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Abstract: Understanding generalized Couette flow provides valuable insights into the behavior
of fluids under various conditions, contributing to the advancement of more accurate models for
real-world applications including tribology and lubrication, polymer and food processing, water
conservation and oil exploration, microfluidics, biological fluid dynamics (blood flow in vessels),
and electrohydrodynamic, and so on. The present study provided the exact asymptotic solution for
the generalized Couette flow of a non-Newtonian Jeffrey fluid in a horizontal channel immersed
in a saturated porous medium.The governing partial differential equations were transformed into a
dimensionless form using the similarity technique and the resulting system of equations is solved by
the Perturbation technique, as well as the method of the separation of variables, and computed on
MATLAB (ode15s solver).The behavior of fluid velocity was investigated and presented through 2-D
and 3-D graphs for two cases (i) when the implication of the magnetic field was strengthened and (ii)
when the magnitude of the magnetic field was fixed but its degree of inclination was altered. The
first-order chemical reactions and thermal radiation were also considered. Additionally, the effect of
numerous emerging quantities on momentum, temperature, and concentration contours characterizing
the fluid flow was depicted graphically and discussed. Furthermore, the skin friction (at different
angles of inclination and magnetic strength), Nusselt number, and Sherwood number (at different time
intervals) were evaluated at both boundaries and presented tabularly. The findings revealed that there
was a decrease in the velocity profile with an increasing degree of inclination and strength of the
magnetic field. Moreover, we observed an increment in thermal and mass flux when it was measured
over time at both of the channels. Also, the outcomes predicted an oscillatory nature of shear stress at
both of the boundries.
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1. Introduction

The study of flow phenomena in porous media (see [1–5]) has been the subject of extensive
research endeavors conducted by both theoretical and experimental investigators over the past 150
years, owing to its broad ranging applications across various scientific and technological domains such
as agricultural engineering, geophysics, soil mechanics, groundwater hydrology, filtration processes,
petroleum, ceramic, and textile engineering, and so on. Recently, it has been a subject of interest
in biomechanics and biotechnology, also. The movement of gases and liquids through porous media
is common to many chemical processes; for example a chemical catalytic reactor filled with porous
pallets is impregnated. Therefore, researchers have always been attracted to this intriguing field. Vafai
and Kim [6] derived an exact solution to examine the dynamics of the interface region between a
porous medium and the fluid layers. A numerical investigation of a convective mixed non-Newtonian
nanofluid in a two-lid square cavity in a porous medium was done by Nazari et al. [7]. Motion of
a micropolar Casson fluid in a porous material across a stretched platter was simulated numerically
by Dabe et al. [8]. Awais et al. [9] explored the heat-mass transfer phenomena for the Casson fluid
submerged in a porous medium past a shrinking wall, subject to the Lorentz force and a heat source.
Kodi et al. [10] investigated unsteady magnetohydrodynamic flow of Jeffrey fluid in porous media with
the influence of Soret effects, Hall current, and thermal radiation. Lio [11] conducted a comprehensive
study on the dynamic boundary problem associated with the flow of non-Newtonian Bingham fluids
within fractal porous media, employing both analytical and numerical methodologies. A modeling of
chemically reactive porous media through a multiple scale approach was studied by Saeedmonir [12].

The investigation of transport phenomena of electrically conducting fluid through porous media
under the influence of a magnetic field encompasses several scientific and technical domains, including
metallurgy, nuclear engineering, aerodynamic, and earth science. Magnetohydrodynamics (MHD) is
the field of physics that studies the dynamic behavior of the interaction of electrically conducting
fluids (such as plasma, ionized gases, liquid metal, and saltwater) and magnetic fields. The field was
first developed by Hannes Alfven in 1942. It combines the principles of both fluid dynamics and
electromagnetism. This intriguing field has various applications in engineering, biotechnology and the
chemical, petroleum, and metallurgical industries. These include MHD power generators and pumps,
metal casting and solidification, liquid metal cooling and heat exchangers, ion propulsion, magnetic
drug targeting, treatment of cancer tumors, magnetic therapy, and so on. Therefore, researchers
(see [13–20]) are always urged to explore more research opportunities in this field and contribute
sequentially to the advancement of magnetohydrodynamic flow. Geindreau and Auriyault [21] studied
the behavior of MHD flows in porous media. The behavior of magnetohydrodynamics convective
movement of heat through a vertical movable plate due to the impact of viscosity and thermal
conduction was investigated by Seddeek and Salama [22]. Magnetohydrodynamic flow modeling past
an unstable stretched sheet with heat radiation and fluctuating fluid characteristics was explored by
Megahed et al. [23]. The impact of heat production and Newtonian heating on dusty fluid movement in
magnetohydrodynamics between two parallel plates was examined by Ali et al. [24]. An estimaation
of the Nusselt number for a flow between two horizontal plates with an MHD second-order slip model
was done by Simsek and Hatice [25]. Awais et al. [26] researched the behavior of activation energy
and viscous dissipation on the MHD Eyring-Powell fluid with Darcy-Forchheimer and vacillating fluid
characteristics.
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Couette flow is a particular sort of flow where shearing actions of fluid layers take place between
two parallel channels, where one is stationary and the other is in constant motion. The designation
“Couette flow” is attributed to Maurice Marie Alfred Couette, a French physicist who conducted
pioneering investigations on this particular type of flow during the late 19th century. However, the
generalized Couette flow broadened this concept to more complex scenarios, such as investigating
the rheological properties of non-Newtonian fluids or circumstances in which a fluid’s characteristics
vary over time or space. This model is similar to plain Couette flow but the difference is the applied
external pressure gradient virtue of which the fluid motion takes place. The generalized form allows
for a broader understanding of fluid behavior in different flow conditions. Also, several analytical and
numerical works in literature are devoted to the study of conducting fluid flow between two parallel
plates (see [27–36]).

Chemical reaction plays a crucial role in the study of fluid flows with their ability to influence
temperature, the magnetic field, heat generation or absorption, material properties, electrical
conductivity, species transport, altering rheological characteristics, and so on. A First-order chemical
reaction is the reaction in which the reaction rate is directly proportional to concentration of a reactant
or reacting species raised to the firsy power (see Eq (2.22)). This means that if the reaction rate is
high, it will consume the species rapidly leading to significant variation in the concentration profile.
In the case of a slow reaction rate, it will take a longer time to diffuse and transport within the flow
resulting in a smoother concentration profile. The presence of first-order reactions plays a crucial
role in mixing and generating coupled heat and mass transport phenomena between the fluid layers
and the corresponding plates that can enhance or hinder reactant mixing. A first-order reaction can
create concentration gradients in the fluid flow. As the reacting species is consumed or produced, its
concentration changes along the flow direction. Maintaining the liquid flow under chemical reactions
constitutes several significant challenges in technological problems. Therefore, researchers alwyas
highlight the importance of chemical reactions in the studies of fluid flows. Redappa and Geetha [37]
explored MHD induced convection of Cu, Ag, and Fe3O4 nanoparticles of Jeffrey nanofluid in a
porous medium across a moving plate with a heat source and chemical reaction. Maiti et al. [38]
worked on the squeezing behavior of nanofluid flow between two aligned horizontal boundries with
a first-order chemical reaction and velocity slip. Mythreye et al. [39] conducted a comprehensive
study on the influence of chemical reactions on a semi-infinite vertical permeable moving plate,
considering heat absorption, magnetohydrodynamic convective heat transfer, and mass transfer. A
thorough investigation of radiative and chemically reactive MHD nanofluid under heat and mass
transfer through an infinite moving vertical plate was done by Arulmohzi et al. [40]. A numerical
investigation of magnetohydrodynamic heat-mass transport of Jeffrey fluid accross a stretched surface
under a chemical reaction and thermal radiation was presented by Narayana et al. [41]. Gulle et
al. [42] treated MHD Jeffrey fluid through an inclined erect plate under the effects of Soret ejection and
chemical reaction. Nisar et al. [43] proposed a semi-analytical solution for MHD natural convective
Jeffrey fluid under a thermal source and chemical reaction. Idowu [44] considered the impact of heat
and mass transportation on unsteady MHD oscillatory Jeffrey fluid flow through a horizontal channel
under a chemical reaction.

The investigation of non-Newtonian fluid (see [45–49]) is a fascinating area of contemporary
research since it differs from the conventional behaviors observed in a Newtonian fluid. Non-
Newtonian fluids have a spectrum of viscosities that react differently to external stress in contrast to
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the linear stress-strain connection seen in Newtonian fluid. Many salt solutions and molten polymers
are classified as non-Newtonian fluids. A few of them are toothpaste, corn starch, shampoo, cosmetics,
paints, and blood. Shear-thickening and shear-thinning liquids are included in this category, with
some examples including Bingham fluid, viscoelastic fluid, Jeffrey fluid, Casson fluid, Maxwell fluid,
Carreau fluid, and second-grade fluid. Exploring the complexities of these non-Newtonian fluids not
only broadens our comprehension of basic fluids but also holds immense potential for advancement of
real-world applications.

Jeffrey fluid, a non-Newtonian fluids, is a rate-type material and shows a viscoelastic effect. It
is appropriate, particularly for those fluids that exhibit shear-thinning behavior. It has multiple
applications in polymer processing, the food and beverage industries, biomechanics, pharmaceuticals,
and the gas and oil industries. Therefore, it has gained significient attention from a multitude of
scientists and researchers. Mopuri et al. [50] studied the behavior of magnetohydrodynamic Jeffrey
fluid through an inclined vertical porous plate. Fiza et al. [51] investigated the three-dimensional
rotating MHD Jeffrey fluid flow across two parallel plates under the action of hall current. Analysis of
heat transfer in the MHD Jeffrey fluid’s channel flow under generalized boundary conditions was done
by Aleem et al. [52]. An examination of the hemodynamics of different properties of liquid on the
peristaltic mechanism of MHD Jeffrey fluid was done by Devya et al. [53]. M. Qasim [54] explained
the phenomena of heat-mass transport of Jeffrey fluid over a stretched sheet. Dalir [55] studied the
phenomena of heat transfer and entropy generation of Jeffrey fluid past a stretched sheet under forced
convection. The impact of the Soret number on Jeffrey fluid flowing over an erect moving plate using
the finite element method was analysed by Pramod et al. [56]. A stability analysis on rheological
behavior of Jeffrey fluid in the presence of gyrotactic microorganisms was done by Sarfraz et al. [57].

Motivated by the above studies and given the practical applications of such models, the aim of
this research is to understand the behavior of the time-dependent generalized Couette flow of Jeffrey
fluid under the influence of varying magnetic intensity and with the implication of magnetic flux at
varying angles of inclination/divergence. The impacts of heat and mass transfer, thermal radiation
and first-order chemical reaction along with other non-dimensional parameters on fluid flow are
investigated in the present model. The findings are visually represented through graphs (2-D and 3-D)
and tables, providing valuable insights into the characteristics of velocity, energy, and concentration
boundary layers.

1.1. Novelty of the paper

This study educated a novel dimension by introducing a non-homogenous magnetic effect in a
transverse direction of the fluid flow at various angles of inclination at different time intervals. We
investigate the effects of this inclined induced magnetic field on the dynamic behavior of particles of
non-Newtonian Jeffrey fluid with a generalized Couette flow model to understand the complex flow
pattern of thermal, momentum, and concentration boundary layers. As far as the authors are aware, the
specific problem addressed in this article has not been explored in the existing body of literature.

1.2. Organization of the paper

Section 1 includes the literature assessment. Section 2 presents the mathematical modeling and
formulation of the problem at hand. In Section 3, an exact solution to the problem is provided. The
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obtained results are then analyzed and discussed in Section 4, utilizing tables and graphs. Section 5
is desiginated for comparision and code validation. Finally, the principal findings of the study are
summarized and listed in Section 6.

2. Formulation of the mathematical model

Consider an electrically conducting, incompressible magnetohydrodynamic Jeffrey fluid flowing
with velocity ~V∗=(u∗(η)î,0,0) between two infinite horizontal parallel plates with a channel of width L
through a saturated porous medium. The fluid motion takes place due to the movement of upper plate
with a contant velocity U in the x-axis direction and due to the external constant pressure gradient dP∗

dξ∗

while the y-axis runs perpendicular to the fluid flow. The lower plate is stationary and is subjected to
magnetic field H0 at various degree of incidence θ. The lower and upper boundries are maintained at
temperature T ∗ = T ∗o and T ∗ = T ∗1 under the first-order chemical reaction with species concentration
φ∗ = φ∗o and φ∗ = φ∗1, respectively. The flow configuration is shown in Figure 1.

L

-
𝒅𝑷∗

𝒅ξ∗

η=0

η=1

U

𝑯𝒐

    Fluid flow
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Figure 1. The physical model of the generalized Couette flow.

2.1. Governing equations

The governing flow equations are based on Navier-Stokes equations, Darcy’s Law of drag force,
and Fourier’s law of heat conduction (see [35, 44]).

Continuity equation:

δ . ~V∗ = 0. (2.1)
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Momentum equation:

ρ

∂ ~V∗
∂t∗

+ ~V∗.δ ~V∗
 = −δP∗ + δ.~S + ~R + ~J × ~H∗. (2.2)

Energy equation:

ρ
∂T ∗

∂t∗
=

(
k

Cp

)
δ2T ∗ −

(
1

Cp

)
δ.qr −

Q∗s
Cp

(T ∗ − T ∗1 ). (2.3)

Concentration equation:
∂φ∗

∂t∗
= Dmδ

2φ∗ − K∗r (φ∗ − φ1) . (2.4)

In momentum Eq (2.2), ρ is fluid density, P∗ is the pressure gradient and ~S is the extra stress tensor for
the Jeffrey fluid written as:

~S =
µ

1 + λ1
(ṙ + λ2r̈). (2.5)

Here, µ is the coefficient of viscosity, λ1 is the ratio of relaxation to retardation time, λ2 is the retardation
time, ṙ is the shear rate (deformation tensor) which is give by

ṙ = δ ~V∗ + (δ ~V∗)T , (2.6)

r̈ =
dṙ
dt

=
∂ṙ
∂t

+ (δ. ~V∗)ṙ. (2.7)

Also, ~R is Darcy’s resistance in the porous medium (Darcy’s Law) which is given by

~R = −(
µ

KD
) ~V∗ (2.8)

where KD is the Darcy’s permeability parameter in the porous medium.

Though the objective of our study is to examine the velocity profile at distinct angles of
inclination (along y-axis) of the magnetic field vector ~H∗ = (0, H0sinθ ĵ,0) as the upper plates move
from left to right. Therefore, we have ~FL. f = ~J× ~H∗, the induced Lorentz force, where ~J is the density
of electric current, which is related to the fluid velocity by Ohm’s law as:

~J = −σ~E. (2.9)

Here σ is electrical conductivity and ~E is the electrical field generated at a right angle to ~V∗ and ~H∗

which is evaluated as

~E = ~V∗ × ~H∗ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

u∗ 0 0
0 H0sinθ 0

∣∣∣∣∣∣∣∣∣ = u∗H0sinθk̂. (2.10)

By putting (2.10) into (2.9), we obtain

~J = −σu∗H0sinθk̂. (2.11)
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Now, ~FL. f takes the form

~FL. f = ~J × ~H∗ =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
0 0 −σu∗H0sinθ
0 H0sinθ 0

∣∣∣∣∣∣∣∣∣ = −σu∗H2
0 sin2θî. (2.12)

Hence, considering the x-component of Lorentz force, we have

~J × ~H∗ = −σu∗H2
0 sin2θ. (2.13)

In energy Eq (2.3), the terms k, Cp, and Q∗s, respectively, are the kinematic viscosity, specific heat, and
heat absorption coefficients. qr is the radiative heat flux vector given by:

δ.qr =
∂qr

∂η∗
= 4α2(T ∗o − T

∗) (2.14)

where α is the thermal diffusivity.
Using all of the above considerations, we obtained the following system of equations:

Momentum equation:

∂u∗

∂t∗
= −

1
ρ

dP∗

dξ∗
+

(
µ

ρ(1 + λ1)

)
∂2u∗

∂η∗2
−

(
σH2

o sin2θ

ρ

)
u∗ −

(
µ

KD

)
u∗

ρ
. (2.15)

Energy equation:

∂T ∗

∂t∗
=

(
k
ρCp

)
∂2T ∗

∂η∗2
−

(
1
ρCp

)
4α2(T ∗o − T

∗) −
(

Q∗s
ρCp

)
(T ∗ − T ∗1 ). (2.16)

Concentration equation:

∂φ∗

∂t∗
= Dm

∂2φ∗

∂η∗2
− K∗r (φ∗ − φ1) . (2.17)

The systems of equations from (2.15)–(2.17) are accompanied by the following initial and boundary
conditions.

u∗ = 0, T ∗ = T ∗0 , φ
∗ = φ∗0 ; η∗ = 0, t∗ = 0,

u∗ = 0, T ∗ = T ∗1 , φ
∗ = φ∗1 ; η∗ = L, t∗ > 0.

(2.18)

With the help of similarity transformation, we write the set of Eqs (2.15)–(2.18) in a dimensionless
form by introducing the following non-dimensional quantities into the governing equations:

ξ =
ξ∗

L
, η =

η∗

L
, u =

u∗

L
, t =

t∗U
L
,H2 =

σL2H2
0

µ
, P =

P∗L
µU

,Re =
ρLU
µ

, Pr =
ρLUCp

k
,

K =
1

KD
,R =

2αL
√

k
,Qs =

Q∗sL
2

k
, S c =

UL
Dm

,Kr =
K∗r L
U

,T =
T ∗ − T ∗1

T ∗1 − T
∗
0
, φ =

φ∗ − φ∗1
φ∗1 − φ

∗
o
.

(2.19)
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Hence, Eqs (2.15) to (2.18) now become:

Re
∂u
∂t

= −P +

(
1

1 + λ1

)
∂2u
∂η2 − (H2sin2θ + K)u. (2.20)

Pr
∂T

∂t
=
∂2T

∂η2 − (R2 + Qs)T . (2.21)

S c
∂φ

∂t
=
∂2φ

∂η2 − S cKrφ. (2.22)

The corresponding initial and boundary conditions become:

u = 0, T = 0, φ = 0 ; η = 0, t = 0
u = 1, T = 1, φ = 1 ; η = 1, t > 0.

(2.23)

3. Solution of the problem

To solve the system of Eqs (2.20)–(2.22), we apply the regular perturbation method (see [58–60]).
We have converted the system of given partial differential equations (PDEs) into ordinary differential
equations (ODEs) because there is no closed form of governing linear PDEs. The perturbation method
is a powerful tool used to solve PDEs by expanding the solution as a power series in terms of a small
parameter that can be treated as a perturbation or oscillation in the system. Hence, we have considered
a perturbed or asymptotic solution for the velocity u(η,t), temperature T (η,t), and concentration
φ(η,t) profiles which enabled us to derive the expressions up to O(γ2) with γ as a small amplitude
characterizing the motion of the mobile oscillatory upper plate. The following steps are involved:
(1) Substitute the assumed series expansion into the original PDEs and equate the coefficient of like
powers of γ.
(2) Solve each equations in the sequence seperately starting from the lower power of γ and progressing
to the higher order.
(3) Apply initial and boundary conditions to each order of the solution which helps to determine the
unknown coefficients in the expansion.
(4) Determine the convergence and validity of the obtained solution as the perturbation method
assumes that the solution is accurate with a certain range of γ values which should be sufficiently
small. Hence, we have

u(η, t) = u0(η) + γentu1(η) + o(γ2) (3.1)

T (η, t) = T0(η) + γentT1(η) + o(γ2) (3.2)

φ(η, t) = φ0(η) + γentφ1(η) + o(γ2). (3.3)

By substituting Eqs (3.1)–(3.3) into Eqs (2.20)–(2.23) and by equating harmonic and non-harmonic
terms and disregarding higher-order terms of γ, we get the following system of ordinary differential
equations.
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Zero-order series O(γ0):

λ
d2u0

dη2 − (H2sin2θ + K)u0 − P = 0. (3.4)

d2T0

dη2 − (R2 + Qs)T0 = 0. (3.5)

d2φ0

dη2 − (S cKr)φ0 = 0. (3.6)

First-order series O(γ1):

λ
d2u1

dη2 − (H2sin2θ + K + nRe)u1 = 0. (3.7)

d2T1

dη2 − (R2 + Qs + nPr)T1 = 0. (3.8)

d2φ1

dη2 − (S cKr + nS c)φ1 = 0. (3.9)

The corresponding boundary conditions are

u0 = 0, u1 = 0,T0 = 0,T1 = 0, φ0 = 0, φ1 = 0 ; η = 0
u0 = 1, u1 = 1,T0 = 1,T1 = 1, φ0 = 1, φ1 = 1 ; η = 1.

(3.10)

To solve the set of Eqs (3.4)–(3.9) subject the constraints in (3.10), we used the method of separation
of variables (see [61, 62]). This method is another mathematical technique used to solve certain types
of ordinary differential equations. By separating the variables and integrating each side, we can obtain
solutions that describe the relationship between the variables involved in the problem. This method
provides an analytical exact solution which gives more accuracy compared to other numerical methods.
Hence, we get

u0(η) =
1
λN

[
(λN + (1 − em2)em1η − (λN + (1 − em1)em2η

em2 − em1
+ 1

]
. (3.11)

u1(η) =
em4η − em3η

em4 − em3
. (3.12)

T0(η) =
em6η − em5η

em6 − em5
. (3.13)

T1(η) =
em8η − em7η

em8 − em7
. (3.14)

φ0(η) =
em10η − em9η

em10 − em9
. (3.15)

φ1(η) =
em12η − em11η

em12 − em11
. (3.16)
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Putting Eqs (3.11)–(3.16) into Eqs (3.1)–(3.3), we obtain the exact asymptotic solution for the
momentum, energy, and concentration curve as follows:

u(η, t) = −
1
λN

(
(λN + (1 − em2))em1η − (λN + (1 − em1))em2η

em2 − em1
+ 1

)
+ γent

(
em4η − em3η

em4 − em3

)
. (3.17)

T (η, t) =

(
em6η − em5η

em6 − em5

)
+ γent

(
em8η − em7η

em8 − em7

)
. (3.18)

φ(η, t) =

(
em10η − em9η

em10 − em9

)
+ γent

(
em12η − em11η

em12 − em11

)
. (3.19)

3.1. Physical parameters

Now, it is imperative to evaluate certain physical quantities of primary interest which are shear
stress or skin friction (τη), surface heat flux or the local Nusselt number (Nuη), and surface mass flux
or the local Sherwood number (S hη) which plays a significant role in the study of fluid dynamics.
Evaluating skin friction is essential because it influences the stress at the boundries and helps
in understanding the flow behavior, characterizing the drag forces and boundary layer thickness.
Similarly, by evaluating Nusselt and Sherwood numbers at different time intervals, we can capture
the time-dependent variations in the convective heat or mass transfer within the fluid or between the
channels. It plays a crucial role in the study of dynamical systems analysis such as oscillating flows
as proposed in the present research work. It has various engineering applications where heat and mass
transfer are evaluated over time to enhance overall efficiency and productivity. There are represented
in dimensionless form as (see [42]).

3.1.1. Skin friction (τ) at lower and upper channels:

τo =

(
du
dη

)
η=0

=
1
λN

(
m1(λN + (1 − em2)) − m2(λN + (1 − em1))

em2 − em1
+ 1

)
+ γent

( m4 − m3

em4 − em3

)
. (3.20)

τ1 =

(
du
dη

)
η=1

=
1
λN

(
m1em1(λN + (1 − em2)) − m2em2(λN + (1 − em1))

em2 − em1
+ 1

)
+ γent

(
m4em4 − m3em3

em4 − em3

)
.

(3.21)

3.1.2. The Nusselt number (Nu) at lower and upper channels:

Nu0 = −

(
dT
dη

)
η=0

=

( m6 − m5

em6 − em5

)
+ γent

( m8 − m7

em8 − em7

)
. (3.22)

Nu1 = −

(
dT
dη

)
η=1

=

(
m6em6 − m5em5

em6 − em5

)
+ γent

(
m8em8 − m7em7

em8 − em7

)
. (3.23)
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3.1.3. The Sherwood number (Sh) at lower and upper channels:

Sh0 = −

(
dφ
dη

)
η=0

=

( m10 − m9

em10 − em9

)
+ γent

( m12 − m11

em12 − em11

)
. (3.24)

Sh1 = −

(
dφ
dη

)
η=1

=

(
m10em10 − m9em9

em10 − em9

)
+ γent

(
m12em12 − m11em11

em12 − em11

)
. (3.25)

4. Results and discussion

This section discusses the major findings of the proposed research work. The results are dipicted
through graphs (2D and 3D) and tables. The objective of drawing 3-D graphs is to show clearly the
complex flow behavior of fluid with increasing strength of magnetic source and changing its direction
of implication because 3-D graphs are useful for qualitative flow visualization.

4.1. The effect of the Reynolds number (Re)

Figures 2(a) and 2(b) respectively, present a positive influence of the Reynolds number Re on the
velocity u(η) and temperature T (η) profile. It is a dimensionless quantity which predicts the transition
from laminar to turbulent or fluctuations in fluid layers. It is the ratio of inertial force to viscous
force. The flow is laminar and linear at the lower stationary plate due to a no-slip condition. As the
Re increases, the fluid becomes more complex and oscillatory while flowing toward the upper moving
plate. This is due to the dominance of the inertial force over the viscous force causing the fluid to
become less viscous and less resistive. It leads to a transition or fluctuations in the fluid layers moving
from the lower to upper channel, consequently energizing the fluid motion and temperature.

Figure 2. Effect of the Reynolds number (Re) on u(η) and T (η).

4.2. The effect of the permeability parameter (K)

Figures 3(a)–3(c) demonstrate a rising pattern of u(η), T (η), and φ(η) profile with growing values
of porosity parameter K which describes the degree of permeability of a material or medium. It allows
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fluid to flow smoothly. Hence, the momentum profile is more uniform which can be seen through
velocity graph 3(a). Similarly, in the context of temperature, permeability also influence heat transfer
within porous medium and channels. Higher K value facilitate better heat transfer between the fluid
and solid boundries which increases the temperature profile as shown in Figure 3(b). Permeability also
plays a crucial role in shaping the concentration profile within the generalized Couette flow system.
It effects the transport or dispersion of solutes or particles between the medium and adjacent walls.
Higher permeability K values near the boundries leads to a smoother concentration profile as shown in
Figure 3(c).

Figure 3. The effect of the permeability parameter (K) on u(η), T (η), and φ(η).

4.3. The effect of the Jeffrey parameter (λ1)

Figures 4(a)–4(c) depict the effect of the Jeffrey fluid parameter on the velocity u(η), temperature
T (η), and concentration φ(η) contour. The parameter λ1 is related to the relaxation or retardation
time of the fluid. The analysis reveals retardation in u(η) with increasing values of λ1 as shown in
Figure 4(a). The escalating value of λ1 corresponds to a longer relaxation time and high viscosity
of the fluid consequently retards the fluid velocity. However, the fluid temperature and concentration
increases with increasing λ1 values as represented in Figures 4(b) and 4(c) because of heat and mass
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transfer mechanisms causing the movement of energy and solutes within the fluid.

Figure 4. The effect of the Jeffrey parameter (λ1) on u(η), T (η), and φ(η).

4.4. The effect of the magnetic field strength (H)

Case(i): Figures 5(a) and 5(b), respectively, are the 2D and 3D graphs of the velocity u(η) contour
under the influence of the magnetic field H. Both of the figures witness the decreasing behavior of
velocity with the strength of the magnetic field intensity, which can be seen through the shaded region
in the 3-D graph. The reason for this is that, when the bottom plate is magnetized strongly, the Lorentz
force FL. f arises from the interaction of the strong magnetic fields and electrically conducting Jeffrey
fluid, which creates a drag or resisitive force at the channel, which reduced the efficiency of the fluid
flow and retards the velocity gradients near the walls.
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Figure 5. The effect of the magnetic field (H) on u(η).

4.5. The effect of the magnetic field at distinct angle of divergence (θ)

Case(ii): Figures 6(a) and 6(b), respectively, depict the 2D and 3D plots of the velocity u(η) at
different angles of divergence θ. The velocity decreases with changing the direction of the magnetic
field, which can be observed in both the 2-D and 3-D plots. We can see that when there is no inclination
that is θ = 0o, velocity curve (the blue shaded slope region) is bent further, showing the highest rate of
fluid velocity. As the degree of inclination is increased, θ > 0o, it creates pressure in the direction of
the fluid flow which pushes the upper plate from left to right, that is, it is rolling or sliding the upper
plate over the lower one. This phenomena creates a friction between the plates which creates drag or
resistance that retards the fluid velocity toward the upper region. The other reason for this is because
of the introduction of an inclined magnetic field transversely or vertically in the opposite direction of
the fluid motion that retards the fluid velocity u(η).

Figure 6. The effect of the magnetic field inclination (θ) on u(η).
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4.6. The effect of heat generation parameter (Qs)

Figures 7(a) and 7(b) reveal the outcomes of heat source/generation parameter Qs on temperature
T (η) and concentration φ(η). It is clear from the Figure 7(a) that T (η) rises with growing values
of Qs. The heat source can modify the temperature gradient across the fluid domain. Depending
on the distribution and intensity of the heat source, the temperature gradient may become steeper
or more uniform. A higher estimation of Qs increases the kinetic energy or internal energy of the
fluid particles yielding an increment in thermal boundary layers, and consequently increasing the
temperature. The systems involving chemical reactions and a heat source can influence reaction
rates and species concentrations. The temperature rises due to the heat source thereby affecting the
concentrations of reactants and products in the fluid. Therefore, we observed an inverse effect of Qs on
φ(η) (see Figure 7(b)) because of the temperature gradient or thermal diffusion alters the mass transfer
between the flow channels.

Figure 7. The effect of heat source parameter (Qs) on T (η) and φ(η).

4.7. The effect of the Schmidt number (S c)

Figure 8 explains the influence of the Schmidt number S c on the concentration φ(η) profile.
The Schmidt number is a dimensionless quantity defined by the ratio of the momentum diffusivity
(kinematic viscosity) to mass diffusivity. Physically, φ(η) is diminishing with higher values of S c. In
Couette flow, the convective momentum transport due to the relative motion of the plates dominates
over the mass diffusion resulting in less mass transfer/distribution from the plates to the flow region.
Hence, the concentration gets declined.
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Figure 8. The effect of the Schmidt Number (S c) on φ(η).

4.8. The effect of the Prandtl number (Pr)

The Prandtl number (Pr) is a dimensionless parameter that plays a crucial role in fluid dynamics
and heat transfer. The Prandtl number also influences the diffusion of mass or concentration in fluid
flows. Figures 9(a) and 9(b), respectively, exhibit the declining behavior of T (η) and φ(η) with growing
values of Pr. A higher Prandtl number indicates the dominance of momentum diffusivity over thermal
diffusivity and mass diffusivity. The fluid is less effective in diffusing energy and the solute within the
flow medium. This means that thermal and species distribution has a slower rate of decay between
fluid layers. Consequently, the temperature and concentration profiles decline.

Figure 9. The effect of the Prandtl Number (Pr) on T (η) and φ(η).

AIMS Mathematics Volume 9, Issue 8, 20245–20270.



20261

4.9. The effect of the chemical reaction parameter (Kr)

Attributes of the chemical reaction parameter Kr on fluid the temperature T (η) and concentration
φ(η) curve are outlined in Figures 10(a) and 10(b). We can observe in Figure 10(b), a decreasing
pattern of species concentration with increasing value of the chemical reaction parameter. This is due
to the reduction of the molecular diffusivity with a higher consumption of the chemical species during
the reaction causing less mass transfer between the fluid and the adjacent channels. Consequently,
chemical reaction influences the temperature profile and affects the energy balance between the plates.
This is due to thermal radiation or absorption during the reaction increasing, the temperature as shown
in Figure 10(a).

Figure 10. The effect of the chemical reaction parameter (Kr) on T (η) and φ(η).

4.10. The effect of the thermal radiation parameter (R)

A rise in the radiation parameter R increases the temperature T (η), which can be seen in Figure 11.
This is due to the contribution of conductive heat/energy transmission from the heated plates to the
fluid layers. Further, in the case of fluid exhibiting non-Newtonian behavior, the presence of a heat
source and chemical reaction also influence the thermal radiation, and thus the temperature profile,
because of the interaction with the fluid’s rheological properties.
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Figure 11. The effect of the thermal radiation (R) on T (η).

4.11. The variation of skin friction (τ) with diferent angles of inclination (θ)

From Table 1, we can see that the nature of skin friction at both of the channels is osscilatory and
increasing. The reason for this is when the direction of inclination (θ) of the magnetic fields changes,
the upper plate starts sliding or rolling over the lower one from left to right under the pressure gradient,
which creates an oscillatory increasing behavior of the fluid near the upper plate and creats more stress
or drag at the lower plate. This periodic nature is also due to internal fluctuation of fluid particles due to
the Van der Waals forces (attraction and repulsion) between atoms due to the relative sliding or motion
of the fluid layers. Further, increasing the degree of magnetization to the lower wall consequently
increases the drag or Lorentz force in a transverse direction of the fluid flow resulting in a rising shear
stress at the lower boundary than that of the upper boundary.

Table 1. Skin friction τη at lower (η = 0) and upper (η = 1) plates.

θ τ0 τ1

30o 0.023985 −3.057531
45o 0.017796 −3.838868
60o 0.130303 −3.648913
90o 0.046184 −3.090201

4.12. The variation of skin friction (τ) with different magnitudes of the magnetic field (H)

Evaluating skin friction at both boundaries becomes essential because of the implication of strong
magnetic fields to the lower plate. It influences the shear stress at both of the boundries and helps
in understanding the flow behavior, characterizing the drag forces and boundary layer thickness. In
Table 2, we can see that the shear stress is greater at the lower boundary than that at the upper boundary
because the fluid particles are attached more to the lower plate due to the no-slip condition and the
viscosity. When a strong magnetic field is applied directly to the lower plate, it increases the electrical
conductivity of Jeffrey fluid particles near the lower channel and starts moving upwards with a high
velocity, resulting in a reduction of the shear stress toward the upper channel.
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Table 2. Skin friction τη at the lower (η = 0) and upper (η = 1) plates.

H τ0 τ1

1 0.046184 −3.090201
2 0.242038 −4.353618
3 0.312312 −5.786404
4 0.301381 −7.371873

4.13. The variation of the Nusselt number (Nu) at different intervals of time (t)

Table 3 indicates the increasing rate of heat transfer over time that is the thermal/heat flux, which
represents the time rate of heat movement per unit area. Heat or thermal transmission occurs in
generalized Couette flow as a result of temperature differences between plates due to the heat source.
Therefore, as time passes, the rate of heat transmission (Nuη) between the plates and the medium
increases, as shown in Table 3.

Table 3. The Nusselt number Nuη at the lower (η = 0) and upper (η = 1) plates.

t Nu0 Nu1

0.0 1.018466 1.581497
0.2 1.021850 1.586920
0.4 1.025303 1.592453
0.6 1.028826 1.598097
0.8 1.032420 1.603856
1.0 1.036087 1.609731

4.14. The variation of the Sherwood number (Sh) at different intervals of time (t)

The Sherwood number represents the rate of mass transfer or mass flux per unit area. In generalized
Couette flow, mass flux occurs when there is a concentration gradient of solute in the flow medium
between the channels. We have observed in Table 4 that the rate of mass transfer is less at the lower
wall than that at the upper wall. The reason for this is that, as time passes, the fluid flows from the lower
to upper region, and it attracts the particles or species from preceding layers leading to a concentration
difference between the fluid layers and a thicker boundary layer forms near the upper flow area. It
consequently increases mass diffusivity of the fluid and hence the mass flux (Sh).

Table 4. The Sherwood number Shη at the lower (η = 0) and upper (η = 1) plates.

t Sh0 Sh1

0.0 0.872760 1.920741
0.2 0.875627 1.927384
0.4 0.878552 1.934161
0.6 0.881536 1.941076
0.8 0.884580 1.948130
1.0 0.887686 1.955326
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5. Comparision and code validation

For the accuracy and convergence of the proposed asymptotic analytical solution, we have compared
our result with the work of Elshabrawy et al. [36] for temperature profile at different values of the y-
axis cordinate η at Qs = 0.2 and Pr = 0.4 for the limiting case taking the thermal radiation R = 0. We
have found that our results are in good agreement with Elshabrawy et al. [36] as displayed in Table 5.

Table 5. A comparision table for the temperature profile T (η, t).

η Present
T (η, t)

Elshabrawy
et al. [36]

% error

0.2 0.125 0.124 0.8
0.5 0.147 0.144 2.04
0.8 0.198 0.196 1.01

6. Conclusions

This section provides the key outcomes and a few of the potential implications of the present
research work. The research focused on the behavior of an unsteady magnetohydrodynamic oscillatory
flow of non-Newtonian Jeffrey fluid between two infinite horizontal parallel channels. The fluid was
moving under the external pressure gradient along the direction of the upper channel and the lower
fixed channel was magnetized transversely. We investigated two scenarios regarding the velocity
distribution for the proposed generalized Couette flow. The first case involved changing the magnetic
flux strength, while the second case examined the effects of a magnetic field at different angles of
inclination while keeping its magnitude constant. The study also encompassed the dynamic impacts of
first-order chemical reaction, thermal radiation, and various originating flow parameters on the velocity,
temperature, and concentration profile. Moreover, the exact asymptotic solution of the generalized
Couette flow was obtained using the perturbation method and the method of separation of variables
and then computed on MATLAB. Further,the shear-stress, heat, and mass flux were also evaluated and
represented through tables. Also, the present analytical solution for the temperature profile T (η, t) was
compared with previously published research work for the limiting case, and the findings indicated a
high level of abidance. The major findings of our proposed problem are listed below:

• The fluid velocity u(η) increases with increasing the Reynolds number (Re) and permeability
parameter (K) while it retards with increasing magnetic field strength (H), angle of inclination
(θ), and Jeffrey fluid parameter (λ1).
• Growing values of the Reynolds number (Re), Jeffrey fluid parameter (λ1), porosity parameter (K),

heat generation parameter (Qs), rate of chemical reaction (Kr) and thermal radiation (R) elavate
the temperature profile T (η) while an inverse effect is observed on T (η) with rising values of the
Prandtl number (Pr).
• The concentration profile φ(η) enhanced with Jeffrey fluid parameter (λ1) and porosity parameter

(K). However, it diminished with rising values of the Prandtl number (Pr), Schmidt number (S c),
heat source (Qs), and chemical reaction parameter (Kr).
• By increasing the magnetic field H (θ fixed) and increasing divergence θ of magnetic field
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intensity (H fixed) in both of the cases, we found an oscillatory nature of the local skin friction
(shear stress) τ at both of the channels. Also its effect is stronger at the lower channel than that at
the upper channel.
• Both the Nusselt number (heat flux)Nuη and the Sherwood number (mass flux)Shη are increasing

over time and are less at the lower wall than the values at the upper wall.
• The study has numerious potential applications in enviromental science (geophysics, river and

estuary dynamics, atmospherical boundary layer, transport phenomena) and chemical science
(chemical reactors, magnetic seperation processes, microfluidics, and lab-on-a-chip (LOC)
devices).
• Future research should be explore phase transitions in multi-phase flows like liquid-gas, solid-

liquid, and gas-solid interactions between two microchannels.
• Developing advanced computational and simulation techniques will improve turbulence models

to control the laminar-turbulence transition and grid resolution for better understanding of the
complex flow pattern and, hence, assist in solving boundary value problems.

Appendix

λ = 1
1+λ1

, N= H2 sin2θ+K
λ

, m1=
√

N , m2= -
√

N , M= H2 sin2θ+K+nRe
λ

, m3 =
√

M, m4= -
√

M, E= R2+Qs ,

m5 =
√

E , m6 = -
√

E , F = (R2 + Qs + nPr) , m7=
√

F , m8 = -
√

F, C=KrS c , m9=
√

C,

m10= -
√

C , D = (KrS c + nS c) , m11=
√

D, m12= -
√

D, C1=
1
λN - C2 , C2= - 1

λN

(
λN+(1−em2 )

em2−em1

)
,

C3= - C4 , C4=
1

em4−em3 , C5= - C6 , C6=
1

em6−em5 , C7= - C8 , C8=
1

em8−em7 ,

C9= - C10 , C10 = 1
em10−em9 , C11= - C12 , C12 = 1

em12−em11 .
The graphs and tables are based on the following values of different parameters, wherever they need
to be fixed:
Re = 3, K = 0.5, λ1 = 0.5, H = 1, P = 1, n = 0.1, t = 1, Pr = 1, R = 1, Qs = 1, S c = 2, Kr = 1,
γ = 0.2, θ = 90o.
Superscripts:
* - Dimensional quantity;
′ - Differentiation w.r.t η and ξ.
Cordinates:
η - y-axis cordinate;
ξ - x-axis cordinate.
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19. A. Pothérat, J. Sommeria, R. Moreau, An effective two-dimensional model for
MHD flows with transverse magnetic field, Eng. Sci. Tech., 18 (2015), 309–317.
http://dx.doi.org/10.1017/S0022112000001944

20. A. Sharma, A. V. Dubewar, MHD flow between two parallel plates under the influence of inclined
magnetic field by finite difference method, Int. J. Innov. Tech. Explor. Eng., 52 (2019), 259–265.
Available from: https://api.semanticscholar.org/CorpusID:219632895.

21. C. Geindreau, J. L. Auriault, Magnetohydrodynamic flows in porous media, J. Fluid. Mech., 466
(2002), 343–363. https://doi.org/10.1017/S0022112002001404

22. M. A. Seddeek, F. A. Salama, The effects of temperature dependent viscosity and
thermal conductivity on unsteady MHD convective heat transfer past a semi-infinite vertical
porous moving plate with variable suction, Comput. Mat. Sci., 40 (2006), 186–192.
https://doi.org/10.1016/j.commatsci.2006.11.012

23. A. M. Megahed, M. G. Reddy, W. Abbas, Modeling of MHD fluid flow over an unsteady stretching
sheet with thermal radiation, variable fluid properties and heat flux, Math. Comput. Simul., 185
(2021), 583–593. https://doi.org/10.1016/j.matcom.2021.01.011

AIMS Mathematics Volume 9, Issue 8, 20245–20270.

https://dx.doi.org/https://doi.org/10.1063/5.0078654
https://dx.doi.org/https://doi.org/10.1016/j.compgeo.2023.105818
https://dx.doi.org/https://doi.org/10.1016/S0020-7225(99)00063-4
https://dx.doi.org/https://doi.org/10.1016/S0020-7225(99)00063-4
https://dx.doi.org/https://doi.org/10.1016/j.jestch.2014.12.006
https://dx.doi.org/http://dx.doi.org/10.1016/j.aej.2013.02.003
https://dx.doi.org/https://doi.org/10.1016/j.aej.2017.02.012
https://dx.doi.org/https://doi.org/10.1016/j.aej.2020.01.043
https://dx.doi.org/https://doi.org/10.1016/j.ijft.2020.100061
https://dx.doi.org/http://dx.doi.org/10.1017/S0022112000001944
https://api.semanticscholar.org/CorpusID:219632895.
https://dx.doi.org/https://doi.org/10.1017/S0022112002001404
https://dx.doi.org/https://doi.org/10.1016/j.commatsci.2006.11.012
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.01.011


20268

24. F. Ali, G. Ali, A. Khan, I. Khan, E. T. Eldin, M. Ahmad, Effects of Newtonian heating and heat
generation on magnetohydrodynamics dusty fluid flow between two parallel plates, Front. Mater.,
10 (2023), 1120963. https://doi.org/10.3389/fmats.2023.1120963

25. H. Simsek, Evaluation of Nusselt number for a flow in a parallel plates using
magnetohydrodynamics second-order slip model, J. Heat. Transf., 144 (2022), 052101.
https://doi.org/10.1115/1.4053370

26. M. Awais, T. Salahuddin, S. Muhammad, Effects of viscous dissipation and activation energy for
the MHD Eyring-powell fluid flow with Darcy-Forchheimer and variable fluid properties, Ain.
Shams Eng. J., 15 (2024), 102422. https://doi.org/10.1016/j.asej.2023.102422

27. C. Y. Wang, Starting flow in a channel with two immiscible fluids, J. Fluids Eng., 139 (2017),
124501. https://doi.org/10.1115/1.4037495

28. L. Yi, C. Wang, S. G. Huisman, C. Sun, Recent developments of turbulent emulsions in Taylor-
Couette flow, Philos. T. R. Soc. A, 381 (2023), 20220129. https://doi.org/10.1098/rsta.2022.0129

29. P. Dash, K. L. Ojha, B. K. Swain, G. C. Dash, MHD Couette flow and heat transfer in a rotating
channel in presence of viscous dissipation and heat source/sink, Numer. Heat Tr. A-Appl., 2023,
1–6. https://doi.org/10.1080/10407782.2023.2237224

30. D. Liu, Y. Z. Song, S. L. Sun, S. Yang, B. Ahmad, T. Muhammad, Heat transfer performance and
entropy generation analysis of Taylor-Couette flow with helical slit wall, Case Stud. Therm. Eng.,
53 (2024), 103852. https://doi.org/10.1016/j.csite.2023.103852

31. J. Mnganga, Effects of chemical reaction and Joule heating on MHD generalized Couette
flow between two parallel vertical porous plates with induced magnetic field and Newtonian
heating/cooling, Int. J. Math. Math. Sci., 2023 (2023). https://doi.org/10.1155/2023/9134811

32. S. Jaiswal, P. K. Yadav, Physics of generalized couette flow of immiscible fluids in anisotropic
porous medium, Int. J. Mod. Phys. B, 2023, 2450377. https://doi.org/10.1142/S0217979224503776

33. M. Nazeer, F. Hussain, M. O. Ahmad, S. Saeed, M. I. Khan, S. Kadry, et al., Multi-phase flow of
Jeffrey fluid bounded within magnetized horizontal surface, Surf. Interfaces, 22 (2020), 100846.
https://doi.org/10.1016/j.surfin.2020.100846

34. W. Cheng, D. I. Pullin, R. Samatney, X. Luo, Numerical simulation of turbulent, plane parallel
Couette-Poiseuille flow, J. Fluid Mech., 955 (2023). https://doi.org/10.1017/jfm.2022.1023

35. K. Ramesh, Effects of viscous dissipation and Joule heating on the Couette and Poiseuille
flows of a Jeffrey fluid with slip boundary conditions, Propuls. Power Res., 7 (2018), 329–341.
https://doi.org/10.1016/j.jppr.2018.11.008

36. M. Elshabrawy, O. Khaled, W. Abbas, S. E. Beshir, M. Abdeen, Analytical solution of thermal
effect on unsteady visco-elastic dusty fluid between two parallel plates in the presence of different
pressure gradients, Beni-Suef U. J. Basic, 12 (2023). https://doi.org/10.1186/s43088-023-00410-8

37. B. Reddappa, G. Ramakrishnan, Effects of second order chemical reaction on MHD forced
convection Cu, Ag, and Fe3O4 nanoparticles of Jeffrey Nanofluid over a moving plate in a
porous medium in the presence of heat source/sink, J. Integ. Sci. Tech., 12 (2024), 762–762.
http://dx.doi.org/10.62110/sciencein.jist.2024.v12.762

AIMS Mathematics Volume 9, Issue 8, 20245–20270.

https://dx.doi.org/https://doi.org/10.3389/fmats.2023.1120963
https://dx.doi.org/https://doi.org/10.1115/1.4053370
https://dx.doi.org/https://doi.org/10.1016/j.asej.2023.102422
https://dx.doi.org/https://doi.org/10.1115/1.4037495
https://dx.doi.org/https://doi.org/10.1098/rsta.2022.0129
https://dx.doi.org/https://doi.org/10.1080/10407782.2023.2237224
https://dx.doi.org/https://doi.org/10.1016/j.csite.2023.103852
https://dx.doi.org/https://doi.org/10.1155/2023/9134811
https://dx.doi.org/https://doi.org/10.1142/S0217979224503776
https://dx.doi.org/https://doi.org/10.1016/j.surfin.2020.100846
https://dx.doi.org/https://doi.org/10.1017/jfm.2022.1023
https://dx.doi.org/https://doi.org/10.1016/j.jppr.2018.11.008
https://dx.doi.org/https://doi.org/10.1186/s43088-023-00410-8
https://dx.doi.org/http://dx.doi.org/10.62110/sciencein.jist.2024.v12.762


20269

38. H. Maiti, S. Mukhopadhyay, Squeezing unsteady nanofluid flow among two parallel plates
with first-order chemical reaction and velocity slip, Heat Transf., 53 (2024), 1790–1815.
http://dx.doi.org/10.1002/htj.23015

39. A. Mythreye, J. P. Pramod, K. S. Balamurugan, Chemical reaction on unsteady MHD convective
heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption,
Proc. Eng., 127 (2015), 613–620. https://doi.org/10.1016/j.proeng.2015.11.352

40. S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz, S.
Noeiaghdam, Heat and mass transfer analysis of radiative and chemical reactive effects on
MHD nanofluid over an infinite moving vertical plate, Results Eng., 14 (2022), 100394.
https://doi.org/10.1016/j.rineng.2022.100394

41. P. V. S. Narayana, D. H. Babu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid
over a stretching sheet with chemical reaction and thermal radiation, J. Taiwan Inst. Chem. Eng.,
59 (2015), 18–25. https://doi.org/10.1016/j.jtice.2015.07.014

42. N. Gulle, R. Kodi, Soret radiation and chemical reaction effect on MHD Jeffrey fluid flow past an
inclined vertical plate embedded in porous medium, Mater. Today Proc., 50 (2021), 2218–2226.
https://doi.org/10.1016/j.matpr.2021.09.480

43. K. S. Nisar, R. Mohapatra, S. R. Mishra, M. G. Reddy, Semi-analytical solution of MHD free
convective Jeffrey fluid flow in the presence of heat source and chemical reaction, Ain. Shams Eng.
J., 12 (2020), 837–845. https://doi.org/10.1016/j.asej.2020.08.015

44. A. S. Idowu, Effect of heat and mass transfer on unsteady MHD oscillatory flow of Jeffrey
fluid in a horizontal channel with chemical reaction, IOSR J. Math., 8 (2013), 74–87.
http://dx.doi.org/10.9790/5728-0857487

45. B. Jalili, A. M. Ganji, A. Shateri, P. Jalili, D. D. Ganji, Thermal analysis of Non-Newtonian visco-
inelastic fluid MHD flow between rotating disks, Case Stud. Therm. Eng., 49 (2023), 103333.
https://doi.org/10.1016/j.csite.2023.103333

46. S. P. Samrat, Y. H. Gangadharaiah, G. P. Ashwinkumar, N. Sandeep, Effect of exponential heat
source on parabolic flow of three different non-Newtonian fluids, J. Process. Mech. Eng., 236
(2022), 2131–2138. https://doi.org/10.1177/09544089221083468

47. S. A. Wajihah, D. S. Sankar, A review on non-Newtonian fluid models for multi-
layered blood rheology in constricted arteries, Arch. Appl. Mech., 93 (2023), 1771–1796.
https://doi.org/10.1007/s00419-023-02368-6

48. A. Chang, K. Vafai, H. G. Sun, Flow and heat transfer characteristics of non-Newtonian
fluid over an oscillating flat plate, Numer. Heat Tr. A-Appl., 79 (2021), 721–733.
https://doi.org/10.1080/10407782.2021.1903232

49. W. Selby, P. Garland, I. Mastikhin, A simple portable magnetic resonance technique for
characterizing circular couette flow of non-Newtonian fluids, J. Magn. Reson., 345 (2022), 107325.
https://doi.org/10.1016/j.jmr.2022.107325

50. O. Mopuri, A. Sailakumari, A. Ganjikunta, E. Sudhakara, K. VenkateswaraRaju, P. Ramesh, et al.,
Characteristics of MHD Jeffery fluid past an inclined vertical porous plate, CFD Lett., 16 (2024),
68–89. https://doi.org/10.37934/cfdl.16.6.6889

AIMS Mathematics Volume 9, Issue 8, 20245–20270.

https://dx.doi.org/http://dx.doi.org/10.1002/htj.23015
https://dx.doi.org/https://doi.org/10.1016/j.proeng.2015.11.352
https://dx.doi.org/https://doi.org/10.1016/j.rineng.2022.100394
https://dx.doi.org/https://doi.org/10.1016/j.jtice.2015.07.014
https://dx.doi.org/https://doi.org/10.1016/j.matpr.2021.09.480
https://dx.doi.org/https://doi.org/10.1016/j.asej.2020.08.015
https://dx.doi.org/http://dx.doi.org/10.9790/5728-0857487
https://dx.doi.org/https://doi.org/10.1016/j.csite.2023.103333
https://dx.doi.org/https://doi.org/10.1177/09544089221083468
https://dx.doi.org/https://doi.org/10.1007/s00419-023-02368-6
https://dx.doi.org/https://doi.org/10.1080/10407782.2021.1903232
https://dx.doi.org/https://doi.org/10.1016/j.jmr.2022.107325
https://dx.doi.org/https://doi.org/10.37934/cfdl.16.6.6889


20270

51. M. Fiza, A. Isubie, H. Ullah, N. N. Hamadneh, S. Islam, I. Khan, Three-dimensional rotating flow
of MHD Jeffrey fluid flow between two parallel plates with impact of hall current, Math. Prob.
Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/6626411

52. M. Aleemand, M. I. Asjad, A. Ahmadian, M. Salimi, M. Ferrara, Heat transfer analysis of channel
flow of MHD Jeffrey fluid subject to generalized boundary conditions, Eur. Phys. J. Plus, 135
(2020). https://doi.org/10.1140/epjp/s13360-019-00071-6

53. B. B. Divya, G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, The hemodynamics of
variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass
transfer, Alex. Eng. J., 59 (2020), 693–706. https://doi.org/10.1016/j.aej.2020.01.038

54. M. Qasim, Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink,
Alex. Eng. J., 52 (2013), 571–575. https://doi.org/10.1016/j.aej.2013.08.004

55. N. Dalir, Numerical study of entropy generation for forced convection flow and heat
transfer of a Jeffrey fluid over a stretching sheet, Alex. Eng. J., 53 (2014), 769–778.
https://doi.org/10.1016/j.aej.2014.08.005

56. P. P. Kumar, B. S. Gaud, B. S. Malga, Finite element study of Soret number effects on MHD flow of
Jeffrey fluid through a vertical permeable moving plate, Partial Differ. Equ. Appl. Math., 1 (2020),
100005. https://doi.org/10.1016/j.padiff.2020.100005

57. M. Sarfraz, M. Khan, Rheology of gyrotactic microorganisms in Jeffrey fluid flow: A stability
analysis, Mod. Phys. Lett. B, 38 (2024), 2450003. https://doi.org/10.1142/S0217984924500039

58. A. H. Nayfeh, Perturbation methods, John Wiley and Sons, 2008.
https://doi.org/10.1002/9783527617609

59. B. Shivamoggi, Perturbation methods for differential equations, Birkhäuser Boston, 2003.
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