑐⃓a1𝑥1, 

s1 - 𝑠1
⃓ = ca1𝑥1 – 𝑐⃓a1𝑥1 = a1𝑥1 (c – 𝑐⃓), 

𝑥1 = (s1-𝑠1
⃓) (a1(c – 𝑐⃓))-1. 

Since Oscar knows (s1, 𝑠1
⃓, R, m1 and m2) and can calculate c = Hsig (X̃, R, m1), 𝑐⃓= Hsig(X̃, R, 

m2) and a1= Hagg (L, X1), he can then calculate Alice’s private key (𝑥1). 

To gain a different perspective on the problem, we can examine it from an alternative angle. It is 

essential to consider the following scenario where Alice and Bob try to co-sign a message (m1): 

Alice signing the message (m2): 

(1) The Private Key (𝑥1) is the same; 

(2) The Public Key X1 is the same; 

> Round_1: 

(3) Calculate a1
⃓ = a1= Hagg (L, X1); 

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ; 

> Round_2: 

(5) The nonce (𝑟1) is the same as assumed; 

(6) 𝑅1
⃓= R1; 

(7) Calculate 𝑡1
⃓=t1= Hcom(R1); 

(8) Send 𝑡1
⃓  to other cosigners and 

receivet2, …, t𝑛; 

(9) Send 𝑅1
⃓  to other cosigners and 

receive R2 , …, R𝑛 , then calculate and 

check t𝑖; 

> Round_3: 

(10) Calculate: 

• R= ∏ 𝑅𝑖
𝑛
𝑖=1 ; 

• 𝑐⃓ = Hsig(X̃, R, m2); 

• 𝑠1
⃓= 𝑟1+ 𝑐⃓a1𝑥1 

• Send 𝑠1
⃓

 to other cosigners and 

receive s𝑖  from them to 

calculate: 

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1  

Alice signing the message (m1): 

(1) Select a Private Key (𝑥1); 

(2) Calculate the Public Key X1= g𝑥1; 

> Round_1: 

(3) Calculate a1= Hagg (L, X1); 

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ; 

> Round_2: 

(5) Choose a nonce (𝑟1) randomly; 

(6) Calculate R1= g𝑟1; 

(7) Calculate t1= Hcom(R1); 

(8) Send t1  to other cosigners and 

receive t2, …, t𝑛; 

(9) Send R1  to other cosigners and 

receive R2, …, R𝑛, then calculate and 

check t𝑖; 

> Round_3: 

(10) Calculate: 

• R= ∏ 𝑅𝑖
𝑛
𝑖=1 ; 

• c = Hsig (X̃, R, m1); 

• s1 = 𝑟1 + ca1𝑥1 

• Send s1 to other cosigners and 

receive s𝑖  from them to 

calculate: 

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1  
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If Oscar listens to this conversation, then he can perform the subtraction operation between Alice’s 

two signatures. The resulting outcome will reveal Alice’s private key (𝑥1) in the following manner: 

s1 - 𝑠1
⃓ = r1+ ca1𝑥1 - r1 - 𝑐⃓a1𝑥1 = ca1𝑥1 - 𝑐⃓a1𝑥1 = x1 a1 (c-𝑐⃓), 

𝑥1 = 
s1 − 𝑠1

⃓

a1(c−𝑐⃓)
 = (s1 - 𝑠1

⃓)(a1(c-𝑐⃓))-1. 

This highlights the vulnerability of the MuSig protocol to nonce reuse attacks when the same 

nonce is utilized in multiple signature operations. 

Based on the previous explanation, the novelty in the MuSig signature scheme involves the 

addition of the component 𝑎𝑖 to address the issue of key cancellation attacks in key aggregation for 

multi-signature schemes. Additionally, the MuSig signature scheme adopts a three-round signing 

process to counter rogue key attacks, which represent the main drawback of this method. As a result, 

alternative models for multi-signature schemes that require only two rounds, such as MuSig-DN and 

MuSig2, have been proposed. 

As mentioned in the Introduction section [12], the complexity of the NIZK proof in the 

MuSig-DN protocol renders it impractical for use on dedicated signing devices like hardware wallets, 

which are typically employed for storing bitcoins. 

Bob, Signing the message (m1): 

(1) Select a Private Key (𝑥2); 

(2) Calculate the Public Key X2 = g𝑥2; 

(3) Choose the private nonce ( r2 ) 

randomly; 

(4) Calculate the public nonce R2=gr2 ; 

(5) Send R2 to Bob and receive R1; 

(6) Calculate R=R1+R2; 

(7) Calculate c =Hsig(X, R, m1); 

(8) Calculate s2=r2+ ca2𝑥2; 

(9) For any reason, the signing did not 

complete. 

(10) m1  signing process has been 

resumed: 

- Choose new nonce (𝑟2
⃓) randomly; 

- Calculate 𝑅2
⃓ = 𝑔𝑟2

⃓
 and send to Alice  

… etc. 

 

 

 

 

 

 

Alice, Signing the message (m1): 

(1) Select a Private Key (𝑥1); 

(2) Calculate the Public Key X1= g𝑥1; 

(3) Choose the private nonce ( r1 ) 

randomly; 

(4) Calculate the public nonce R1=gr1; 

(5) Send R1 to Bob and receive R2; 

(6) Calculate R=R1+R2; 

(7) Calculate c =Hsig(X, R, m1); 

(8) Calculate s1=r1+ ca1𝑥1. 

(9) Send s1 to Bob. 

(10) For any reason, the signing did not 

complete. 

(11) m1 signing process has been 

resumed. 

(12) Send R1 to Bob again; 

(13) Receive 𝑅2
⃓ from Bob; 

(14) Computes: 

• R̃ = R1 + 𝑅2
⃓; 

• 𝑐⃓ = Hsig(X̃, R̃, m); 

• 𝑠1
⃓= r1 + 𝑐⃓a1𝑥1 

(15) Send 𝑠1
⃓ to Bob. 

… etc. 
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Additionally, according to the Introduction section of this study [13], MuSig2 can use different 

numbers of nonces depending on the specific configuration: 

• MuSig2 can use one nonce, but this configuration may have limitations in terms of 

security guarantees. 

• MuSig2 can use two nonces to be secure under the Algebraic One-More Discrete Logarithm 

(AOMDL) assumption in the ROM when AGM is additionally assumed. 

• MuSig2 can use four or more nonces to be proven secure under the (OMDL) assumption in the 

ROM (Random Oracle Model). 

Thus, each signer in MuSig2 provides a list of at least two nonces, which are then combined to 

form the aggregate nonce for the signing operation. 

In the ROM, each cosigner𝑖 utilizes four or more nonces (R𝑖
` , R𝑖

``, R𝑖
```, R𝑖

````, … , R𝑛
𝑛),. Then, the 

cosigner𝑖 uses a random combination R𝑖= R𝑖
`  (R𝑖

``)𝑏 (R𝑖
```)𝑏2

 (R𝑖
````)𝑏3

, where the exponent b is set by 

hashing essentially the entire protocol input and transcript after the nonce exchange round (the 

aggregated public key, the message, and the nonces of all signers): 

b = H (X̃, m, (∏ R𝑖
`𝑛

𝑖=1 , ∏ R𝑖
``𝑛

𝑖=1 , ∏ R𝑖
```𝑛

𝑖=1 , ∏ R𝑖
````𝑛

𝑖=1 , …, ∏ R𝑖
𝑛𝑛

𝑖=1  )). (5) 

In the AGM, each cosigner𝑖 utilizes two nonces (R𝑖
` , R𝑖

``). Then, the cosigner𝑖 uses a random 

combination R𝑖= R𝑖
`  (R𝑖

``)𝑏, where b = H (X̃, m, (R1
` R2

` , R1
``R2

``)). 

When using two or four nonces in the MuSig2 scheme, as compared to using a single nonce, there 

is some additional computational complexity involved. This is because each signer, providing two or 

four nonces in MuSig2, faces an overhead in combining these nonces to form the aggregate nonce. 

This process involves additional computations to derive the scalar b via a hash function. Additionally, 

the signer's complexity increases slightly due to the need to handle multiple nonces and perform the 

necessary calculations for nonce aggregation. 

3. Proposed contributions 

This section elucidates the proposed solution for addressing the nonce generation problem 

existing in Schnorr's Digital Signature and Schnorr's Multi Signature schemes, as explained in 

Sections 2.3 and 2.4. The proposed solution includes: 

• Utilizing a similar private key generation approach as seen in the digital signature algorithm 

(EdDSA) to generate deterministic private nonces. This study suggests generating the private 

nonce by combining the message with the hashed value of the private key (x). 

• Excluding the public nonce (R) from the calculation of the challenge c =H𝑠𝑖𝑔(X, R, m). To 

ensure the uniqueness of each signature, additional context and protocol-level safeguards akin 

to those utilized in the EdDSA framework (which falls beyond the purview of this study) 

should be implemented. This includes the integration of sequence numbers, timestamps, and 

other session-specific data into the messages. These components, which operate externally to 

the digital signature mechanism, are intended to mitigate certain attacks, notably replay attacks. 

• In the proposed multi-signature scheme, the aggregated public key X̃ has been utilized 

instead of a NIZK proof to demonstrate that the owner of the public keys knows the 

corresponding secret keys. Therefore, if the aggregated public key X̃ matches any of the 

public keys of one or more cosigners, then the signing process is rejected. 

The process for implementing these solutions is described in two sections: 

First: Schnorr Digital Signature algorithm: 
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The signature generation and verification process in Schnorr is as follows: 

To sign a message (m), Alice follows these steps: 

• Select a Private Key (x) such that 0 < x < p; 

• Calculate the Public Key (X), such that X = gx; 

• Calculate h=H(x); 

• Calculate the private nonce r = H (h||m); 

• Calculate the public nonce R = gr; 

• Calculate c =H (X, m); 

• Calculate s≡ (r + cx) mod p; 

• The signature is the pair (R, s). Thus, Alice will send the message (m), public key (X), 

(R), and (s) to Bob. 

Bob considers Alice’s signature valid only if gs = RX𝑐. 

Proof of the correctness of the algorithm: 

gs = RX𝑐, since R = gr and X= gx, then gs = gr (gx)c = gr+xc = gs, where s = r + xc. 

In the current scenario, Alice is unable to sign two different messages using the same nonce. 

This is because the private nonce changes when the message changes. However, if Alice signs the 

same message twice, it implies that she is using the same nonce. This raises a concern about the 

potential compromise of system security. For a more comprehensive understanding, let us examine 

the steps that Oscar might follow to implement a nonce reuse attack: 

  

This shows that the two signatures, s1 and s2, are identical, and subtracting one from the other 

results in zero (s1-s2=0). Therefore, there is no benefit or information gained from duplicate signatures. 

This means that the security of the system is not compromised when the same message is signed twice 

with the same nonce. The proposed method effectively prevents nonce reuse attacks by 

deterministically calculating the private nonce, ensuring it changes with each new message. Even if the 

same message is signed multiple times, the process remains secure. 

In addition, the proposed method for signing messages does not require storing any information 

during the signing process. The necessary calculations can be made from the inputs and received 

messages, eliminating the risk of manipulation through virtual machine rewinding attacks. 

To prevent potential exploitation of collision probabilities, it is recommended to use appropriate 

cryptographic hashing functions. 

Alice signs the message (m1) again: 

(1) The Private Key (𝑥1) is the same; 

(2) The Public Key X1 is the same; 

(3) h = H (𝑥1) is the same as we assumed; 

(4) private nonce r2=r1= H (h||m1); 

(5) Calculate the public nonce R2=R1; 

(6) Calculate c2=c1=H (X1, m1); 

(7) Calculate s1 = s2= r2+c2𝑥2; 

(8) The signature is the pair (R1, s1). 

Alice signs the message (m1): 

(1) Select a Private Key (𝑥1); 

(2) Calculate the Public Key X1= gx; 

(3) Calculate h = H (𝑥1); 

(4) Calculate private nonce r1=H(h||m1); 

(5) Calculate the public nonce R1= gr1 ; 

(6) Calculate c1=H (X1, m1); 

(7) Calculate s1= r1+c1𝑥1; 

(8) The signature is the pair (R1, s1). 
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Second: Proposed multi-signature scheme: 

In order to differentiate multi-signature schemes, the classification is as follows: 

• Multi-signature schemes, wherein n-of-n signers are required to collectively produce a 

valid signature. 

• Threshold signature schemes wherein any subset of size t-of-n signers out of n total signers can 

collectively produce a valid signature. 

It should be noted that this section exclusively addresses multi-signature schemes. 

The proposed multi-signature generation and verification scheme is as follows: 

- Round 1: 

A group of n signers want to co-sign a message m. Let X1 and 𝑥1 be the public and private key of 

a specific signer, where X1=g𝑥1. Let X2, …, Xn be the public keys of the other co-signers, and let (L) 

be the hash value of the multi-set of all public keys involved in the signing process, L=Hagg 

(X1|| … || X𝑛): 

• For i∈{1, …, n}, each signer computes the following: a𝑖 =Hagg (L, X𝑖 ), as well as the 

aggregated public key: X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 . The signer must check if (X̃ = X𝑖
𝑎𝑖 ); if so, then the 

signing operation is terminated. 

• The signer calculates h=H𝑎𝑔𝑔(𝑥1), computes the private nonce r1= H𝑎𝑔𝑔(h||m), computes the 

public nonce R1=gr1 , and sends R1 to all other co-signers and receives R2, …, Rn from 

other co-signers. 

- Round 2: 

• Calculate c = H𝑠𝑖𝑔 (X̃, m) and s1 ≡ r1+ca1𝑥1 (mod p); 

• Signature s1 is sent to all other co-signers. Upon receiving s2, …, s𝑛 from other co-signers, 

they then calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1  and s ≡ ∑ 𝑠𝑖

𝑛
𝑖=1 (mod p). The signature will be the pair (R, s). 

The message (m) and signature pair (R, s) will be sent to the receiver. 

The receiver follows these steps to verify the aggregated signature: 

• a𝑖=H𝑎𝑔𝑔(L, X𝑖) for i∈{1, …, n}; 

• X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 ; 

• c = H𝑠𝑖𝑔 (X̃, m); 

• The signature is accepted if gs = R X̃𝑐. 

Proof of the correctness of the algorithm: 

gs = RX̃𝑐, since R= ∏ 𝑅𝑖
𝑛
𝑖=1 =∏ 𝑔𝑟𝑖𝑛

𝑖=1 , and since X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  = ∏ (𝑔𝑥𝑖)𝑎𝑖𝑛
𝑖=1  , then: 

gs = ∏ 𝑔𝑟𝑖𝑛
𝑖=1  (∏ 𝑔𝑥𝑖𝑎𝑖𝑛

𝑖=1 )𝑐 = ∏ gr𝑖+𝑥𝑖𝑎𝑖𝑐𝑛
𝑖=1  = gr1+𝑥11𝑐 + … + grn+𝑥n𝑎n𝑐, 

gs =𝑔∑ 𝑠𝑖
𝑛
𝑖=1 = gs, because s = ∑ 𝑠𝑖

𝑛
𝑖=1 . 

To enhance comprehension of the operational mechanism of the proposed method and its 

resilience against the rogue key attack, a simple example is employed to elucidate it: 

Suppose that Alice and Bob want to co-sign a message (m) and then send this multi-signature to 

Robert (the receiver). The steps for the proposed multi-signature scheme are as follows: 

- Round 1: 

Let Xa and 𝑥a be the public and private keys of Alice, where Xa=g𝑥𝑎 , and let Xb and 𝑥b be the 

public and private keys of Bob, where Xb=g𝑥𝑏, then L = Hagg (Xa||Xb): 

• Alice computes a𝑎=Hagg (L, X𝑎), and because she already knows Bob's public key Xb (which 

is publicly available), she can calculate a𝑏 = H(L|| Xb ). After this, Alice calculates the 

aggregated public key X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏 . 

If Alice finds that X̃=X𝑏
𝑎𝑏 , then the protocol is terminated because the public key that Bob uses 

is fake, equating to Xb= (g𝑥𝑏)𝑎𝑏 ∙ (X𝑎
𝑎𝑎)−1. This manipulation suggests Bob's attempt to execute a 
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rogue key attack, exploiting his knowledge of Alice’s public key to undermine the integrity of the 

aggregated public key, calculated as X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏= X𝑎
𝑎𝑎 ∙ g𝑥𝑏 ∙ (X𝑎

𝑎𝑎)−1 = g𝑥𝑏 = X𝑏
𝑎𝑏 . By halting 

the signing process at this juncture, the protocol effectively prevents Bob from forging the 

signature by nullifying Alice’s public key contribution, thus safeguarding against potential 

signature forgery by Bob. 

Similarly, Bob computes a𝑏=Hagg (L, X𝑏), and because he already knows Alice’s public key 

Xa(which is publicly available), he can calculate a𝑎= H(L||Xa). After this, Bob calculates the 

aggregated public key X̃= X𝑎
𝑎𝑎 ∙ X𝑏

𝑎𝑏 . 

If Bob finds that X̃=X𝑏
𝑎𝑏 , then the protocol is terminated, indicating that Alice might be 

attempting a rogue key attack. 

• If neither Alice nor Bob are performing a rogue key attack, then the multi-signature steps will 

proceed. Alice calculates h=H𝑎𝑔𝑔(𝑥a), private nonce r𝑎= H𝑎𝑔𝑔(h||m), Public nonce Ra=gr𝑎 , and 

sends Ra to Bob and receives Rb from him, who calculated Rb in the same way as Alice did. 

- Round 2: 

• Alice calculates R = ∏ 𝑅𝑖
𝑛
𝑖=1 , c = H𝑠𝑖𝑔(X̃, m) and s𝑎 ≡ (r𝑎+𝑐a𝑎𝑥𝑎) mod p. 

• Alice sends the signature s𝑎 to Bob and receiving s𝑏 from him, who calculates sb in the 

same manner as Alice did. 

• The aggregated signature will be s = s𝑎 + s𝑏 (mod p). Then, the multi-signature will be the 

pair (R, s). Subsequently, the message (m) and the signature pair (R, s), will be sent to Robert. 

Robert will consider the multi-signature to be valid only if gs = R X̃𝑐 

When evaluating the efficacy of the proposed method against nonce reuse attacks, it should be 

noted that Alice is unable to sign two different messages using the same nonce. This is because the 

private nonce changes when the message does. However, if Alice signs the same message twice, it 

indicates she is using the same nonce. This raises concern about whether this compromises the security 

of the system. 

Let us assess whether the security of the system would be compromised in instances where 

Alice co-signs a message (m) twice with Bob while utilizing the same nonce: 

 

Alice signs the same message (m) again: 

(1) The Private Key (𝑥𝑎) is the same; 

(2) The Public Key X𝑎 is the same 

> Round_1; 

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏), 

  Calculate 𝑎a
⃓= a𝑎= H𝑎𝑔𝑔 (L, X𝑎); 

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  is the same; 

(5) h⃓= h = H (x); 

(6) 𝑟a
⃓= r𝑎= H (h||m); 

(7) Ra
⃓ =R𝑎= gr𝑎 , is the same; 

Alice signs the message (m): 

(1) Select a Private Key (𝑥𝑎); 

(2) Calculate the Public Key X𝑎=g𝑥𝑎 

> Round_1; 

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏), 

  Calculate a𝑎= H𝑎𝑔𝑔(L, X𝑎); 

(4) X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏 , 

  Check if X̃=𝑋𝑏
𝑎𝑏; 

(5) Calculates h=H (x); 

(6) Calculate r𝑎= H (h||m); 
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Since the two signatures (𝑠a
⃓ and s𝑎) are identical, this means that when Oscar subtracts one 

signature (s𝑎) from the other (𝑠a
⃓), the result is zero (s𝑎-𝑠a

⃓=0). Consequently, this indicates that the 

system's security remains uncompromised when signing the same message with the same nonce 

multiple times, as the duplicate signatures yield no new information. 

Now, the effectiveness of the proposed method in addressing the issue explained in the second 

scenario in Section 2.4 will be assessed as follows: 

 

Bob, signing the message (m): 

(1) Select a Private Key (𝑥𝑏); 

(2) Calculate the Public Key X𝑏 = g𝑥𝑏; 

> Round_1; 

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏) 

  Calculate a𝑏= H𝑎𝑔𝑔 (L, X𝑏); 

(4) Calculate X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏  

  Check if X̃=𝑋𝑏
𝑎𝑏; 

(5) Calculates h= H𝑎𝑔𝑔(𝑥𝑏); 

(6) Calculate r𝑏 = H𝑎𝑔𝑔(h||m); 

(7) Calculate the public nonce R𝑏=gr𝑏; 

> Round_2; 

(8) Send R𝑏 to Alice and receive R𝑎; 

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1  = 𝑅𝑎 ∙ 𝑅𝑏, 

c =H𝑠𝑖𝑔(X̃,m) and  s𝑏=r𝑏+ ca𝑏𝑥𝑏; 

(10) For any reason, the signing did not 

complete. 

(11) m signing process has been 

resumed, Calculate: 

 

Alice, signing the message (m): 

(1) Select a Private Key (𝑥𝑎); 

(2) Calculate the Public Key X𝑎= g𝑥𝑎; 

> Round_1; 

(3) Calculate L = H𝑎𝑔𝑔(X𝑎||X𝑏) 

  Calculate a𝑎= H𝑎𝑔𝑔(L, X𝑎); 

(4) Calculate X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1  = 𝑋𝑎
𝑎𝑎 ∙ 𝑋𝑏

𝑎𝑏  

  Check if X̃=𝑋𝑏
𝑎𝑏; 

(5) Calculates h= H𝑎𝑔𝑔(𝑥𝑎); 

(6) Calculate r𝑎= H𝑎𝑔𝑔(h||m); 

(7) Calculate R𝑎= gr𝑎; 

> Round_2; 

(8) Send R𝑎 to Bob and receive R𝑏; 

(9) Calculate: 

• R = ∏ 𝑅𝑖
𝑛
𝑖=1  = 𝑅𝑎 ∙ 𝑅𝑏 

• c = H𝑠𝑖𝑔(X̃,m) 

• s𝑎=r𝑎+ ca𝑎𝑥𝑎 

(10) Send s𝑎 to Bob and receive s𝑏. 

(11) For any reason, the signing did 

not complete. 

(8) send Ra
⃓ to Bob and receive R𝑏; 

> Round_2 

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1  = Ra

⃓ ∙ 𝑅𝑏 

= 𝑅𝑎 ∙ 𝑅𝑏, c = H𝑠𝑖𝑔 (X̃,m) and 

𝑠a
⃓ = s𝑎= r𝑎+ ca𝑎𝑥𝑎, 

Send s𝑎 to Bob and receive s𝑏 from 

him, and the aggregated signature 

will be: 

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1  (mod p) = s𝑎 +  s𝑏. 

(7) Calculate R𝑎= gr𝑎; 

(8) Send R𝑎 to Bob and receive R𝑏 

> Round_2; 

(9) Calculate R = ∏ 𝑅𝑖
𝑛
𝑖=1  = 𝑅𝑎 ∙ 𝑅𝑏, 

c = H𝑠𝑖𝑔(X̃,m), and s𝑎= r𝑎+ ca𝑎𝑥𝑎, 

Send s𝑎 to Bob and receive s𝑏 from 

him, and the aggregated signature 

will be: 

s ≡ ∑ 𝑠𝑖
𝑛
𝑖=1  (mod p) = s𝑎 + s𝑏. 
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In the suggested approach, Bob cannot choose different nonces for the same message. Even if Bob 

attempts to do so intentionally, Alice will still sign the same message with the same unique nonce, 

resulting in identical signatures. Specifically, the signatures (𝑠a
⃓ and s𝑎) are identical because we 

excluded the public nonce from the challenge calculations. Consequently, subtracting one signature 

from the other results in zero (s𝑎-𝑠a
⃓= 0). This means that Oscar gains no benefit or information from 

these duplicate signatures. 

Thus, the proposed method effectively thwarts nonce reuse attacks by deterministically 

calculating and changing the private nonce for each new message. Additionally, the method does not 

require storing any information during the signing process, as all necessary calculations can be derived 

from the inputs and received messages. This eliminates the risk of manipulation through virtual 

machine rewinding attacks. To mitigate the potential exploitation of collision probabilities, employing 

suitable cryptographic hashing functions is recommended. 

4. Conclusions 

The method proposed to enhance the Schnorr digital signature and two-round MuSig shows 

promise in achieving several important objectives. First, it improves the Schnorr digital signature by 

combining the private key and the message through hashing, then it hashes the result again to generate 

a private nonce, inspired by the method used in EdDSA. 

The proposed method excludes the public nonce (R) from the challenge calculations (c=H𝑠𝑖𝑔(X, R, 

m)), ensuring the uniqueness of each signature. Moreover, removing (R) from these calculations 

reduces the computational complexity, a crucial factor in constrained resources devices where every 

computational step matters. A significant advantage of this method is that it ensures the private nonce 

will be different for each new message. Even if the same message is signed multiple times with the 

same nonce, it will not make the system insecure, thus effectively solving the issue of random number 

generation failures. 

In multi-signature schemes, the proposed method compares to the MuSig signature scheme. 

While MuSig is resistant to key cancellation and rogue key attacks, it involves three rounds and is 

susceptible to nonce reuse attacks. In contrast, the proposed method is a two-round scheme that is 

• a𝑏= H𝑎𝑔𝑔 (L, X𝑏), 

• X̃= ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 , h=H𝑎𝑔𝑔(𝑥𝑏), 

• 𝑟b
⃓= H𝑎𝑔𝑔(h||m) = r𝑏, 

• 𝑅b
⃓ = 𝑔𝑟b

⃓
=R𝑏  and send to it 

Alice and receive R𝑎  from him  

… etc. 

(12) m signing process has been resumed. 

(13) Send same R𝑎 to Bob again and 

receive 𝑅b
⃓ from Bob; 

(14) Computes: 

• R⃓= ∏ 𝑅𝑖
𝑛
𝑖=1  = 𝑅𝑎 ∙ 𝑅b

⃓, 

• 𝑐⃓ = H𝑠𝑖𝑔(X̃,m) = c, 

• 𝑠a
⃓= r𝑎 + 𝑐⃓a𝑎𝑥𝑎  = s𝑎. 

(15) Send 𝑠a
⃓ to Bob and receive  

… etc. 
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immune to key cancellation, rogue key, and nonce reuse attacks, offering enhanced security with 

lower computational complexity. 

When compared to MuSig-DN, it is clear that MuSig-DN introduces inherent complexity due to 

the necessity of deploying NIZK proofs to validate the deterministic generation of nonces. This 

requirement not only increases computational overhead but also adds complexity to the 

implementation, making the protocol less practical for devices with constrained resources. In contrast, 

the proposed method utilizes the aggregated public key X̃  to demonstrate ownership of the 

corresponding secret keys. This approach eliminates the need to compute and send NIZK proofs along 

with signatures, leading to reduced computational complexity and bandwidth usage. Thus, the 

proposed method is more efficient in terms of computational complexity and bandwidth utilization, 

especially for devices with constrained resources. 

Comparing the proposed method to MuSig2, the key difference lies in how they handle nonces. 

MuSig2 allows for the use of multiple nonces based on a configured set where each signer needs to 

provide at least two nonces. These nonces are then combined to create an aggregated nonce for the 

signing process. Thus, generating and using multiple nonces in MuSig2 adds computational 

complexity, particularly in deriving the scalar “b” using a hash function. Also, sending multiple nonces 

in MuSig2 leads to higher bandwidth usage. In contrast, the proposed method employs only a single 

nonce. This streamlined approach eliminates additional computational tasks and minimizes bandwidth 

requirements, making the process more efficient and straightforward compared to MuSig2. 

Although this study does not definitively assert superiority over the established and proven 

MuSig-DN and MuSig2 methods, it represents a valuable contribution to ongoing efforts to improve 

digital signature technology. In the proposed method, the public nonce (R) serves the receiver's 

verification process to ensure the signature's validity. Additionally, the proposed method removes the 

need to store any information between signing rounds, meaning signers don't have to remember details 

such as the nonce or partial signature. They can generate these values again using public inputs and 

messages. This benefit reduces storage and computational requirements for signers and enhances 

resistance against virtual machine rewinding attacks. As a result, this approach prevents cheating in the 

public keys, reduces computational complexity, and minimizes the amount of information sent 

combined with NIZK proof, leading to better utilization of bandwidth. 
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