Mathematics

Research article

Repdigits base η as sum or product of Perrin and Padovan numbers

Hunar Sherzad Taher and Saroj Kumar Dash*

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India

* Correspondence: Email: sarojkumar.dash@vit.ac.in.

Abstract

Let $\left\{E_{n}\right\}_{n \geq 0}$ and $\left\{P_{n}\right\}_{n \geq 0}$ be sequences of Perrin and Padovan numbers, respectively. We have found all repdigits that can be written as the sum or product of E_{n} and P_{m} in the base η, where $2 \leq \eta \leq 10$ and $m \leq n$. In addition, we have applied the theory of linear forms in logarithms of algebraic numbers and Baker-Davenport reduction method in Diophantine approximation approaches.

Keywords: exponential Diophantine equation; repdigit; linear forms in logarithms; Padovan numbers; Perrin numbers
Mathematics Subject Classification: 11B39, 11D45, 11D61, 11J70, 11J86

1. Introduction

The sequence of Padovan numbers $\left\{P_{n}\right\}_{n \geq 0}$ is defined by the following recurrence sequence:

$$
P_{n}= \begin{cases}1 & \text { if } n=0, \\ 1 & \text { if } n=1, \\ 1 & \text { if } n=2, \\ P_{n-2}+P_{n-3} & \text { if } n \geq 3 .\end{cases}
$$

The first few terms are as follows:

$$
1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200, \ldots
$$

The Perrin sequence $\left\{E_{n}\right\}_{n \geq 0}$ that is derived from the recurrence relation is as follows:

$$
E_{n}= \begin{cases}3 & \text { if } n=0, \\ 0 & \text { if } n=1, \\ 2 & \text { if } n=2, \\ E_{n-2}+E_{n-3} & \text { if } n \geq 3 .\end{cases}
$$

The first few terms are as follows:

$$
3,0,2,3,2,5,5,7,10,12,17,22,29,39,51,68,90,119,158,209,277, \ldots
$$

The Padovan and Perrin numbers are the sequences $A 000931$ and $A 001608$ respectively, in the online encyclopedia of integer sequences (OEIS).

A natural number N is called a base η repdigit if it is of the form

$$
N=d\left(\frac{\eta^{b}-1}{\eta-1}\right), \quad \text { where } 1 \leq d \leq \eta-1 \text { and for some } b \geq 1
$$

When $\eta=10$, the number N is a repdigit. Recently, many mathematicians have investigated the solutions to the Diophantine equations that involve repdigits and linear recurrence sequences. Lomelí and Hernández [1] showed that the only repdigits that can be written as sums of two Padovan numbers are $11,22,33,44,66,77,88,3333$.

Trojovský [2] found all repdigits that can be written as sums of Fibonacci and Tribonacci numbers. Bednařík and Trojovská [3] studied the repdigits that can be expressed as products of Fibonacci and Tribonacci numbers. Erduvan et al. [4-6] expressed all repdigits in base b as products of two Fibonacci, two Lucas, two Pell, and two Pell-Lucas numbers. In 2022, the same authors [7] examined all repdigits in base b that are represented as the difference between two Fibonacci numbers.

Moreover, Bhoi and Ray [8] demonstrated that only Perrin numbers that are expressible as the sum of two repdigits are P_{11} and P_{20}. Rihane and Togbé [9] found all repdigits that can be expressed as products of consecutive Padovan or Perrin numbers. One year later, the same authors [10] investigated Padovan and Perrin numbers as a product of two repdigits. Adédji et al. [11] found all Padovan and Perrin numbers, which are products of two repdigits in base b, and showed that P_{25} and T_{22} are the largest Padovan and Perrin numbers in that form, respectively.

Subsequently, Adédji et al. [12] showed that Padovan or Perrin numbers are concatenations of two distinct base b repdigits with $2 \leq b \leq 9$. They also found that the largest Padovan and Perrin numbers are concatenations of two distinct base b repdigits, P_{26} and E_{24}, respectively. Adédji et al. [13] considered the Padovan and Perrin numbers to be expressible as products of two generalized Lucas numbers. Duman et al. [14] showed that $2,3,4,5,7,9,12,16,28,37,49,86$ and 114 are the only Padovan numbers that can be expressed as the sum of two repdigits. The findings are as follows

Theorem 1.1. The only solutions of the Diophantine equation

$$
\begin{equation*}
E_{n}+P_{m}=d\left(\frac{\eta^{b}-1}{\eta-1}\right) \tag{1.1}
\end{equation*}
$$

as non-negative integers for $m \leq n, 1 \leq d \leq \eta-1,2 \leq \eta \leq 10$, and $b \geq 2$ are given in Table A.1.
Theorem 1.2. The only solutions of the Diophantine equation

$$
\begin{equation*}
E_{n} \cdot P_{m}=d\left(\frac{\eta^{b}-1}{\eta-1}\right) \tag{1.2}
\end{equation*}
$$

as non-negative integers for $m \leq n, 1 \leq d \leq \eta-1,2 \leq \eta \leq 10$, and $b \geq 2$ are given in Table A.2.
Remark. We know that $P_{0}=P_{1}=P_{2}=1$ and $P_{3}=P_{4}=2$. In both theorems above, we assume that $m \leq n$ and $m \neq 0,1,3$.

2. Auxiliary results

2.1. Padovan and Perrin sequences

This section includes various Padovan and Perrin sequence features that are relevant to our theorems. The characteristic polynomial of the Padovan and Perrin sequences is given by

$$
x^{3}-x-1=0
$$

with roots θ_{1}, θ_{2}, and θ_{3}, where

$$
\theta_{1}=\frac{s_{1}+s_{2}}{6}, \quad \theta_{2}=\frac{-s_{1}-s_{2}+i \sqrt{3}\left(s_{1}-s_{2}\right)}{12}, \quad \theta_{3}=\bar{\theta}_{2},
$$

and

$$
s_{1}=\sqrt[3]{108+12 \sqrt{69}}, \quad s_{2}=\sqrt[3]{108-12 \sqrt{69}}
$$

Let

$$
\begin{aligned}
& c_{1}=\frac{\left(1-\theta_{2}\right)\left(1-\theta_{3}\right)}{\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)}=\frac{1+\theta_{1}}{-\theta_{1}^{2}+3 \theta_{1}+1}, \\
& c_{2}=\frac{\left(1-\theta_{1}\right)\left(1-\theta_{3}\right)}{\left(\theta_{2}-\theta_{1}\right)\left(\theta_{2}-\theta_{3}\right)}=\frac{1+\theta_{2}}{-\theta_{2}^{2}+3 \theta_{2}+1}, \\
& c_{3}=\frac{\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)}{\left(\theta_{3}-\theta_{1}\right)\left(\theta_{3}-\theta_{2}\right)}=\frac{1+\theta_{3}}{-\theta_{3}^{2}+3 \theta_{3}+1} .
\end{aligned}
$$

Binet's formulas for Padovan and Perrin sequences are respectively defined by

$$
\begin{equation*}
P_{n}=c_{1} \theta_{1}^{n}+c_{2} \theta_{2}^{n}+c_{3} \theta_{3}^{n}, \quad \text { for all } n \geq 0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}=\theta_{1}^{n}+\theta_{2}^{n}+\theta_{3}^{n}, \quad \text { for all } n \geq 0 \tag{2.2}
\end{equation*}
$$

Numerically, we have

$$
\begin{gathered}
1.32<\theta_{1}<1.33 \\
0.86<\left|\theta_{2}\right|=\left|\theta_{3}\right|=\theta_{1}^{-1 / 2}<0.87, \\
0.72<c_{1}<0.73 \\
0.24<\left|c_{2}\right|=\left|c_{3}\right|<0.25 .
\end{gathered}
$$

Given that $\theta_{2}=\theta_{1}^{-1 / 2} e^{i R}$ and $\theta_{3}=\theta_{1}^{-1 / 2} e^{-i R}$ for some $R \in(0,2 \pi)$, it follows that

$$
\begin{equation*}
P_{n}=c_{1} \theta_{1}^{n}+e_{n}, \quad \text { with }\left|e_{n}\right|<\frac{1}{\theta_{1}^{n / 2}}, \quad \text { for all } n \geq 1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}=\theta_{1}^{n}+l_{n}, \quad \text { with }\left|l_{n}\right|<\frac{2}{\theta_{1}^{n / 2}}, \quad \text { for all } n \geq 1 \tag{2.4}
\end{equation*}
$$

Using the method of induction, we can prove that

$$
\begin{equation*}
\theta_{1}^{n-2} \leq P_{n} \leq \theta_{1}^{n-1}, \quad \text { for all } n \geq 4 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{1}^{n-2} \leq E_{n} \leq \theta_{1}^{n+1}, \quad \text { for all } n \geq 2 \tag{2.6}
\end{equation*}
$$

2.2. Linear forms in logarithms

Definition 2.1. (Absolute logarithmic height) Let γ be an algebraic number of degree d with the following minimal polynomial:

$$
c_{0} x^{d}+c_{1} x^{d-1}+\ldots+c_{d}=c_{0} \prod_{i=1}^{d}\left(x-\gamma^{(i)}\right) \in \mathbb{Z}[x]
$$

where $\gamma^{(i)}$ denotes conjugates of γ, and c_{i} values are relatively prime to each other with $c_{0}>0$. Then the logarithmic height of γ is given by

$$
\begin{equation*}
h(\gamma)=\frac{1}{d}\left(\log c_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\gamma^{(i)}\right|, 1\right\}\right)\right) . \tag{2.7}
\end{equation*}
$$

If $\gamma=\frac{a}{b}$ is a rational number with $\operatorname{gcd}(a, b)=1$ and $b>0$, then $h(\gamma)=\log (\max \{|a|, b\})$.
The following are the properties of the logarithmic height function, which will be utilized in the subsequent sections of this paper:

$$
\begin{gather*}
h(\eta \pm \gamma) \leq h(\eta)+h(\gamma)+\log 2, \tag{2.8}\\
h\left(\eta \gamma^{ \pm 1}\right) \leq h(\eta)+h(\gamma), \tag{2.9}\\
h\left(\eta^{k}\right)=|k| h(\eta) . \tag{2.10}
\end{gather*}
$$

To prove the validity of Theorems 1.1 and 1.2, we use the modified version of the Matveev result [15], as stated by Bugeaud et al. [16, Theorem 9.4].

Theorem 2.2. Let \mathbb{L} be the real algebraic number field of degree D over \mathbb{Q}. Let $\gamma_{1}, \ldots, \gamma_{t} \in \mathbb{L}$ be positive real algebraic numbers, and let $b_{1}, b_{2}, \ldots, b_{t}$ be nonzero integers such that

$$
\Lambda:=\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}}-1
$$

is not zero. Then

$$
\log |\Lambda|>(-1.4)\left(30^{t+3}\right)\left(t^{4.5}\right)\left(D^{2}\right)\left(A_{1} \ldots A_{t}\right)(1+\log D)(1+\log B)
$$

where

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\},
$$

and

$$
A_{i} \geq \max \left\{D h\left(\gamma_{i}\right),\left|\log \left(\gamma_{i}\right)\right|, 0.16\right\}, 1 \leq i \leq t
$$

2.3. De Weger reduction method

We need the variation of the Baker-Davenport reduction method developed by de Weger [17] to reduce the upper bound. Let $\vartheta_{1}, \vartheta_{2}, \beta \in \mathbb{R}$ be given and $x_{1}, x_{2} \in \mathbb{Z}$ be unknowns.

Let

$$
\begin{equation*}
\Lambda=\beta+x_{1} \vartheta_{1}+x_{2} \vartheta_{2} \tag{2.11}
\end{equation*}
$$

Let c, δ be positive constants. We set $X=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ and let X_{0}, Y be positive. Assume that

$$
\begin{gather*}
|\Lambda|<c \cdot \exp (-\delta \cdot Y), \tag{2.12}\\
Y \leq X \leq X_{0} . \tag{2.13}
\end{gather*}
$$

Case 1: If $\beta=0$ in $\operatorname{Eq}(2.11)$, then

$$
\Lambda=x_{1} \vartheta_{1}+x_{2} \vartheta_{2}
$$

Set $\vartheta=-\vartheta_{1} / \vartheta_{2}$. We assume that x_{1} and x_{2} are relatively prime. The continued fraction expansion of ϑ is represented by $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. The k-th convergent of ϑ is denoted by p_{k} / q_{k}, where $k=0,1,2, \ldots$. Without a loss of generality, we may assume that $\left|\vartheta_{1}\right|<\left|\vartheta_{2}\right|$ and $x_{1}>0$. We obtain the following lemma.

Lemma 2.3. ([17, Lemma 3.2]) Let

$$
A=\max _{0 \leq k \leq Y_{0}} a_{k+1},
$$

where

$$
Y_{0}=-1+\frac{\log \left(\sqrt{5} X_{0}+1\right)}{\log \left(\frac{1+\sqrt{5}}{2}\right)}
$$

If (2.12) and (2.13) hold for x_{1}, x_{2} and $\beta=0$, then

$$
\begin{equation*}
Y<\frac{1}{\delta} \log \left(\frac{c(A+2) X_{0}}{\left|\vartheta_{2}\right|}\right) . \tag{2.14}
\end{equation*}
$$

Case 2: If $\beta \neq 0$ in Eq (2.11), then we get

$$
\frac{\Lambda}{\vartheta_{2}}=\psi-x_{1} \vartheta+x_{2}
$$

where $\vartheta=-\vartheta_{1} / \vartheta_{2}$ and $\psi=\beta / \vartheta_{2}$. Let p / q be a convergent of ϑ with $q>X_{0}$. The distance between a real number m and the nearest integer is represented by $\|m\|=\min \{|m-n|: n \in \mathbb{Z}\}$. We have the following lemma.
Lemma 2.4. ([17, Lemma 3.3]) Suppose that

$$
\|q \psi\|>\frac{2 X_{0}}{q}
$$

Then the solutions of (2.12) and (2.13) satisfy

$$
\begin{equation*}
Y<\frac{1}{\delta} \log \left(\frac{q^{2} c}{\left|\vartheta_{2}\right| X_{0}}\right) . \tag{2.15}
\end{equation*}
$$

To prove our theorems, we present the following findings.
Lemma 2.5. ([18, Lemma 7]) If $r \geq 1, S \geq\left(4 r^{2}\right)^{r}$, and $\frac{L}{(\log L)^{r}}<S$, then

$$
L<2^{r} S(\log S)^{r}
$$

Lemma 2.6. ([17, Lemma 2.2]) Let $v, x \in \mathbb{R}$ and $0<v<1$. If $|x|<v$, then

$$
|\log (1+x)|<\frac{-\log (1-v)}{v}|x| .
$$

3. Main results

3.1. The proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. The main process is detailed below.

3.1.1. Relation between n and b

The set of solutions for the Diophantine equation given by Eq (1.1) in the range of $2 \leq m \leq n<350$ and for $m \neq 3$ can be obtained by using the Maple program; the solutions are presented in Table A.1. Considering the remaining case, we assume that $n \geq 350$ and $m \geq 2$, where $m \neq 3$. By combining inequalities (2.5) and (2.6) in Eq (1.1), we obtain

$$
2^{b-1} \leq \eta^{b-1}<d\left(\frac{\eta^{b}-1}{\eta-1}\right)=E_{n}+P_{m} \leq \theta_{1}^{n+1}+\theta_{1}^{m-1}<2 \theta_{1}^{n+1}
$$

and it is clear that $\theta_{1}<1.33$; then,

$$
2^{b-1}<2 \theta_{1}^{n+1}<2 \cdot 2^{n+1}<2^{n+2}
$$

We conclude that

$$
\begin{equation*}
b \leq n+2<n+3 . \tag{3.1}
\end{equation*}
$$

3.1.2. Finding an upper bound for n

Putting Eq (2.4) in Eq (1.1), we have

$$
\begin{gathered}
\left(\theta_{1}^{n}+l_{n}\right)+P_{m}=d\left(\frac{\eta^{b}-1}{\eta-1}\right), \\
\theta_{1}^{n}-\frac{d \eta^{b}}{\eta-1}=-P_{m}-l_{n}-\frac{d}{\eta-1} .
\end{gathered}
$$

Taking the absolute value for both sides of the above equation, we get

$$
\left|\theta_{1}^{n}-\frac{d \eta^{b}}{\eta-1}\right|=\left|-P_{m}-l_{n}-\frac{d}{\eta-1}\right|<P_{m}+\left|l_{n}\right|+\frac{d}{\eta-1}<\theta_{1}^{m-1}+1.1
$$

Dividing both sides by θ_{1}^{n}, we deduce that

$$
\begin{equation*}
\left|1-\frac{d \eta^{b} \theta_{1}^{-n}}{\eta-1}\right|<\theta_{1}^{m-n}\left(\theta_{1}^{-1}+1.1 \theta_{1}^{-m}\right)<\frac{1.5}{\theta_{1}^{n-m}} . \tag{3.2}
\end{equation*}
$$

Let

$$
\Lambda_{1}:=\frac{d \eta^{b} \theta_{1}^{-n}}{\eta-1}-1 .
$$

We claim that Λ_{1} is nonzero. Suppose that $\Lambda_{1}=0$, which implies that

$$
\frac{d \eta^{b}}{\eta-1}=\theta_{1}^{n}
$$

However, this is contradictory since $\theta_{1}^{n} \notin \mathbb{Q}$ for any $n>0$. Hence $\Lambda_{1} \neq 0$. We apply Theorem 2.2 to the left hand side of inequality (3.2) in consideration of the parameter $t:=3$, we set

$$
\left(\gamma_{1}, b_{1}\right):=\left(\theta_{1},-n\right), \quad\left(\gamma_{2}, b_{2}\right):=(\eta, b), \quad\left(\gamma_{3}, b_{3}\right):=\left(\frac{d}{\eta-1}, 1\right) .
$$

Since $\mathbb{L}:=\mathbb{Q}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, it follows that $D:=[\mathbb{L}, \mathbb{Q}]=3$. The heights of $\gamma_{1}, \gamma_{2}, \gamma_{3}$ can be calculated as follows:

$$
h\left(\gamma_{1}\right)=\frac{\log \left(\theta_{1}\right)}{3}, \quad h\left(\gamma_{2}\right)=\log (\eta) \leq \log (10)<2.31
$$

and

$$
h\left(\gamma_{3}\right) \leq h(d)+h(\eta-1) \leq 2 \log (9)<4.4 .
$$

Thus, we can take $A_{1}:=0.29, A_{2}:=6.93$ and $A_{3}:=13.2$. Since $b \leq n+2$, taking $B:=n+2 \geq$ $\max \{|-n|,|b|,|1|\}$, by Theorem 2.2 , we get

$$
\frac{1.5}{\theta_{1}^{n-m}}>\left|\Lambda_{1}\right|>\exp \{-G(1+\log (n+2))(0.29)(6.93)(13.2)\}
$$

where $G=(1.4)\left(30^{6}\right)\left(3^{4.5}\right)(9)(1+\log (3))$. By simplifying the computation, we obtain

$$
\begin{equation*}
(n-m) \log \left(\theta_{1}\right)<7.2 \cdot 10^{13}(1+\log (n+2)) \tag{3.3}
\end{equation*}
$$

Rewrite Eq (1.1) as follows

$$
\begin{aligned}
& \left(\theta_{1}^{n}+l_{n}\right)+\left(c_{1} \theta_{1}^{m}+e_{m}\right)=d\left(\frac{\eta^{b}-1}{\eta-1}\right) \\
& \theta_{1}^{n}+c_{1} \theta_{1}^{m}-\frac{d \eta^{b}}{\eta-1}=-l_{n}-e_{m}-\frac{d}{\eta-1}
\end{aligned}
$$

Taking the absolute value of the above equation, we get

$$
\left|\theta_{1}^{n}\left(1+c_{1} \theta_{1}^{m-n}\right)-\frac{d \eta^{b}}{\eta-1}\right|=\left|-l_{n}-e_{m}-\frac{d}{\eta-1}\right|<1.9
$$

for $n \geq 350$ and $m \geq 2$. Dividing both sides by $\theta_{1}^{n}\left(1+c_{1} \theta_{1}^{m-n}\right)$, we obtain

$$
\begin{equation*}
\left|1-\frac{d \eta^{b} \theta_{1}^{-n}\left(1+c_{1} \theta_{1}^{m-n}\right)^{-1}}{\eta-1}\right|<1.9 \cdot \theta_{1}^{-n}\left(1+c_{1} \theta_{1}^{m-n}\right)^{-1}<\frac{2.1}{\theta_{1}^{n}} \tag{3.4}
\end{equation*}
$$

We apply that, for $n \geq 350$ and $m \geq 2$, the inequality

$$
\left(1+c_{1} \theta_{1}^{n-n}\right)^{-1}<1.1
$$

holds.

Let

$$
\Lambda_{2}:=\frac{d \eta^{b} \theta_{1}^{-n}\left(1+c_{1} \theta_{1}^{m-n}\right)^{-1}}{\eta-1}-1
$$

Note that Λ_{2} is nonzero. Suppose that $\Lambda_{2}=0$, which implies that

$$
\frac{d \eta^{b}}{\eta-1}=\theta_{1}^{n}\left(1+c_{1} \theta_{1}^{m-n}\right)
$$

But, this is a contradiction since $\theta_{1}^{n}\left(1+c_{1} \theta_{1}^{m-n}\right) \notin \mathbb{Q}$ for any $n \geq m \geq 2$. Hence $\Lambda_{2} \neq 0$. By applying Theorem 2.2 to the left-hand side of inequality (3.4) and considering the parameter $t:=3$, we have

$$
\left(\gamma_{1}, b_{1}\right):=\left(\theta_{1},-n\right), \quad\left(\gamma_{2}, b_{2}\right):=(\eta, b), \quad\left(\gamma_{3}, b_{3}\right):=\left(\frac{d\left(1+c_{1} \theta_{1}^{m-n}\right)^{-1}}{\eta-1}, 1\right) .
$$

We have that $D:=[\mathbb{L}, \mathbb{Q}]=3$, where $\mathbb{L}:=\mathbb{Q}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. By using the definition of logarithmic height, we deduce that

$$
h\left(\gamma_{1}\right)=\frac{\log \left(\theta_{1}\right)}{3}, \quad h\left(\gamma_{2}\right)=\log (\eta) \leq \log (10)<2.31
$$

and

$$
\begin{gathered}
h\left(\gamma_{3}\right)=h\left(\frac{d\left(1+c_{1} \theta_{1}^{m-n}\right)^{-1}}{\eta-1}\right) \\
\leq h(d)+h\left(c_{1}\right)+(n-m) h\left(\theta_{1}\right)+h(\eta-1)+\log (2) \\
<2 \log (9)+\frac{\log (23)}{3}+(n-m) \frac{\log \left(\theta_{1}\right)}{3}+\log (2)<6.13+(n-m) \frac{\log \left(\theta_{1}\right)}{3} .
\end{gathered}
$$

So we can take $A_{1}:=0.29, A_{2}:=6.93$ and $A_{3}:=18.39+(n-m) \log \left(\theta_{1}\right)$. Also, by Eq (3.1), we can choose $B:=n+2 \geq \max \{|-n|,|b|,|1|\}$. According to Theorem 2.2, we get

$$
\begin{equation*}
\frac{2.1}{\theta_{1}^{n}}>\left|\Lambda_{2}\right|>\exp \left\{-G(1+\log (n+2))(0.29)(6.93)\left(18.39+(n-m) \log \left(\theta_{1}\right)\right)\right\} \tag{3.5}
\end{equation*}
$$

where $G=(1.4)\left(30^{6}\right)\left(3^{4.5}\right)(9)(1+\log (3))$. Putting inequality (3.3) in the above inequality, by simple calculation, we get

$$
\frac{n}{(\log (n))^{2}}<5.57 \cdot 10^{27}
$$

We consider the fact that $1+\log (n+2)<2 \log (n)$ for all $n>5$. Now we apply Lemma 2.5 , taking $S:=5.57 \cdot 10^{27}, L:=n$, and $r:=2$. With the help of Maple, we can obtain

$$
n<9.1 \cdot 10^{31}
$$

3.1.3. Reducing the upper bound of n

In this section, we attempt to reduce the upper bound of n by using Lemmas 2.3 and 2.4.
Let

$$
y_{1}:=\log \left(\Lambda_{1}+1\right)=b \log (\eta)-n \log \left(\theta_{1}\right)+\log \left(\frac{d}{\eta-1}\right) .
$$

In inequality (3.2), assume that $n-m \geq 2$; then, we get

$$
\left|\Lambda_{1}\right|=\left|e^{y_{1}}-1\right|<\frac{1.5}{\theta_{1}^{n-m}}<0.86
$$

Choosing $v=0.86$ in Lemma 2.6, we obtain

$$
\left|y_{1}\right|=\left|\log \left(\Lambda_{1}+1\right)\right|=-\frac{\log (1-0.86)}{0.86} \cdot \frac{1.5}{\theta_{1}^{n-m}}<\frac{3.5}{\theta_{1}^{n-m}} .
$$

It follows that

$$
0<\left|n\left(-\log \left(\theta_{1}\right)\right)+b \log (\eta)+\log \left(\frac{d}{\eta-1}\right)\right|<3.5 \cdot \exp \left(-(n-m) \cdot \log \left(\theta_{1}\right)\right) .
$$

We consider the following two cases of the above inequality.
Case 1: If $1 \leq d<\eta-1$ and $3 \leq \eta \leq 10$, we see that $\beta \neq 0$; then, applying Lemma 2.4, we have

$$
\begin{gathered}
c:=3.5, \quad \delta:=\log \left(\theta_{1}\right), \quad \psi:=\frac{\log \left(\frac{d}{\eta-1}\right)}{\log (\eta)}, \\
\vartheta:=\frac{\log \left(\theta_{1}\right)}{\log (\eta)}, \quad \vartheta_{1}:=-\log \left(\theta_{1}\right), \quad \vartheta_{2}:=\log (\eta), \quad \beta:=\log \left(\frac{d}{\eta-1}\right) .
\end{gathered}
$$

We know that ϑ is irrational. We take $X_{0}:=9.2 \cdot 10^{31}$, which is an upper bound for both b and n. Using Maple programming, we obtain Table 1, so we get

$$
n-m<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{q_{61}^{2} \cdot 3.5}{|\log (3)| \cdot 9.2 \cdot 10^{31}}\right)<300.41 .
$$

Therefore, we obtain that $n-m \leq 300$.
Table 1. Results of reducing the upper bound of $n-m$ for $\beta \neq 0$.

η	3	4	5	6	7	8	9	10
q_{k}	q_{61}	q_{71}	q_{63}	q_{72}	q_{56}	q_{62}	q_{66}	q_{74}
$n-m$	300	280	285	295	295	294	288	297

Case 2: If $d=\eta-1$ where $2 \leq \eta \leq 10$, then $\beta=0$. Now applying Lemma 2.3, we have that $X_{0}:=9.2 \cdot 10^{31}$.

$$
Y_{0}=-1+\frac{\log \left(\sqrt{5} \cdot 9.2 \cdot 10^{31}+1\right)}{\log \left(\frac{1+\sqrt{5}}{2}\right)}=153.618
$$

and

$$
A=\max _{0 \leq k \leq 153} a_{k+1} .
$$

Upon inspection by using Maple programming, we can find Table 2 for all possibilities of η, we get

$$
n-m<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{3.5(303+2) 9.2 \cdot 10^{31}}{|\log (2)|}\right)<287 .
$$

Table 2. Results of reducing the upper bound of $n-m$ for $\beta=0$.

η	2	3	4	5	6	7	8	9	10
A	303	151	160	433	195	627	241	278	564
$n-m$	287	283	283	286	282	286	283	283	285

Hence, in both cases, $n-m \leq 300$. Substituting this into inequality (3.5), we obtain that $n<2.9 \cdot 10^{17}$. Let

$$
y_{2}:=\log \left(\Lambda_{2}+1\right)=b \log (\eta)-n \log \left(\theta_{1}\right)+\log \left(\frac{d}{(\eta-1)\left(1+c_{1} \theta_{1}^{m-n}\right)}\right) .
$$

Then, by inequality (3.4), we have

$$
\left|\Lambda_{2}\right|=\left|e^{y_{2}}-1\right|<\frac{2.1}{\theta_{1}^{n}}<0.25,
$$

Based on our assumption, $n \geq 350$. Given Lemma 2.6, we choose $v=0.25$. Thus

$$
\left|y_{2}\right|=\left|\log \left(\Lambda_{2}+1\right)\right|=-\frac{\log (1-0.25)}{0.25} \cdot \frac{2.1}{\theta_{1}^{n}}<\frac{2.5}{\theta_{1}^{n}} .
$$

It follows that

$$
0<\left|n\left(-\log \left(\theta_{1}\right)\right)+b \log (\eta)+\log \left(\frac{d}{(\eta-1)\left(1+c_{1} \theta_{1}^{m-n}\right)}\right)\right|<2.5 \cdot \exp \left(-(n) \cdot \log \left(\theta_{1}\right)\right) .
$$

In the above inequality, according to the de Weger reduction method, we obtain that $\beta \neq 0$; then, applying Lemma 2.4, we have

$$
\begin{gathered}
c:=2.5, \quad \delta:=\log \left(\theta_{1}\right), \quad \psi:=\frac{\log \left(\frac{d}{(\eta-1)\left(1+c_{1} \theta_{1}^{m-n}\right)}\right)}{\log (\eta)}, \\
\vartheta:=\frac{\log \left(\theta_{1}\right)}{\log (\eta)}, \quad \vartheta_{1}:=-\log \left(\theta_{1}\right), \quad \vartheta_{2}:=\log (\eta), \quad \beta:=\log \left(\frac{d}{(\eta-1)\left(1+c_{1} \theta_{1}^{m-n}\right)}\right),
\end{gathered}
$$

where ϑ denotes an irrational number. For $0 \leq(n-m) \leq 300$ and $X_{0}:=3 \cdot 10^{17}$, our calculations with the help of Maple programming find Table 3 , so we get

$$
n<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{q_{48}^{2} \cdot 2.5}{|\log (3)| \cdot 3 \cdot 10^{17}}\right)<321.6 .
$$

Therefore, we can obtain a contradiction based on our assumption that $n \geq 350$. Theorem 1.1 is proved.
Table 3. Results of reducing the upper bound of n.

η	2	3	4	5	6	7	8	9	10
q_{k}	q_{63}	q_{48}	q_{57}	q_{53}	q_{62}	q_{47}	q_{51}	q_{50}	q_{56}
n	309	321	306	308	313	318	308	319	308

Corollary 3.1. The largest repdigits in base η of the Diophantine equation given by $E q$ (1.1) are as follows:

$$
\begin{array}{ll}
E_{16}+P_{14}=90+37=127=[1111111]_{2}, & E_{17}+P_{4}=119+2=121=[11111]_{3}, \\
E_{18}+P_{10}=158+12=170=[2222]_{4}, & E_{26}+P_{16}=1497+65=1562=[22222]_{5}, \\
E_{21}+P_{19}=367+151=518=[2222]_{6}, & E_{20}+P_{16}=277+65=342=[666]_{7}, \\
E_{15}+P_{7}=68+5=73=[111]_{8}, & E_{22}+P_{19}=486+151=637=[777]_{9}, \\
E_{16}+P_{12}=90+21=111=[111]_{10} .
\end{array}
$$

3.2. The proof of Theorem 1.2

In this section, we present the following subsections to prove Theorem 1.2.

3.2.1. Relation between n and b

All solutions to the Diophantine equation given by Eq (1.2) in the range of $2 \leq m \leq n<350$, and for $m \neq 3$, with the help of the Maple program, are presented in Table A.2. Considering the remaining possibility, we assume that $n \geq 350$ and $m \geq 2$ where $m \neq 3$. By combining inequalities (2.5) and (2.6) together in Eq (1.2), we obtain

$$
2^{b-1} \leq \eta^{b-1}<d\left(\frac{\eta^{b}-1}{\eta-1}\right)=E_{n} \cdot P_{m} \leq \theta_{1}^{n+1} \cdot \theta_{1}^{m-1}<\theta_{1}^{n+1} \cdot \theta_{1}^{n}<\theta_{1}^{2 n+1}
$$

and it is clear that $\theta_{1}<1.33$; then,

$$
2^{b-1}<\theta_{1}^{2 n+1}<2^{2 n+1} .
$$

We conclude that

$$
\begin{equation*}
b \leq 2 n+1<2 n+2 \tag{3.6}
\end{equation*}
$$

3.2.2. Finding an upper bound for n

Putting Eqs (2.3) and (2.4) in Eq (1.2), we have

$$
\begin{gathered}
\left(\theta_{1}^{n}+l_{n}\right) \cdot\left(c_{1} \theta_{1}^{m}+e_{m}\right)=d\left(\frac{\eta^{b}-1}{\eta-1}\right) \\
c_{1} \theta_{1}^{n+m}-\frac{d \eta^{b}}{\eta-1}=-\theta_{1}^{n} e_{m}-c_{1} \theta_{1}^{m} l_{n}-e_{m} l_{n}-\frac{d}{\eta-1} .
\end{gathered}
$$

Taking the absolute value of both sides, we get

$$
\left|c_{1} \theta_{1}^{n+m}-\frac{d \eta^{b}}{\eta-1}\right|=\left|-\theta_{1}^{n} e_{m}-c_{1} \theta_{1}^{m} l_{n}-e_{m} l_{n}-\frac{d}{\eta-1}\right| \leq \theta_{1}^{n}\left|e_{m}\right|+c_{1} \theta_{1}^{m}\left|l_{n}\right|+\left|e_{m} \|\left|l_{n}\right|+\frac{d}{\eta-1} .\right.
$$

Dividing both sides by $c_{1} \theta_{1}^{n+m}$, we deduce that

$$
\begin{gathered}
\left|1-\frac{d \eta^{b} \theta_{1}^{-(n+m)}}{c_{1}(\eta-1)}\right| \leq \frac{\left|e_{m}\right|}{c_{1} \theta_{1}^{m}}+\frac{\left|l_{n}\right|}{\theta_{1}^{n}}+\frac{\left|e_{m}\right|\left|l_{n}\right|}{c_{1} \theta_{1}^{n+m}}+\frac{d}{c_{1} \theta_{1}^{n+m}(\eta-1)} \\
<\frac{1}{c_{1} \theta_{1}^{3 m / 2}}+\frac{2}{\theta_{1}^{3 n / 2}}+\frac{2}{c_{1} \theta_{1}^{3(n+m) / 2}}+\frac{1}{c_{1} \theta_{1}^{n+m}} \\
<\frac{1}{c_{1} \theta_{1}^{m}}+\frac{2}{c_{1} \theta_{1}^{m}}+\frac{2}{c_{1} \theta_{1}^{n+m}}+\frac{1}{c_{1} \theta_{1}^{n+m}}<\frac{1}{c_{1} \theta^{m}}\left(3+\frac{3}{\theta_{1}^{n}}\right)<\frac{3.1}{c_{1} \theta^{m}} .
\end{gathered}
$$

It can be seen that

$$
\begin{equation*}
\left|1-\frac{d \eta^{b} \theta_{1}^{-(n+m)}}{c_{1}(\eta-1)}\right|<\frac{4.31}{\theta^{m}} \tag{3.7}
\end{equation*}
$$

Let

$$
\Lambda_{3}:=\frac{d \eta^{b} \theta_{1}^{-(n+m)}}{c_{1}(\eta-1)}-1 .
$$

We want to show that Λ_{3} is nonzero. We assume that $\Lambda_{3}=0$, which implies that

$$
\frac{d \eta^{b}}{\eta-1}=c_{1} \theta_{1}^{n+m}
$$

However, this is contradictory because $c_{1} \theta_{1}^{n+m} \notin \mathbb{Q}$ is an irrational number. Hence $\Lambda_{3} \neq 0$.
By applying Theorem 2.2 and $t:=3$ on the left hand side of inequality (3.7). We can take

$$
\left(\gamma_{1}, b_{1}\right):=\left(\theta_{1},-(n+m)\right), \quad\left(\gamma_{2}, b_{2}\right):=(\eta, b), \quad\left(\gamma_{3}, b_{3}\right):=\left(\frac{d}{c_{1}(\eta-1)}, 1\right)
$$

Since $\mathbb{L}:=\mathbb{Q}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, then $D:=[\mathbb{L}, \mathbb{Q}]=3$. Furthermore, we can obtain the heights of γ_{1}, γ_{2} and γ_{3}; thus,

$$
h\left(\gamma_{1}\right)=\frac{\log \left(\theta_{1}\right)}{3}, \quad h\left(\gamma_{2}\right)=\log (\eta) \leq \log (10)<2.31
$$

and

$$
h\left(\gamma_{3}\right) \leq h(d)+h\left(c_{1}\right)+h(\eta-1) \leq 2 \log (9)+\frac{\log (23)}{3}<5.43 .
$$

Thus, we can take $A_{1}:=0.29, A_{2}:=6.93$ and $A_{3}:=16.3$. Also, since $b \leq 2 n+1$ and $m \leq n$, we can take $B:=2 n+1 \geq \max \{|-(n+m)|,|b|,|1|\}$. By Theorem 2.2 , we get

$$
\frac{4.31}{\theta_{1}^{m}}>\left|\Lambda_{3}\right|>\exp \{-G(1+\log (2 n+1))(0.29)(6.93)(16.3)\}
$$

where $G=(1.4)\left(30^{6}\right)\left(3^{4.5}\right)(9)(1+\log (3))$. By simplifying the computation, we obtain

$$
\begin{equation*}
m \log \left(\theta_{1}\right)<8.9 \cdot 10^{13}(1+\log (2 n+1)) \tag{3.8}
\end{equation*}
$$

Again, rewrite Eq (1.2) as

$$
\begin{gathered}
\left(\theta_{1}^{n}+l_{n}\right) \cdot P_{m}=d\left(\frac{\eta^{b}-1}{\eta-1}\right), \\
\theta_{1}^{n}-\frac{d \eta^{b}}{P_{m}(\eta-1)}=-l_{n}-\frac{d}{P_{m}(\eta-1)} .
\end{gathered}
$$

Taking the absolute values for both sides of the above equation, we get

$$
\left|\theta_{1}^{n}-\frac{d \eta^{b}}{P_{m}(\eta-1)}\right|=\left|-l_{n}-\frac{d}{P_{m}(\eta-1)}\right| \leq\left|l_{n}\right|+\frac{d}{P_{m}(\eta-1)}<2.5
$$

for $n \geq 350$ and $m \geq 2$. Dividing both sides by θ_{1}^{n}, we obtain

$$
\begin{equation*}
\left|1-\frac{d \eta^{b} \theta_{1}^{-n}}{P_{m}(\eta-1)}\right|<\frac{2.5}{\theta_{1}^{n}} \tag{3.9}
\end{equation*}
$$

Let

$$
\Lambda_{4}:=\frac{d \eta^{b} \theta_{1}^{-n}}{P_{m}(\eta-1)}-1
$$

We claim that Λ_{4} is nonzero. Suppose that $\Lambda_{4}=0$, which implies that

$$
\frac{d \eta^{b}}{P_{m}(\eta-1)}=\theta_{1}^{n} .
$$

But this is a contradiction since $\theta_{1}^{n} \notin \mathbb{Q}$ for any $n \geq 350$. Hence $\Lambda_{4} \neq 0$.
By applying Theorem 2.2 and $t:=3$ to the left hand side of inequality (3.9), we can take

$$
\left(\gamma_{1}, b_{1}\right):=\left(\theta_{1},-n\right), \quad\left(\gamma_{2}, b_{2}\right):=(\eta, b), \quad\left(\gamma_{3}, b_{3}\right):=\left(\frac{d}{P_{m}(\eta-1)}, 1\right)
$$

Since $\mathbb{L}:=\mathbb{Q}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, then $D:=[\mathbb{L}, \mathbb{Q}]=3$. Moreover, the heights of γ_{1}, γ_{2} and γ_{3} were found to be as follows:

$$
h\left(\gamma_{1}\right)=\frac{\log \left(\theta_{1}\right)}{3}, \quad h\left(\gamma_{2}\right)=\log (\eta) \leq \log (10)<2.31
$$

and

$$
\begin{aligned}
& h\left(\gamma_{3}\right)=h\left(\frac{d}{P_{m}(\eta-1)}\right) \leq h(d)+h\left(P_{m}\right)+h(\eta-1) \\
& \quad<2 \log (9)+m\left(\frac{\log \left(\theta_{1}\right)}{3}\right)<4.4+m\left(\frac{\log \left(\theta_{1}\right)}{3}\right) .
\end{aligned}
$$

We can take $A_{1}:=0.29, A_{2}:=6.93$ and $A_{3}:=13.2+m \log \left(\theta_{1}\right)$. Also, by Eq (3.6), can choose $B:=2 n+1 \geq \max \{|-n|,|b|,|1|\}$. According to Theorem 2.2, we get

$$
\begin{equation*}
\frac{2.5}{\theta_{1}^{n}}>\left|\Lambda_{4}\right|>\exp \left\{-G(1+\log (2 n+1))(0.29)(6.93)\left(13.2+m \log \left(\theta_{1}\right)\right)\right\} \tag{3.10}
\end{equation*}
$$

where $G=(1.4)\left(30^{6}\right)\left(3^{4.5}\right)(9)(1+\log (3))$. By substituting inequality (3.8) into the above inequality and simplifying the computation, we obtain

$$
\frac{n}{(\log (n))^{2}}<6.9 \cdot 10^{27}
$$

We use the fact that $1+\log (2 n+1)<2 \log (n)$ for all $n>6$. Now, we apply Lemma 2.5 by taking $S:=6.9 \cdot 10^{27}, L:=n$, and $r:=2$. With the help of Maple, we can obtain

$$
n<1.13 \cdot 10^{32}
$$

3.2.3. Reducing the upper bound of n

In this section, we apply Lemmas 2.3 and 2.4 to reduce the upper bound of n.
Let

$$
y_{3}:=\log \left(\Lambda_{3}+1\right)=b \log (\eta)-(n+m) \log \left(\theta_{1}\right)+\log \left(\frac{d}{c_{1}(\eta-1)}\right) .
$$

In inequality (3.7), assume that $m \geq 6$; then, we get

$$
\left|\Lambda_{3}\right|=\left|e^{y_{3}}-1\right|<\frac{4.31}{\theta_{1}^{m}}<0.8
$$

By applying Lemma 2.6 and choosing $v=0.8$, we obtain

$$
\left|y_{3}\right|=\left|\log \left(\Lambda_{3}+1\right)\right|=-\frac{\log (1-0.8)}{0.8} \cdot \frac{4.31}{\theta_{1}^{m}}<\frac{8.7}{\theta_{1}^{m}}
$$

It can be seen that

$$
0<\left|(n+m)\left(-\log \left(\theta_{1}\right)\right)+b \log (\eta)+\log \left(\frac{d}{c_{1}(\eta-1)}\right)\right|<8.7 \cdot \exp \left(-(m) \cdot \log \left(\theta_{1}\right)\right)
$$

According to the de Weger reduction method, we see that $\beta \neq 0$; then, applying Lemma 2.4, we have

$$
\begin{gathered}
c:=8.7, \quad \delta:=\log \left(\theta_{1}\right), \quad \psi:=\frac{\log \left(\frac{d}{c_{1}(\eta-1)}\right)}{\log (\eta)}, \\
\vartheta:=\frac{\log \left(\theta_{1}\right)}{\log (\eta)}, \quad \vartheta_{1}:=-\log \left(\theta_{1}\right), \quad \vartheta_{2}:=\log (\eta), \quad \beta:=\log \left(\frac{d}{c_{1}(\eta-1)}\right) .
\end{gathered}
$$

Clearly, ϑ is an irrational number. We can take $X_{0}:=2.26 \cdot 10^{32}$, which is the upper bound for both b and n since $b<2 n+1<2.26 \cdot 10^{32}$. Using Maple programming, we computed Table 4, we get

$$
m<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{q_{76}^{2} \cdot 8.7}{|\log (10)| \cdot 2.26 \cdot 10^{32}}\right)<306.33 .
$$

Therefore, we consider that $m \leq 306$. Substituting this into inequality (3.10), we obtain that $n<$ $2.75 \cdot 10^{17}$.

Table 4. Results of reducing the upper bound of m.

η	2	3	4	5	6	7	8	9	10
q_{k}	q_{76}	q_{61}	q_{73}	q_{66}	q_{73}	q_{57}	q_{62}	q_{66}	q_{76}
m	290	300	288	305	295	297	294	288	306

Let

$$
y_{4}:=\log \left(\Lambda_{4}+1\right)=b \log (\eta)-n \log \left(\theta_{1}\right)+\log \left(\frac{d}{P_{m}(\eta-1)}\right) .
$$

It is obvious that

$$
\left|\Lambda_{4}\right|=\left|e^{y_{4}}-1\right|<\frac{2.5}{\theta_{1}^{n}}<0.25
$$

by our assumption that $n \geq 350$. Given Lemma 2.6, we can choose $v=0.25$. Thus

$$
\left|y_{4}\right|=\left|\log \left(\Lambda_{4}+1\right)\right|=-\frac{\log (1-0.25)}{0.25} \cdot \frac{2.5}{\theta_{1}^{n}}<\frac{2.9}{\theta_{1}^{n}}
$$

It follows that

$$
0<\left|n\left(-\log \left(\theta_{1}\right)\right)+b \log (\eta)+\log \left(\frac{d}{P_{m}(\eta-1)}\right)\right|<2.9 \cdot \exp \left(-(n) \cdot \log \left(\theta_{1}\right)\right) .
$$

For the above inequality, we have the following two cases.
Case 1: If $4 \leq m \leq 306$ and $1 \leq d \leq \eta-1$, then $\beta \neq 0$. By applying Lemma 2.4, we have

$$
\begin{gathered}
c:=2.9, \quad \delta:=\log \left(\theta_{1}\right), \quad \psi:=\frac{\log \left(\frac{d}{P_{m}(\eta-1)}\right)}{\log (\eta)}, \\
\vartheta:=\frac{\log \left(\theta_{1}\right)}{\log (\eta)}, \quad \vartheta_{1}:=-\log \left(\theta_{1}\right), \quad \vartheta_{2}:=\log (\eta), \quad \beta:=\log \left(\frac{d}{P_{m}(\eta-1)}\right),
\end{gathered}
$$

where ϑ denotes an irrational number. We can take $X_{0}:=5.5 \cdot 10^{17}$, which is the upper bound for both b and n since $b<2 n+1<5.5 \cdot 10^{17}$. We obtained the results in the Table 5 with the help of Maple programming, except for the following cases:

$$
\begin{gathered}
(\eta, d, m) \in\left\{\begin{array}{c}
(2,1,4),(2,1,6),(2,1,11),(3,2,5),(3,2,9),(4,3,6), \\
(4,3,11),(5,4,7),(7,6,8),(7,6,15),(9,8,9)
\end{array}\right\} . \\
n<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{q_{41}^{2} \cdot 2.9}{|\log (7)| \cdot 5.5 \cdot 10^{17}}\right)<231.06 .
\end{gathered}
$$

For these exceptional cases, we obtained the following equations

$$
\left\{\begin{array}{c}
2 E_{n}=2^{b}-1,4 E_{n}=2^{b}-1,16 E_{n}=2^{b}-1,3 E_{n}=3^{b}-1,9 E_{n}=3^{b}-1,4 E_{n}=4^{b}-1 \\
16 E_{n}=4^{b}-1,5 E_{n}=5^{b}-1,7 E_{n}=7^{b}-1,49 E_{n}=7^{b}-1,9 E_{n}=9^{b}-1
\end{array}\right\}
$$

respectively, which are impossible in the region defined above.
Table 5. Results of reducing the upper bound of n for $\beta \neq 0$.

η	2	3	4	5	6	7	8	9	10
q_{k}	q_{47}	q_{38}	q_{43}	q_{46}	q_{49}	q_{41}	q_{38}	q_{38}	q_{45}
n	201	215	198	202	208	231	223	212	221

Case 2: If $m=2$ and $d=\eta-1$, then $\beta=0$. Now, applying Lemma 2.3, we have that $X_{0}:=5.5 \cdot 10^{17}$.

$$
Y_{0}=-1+\frac{\log \left(\sqrt{5} \cdot 5.5 \cdot 10^{17}+1\right)}{\log \left(\frac{1+\sqrt{5}}{2}\right)}=85.55
$$

and

$$
A=\max _{0 \leq k \leq 85} a_{k+1} .
$$

Upon inspection by Maple programming, we can obtain Table 6 in all possible cases of η, we get

$$
n<\frac{1}{\log \left(\theta_{1}\right)} \cdot \log \left(\frac{2.9(303+2) 5.5 \cdot 10^{17}}{|\log (2)|}\right)<170 .
$$

In both cases, we obtained a contradiction based on the assumption that $n \geq 350$. Theorem 1.2 is proved.

Table 6. Results of reducing the upper bound of n for $\beta=0$.

η	2	3	4	5	6	7	8	9	10
A	303	151	160	433	65	627	241	107	49
n	170	166	165	168	161	169	165	162	160

Corollary 3.2. The largest repdigits in base η of the Diophantine equation given by $E q$ (1.2) are as follows:

$$
\begin{array}{ll}
E_{14} \cdot P_{7}=51 \cdot 5=255=[11111111]_{2}, & E_{8} \cdot P_{6}=10 \cdot 4=40=[1111]_{3}, \\
E_{14} \cdot P_{7}=51 \cdot 5=255=[3333]_{4}, & E_{13} \cdot P_{11}=39 \cdot 16=624=[4444]_{5}, \\
E_{7} \cdot P_{7}=7 \cdot 5=35=[55]_{6}, & E_{9} \cdot P_{6}=12 \cdot 4=48=[66]_{7}, \\
E_{9} \cdot P_{5}=12 \cdot 3=36=[44]_{8}, & E_{13} \cdot P_{8}=39 \cdot 7=273=[333]_{9}, \\
\qquad E_{11} \cdot P_{6}=22 \cdot 4=88=[88]_{10} .
\end{array}
$$

Author contributions

Hunar Sherzad Taher: Writing-original draft, Methodology; Saroj Kumar Dash: Supervision, Data curation, Visualization. We used Maple software programming to calculate the results. All authors have reviewed the results and approved the final version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in creating this article.

Acknowledgments

The authors wish to express their gratitude to the editor and anonymous referees for their insightful comments and constructive suggestions, which have significantly enhanced the original manuscript. The Vellore Institute of Technology provided financial assistance for this work.

Conflict of interest

The authors declare that there are no competing interests.

References

1. A. C. G. Lomelí, S. H. Hernández, Repdigits as sums of two Padovan numbers, J. Integer Seq., 22 (2019), Article 19.2.3.
2. P. Trojovský, On repdigits as sums of Fibonacci and Tribonacci numbers, Symmetry, 12 (2020), 1774. https://doi.org/10.3390/sym12111774
3. D. Bednařík, E. Trojovská, Repdigits as product of Fibonacci and Tribonacci numbers, Mathematics, 8 (2020), 1720. https://doi.org/10.3390/math8101720
4. F. Erduvan, R. Keskin, Z. Şiar, Repdigits base b as products of two Pell numbers or Pell-Lucas numbers, Bol. Soc. Mat. Mex., 27 (2021), 70. https://doi.org/10.1007/s40590-021-00377-5
5. F. Erduvan, R. Keskin, Z. Şiar, Repdigits base b as products of two Lucas numbers, Quaestiones Mathematicae, 44 (2021), 1283-1293. https://doi.org/10.2989/16073606.2020.1787539
6. F. Erduvan, R. Keskin, Z. Şiar, Repdigits base b as products of two Fibonacci numbers, Indian J. Pure Appl. Math., 52 (2021), 861-868. https://doi.org/10.1007/s13226-021-00041-8
7. Z. Şiar, F. Erduvan, R. Keskin, Repdigits base b as difference of two Fibonacci numbers, J. Math. Study, 55 (2022), 84-94. https://doi.org/10.4208/jms.v55n1.22.07
8. K. Bhoi, P. K. Ray, Perrin numbers expressible as sums of two base b repdigits, Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics, 53 (2021), 1-11. https://doi.org/10.13137/2464-8728/33226
9. S. E. Rihane, A. Togbé, Repdigits as products of consecutive Padovan or Perrin numbers, Arab. J. Math., 10 (2021), 469-480. https://doi.org/10.1007/s40065-021-00317-1
10. S. E. Rihane, A. Togbé, Padovan and Perrin numbers as product of two repdigits, Bol. Soc. Mat. Mex., 28 (2022), 51. https://doi.org/10.1007/s40590-022-00446-3
11. K. N. Adédji, A. Filipin, A. Togbé, Padovan and Perrin numbers which are products of two repdigits in base b, Results Math., 76 (2021), 193. https://doi.org/10.1007/s00025-021-01502-6
12. K. N. Adédji, V. Dossou-yovo, S. E. Rihane, A. Togbé, Padovan or Perrin numbers that are concatenations of two distinct base b repdigits, Math. Slovaca, 73 (2023), 49-64. https://doi.org/10.1515/ms-2023-0006
13. K. N. Adédji, J. Odjoumani, A. Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Arch. Math., 59 (2023), 315-337. https://doi.org/10.5817/AM2023-4-315
14. M. G. Duman, R. Keskin, L. Hocaoğlu, Padovan numbers as sum of two repdigits, C. R. Acad. Bulg. Sci., 76 (2023), 1326-1334. https://doi.org/10.7546/CRABS.2023.09.02
15. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izvestiya: Mathematics, 64 (2000), 1217-1269. https://doi.org/10.1070/im2000v064n06abeh000314
16. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., 163 (2006), 969-1018. https://doi.org/10.4007/annals.2006.163.969
17. B. M. M. De Weger, Algorithms for Diophantine equations, Amsterdam, Netherlands: Centrum voor Wiskunde en Informatica, 1989.
18. S. G. Sanchez, F. Luca, Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. Québec, 38 (2014), 169-188. https://doi.org/10.1007/s40316-014-0025-z

Appendix: Tables that include solutions for Theorems 1.1 and 1.2

Table A.1. The only solutions of the Diophantine equation given by Eq (1.1) for non-negative integers.

n	m	$E_{n}+P_{m}$	η	d	b	η-repdigits
2	2	3	2	1	2	11
3	2	4	3	1	2	11
4	2	3	2	1	2	11
4	4	4	3	1	2	11
5	2	6	5	1	2	11
5	4	7	2	1	3	111
5	4	7	6	1	2	11
5	5	8	3	2	2	22
5	5	8	7	1	2	11
6	2	6	5	1	2	11
6	4	7	2	1	3	111
6	4	7	6	1	2	11
6	5	8	3	2	2	22
6	5	8	7	1	2	11
6	6	9	8	1	2	11
7	2	8	3	2	2	22
7	2	8	7	1	2	11
7	4	9	8	1	2	11
7	5	10	4	2	2	22
7	5	10	9	1	2	11
7	6	11	10	1	2	11
7	7	12	5	2	2	22
8	2	11	10	1	2	11
8	4	12	5	2	2	22
8	5	13	3	1	3	111
8	6	14	6	2	2	22
8	7	15	2	1	4	1111
8	7	15	4	3	2	33
9	2	13	3	1	3	111
9	4	14	6	2	2	22
9	5	15	2	1	4	1111
9	5	15	4	3	2	33
9	6	16	7	2	2	22
9	9	21	4	1	3	111
9	9	21	6	3	2	33
10	2	18	5	3	2	33
10	2	18	8	2	2	22
10	5	20	9	2	2	22

n	m	$E_{n}+P_{m}$	η	d	b	η-repdigits
10	6	21	4	1	3	111
10	6	21	6	3	2	33
10	7	22	10	2	2	22
10	8	24	5	4	2	44
10	8	24	7	3	2	33
10	9	26	3	2	3	222
11	4	24	5	4	2	44
11	4	24	7	3	2	33
11	6	26	3	2	3	222
11	7	27	8	3	2	33
11	9	31	2	1	5	11111
11	9	31	5	1	3	111
12	2	30	9	3	2	33
12	4	31	2	1	5	11111
12	4	31	5	1	3	111
12	5	32	7	4	2	44
12	6	33	10	3	2	33
12	8	36	8	4	2	44
12	11	45	8	5	2	55
12	12	50	9	5	2	55
13	2	40	3	1	4	1111
13	2	40	7	5	2	55
13	2	40	9	4	2	44
13	5	42	4	2	3	222
13	6	43	6	1	3	111
13	7	44	10	4	2	44
13	9	48	7	6	2	66
13	11	55	10	5	2	55
13	12	60	9	6	2	66
14	5	54	8	6	2	66
14	6	55	10	5	2	55
14	9	60	9	6	2	66
14	10	63	2	1	6	111111
14	10	63	4	3	3	333
14	10	63	8	7	2	77
14	14	88	10	8	2	88
15	4	70	9	7	2	77
15	7	73	8	1	3	111
12						

n	m	$E_{n}+P_{m}$	η	d	b	η-repdigits
15	9	77	10	7	2	77
15	10	80	3	2	4	2222
15	10	80	9	8	2	88
16	2	91	9	1	3	111
16	5	93	5	3	3	333
16	9	99	10	9	2	99
16	12	111	10	1	3	111
16	14	127	2	1	7	1111111
17	4	121	3	1	5	11111
17	7	124	5	4	3	444
17	14	156	5	1	4	1111
18	10	170	4	2	4	2222
20	16	342	7	6	3	666
21	19	518	6	2	4	2222
22	19	637	9	7	3	777
26	16	1562	5	2	5	22222

Table A.2. The only solutions of the Diophantine equation given by Eq (1.2) for non-negative integers.

n	m	$E_{n} \cdot P_{m}$	η	d	b	η-repdigits
3	2	3	2	1	2	11
4	4	4	3	1	2	11
5	2	5	4	1	2	11
5	4	10	4	2	2	22
5	4	10	9	1	2	11
5	5	15	2	1	4	1111
5	5	15	4	3	2	33
6	2	5	4	1	2	11
6	4	10	4	2	2	22
6	4	10	9	1	2	11
6	5	15	2	1	4	1111
6	5	15	4	3	2	33
6	6	20	9	2	2	22
7	2	7	2	1	3	111
7	2	7	6	1	2	11
7	4	14	6	2	2	22
7	5	21	4	1	3	111
7	5	21	6	3	2	33
7	6	28	6	4	2	44
7	7	35	6	5	2	55
8	2	10	4	2	2	22
8	2	10	9	1	2	11
8	4	20	9	2	2	22

n	m	$E_{n} \cdot P_{m}$	η	d	b	η-repdigits
8	5	30	9	3	2	33
8	6	40	3	1	4	1111
8	6	40	7	5	2	55
8	6	40	9	4	2	44
8	7	50	9	5	2	55
8	8	70	9	7	2	77
9	2	12	5	2	2	22
9	4	24	5	4	2	44
9	4	24	7	3	2	33
9	5	36	8	4	2	44
9	6	48	7	6	2	66
9	7	60	9	6	2	66
10	7	85	4	1	4	1111
11	2	22	10	2	2	22
11	4	44	10	4	2	44
11	5	66	10	6	2	66
11	6	88	10	8	2	88
13	6	156	5	1	4	1111
13	8	273	9	3	3	333
13	10	468	5	3	4	3333
13	11	624	5	4	4	4444
14	7	255	2	1	8	1111111
14	7	255	4	3	4	3333

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

