Research article

Pedal curves obtained from Frenet vector of a space curve and Smarandache curves belonging to these curves

Süleyman Şenyurt ${ }^{1, *}$, Filiz Ertem Kaya ${ }^{2}$ and Davut Canlı ${ }^{1}$
${ }^{1}$ Department of Mathematics, Ordu University, Ordu, 52200, Türkiye
2^{2} Department of Mathematics, Niğde Ömer Halisdemir University, Niğde, 51240, Türkiye
* Correspondence: Email: ssenyurt @odu.edu.tr; Tel: +905425920880.

Abstract

In this study, first the pedal curves as the geometric locus of perpendicular projections to the Frenet vectors of a space curve were defined and the Frenet vectors, curvature, and torsion of these pedal curves were calculated. Second, for each pedal curve, Smarandache curves were defined by taking the Frenet vectors as position vectors. Finally, the expressions of Frenet vectors, curvature, and torsion related to the main curves were obtained for each Smarandache curve. Thus, new curves were added to the curve family.

Keywords: pedal curves; Frenet apparatus; T-pedal curve; N-pedal curve; B-pedal curve; Smarandache curves
Mathematics Subject Classification: 53A04

1. Introduction

The existence of curves in nature is a natural phenomenon that has been extensively studied by scientists. Researchers have formulated theories to understand the characteristics of these curves by careful examinations and valuable analysis. Therefore, the theory of curves has played a significant role in the field of differential geometry, making it an intriguing area of research.

To gain further insights and theoretical knowledge, it is the best practice to establish an orthonormal system on a curve. By doing so, scientists can gather more information and delve deeper into the properties of the curve. For instance, if the torsion of a curve is found to be zero, it indicates that the curve is planar, which concludes that if the torsion is nonzero, it signifies that the curve is a space curve. Moreover, the behavior of a curve can also be determined by examining its harmonic curvature defined as the ratio of the curvature to torsion. If the harmonic curvature function is constant, then the curve is classified as a helix. A Salkowski curve, on the other hand, is special due to its constant curvature and nonconstant torsion [1].

In addition, there exist other special paired curves possessing some mathematical relations between them. Examples of such pairs of curves include involute-evolute curves, Bertrand and Mannheim curves, as well as Successor curves and Smarandache curves. These curves have been extensively studied, contributing to a wealth of knowledge in this field [1-5].

Another interesting aspect of curve analysis involves the geometric location of perpendicular projection points onto the tangent or normal vector of a curve from a point that does not lie on the curve. This location is defined as the pedal (or contra-pedal) curve (see Figure 1).

Figure 1. The construction steps of pedal and contra-pedal curves for cosine function.

Extensive research has been conducted on these types of curves, and numerous sources provide valuable insights into their properties [6-8]. The study of such curves has been conducted using various frames in different spaces. Researchers have explored these curves using different approaches and continue to make significant contributions to this field of study [9-13].

In this study, pedal curves belonging to the tangent, principal normal, and binormal vectors of a space curve are defined, and their Frenet vectors, curvature, and torsion functions are calculated. Next, Smarandache curves are defined by taking Frenet elements of each pedal curve as the position vectors. Finally, the corresponding Frenet apparatus are obtained and expressed in terms of the main curve. Thus, new curves are added to to the literature for the theory of curves. Let us recall the basic notions that will be used through the paper. For given a differentiable curve $\alpha(t)$, the formulae of Frenet vector fields and curvature functions are defined as in the followings:

$$
\begin{align*}
& T=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad N=B \wedge T=\frac{\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|\left\|\alpha^{\prime}\right\|}, \quad B=\frac{\alpha^{\prime} \wedge \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}, \tag{1.1}\\
& \kappa=\frac{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}}, \quad \tau=\frac{\operatorname{det}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right)}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}}, \tag{1.2}
\end{align*}
$$

$$
\begin{equation*}
T^{\prime}=v \kappa N, \quad N^{\prime}=v(-\kappa T+\tau B), \quad B^{\prime}=-v \tau N \tag{1.3}
\end{equation*}
$$

where $v=\left\|\alpha^{\prime}\right\|$, and " \wedge " stands for the vector product operator [8, 14].
Definition 1.1. Let T_{α} denote the tangent vector of a regular curve α in \mathbb{E}^{2}. The geometric locus of the perpendicular projection of points onto a tangent vector from a given point $P \in \mathbb{E}^{2}$ that is not on the curve is called the pedal curve of the curve α [15].
Theorem 1.2. [15] The pedal curve of a regular curve α according to the point P in \mathbb{E}^{2} is given by the following equality:

$$
\begin{equation*}
\alpha_{P}(t)=\alpha(t)+\left\langle P-\alpha(t), T_{\alpha}\right\rangle T_{\alpha} . \tag{1.4}
\end{equation*}
$$

Definition 1.3. Let N_{α} be the normal vector of a regular curve α in \mathbb{E}^{2}. The geometric locus of perpendicular projection of points onto the normal vector from a given point $P \in \mathbb{E}^{2}$ that is not on the curve is called the contra-pedal curve of the curve α [15].
Theorem 1.4. [15] The contra-pedal curve of a regular curve α according to the point P in \mathbb{E}^{2} is given by the following equality:

$$
\begin{equation*}
\alpha^{\perp}{ }_{P}(t)=\alpha(t)+\left\langle P-\alpha(t), N_{\alpha}\right\rangle N_{\alpha} . \tag{1.5}
\end{equation*}
$$

Example 1.5. According to the origin $O(0,0)$, the pedal and contra-pedal curves of an ellipse that is parameterized as $\alpha(t)=(2 \cos (t), \sin (t))$ in \mathbb{E}^{2} is given by the following relations (see Figure 2).

$$
\alpha_{P}(t)=\left(\frac{2 \cos t}{1+3 \sin ^{2} t}, \frac{4 \sin t}{1+3 \sin ^{2} t}\right), \quad \alpha_{P}^{\perp}(t)=\left(\frac{7 \cos t \sin ^{2} t}{1+3 \sin ^{2} t}, \frac{3 \sin ^{3} t-\cos t \sin t}{1+3 \sin ^{2} t}\right)
$$

Figure 2. The pedal (a) and contra-pedal (b) curves (red) of the ellipse (blue) according to the origin $O(0,0)$ where $t \in[-\pi, \pi]$.

2. T-Pedal curve and Smarandache curves of the T-Pedal curve

Definition 2.1. Let T be the tangent vector of a given regular curve α in \mathbb{E}^{3}. The geometric locus of the perpendicular projection of points onto a tangent vector from a point $P \in \mathbb{E}^{3}$ that is not on the curve is called the T - pedal curve of the curve α according to P.

Theorem 2.2. The equation of the T - pedal curve of a given regular curve α is as follows:

$$
\begin{equation*}
\alpha_{T}(t)=\alpha(t)+\langle P-\alpha(t), T(t)\rangle T(t) . \tag{2.1}
\end{equation*}
$$

Proof. Let P^{\prime} be a perpendicular projection point onto the tangent vector from the point P that is not on the curve α. The perpendicular projection vector $\overrightarrow{\alpha P^{\prime}}$ is calculated by the following formula:

$$
\overrightarrow{\alpha P^{\prime}}=\frac{\left\langle\alpha P, \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{2}} \overrightarrow{\alpha^{\prime}}
$$

On the other hand, let $\alpha_{T}(t)$ be the geometric location of the point P^{\prime}. According to this, we obtain following equations:

$$
\begin{aligned}
\overrightarrow{\alpha P}=\overrightarrow{\alpha P^{\prime}}+\overrightarrow{P^{\prime} P} & \Rightarrow \overrightarrow{\alpha P}=\frac{\left\langle\alpha P, \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{2}} \overrightarrow{\alpha^{\prime}}+\overrightarrow{P^{\prime} P} \\
& \Rightarrow P^{\prime}=\alpha+\frac{\left\langle P-\alpha, \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{2}} \overrightarrow{\alpha^{\prime}} \\
& \Rightarrow \alpha_{T}(t)=\alpha(t)+\left\langle P-\alpha(t), \frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}\right\rangle \frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}
\end{aligned}
$$

When the tangent vector from the relation (1.1) is taken into consideration, the proof of the theorem is completed.

With some subsequent algebraic operations, if $u(t)=\langle P-\alpha(t), T(t)\rangle$, then the relation (2.1) can be reduced to following:

$$
\begin{equation*}
\alpha_{T}(t)=\alpha(t)+u(t) T(t) . \tag{2.2}
\end{equation*}
$$

Specifically, if the point P is origin, then we have $u(t)=-\langle\alpha(t), T(t)\rangle$.
Theorem 2.3. Let α_{T} be the T - pedal curve of the given curve α with unit speed, and $\left\{T_{1}, N_{1}, B_{1}\right\}$ denotes the Frenet vectors of the T - pedal curve of α. Then, among the Frenet vectors, the following relations exist:

$$
\begin{aligned}
T_{1}= & \omega_{1}(1+u) T+\omega_{1} u \kappa N, \\
N_{1}= & -\eta_{1} \omega_{1} u \kappa\left(\kappa(1+u)^{2}+u^{2} \kappa^{3}+(1+u)(u \kappa)^{\prime}-u u^{\prime} \kappa\right) T \\
& +\eta_{1} \omega_{1}(1+u)\left(\kappa(1+u)^{2}+u^{2} \kappa^{3}+(1+u)(u \kappa)^{\prime}-u u^{\prime} \kappa\right) N \\
& +\left(\eta_{1} \omega_{1} \tau(u \kappa)^{3}+\eta_{1} \omega_{1} u \kappa \tau(1+u)^{2}\right) B, \\
B_{1}= & \eta_{1} \tau(u \kappa)^{2} T-\eta_{1}(1+u) u \kappa \tau N+\eta_{1}\left(\kappa(1+u)^{2}+u^{2} \kappa^{3}+(1+u)(u \kappa)^{\prime}-u u^{\prime} \kappa\right) B,
\end{aligned}
$$

where

$$
\begin{aligned}
& \omega_{1}=\frac{1}{\sqrt{\left(1+u^{\prime}\right)^{2}+(u \kappa)^{2}}}, \\
& \eta_{1}=\frac{1}{\sqrt{\tau^{2}(u \kappa)^{4}-\left(1+u^{\prime}\right)^{2}(u \kappa \tau)^{2}+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right)^{2}}} .
\end{aligned}
$$

Proof. By taking the necessary derivatives of the equality (2.2), we have

$$
\begin{align*}
\alpha^{\prime}{ }_{T}= & \left(1+u^{\prime}\right) T+u \kappa N, \\
\alpha^{\prime \prime}{ }_{T}= & \left(u^{\prime \prime}-u \kappa^{2}\right) T+\left(\left(1+u^{\prime}\right) \kappa+(u \kappa)^{\prime}\right) N+u \kappa \tau B, \tag{2.3}\\
\alpha^{\prime \prime \prime}{ }_{T}= & \left(u^{\prime \prime \prime}-\left(u \kappa^{2}\right)^{\prime}-\left(1+u^{\prime}\right) \kappa^{2}-\kappa(u \kappa)^{\prime}\right) T+\left(u^{\prime \prime} \kappa-u \kappa^{3}-u \kappa \tau^{2}+\left(\left(1+u^{\prime}\right) \kappa+(u \kappa)^{\prime}\right)^{\prime}\right) N \\
& +\left(\left(1+u^{\prime}\right) \tau \kappa+\tau(u \kappa)^{\prime}+(u \kappa \tau)^{\prime}\right) B .
\end{align*}
$$

Upon necessary algebraic operations that are performed, the following relations are obtained

$$
\begin{align*}
\alpha_{T}^{\prime} \wedge \alpha_{T}^{\prime \prime}= & \tau(u \kappa)^{2} T-\left(1+u^{\prime}\right) u \kappa \tau N+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right) B \\
\operatorname{det}\left(\alpha^{\prime}{ }_{T}, \alpha^{\prime \prime}{ }_{T}, \alpha^{\prime \prime \prime}{ }_{T}\right)= & \tau(u \kappa)^{2}\left(u^{\prime \prime \prime}-\left(u \kappa^{2}\right)^{\prime}-\left(1+u^{\prime}\right) \kappa^{2}-\kappa(u \kappa)^{\prime}\right) \tag{2.4}\\
& \quad-u \kappa \tau\left(1+u^{\prime}\right)\left(u^{\prime \prime} \kappa-u \kappa\left(\kappa^{2}+\tau^{2}\right)+\left(\left(1+u^{\prime}\right) \kappa+(u \kappa)^{\prime}\right)^{\prime}\right) \\
& \quad+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right)\left(\left(1+u^{\prime}\right) \tau \kappa+\tau(u \kappa)^{\prime}+(u \kappa \tau)^{\prime}\right)
\end{aligned} \quad \begin{aligned}
\left\|\alpha^{\prime}{ }_{T}\right\|=\sqrt{\left(1+u^{\prime}\right)^{2}+(u \kappa)^{2}} \\
\left\|\alpha^{\prime}{ }_{T} \wedge \alpha^{\prime \prime}{ }_{T}\right\|=\sqrt{\tau^{2}(u \kappa)^{4}-\left(1+u^{\prime}\right)^{2}(u \kappa \tau)^{2}+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right)^{2}} .
\end{align*}
$$

By substituting the given equalities above into the relations at (1.1), the proof is completed.
Theorem 2.4. Let α_{T} be the T - pedal curve of the unit speed curve α, and let κ_{1} and τ_{1} denote the curvature and torsion functions for α_{T}, respectively. Then, the following relations exist among the curvatures:

$$
\begin{aligned}
\kappa_{1}= & \frac{\left(\tau^{2}(u \kappa)^{4}-\left(1+u^{\prime}\right)^{2}(u \kappa \tau)^{2}+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right)^{2}\right)^{\frac{1}{2}}}{\left(\left(1+u^{\prime}\right)^{2}+(u \kappa)^{2}\right)^{\frac{3}{2}}}, \\
\tau_{1}= & \frac{\tau(u \kappa)^{2}\left(u^{\prime \prime \prime}-\left(u \kappa^{2}\right)^{\prime}-\left(1+u^{\prime}\right) \kappa^{2}-\kappa(u \kappa)^{\prime}\right)-u \kappa \tau\left(1+u^{\prime}\right)\left(u^{\prime \prime} \kappa-u \kappa\left(\kappa^{2}+\tau^{2}\right)+\left(\left(1+u^{\prime}\right) \kappa+(u \kappa)^{\prime}\right)^{\prime}\right)}{\tau^{2}(u \kappa)^{4}-\left(1+u^{\prime}\right)^{2}(u \kappa \tau)^{2}+\left(\left(1+u^{\prime}\right)^{2} \kappa+\left(1+u^{\prime}\right)(u \kappa)^{\prime}-u \kappa\left(u^{\prime \prime}-u \kappa^{2}\right)\right)^{2}} .
\end{aligned}
$$

Proof. By substituting the given relations (2.4) and (2.5) into (1.2), the curvatures can be found, completing the proof.

Corollary 2.5. The following relations exist between the Frenet vectors of the T - pedal curve and their derivatives

$$
\begin{equation*}
T_{1}^{\prime}=\mu_{1} \kappa_{1} N_{1}, \quad N_{1}^{\prime}=\mu_{1}\left(-\kappa_{1} T_{1}+\tau_{1} B_{1}\right), \quad B_{1}^{\prime}=-\mu_{1} \tau_{1} N_{1}, \tag{2.6}
\end{equation*}
$$

where $\mu_{1}=\left\|\alpha^{\prime}{ }_{T}\right\|$.

Definition 2.6. By taking the tangent and the principal normal vectors of the T-pedal curve as position vectors, we define a regular curve called the $T_{1} N_{1}$ Smarandache curve as follows:

$$
\begin{equation*}
\alpha_{1}=\frac{T_{1}+N_{1}}{\sqrt{2}} . \tag{2.7}
\end{equation*}
$$

Theorem 2.7. Let $T_{\alpha_{1}}, N_{\alpha_{1}}$, and $B_{\alpha_{1}}$ be the Frenet vectors of the $T_{1} N_{1}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\alpha_{1}}=\frac{-\kappa_{1} T_{1}+\kappa_{1} N_{1}+\tau_{1} B_{1}}{\sqrt{2 \kappa_{1}^{2}+\tau_{1}^{2}}} \\
& N_{\alpha_{1}}=B_{\alpha_{1}} \wedge T_{\alpha_{1}} \\
& B_{\alpha_{1}}=\frac{-\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right) T_{1}+\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right) N_{1}-\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right) B_{1}}{\sqrt{\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)^{2}+\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)^{2}+\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)^{2}}},
\end{aligned}
$$

where $x_{1}=-\frac{\mu_{1}^{2} \kappa_{1}^{2}-\left(\mu_{1} \kappa_{1}\right)^{\prime}}{\sqrt{2}}, \quad x_{2}=\frac{\left(\mu_{1} \kappa_{1}\right)^{\prime}-\mu_{1}^{2}\left(\kappa_{1}^{2}+\tau_{1}^{2}\right)}{\sqrt{2}}, \quad x_{3}=\frac{\mu_{1}^{2} \kappa_{1} \tau_{1}+\left(\mu_{1} \tau_{1}\right)^{\prime}}{\sqrt{2}}$.
Proof. The derivatives of the $T_{1} N_{1}$ curve up to the third degree are as given below.

$$
\begin{align*}
& \alpha_{1}^{\prime}=\frac{\mu_{1}\left(-\kappa_{1} T_{1}+\kappa_{1} N_{1}+\tau_{1} B_{1}\right)}{\sqrt{2}}, \\
& \alpha^{\prime \prime}{ }_{1}=x_{1} T_{1}+x_{2} N_{1}+x_{3} B_{1}, \tag{2.8}\\
& \alpha^{\prime \prime \prime}{ }_{1}=\left(x^{\prime}{ }_{1}-\mu_{1} \kappa_{1} x_{2}\right) T_{1}+\left(x^{\prime}{ }_{2}+\mu_{1} x_{1}-\mu_{1} x_{3}\right) N_{1}+\left(x^{\prime}{ }_{3}+\mu_{1} \tau_{1} x_{2}\right) B_{1} .
\end{align*}
$$

By taking the vectoral product and computing the determinants of first and second derivatives of the curve α given in equality (2.8), we get the equality (2.9) as below:

$$
\begin{align*}
{\alpha^{\prime}}_{1} \wedge \alpha^{\prime \prime}{ }_{1} & =-\frac{\mu_{1}\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)}{\sqrt{2}} T_{1}+\frac{\mu_{1}\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)}{\sqrt{2}} N_{1}-\frac{\mu_{1}\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)}{\sqrt{2}} B_{1} \\
\operatorname{det}\left(\alpha^{\prime}{ }_{1}, \alpha^{\prime \prime}{ }_{1}, \alpha^{\prime \prime \prime}{ }_{1}\right) & =\frac{\mu_{1}}{\sqrt{2}}\binom{\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)\left(x^{\prime}{ }_{2}+\mu_{1} x_{1}-\mu_{1} x_{3}\right)-\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)\left(x^{\prime}{ }_{1}-\mu_{1} \kappa_{1} x_{2}\right)}{-\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)\left(x^{\prime}{ }_{3}+\mu_{1} \tau_{1} x_{2}\right)} . \tag{2.9}
\end{align*}
$$

Moreover, by taking the norm of the first derivative of the curve α and the vectoral product of the first and second derivatives of α, we obtain the equality (2.10) as

$$
\begin{align*}
& \left\|\alpha^{\prime}{ }_{1}\right\|=\frac{\mu_{1}}{\sqrt{2}} \sqrt{2 \kappa_{1}^{2}+\tau_{1}^{2}} \\
& \left\|\alpha^{\prime}{ }_{1} \wedge \alpha^{\prime \prime}{ }_{1}\right\|=\frac{\mu_{1}}{\sqrt{2}} \sqrt{\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)^{2}+\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)^{2}+\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)^{2}} . \tag{2.10}
\end{align*}
$$

Finally, substituting the relations (2.8), (2.9), and (2.10) into (1.1) completes the proof.

Theorem 2.8. Let $\kappa_{\alpha_{1}}$ and $\tau_{\alpha_{1}}$ denote the curvature and the torsion of the $T_{1} N_{1}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
\kappa_{\alpha_{1}}= & \frac{2 \sqrt{\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)^{2}+\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)^{2}+\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)^{2}}}{\mu_{1}^{2}\left(2 \kappa_{1}^{2}+\tau_{1}^{2}\right) \sqrt{2 \kappa_{1}^{2}+\tau_{1}^{2}}}, \\
& \sqrt{2}\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)\left(x^{\prime}{ }_{2}+\mu_{1} x_{1}-\mu_{1} x_{3}\right)-\sqrt{2}\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)\left(x^{\prime}{ }_{1}-\mu_{1} \kappa_{1} x_{2}\right) \\
\tau_{\alpha_{1}}= & \frac{-\sqrt{2}\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)\left(x^{\prime}{ }_{3}+\mu_{1} \tau_{1} x_{2}\right)}{\mu_{1}\left(\kappa_{1} x_{3}+\tau_{1} x_{2}\right)^{2}+\mu_{1}\left(\kappa_{1} x_{3}+\tau_{1} x_{1}\right)^{2}+\mu_{1}\left(\kappa_{1} x_{2}+\kappa_{1} x_{1}\right)^{2}} .
\end{aligned}
$$

Proof. By using (2.9) and (2.10) to substitute into (1.2), the proof is completed.
Definition 2.9. By taking the tangent and the binormal vectors of the T - pedal curve as position vectors, we define a regular curve called the $T_{1} B_{1}$ Smarandache curve as follows:

$$
\begin{equation*}
\alpha_{2}=\frac{T_{1}+B_{1}}{\sqrt{2}} . \tag{2.11}
\end{equation*}
$$

Theorem 2.10. Let $T_{\alpha_{2}}, N_{\alpha_{2}}$, and $B_{\alpha_{2}}$ be the Frenet vectors of the $T_{1} B_{1}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
T_{\alpha_{2}}=N_{1}, \quad N_{\alpha_{2}}=\frac{-\kappa_{1} T_{1}+\tau_{1} B_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}}, \quad B_{\alpha_{2}}=\frac{\tau_{1} T_{1}+\kappa_{1} B_{1}}{\sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}} .
$$

Proof. By taking the derivatives of (2.11), we first have

$$
\begin{align*}
& \alpha_{2}^{\prime}= \frac{\mu_{1}\left(\kappa_{1}-\tau_{1}\right) N_{1}}{\sqrt{2}}, \\
& \alpha^{\prime \prime}{ }_{2}= \frac{-\kappa_{1} \mu_{1}^{2}\left(\kappa_{1}-\tau_{1}\right) T_{1}+\left(\mu_{1} \kappa_{1}-\mu_{1} \tau_{1}\right)^{\prime} N_{1}+\tau_{1} \mu_{1}^{2}\left(\kappa_{1}-\tau_{1}\right) B_{1}}{\sqrt{2}}, \tag{2.12}\\
& \alpha^{\prime \prime \prime}{ }_{2}=\left.\left.\frac{\left(\left(-\kappa_{1} \mu_{1}^{2}\left(\kappa_{1}-\tau_{1}\right)\right)^{\prime}-\kappa_{1} \mu_{1}\left(\mu_{1} \kappa_{1}-\mu_{1} \tau_{1}\right)^{\prime \prime}\right) T_{1}+\left(\left(\mu_{1} \kappa_{1}-\mu_{1} \tau_{1}\right)^{\prime \prime}-\mu_{1}^{3}\left(\kappa_{1}-\tau_{1}\right)\left(\kappa_{1}^{2}+\tau_{1}^{2}\right)\right) N_{1}}{\sqrt{2}}\left(\kappa_{1}-\tau_{1}\right)\right)^{\prime}+\tau_{1} \mu_{1}\left(\mu_{1} \kappa_{1}-\mu_{1} \tau_{1}\right)^{\prime \prime}\right) B_{1} \\
& \sqrt{2}
\end{align*}
$$

Further, by taking norms and having required vector products, we have

$$
\begin{align*}
\alpha_{2}^{\prime} \wedge \alpha^{\prime \prime} & =\frac{\mu_{1}^{3}\left(\kappa_{1}-\tau_{1}\right)^{2}\left(\tau_{1} T_{1}+\kappa_{1} B_{1}\right)}{2} \\
\operatorname{det}\left(\alpha^{\prime}{ }_{2}, \alpha^{\prime \prime}{ }_{2}, \alpha^{\prime \prime \prime}{ }_{2}\right) & =\frac{\mu_{1}^{5}\left(\kappa_{1}-\tau_{1}\right)^{3}\left(\kappa_{1} \tau_{1}{ }^{\prime}-\kappa_{1} \tau_{1}\right)}{2 \sqrt{2}}, \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\alpha^{\prime}{ }_{2}\right\|=\frac{\mu_{1}\left(\kappa_{1}-\tau_{1}\right)}{\sqrt{2}}, \quad\left\|\alpha_{2}^{\prime} \wedge \alpha^{\prime \prime}{ }_{2}\right\|=\frac{\mu_{1}^{3}\left(\kappa_{1}-\tau_{1}\right)^{2} \sqrt{\kappa_{1}^{2}+\tau_{1}^{2}}}{2} . \tag{2.14}
\end{equation*}
$$

If we substitute relations (2.12), (2.13), and (2.14) into (1.1), the proof is completed.

Theorem 2.11. Let $\kappa_{\alpha_{2}}$ and $\tau_{\alpha_{2}}$ denote the curvature and the torsion of the $T_{1} B_{1}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\kappa_{\alpha_{2}}=\frac{\sqrt{2 \kappa_{1}^{2}+2 \tau_{1}^{2}}}{\left(\kappa_{1}-\tau_{1}\right)}, \quad \tau_{\alpha_{2}}=\frac{\sqrt{2}\left(\kappa_{1} \tau_{1}{ }^{\prime}-\kappa_{1}{ }^{\prime} \tau_{1}\right)}{\mu_{1}\left(\kappa_{1}-\tau_{1}\right)\left(\kappa_{1}^{2}+\tau_{1}^{2}\right)} .
$$

Proof. The proof is obvious by the substitution of (2.13) and (2.14) into (1.2).
Definition 2.12. By taking the principal normal and the binormal vectors of the T - pedal curve as position vectors, we define a regular curve called the $N_{1} B_{1}$ Smarandache curve as follows:

$$
\begin{equation*}
\alpha_{3}=\frac{N_{1}+B_{1}}{\sqrt{2}} . \tag{2.15}
\end{equation*}
$$

Theorem 2.13. Let $T_{\alpha_{3}}, N_{\alpha_{3}}$, and $B_{\alpha_{3}}$ be the Frenet vectors of the $N_{1} B_{1}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\alpha_{3}}=\frac{-\kappa_{1} T_{1}-\tau_{1} N_{1}+\tau_{1} B_{1}}{\sqrt{\kappa_{1}^{2}+2 \tau_{1}^{2}}} \\
& N_{\alpha_{3}}=B_{\alpha_{3}} \wedge T_{\alpha_{3}}, \\
& B_{\alpha_{3}}=\frac{-\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right) T_{1}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right) N_{1}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right) B_{1}}{\sqrt{\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)^{2}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right)^{2}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)^{2}}}
\end{aligned}
$$

where $y_{1}=\frac{\mu_{1}^{2} \tau_{1} \kappa_{1}-\left(\mu_{1} \kappa_{1}\right)^{\prime}}{\sqrt{2}}, \quad y_{2}=-\frac{\mu_{1}^{2}\left(\kappa_{1}^{2}+\tau_{1}^{2}\right)+\left(\mu_{1} \tau_{1}\right)^{\prime}}{\sqrt{2}}, \quad y_{3}=\frac{\left(\mu_{1} \tau_{1}\right)^{\prime}-\mu_{1}^{2} \tau_{1}^{2}}{\sqrt{2}}$.
Proof. By taking the derivatives of (2.15), we have

$$
\begin{align*}
\alpha^{\prime}{ }_{3} & =\frac{\mu_{1}\left(-\kappa_{1} T_{1}-\tau_{1} N_{1}+\tau_{1} B_{1}\right)}{\sqrt{2}}, \\
\alpha^{\prime \prime}{ }_{3} & =y_{1} T_{1}+y_{2} N_{1}+y_{3} B_{1} \tag{2.16}\\
\alpha^{\prime \prime \prime}{ }_{3} & =\left(y_{1}^{\prime}-\mu_{1} y_{2} \kappa_{1}\right) T_{1}+\left(y_{2}^{\prime}+\mu_{1} y_{1} \kappa_{1}-\mu_{1} y_{3} \tau_{1}\right) N_{1}+\left(y_{3}^{\prime}+\mu_{1} y_{2} \tau_{1}\right) B_{1} .
\end{align*}
$$

Moreover, we calculate the required vector products and the norms as

$$
\begin{align*}
\alpha^{\prime}{ }_{3} \wedge \alpha^{\prime \prime}{ }_{3} & =\frac{\mu_{1}}{\sqrt{2}}\left(\left(-\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right) T_{1}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right) N_{1}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right) B_{1}\right)\right), \\
\operatorname{det}\left(\alpha^{\prime}{ }_{3}, \alpha^{\prime \prime}{ }_{3}, \alpha^{\prime \prime \prime}{ }_{3}\right) & =\frac{\mu_{1}}{\sqrt{2}}\binom{\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)\left(y_{3}^{\prime}+\mu_{1} y_{2} \tau_{1}\right)-\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)\left(y_{1}^{\prime}-\mu_{1} y_{2} \kappa_{1}\right)}{+\left(y_{1}^{\prime}-\mu_{1} y_{2} \kappa_{1}\right)\left(y_{2}^{\prime}+\mu_{1} y_{1} \kappa_{1}-\mu_{1} y_{3} \tau_{1}\right)} \tag{2.17}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\alpha_{3}^{\prime}\right\| & =\frac{\mu_{1}}{\sqrt{2}} \sqrt{\kappa_{1}^{2}+2 \tau_{1}^{2}}, \\
\left\|\alpha_{3}^{\prime} \wedge \alpha^{\prime \prime}{ }_{3}\right\| & =\frac{\mu_{1}}{\sqrt{2}} \sqrt{\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)^{2}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right)^{2}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)^{2}} . \tag{2.18}
\end{align*}
$$

When substituting relations (2.16), (2.17), and (2.18) into (1.1), the proof is completed.

Theorem 2.14. Let $\kappa_{\alpha_{3}}$ and $\tau_{\alpha_{3}}$ denote the curvature and the torsion of the $T_{1} B_{1}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{gathered}
\kappa_{\alpha_{3}}=\frac{2 \sqrt{\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)^{2}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right)^{2}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)^{2}}}{\mu_{1}^{2}\left(\kappa_{1}^{2}+2 \tau_{1}^{2}\right) \sqrt{\kappa_{1}^{2}+2 \tau_{1}^{2}}}, \\
\tau_{\alpha_{3}}=\frac{\sqrt{2}\binom{\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)\left(y_{3}^{\prime}+\mu_{1} y_{2} \tau_{1}\right)-\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)\left(y_{1}^{\prime}-\mu_{1} y_{2} \kappa_{1}\right)}{+\left(y_{1}^{\prime}-\mu_{1} y_{2} \kappa_{1}\right)\left(y_{2}^{\prime}+\mu_{1} y_{1} \kappa_{1}-\mu_{1} y_{3} \tau_{1}\right)}}{\mu_{1}\left(\left(\tau_{1} y_{3}+\tau_{1} y_{2}\right)^{2}+\left(\kappa_{1} y_{3}+\tau_{1} y_{1}\right)^{2}+\left(\tau_{1} y_{1}-\kappa_{1} y_{2}\right)^{2}\right)} .
\end{gathered}
$$

Proof. The proof is done upon substituting the above relations (2.17) and (2.18) into (1.2).
Definition 2.15. By taking the tangent and principal normal and binormal vectors of the T - pedal curve as position vectors, we define a regular curve called the $T_{1} N_{1} B_{1}$ Smarandache curve as follows:

$$
\begin{equation*}
\alpha_{4}=\frac{T_{1}+N_{1}+B_{1}}{\sqrt{3}} . \tag{2.19}
\end{equation*}
$$

Theorem 2.16. Let $T_{\alpha_{4}}, N_{\alpha_{4}}$, and $B_{\alpha_{4}}$ be the Frenet vectors of the $T_{1} N_{1} B_{1}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\alpha_{4}}=\frac{-\kappa_{1} T_{1}+\left(\kappa_{1}-\tau_{1}\right) N_{1}+\tau_{1} B_{1}}{\sqrt{2 \kappa_{1}^{2}-2 \kappa_{1} \tau_{1}+2 \tau_{1}^{2}}}, \\
& N_{\alpha_{4}}=B_{\alpha_{4}} \wedge T_{\alpha_{4}}, \\
& B_{\alpha_{4}}=\frac{\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right) T_{1}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right) N_{1}-\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right) B_{1}}{\sqrt{\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)^{2}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)^{2}+\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)^{2}}},
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{1}=-\frac{\left(\mu_{1} \kappa_{1}\right)^{\prime}+\mu_{1}^{2} \kappa_{1}\left(\kappa_{1}-\tau_{1}\right)}{\sqrt{3}}, \quad z_{2}=\frac{\left(\mu_{1} \kappa_{1}-\mu_{1} \tau_{1}\right)^{\prime}-\mu_{1}^{2}\left(\kappa_{1}^{2}+\tau_{1}^{2}\right)}{\sqrt{3}}, \\
& z_{3}=\frac{\left(\mu_{1} \tau_{1}\right)^{\prime}+\mu_{1}^{2} \tau_{1}\left(\kappa_{1}-\tau_{1}\right)}{\sqrt{3}}
\end{aligned}
$$

Proof. The derivatives of (2.19) are

$$
\begin{align*}
\alpha^{\prime}{ }_{4} & =\frac{\mu_{1}\left(-\kappa_{1} T_{1}+\left(\kappa_{1}-\tau_{1}\right) N_{1}+\tau_{1} B_{1}\right)}{\sqrt{3}}, \\
\alpha^{\prime \prime}{ }_{4} & =z_{1} T_{1}+z_{2} N_{1}+z_{3} B_{1}, \tag{2.20}\\
\alpha^{\prime \prime \prime}{ }_{4} & =\left(z^{\prime}{ }_{1}-z_{2} \mu_{1} \kappa_{1}\right) T_{1}+\left(z^{\prime}{ }_{2}+z_{1} \mu_{1} \kappa_{1}-z_{3} \mu_{1} \tau_{1}\right) N_{1}+\left(z^{\prime}{ }_{3}+z_{2} \mu_{1} \tau_{1}\right) B_{1} .
\end{align*}
$$

In addition, the required vector products and the norms are calculated as

$$
\begin{align*}
& \alpha^{\prime}{ }_{4} \wedge \alpha^{\prime \prime}{ }_{4}=\frac{\mu_{1}}{\sqrt{3}}\left(\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right) T_{1}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right) N_{1}-\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right) B_{1}\right), \\
& \operatorname{det}\left(\alpha^{\prime}{ }_{4}, \alpha^{\prime \prime}{ }_{4}, \alpha^{\prime \prime \prime}{ }_{4}\right)=\frac{\mu_{1}}{\sqrt{3}}\left(\begin{array}{l}
\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)\left(z_{1}^{\prime}-z_{2} \mu_{1} \kappa_{1}\right) \\
+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)\left(z^{\prime}{ }_{2}+z_{1} \mu_{1} \kappa_{1}-z_{3} \mu_{1} \tau_{1}\right) \\
-\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)\left(z^{\prime}{ }_{3}+z_{2} \mu_{1} \tau_{1}\right)
\end{array}\right), \tag{2.21}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\alpha^{\prime}{ }_{4}\right\| & =\frac{\sqrt{6} \mu_{1}}{3} \sqrt{\kappa_{1}^{2}-\kappa_{1} \tau_{1}+\tau_{1}^{2}} \tag{2.22}\\
\left\|\alpha^{\prime}{ }_{4} \wedge \alpha^{\prime \prime}{ }_{4}\right\| & =\frac{\mu_{1}}{\sqrt{3}} \sqrt{\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)^{2}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)^{2}+\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)^{2}}
\end{align*}
$$

By substituting relations (2.20), (2.21), and (2.22) into (1.1), the proof is completed.

Theorem 2.17. Let $\kappa_{\alpha_{4}}$ and $\tau_{\alpha_{4}}$ denote the curvature and the torsion of the $T_{1} N_{1} B_{1}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
& \kappa_{\alpha_{4}}=\frac{3 \sqrt{2}}{4} \frac{\sqrt{\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)^{2}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)^{2}+\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)^{2}}}{\mu_{1}^{2}\left(\kappa_{1}^{2}-\kappa_{1} \tau_{1}+\tau_{1}^{2}\right) \sqrt{\kappa_{1}^{2}-\kappa_{1} \tau_{1}+\tau_{1}^{2}}}, \\
& \tau_{\alpha_{4}}=\frac{\sqrt{3}\binom{\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)\left(z_{1}^{\prime}{ }_{1}-z_{2} \mu_{1} \kappa_{1}\right)+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)\left(z^{\prime}{ }_{2}+z_{1} \mu_{1} \kappa_{1}-z_{3} \mu_{1} \tau_{1}\right)}{-\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)\left(z^{\prime}{ }_{3}+z_{2} \mu \tau_{1}\right)}}{\mu_{1}\left(\left(z_{3} \kappa_{1}-z_{3} \tau_{1}-\tau_{1} z_{2}\right)^{2}+\left(\tau_{1} z_{1}+\kappa_{1} z_{3}\right)^{2}+\left(\kappa_{1} z_{1}-\tau_{1} z_{1}+\kappa_{1} z_{2}\right)^{2}\right)} .
\end{aligned}
$$

Proof. The proof is done upon substituting the above relations (2.21) and (2.22) into (1.2).

Example 2.18. Let us consider the space curve $\gamma:[-\pi, \pi] \rightarrow E^{3}$ parameterized as $\gamma(t)=$ $(\cosh (s), \sinh (s), s)$. Frenet vectors and the pedal curves according to the origin $O=(0,0,0)$ that correspond to each vector are given as follows:

$$
\begin{gathered}
T=\frac{1}{\sqrt{2}}\left(\frac{\sinh (s)}{\cosh (s)}, 1, \frac{1}{\cosh (s)}\right), \quad N=\left(\frac{1}{\cosh (s)}, 0,-\frac{\sinh (s)}{\cosh (s)}\right), \quad B=\frac{1}{\sqrt{2}}\left(-\frac{\sinh (s)}{\cosh (s)}, 1,-\frac{1}{\cosh (s)}\right), \\
T-\text { Pedal } \Rightarrow \alpha_{T}=\left(\frac{2 \cosh (s)-\sinh (s) s}{1+\cosh (2 s)}, \frac{-s}{2 \cosh (s)}, \frac{s \cosh (2 s)-\sinh (2 s)}{1+\cosh (2 s)}\right), \\
N-\text { Pedal } \Rightarrow \alpha_{N}=\left(\frac{\cosh (3 s)-\cosh (s)+4 \sinh (s) s}{2(1+\cosh (2 s))}, \sinh (s), \frac{2 s+\sinh (2 s)}{1+\cosh (2 s)}\right), \\
B-\text { Pedal } \Rightarrow \alpha_{B}=\left(\frac{\cosh (3 s)+3 \cosh (s)-2 \sinh (s) s}{2(1+\cosh (2 s))}, \frac{\sinh (2 s)+s}{2 \cosh (s)}, \frac{s \cosh (2 s)}{1+\cosh (2 s)}\right) .
\end{gathered}
$$

In Figure 3, four of the Smarandache curves of the T-pedal curve according to the origin $O(0,0,0)$ are illustrated.

Figure 3. Smarandache curves (black) of the T - pedal curve (red) of the curve $\gamma(t)$ (blue) according to the origin $O(0,0,0)$ where $t \in[-\pi, \pi]$.

3. \mathbf{N}-Pedal curve and Smarandache curves of the \mathbf{N}-Pedal curve

Definition 3.1. Let N be the principal normal vector of a given regular curve α in \mathbb{E}^{3}. The geometric locus of the perpendicular projection of points onto the normal vector from a point $P \in \mathbb{E}^{3}$ that is not on the curve is called the N-pedal curve of the curve α according to P.

Theorem 3.2. The equation of the N - pedal curve of a given regular curve α is as follows:

$$
\begin{equation*}
\alpha_{N}(t)=\alpha(t)+\langle P-\alpha(t), N(t)\rangle N(t) . \tag{3.1}
\end{equation*}
$$

Proof. Let P^{\prime} be a perpendicular projection point onto the principal normal vector from the point P that is not on the curve α. The perpendicular projection vector $\overrightarrow{\alpha P^{\prime}}$ is calculated by the following formula:

$$
\overrightarrow{\alpha P^{\prime}}=\frac{\left\langle\alpha P,\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}\left\|\alpha^{\prime}\right\|^{2}} \cdot \overrightarrow{\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}}
$$

Next, let $\alpha_{N}(t)$ be the geometric location of the point P^{\prime}. According to this, we have following relations:

$$
\begin{aligned}
\overrightarrow{\alpha P}=\overrightarrow{\alpha P^{\prime}}+\overrightarrow{P^{\prime} P} & \Rightarrow \overrightarrow{\alpha P}=\frac{\left\langle\alpha P,\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}\left\|\alpha^{\prime}\right\|^{2}} \cdot\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime} \\
& \overrightarrow{P^{\prime} P} \\
& \Rightarrow P^{\prime}=\alpha+\frac{\left\langle\alpha P,\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}\left\|\alpha^{\prime}\right\|^{2}} \cdot \overrightarrow{\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}} \\
& \Rightarrow \alpha_{B}=\alpha+\left\langle\alpha P, \frac{\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|\left\|\alpha^{\prime}\right\|}\right\rangle \cdot \frac{\left(\alpha^{\prime} \wedge \alpha^{\prime \prime}\right) \wedge \alpha^{\prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|\left\|\alpha^{\prime}\right\|}
\end{aligned}
$$

When the principal normal vector from the relation (1.1) is taken into consideration, the proof of the theorem is completed.

Moreover, if $\chi(t)=\langle P-\alpha(t), N(t)\rangle$, then the relation (3.1) can be written by following:

$$
\begin{equation*}
\alpha_{N}(t)=\alpha(t)+\chi(t) N(t) \tag{3.2}
\end{equation*}
$$

and if the point P is specifically taken as origin, then we have $\chi(t)=-\langle\alpha(t), N(t)\rangle$.
Theorem 3.3. Let α_{N} be the N - pedal curve of the given curve α with unit speed, and $\left\{T_{2}, N_{2}, B_{2}\right\}$ denotes the Frenet vectors of the N - pedal curve of α. Then, among the Frenet vectors, the following relations exist:

$$
\begin{aligned}
T_{2}= & \omega_{2}(1-\kappa \chi) T+\omega_{2} \chi^{\prime} N+\omega_{2} \tau \chi B, \\
N_{2}= & B_{2} \wedge T_{2}, \\
B_{2}= & \eta_{2}\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right) T \\
& -\eta_{2}\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right) N \\
& +\eta_{2}\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right) B,
\end{aligned}
$$

where

$$
\begin{aligned}
& \omega_{2}=\frac{1}{\sqrt{(1-\kappa \chi)^{2}+\chi^{\prime 2}+(\tau \chi)^{2}}}, \\
& \eta_{2}=\frac{1}{\left(\begin{array}{l}
\left.\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)^{2}+\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}\right)^{\frac{1}{2}} \\
+\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}
\end{array}\right.} .
\end{aligned}
$$

Proof. By taking the derivatives of (3.2), we first have

$$
\begin{align*}
\alpha_{N}^{\prime}= & (1-\kappa \chi) T+\chi^{\prime} N+\tau \chi B, \\
\alpha^{\prime \prime}{ }_{N}= & -\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right) T+\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right) N+\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right) B, \\
{\alpha^{\prime \prime \prime}}_{N}= & -\left((\kappa \chi)^{\prime \prime}+\left(\kappa \chi^{\prime}\right)^{\prime}+\kappa^{2}-\chi \kappa\left(\kappa^{2}+\tau^{2}\right)+\kappa \chi^{\prime \prime}\right) T \tag{3.3}\\
& +\left(\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)^{\prime}-\kappa(\kappa \chi)^{\prime}-\tau(\tau \chi)^{\prime}-\chi^{\prime}\left(\kappa^{2}+\tau^{2}\right)\right) N \\
& +\left(\kappa \tau-\chi \tau\left(\kappa^{2}+\tau^{2}\right)+\tau \chi^{\prime \prime}+(\tau \chi)^{\prime \prime}+\left(\tau \chi^{\prime}\right)^{\prime}\right) B .
\end{align*}
$$

Further, other necessary relations are obtained as

$$
\begin{align*}
\alpha^{\prime}{ }_{N} \wedge \alpha^{\prime \prime}{ }_{N}= & \left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right) T \\
& -\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right) N \tag{3.4}\\
& +\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right) B
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\alpha_{N}^{\prime}, \alpha^{\prime \prime}{ }_{N}, \alpha^{\prime \prime \prime}{ }_{N}\right)= \\
& -\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)\left((\kappa \chi)^{\prime \prime}+\left(\kappa \chi^{\prime}\right)^{\prime}+\kappa^{2}+\kappa \chi^{\prime \prime}-\chi \kappa\left(\kappa^{2}+\tau^{2}\right)\right) \\
& -\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)\left(\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)^{\prime}-\kappa(\kappa \chi)^{\prime}-\tau(\tau \chi)^{\prime}-\chi^{\prime}\left(\kappa^{2}+\tau^{2}\right)\right) \\
& +\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)\left(\kappa \tau-\chi \tau\left(\kappa^{2}+\tau^{2}\right)+\tau \chi^{\prime \prime}+(\tau \chi)^{\prime \prime}+\left(\tau \chi^{\prime}\right)^{\prime}\right),
\end{aligned}
$$

and

$$
\begin{align*}
\left\|\alpha^{\prime}{ }_{N}\right\| & =\sqrt{(1-\kappa \chi)^{2}+\chi^{\prime 2}+(\tau \chi)^{2}}, \\
\left\|\alpha_{N}^{\prime} \wedge \alpha^{\prime \prime}{ }_{N}\right\| & =\left(\begin{array}{l}
\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)^{2} \\
+\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2} \\
+\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}
\end{array}\right)^{\frac{1}{2}} . \tag{3.5}
\end{align*}
$$

By substituting equalities (3.3), (3.4), and (3.5) into the relations at (1.1), the proof is completed.
Theorem 3.4. Let α_{N}, be the N - pedal curve of the unit speed curve α, and let κ_{2} and τ_{2} denote the curvature and torsion functions for α_{N}, respectively. Then, the following relations exist among the curvatures:

$$
\begin{aligned}
& \kappa_{2}= \frac{\binom{\left.\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)^{2}+\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)\right)^{2}}{+\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}}^{\frac{1}{2}}}{\left((1-\kappa \chi)^{2}+\chi^{\prime 2}+(\tau \chi)^{2}\right) \sqrt{(1-\kappa \chi)^{2}+\chi^{\prime 2}+(\tau \chi)^{2}}}, \\
&-\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)\left((\kappa \chi)^{\prime \prime}+\left(\kappa \chi^{\prime}\right)^{\prime}+\kappa^{2}+\kappa \chi^{\prime \prime}-\chi \kappa\left(\kappa^{2}+\tau^{2}\right)\right) \\
&-\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)\left(\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)^{\prime}-\kappa(\kappa \chi)^{\prime}-\tau(\tau \chi)^{\prime}-\chi^{\prime}\left(\kappa^{2}+\tau^{2}\right)\right) \\
& \tau_{2}= \frac{+\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)\left(\kappa \tau-\chi \tau\left(\kappa^{2}+\tau^{2}\right)+\tau \chi^{\prime \prime}+(\tau \chi)^{\prime \prime}+\left(\tau \chi^{\prime}\right)^{\prime}\right)}{\left(\chi^{\prime}\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)-\tau \chi\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)\right)^{2}+\left((1-\kappa \chi)\left((\tau \chi)^{\prime}+\tau \chi^{\prime}\right)+\tau \chi\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}} . \\
&+\left((1-\kappa \chi)\left(\kappa-\chi\left(\kappa^{2}+\tau^{2}\right)+\chi^{\prime \prime}\right)+\chi^{\prime}\left((\kappa \chi)^{\prime}+\kappa \chi^{\prime}\right)\right)^{2}
\end{aligned} .
$$

Proof. By substituting (3.4) and (3.5) into (1.2), the proof is completed.
Corollary 3.5. The following relations exist between the Frenet vectors of the N - pedal curve and their derivatives

$$
\begin{equation*}
T_{2}^{\prime}=\mu_{2} \kappa_{2} N_{2}, \quad N_{2}^{\prime}=\mu_{2}\left(-\kappa_{2} T_{2}+\tau_{2} B_{2}\right), \quad B_{3}^{\prime}=-\mu_{2} \tau_{2} N_{2}, \tag{3.6}
\end{equation*}
$$

where $\mu_{2}=\left\|\alpha^{\prime}{ }_{N}\right\|$.

Definition 3.6. By taking the tangent and the principal normal vectors of the N-pedal curve as position vectors, we define a regular curve called the $T_{2} N_{2}$ Smarandache curve as follows:

$$
\begin{equation*}
\beta_{1}=\frac{T_{2}+N_{2}}{\sqrt{2}} . \tag{3.7}
\end{equation*}
$$

Theorem 3.7. Let $T_{\beta_{1}}, N_{\beta_{1}}$, and $B_{\beta_{1}}$ be the Frenet vectors of the $T_{2} N_{2}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
T_{\beta_{1}} & =\frac{-\kappa_{2} T_{2}+\kappa_{2} N_{2}+\tau_{2} B_{2}}{\sqrt{2 \kappa_{2}^{2}+\tau_{2}^{2}}}, \\
N_{\beta_{1}} & =B_{\beta_{1}} \wedge T_{\beta_{1}}, \\
B_{\beta_{1}} & =\frac{-\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right) T_{2}+\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right) N_{2}-\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right) B_{2}}{\sqrt{\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)^{2}+\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right)^{2}+\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)^{2}}},
\end{aligned}
$$

where $\quad x_{4}=-\frac{\left(\mu_{2} \kappa_{2}\right)^{\prime}+\mu_{2}^{2} \kappa_{2}^{2}}{\sqrt{2}}, \quad x_{5}=\frac{\left(\mu_{2} \kappa_{2}\right)^{\prime}-\mu_{2}^{2}\left(\kappa_{2}^{2}+\tau_{2}^{2}\right)}{\sqrt{2}}, \quad x_{6}=\frac{\left(\mu_{2} \tau_{2}\right)^{\prime}+\mu_{2}^{2} \kappa_{2} \tau_{2}}{\sqrt{2}}$.
Proof. The derivatives of (3.7) up to the third degree are as given below

$$
\begin{align*}
\beta_{1}{ }^{\prime} & =\frac{\mu_{2}\left(-\kappa_{2} T_{2}+\kappa_{2} N_{2}+\tau_{2} B_{2}\right)}{\sqrt{2}} \\
\beta_{1}{ }^{\prime \prime} & =x_{4} T_{2}+x_{5} N_{2}+x_{6} B_{2} \tag{3.8}\\
\beta_{1}{ }^{\prime \prime \prime} & =\left(x^{\prime}{ }_{4}-\mu_{2} \kappa_{2} x_{2}\right) T_{2}+\left(x^{\prime}{ }_{5}+\mu_{2} x_{4}-\mu_{2} x_{6}\right) N_{2}+\left(x^{\prime}{ }_{6}+\mu_{2} \tau_{2} x_{5}\right) B_{2} .
\end{align*}
$$

By doing the necessary algebra and by taking the required norms, we have

$$
\begin{gather*}
\beta_{1}{ }^{\prime} \wedge \beta_{1}{ }^{\prime \prime}=-\frac{\mu_{2}\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)}{\sqrt{2}} T_{2}+\frac{\mu_{2}\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right)}{\sqrt{2}} N_{2}-\frac{\mu_{2}\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)}{\sqrt{2}} B_{2}, \\
\operatorname{det}\left(\beta_{1}{ }^{\prime}, \beta_{1}{ }^{\prime \prime}, \beta_{1}{ }^{\prime \prime \prime}\right)=\frac{\mu_{2}\binom{\left(\kappa_{2} x_{6}+\tau_{3} x_{4}\right)\left(x_{5}^{\prime}+\mu_{2} x_{4}-\mu_{2} x_{6}\right)-\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)\left(x_{4}^{\prime}-\mu_{2} \kappa_{2} x_{5}\right)}{-\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)\left(x^{\prime}{ }_{6}+\mu_{2} \tau_{2} x_{5}\right)},}{} . \tag{3.9}
\end{gather*}
$$

and

$$
\begin{align*}
\left\|\beta_{1}^{\prime}\right\| & =\frac{\mu_{2}}{\sqrt{2}} \sqrt{2 \kappa_{2}^{2}+\tau_{2}^{2}} \\
\left\|\beta_{1}^{\prime} \wedge \beta_{1}^{\prime \prime}\right\| & =\frac{\mu_{2}}{\sqrt{2}} \sqrt{\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)^{2}+\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right)^{2}+\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)^{2}} . \tag{3.10}
\end{align*}
$$

Substituting the relations (3.8), (3.9), and (3.10) into (1.1) completes the proof.
Theorem 3.8. Let $\kappa_{\beta_{1}}$ and $\tau_{\beta_{1}}$ denote the curvature and the torsion of the $T_{2} N_{2}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
& \kappa_{\beta_{1}}=\frac{2 \sqrt{\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)^{2}+\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right)^{2}+\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)^{2}}}{\mu_{2}^{2}\left(2 \kappa_{2}^{2}+\tau_{2}^{2}\right) \sqrt{2 \kappa_{2}^{2}+\tau_{2}^{2}}}, \\
& \tau_{\beta_{1}}=\frac{\sqrt{2}\left(\left(\kappa_{2} x_{6}+\tau_{3} x_{4}\right)\left(x^{\prime}{ }_{5}+\mu_{2} x_{4}-\mu_{2} x_{6}\right)-\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)\left(x^{\prime}{ }_{4}-\mu_{2} \kappa_{2} x_{5}\right)-\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)\left(x^{\prime}{ }_{6}+\mu_{2} \tau_{2} x_{5}\right)\right)}{\mu_{2}\left(\left(\kappa_{2} x_{6}+\tau_{2} x_{5}\right)^{2}+\left(\kappa_{2} x_{6}+\tau_{2} x_{4}\right)^{2}+\left(\kappa_{2} x_{5}+\kappa_{2} x_{4}\right)^{2}\right)} .
\end{aligned}
$$

Proof. By using (3.9) and (3.10) to substitute into (1.2), the proof is completed.
Definition 3.9. By taking the tangent and the binormal vectors of the N - pedal curve as position vectors, we define a regular curve called the $T_{2} B_{2}$ Smarandache curve as follows:

$$
\begin{equation*}
\beta_{2}=\frac{T_{2}+B_{2}}{\sqrt{2}} . \tag{3.11}
\end{equation*}
$$

Theorem 3.10. Let $T_{\beta_{2}}, N_{\beta_{2}}$, and $B_{\beta_{2}}$ be the Frenet vectors of the $T_{2} B_{2}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
T_{\beta_{2}}=N_{2}, \quad N_{\beta_{2}}=\frac{-\kappa_{2} T_{2}+\tau_{2} B_{2}}{\sqrt{\kappa_{2}^{2}+\tau_{2}^{2}}}, \quad B_{\beta_{2}}=\frac{\tau_{2} T_{2}+\kappa_{2} B_{2}}{\sqrt{\kappa_{2}^{2}+\tau_{2}^{2}}} .
$$

Proof. By taking the derivatives of (3.11), we have

$$
\begin{align*}
\beta_{2}^{\prime} & =\frac{\mu_{2}\left(\kappa_{2}-\tau_{2}\right) N_{2}}{\sqrt{2}}, \\
\beta^{\prime \prime} & =\frac{\mu_{2}^{2}\left(\kappa_{2}-\tau_{2}\right)\left(-\kappa_{2} T_{2}+\tau_{2} B_{2}\right)}{\sqrt{2}}, \tag{3.12}\\
\beta^{\prime \prime \prime}{ }_{2} & =\frac{-\left(\mu_{2}^{2} \kappa_{2}^{2}-\mu_{2}^{2} \kappa_{2} \tau_{2}\right)^{\prime} T_{2}+\left(\mu_{2}^{2} \kappa_{2} \tau_{2}-\mu_{2}^{2} \tau_{2}^{2}\right)^{\prime} B_{2}+\mu_{2}^{3}\left(-\kappa_{2}^{3}+\tau_{2}^{3}+\kappa_{2}^{2} \tau_{2}-\tau_{2}^{2} \kappa_{2}\right) N_{2}}{\sqrt{2}} .
\end{align*}
$$

Further, by taking norms and having required vector products, we have

$$
\begin{align*}
\beta_{2}^{\prime} \wedge \beta^{\prime \prime}{ }_{2} & =\frac{\mu_{2}^{3}\left(\kappa_{2}-\tau_{2}\right)^{2}\left(\tau_{2} T_{2}+\kappa_{2} B_{2}\right)}{2} \\
\operatorname{det}\left(\beta^{\prime}{ }_{2}, \beta^{\prime \prime}{ }_{2}, \beta^{\prime \prime \prime}{ }_{2}\right) & =\frac{\mu_{2}^{5}\left(\kappa_{2}-\tau_{2}\right)^{3}\left(\kappa_{2} \tau_{2}{ }^{\prime}-\tau_{2} \kappa_{2}{ }^{\prime}\right)}{2 \sqrt{2}}, \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\beta^{\prime}{ }_{2}\right\|=\frac{\mu_{2}\left(\kappa_{2}-\tau_{2}\right)}{\sqrt{2}}, \quad\left\|\beta_{2}^{\prime} \wedge \beta^{\prime \prime}{ }_{2}\right\|=\frac{\mu_{2}^{3}\left(\kappa_{2}-\tau_{2}\right)^{2} \sqrt{\kappa_{2}^{2}+\tau_{2}^{2}}}{2} . \tag{3.14}
\end{equation*}
$$

If we substitute relations (3.12), (3.13), and (3.14) into (1.1), the proof is completed.
Theorem 3.11. Let $\kappa_{\beta_{2}}$ and $\tau_{\beta_{2}}$ denote the curvature and the torsion of the $T_{2} B_{2}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\kappa_{\beta_{2}}=\frac{\sqrt{2 \kappa_{2}^{2}+2 \tau_{2}^{2}}}{\left(\kappa_{2}-\tau_{2}\right)}, \quad \tau_{\beta_{2}}=\frac{\sqrt{2}\left(\kappa_{2} \tau_{2}{ }^{\prime}-\tau_{2} \kappa_{2}{ }^{\prime}\right)}{\mu_{2}\left(\kappa_{2}-\tau_{2}\right)\left(\kappa_{2}^{2}+\tau_{2}^{2}\right)} .
$$

Proof. The proof is clear by the substitution of (3.13) and (3.14) into (1.2).

Definition 3.12. By taking the principal normal and the binormal vectors of the N-pedal curve as position vectors, we define a regular curve called the $N_{2} B_{2}$ Smarandache curve as follows:

$$
\begin{equation*}
\beta_{3}=\frac{N_{2}+B_{2}}{\sqrt{2}} \tag{3.15}
\end{equation*}
$$

Theorem 3.13. Let $T_{\beta_{3}}, N_{\beta_{3}}$, and $B_{\beta_{3}}$ be the Frenet vectors of the $N_{2} B_{2}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\beta_{3}}=\frac{-\kappa_{2} T_{2}-\tau_{2} N_{2}+\tau_{2} B_{2}}{\sqrt{\kappa_{2}^{2}+2 \tau_{2}^{2}}} \\
& N_{\beta_{3}}=B_{\beta_{3}} \wedge T_{\beta_{3}} \\
& B_{\beta_{3}}=\frac{-\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right) T_{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right) N_{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right) B_{2}}{\sqrt{\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)^{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right)^{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)^{2}}}
\end{aligned}
$$

where $y_{4}=\frac{\mu_{2}^{2} \tau_{2} \kappa_{2}-\left(\mu_{2} \kappa_{2}\right)^{\prime}}{\sqrt{2}}, \quad y_{5}=-\frac{\mu_{2}^{2}\left(\kappa_{2}^{2}+\tau_{2}^{2}\right)+\left(\mu_{2} \tau_{2}\right)^{\prime}}{\sqrt{2}}, \quad y_{6}=\frac{\left(\mu_{2} \tau_{2}\right)^{\prime}-\mu_{2}^{2} \tau_{2}^{2}}{\sqrt{2}}$.
Proof. By taking the derivatives of (3.15), we have

$$
\begin{align*}
\beta_{3}^{\prime} & =\frac{\mu_{2}\left(-\kappa_{2} T_{2}-\tau_{2} N_{2}+\tau_{2} B_{2}\right)}{\sqrt{2}}, \\
\beta^{\prime \prime}{ }_{3} & =y_{4} T_{2}+y_{5} N_{2}+y_{6} B_{2}, \tag{3.16}\\
\beta^{\prime \prime \prime}{ }_{3} & =\left(y_{4}^{\prime}-\mu_{2} y_{4} \kappa_{2}\right) T_{2}+\left(y^{\prime}{ }_{5}+\mu_{2} y_{4} \kappa_{2}-\mu_{2} y_{6} \tau_{2}\right) N_{2}+\left(y_{6}^{\prime}+\mu_{2} y_{5} \tau_{2}\right) B_{2} .
\end{align*}
$$

Moreover, we calculate the required vector products and the norms as

$$
\begin{align*}
\beta_{3}^{\prime} \wedge \beta^{\prime \prime}{ }_{3} & =\frac{\mu_{2}}{\sqrt{2}}\left(\left(-\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right) T_{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right) N_{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right) B_{2}\right)\right) \\
\operatorname{det}\left(\beta_{3}^{\prime}, \beta^{\prime \prime}{ }_{3}, \beta^{\prime \prime \prime}{ }_{3}\right) & =\frac{\mu_{2}}{\sqrt{2}}\binom{\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)\left(y_{6}^{\prime}+\mu_{2} y_{5} \tau_{2}\right)-\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)\left(y^{\prime}{ }_{4}-\mu_{2} y_{5} \kappa_{2}\right)}{+\left(y_{4}^{\prime}-\mu_{2} y_{5} \kappa_{2}\right)\left(y_{5}^{\prime}+\mu_{2} y_{4} \kappa_{2}-\mu_{2} y_{6} \tau_{2}\right)}, \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
\left\|{\beta^{\prime}}_{3}\right\| & =\frac{\mu_{2}}{\sqrt{2}} \sqrt{\kappa_{2}^{2}+2 \tau_{2}^{2}}, \\
\left\|\beta_{3}^{\prime} \wedge \beta^{\prime \prime}{ }_{3}\right\| & =\frac{\mu_{2}}{\sqrt{2}} \sqrt{\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)^{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right)^{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)^{2}} . \tag{3.18}
\end{align*}
$$

When substituting relations (3.16), (3.17), and (3.18) into (1.1), the proof is completed.
Theorem 3.14. Let $\kappa_{\beta_{3}}$ and $\tau_{\beta_{3}}$ denote the curvature and the torsion of the $T_{2} B_{2}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
\kappa_{\beta_{3}}= & \frac{2 \sqrt{\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)^{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right)^{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)^{2}}}{\mu_{2}^{2}\left(\kappa_{2}^{2}+2 \tau_{2}^{2}\right) \sqrt{\kappa_{2}^{2}+2 \tau_{2}^{2}}} \\
\tau_{\beta_{3}}= & \frac{\sqrt{2}\binom{\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)\left(y_{6}^{\prime}+\mu_{2} y_{5} \tau_{2}\right)-\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)\left(y_{4}^{\prime}-\mu_{2} y_{5} \kappa_{2}\right)}{+\left(y_{4}^{\prime}-\mu_{2} y_{5} \kappa_{2}\right)\left(y_{5}^{\prime}+\mu_{2} y_{4} \kappa_{2}-\mu_{2} y_{6} \tau_{2}\right)}}{\mu_{2}\left(\left(\tau_{2} y_{6}+\tau_{2} y_{5}\right)^{2}+\left(\kappa_{2} y_{6}+\tau_{2} y_{4}\right)^{2}+\left(\tau_{2} y_{4}-\kappa_{2} y_{5}\right)^{2}\right)}
\end{aligned}
$$

Proof. The proof is done upon substituting the above relations (3.17) and (3.18) into (1.2).
Definition 3.15. By taking the tangent and principal normal and binormal vectors of the N - pedal curve as position vectors, we define a regular curve called the $T_{2} N_{2} B_{2}$ Smarandache curve as follows:

$$
\begin{equation*}
\beta_{4}=\frac{T_{2}+N_{2}+B_{2}}{\sqrt{3}} . \tag{3.19}
\end{equation*}
$$

Theorem 3.16. Let $T_{\beta_{4}}, N_{\beta_{4}}$ and $B_{\beta_{4}}$ be the Frenet vectors of the $T_{2} N_{2} B_{2}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\beta_{4}}=\frac{-\kappa_{2} T_{2}+\left(\kappa_{2}-\tau_{2}\right) N_{2}+\tau_{2} B_{2}}{\sqrt{2 \kappa_{2}^{2}-2 \kappa_{2} \tau_{2}+2 \tau_{2}^{2}}}, \\
& N_{\beta_{4}}=B_{\beta_{4}} \wedge T_{\beta_{4}}, \\
& B_{\beta_{4}}=\frac{\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-\tau_{2} z_{5}\right) T_{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right) N_{2}-\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right) B_{2}}{\sqrt{\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-\tau_{2} z_{5}\right)^{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)^{2}+\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)^{2}}},
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{4}=-\frac{\left(\mu_{2} \kappa_{2}\right)^{\prime}+\mu_{2}^{2} \kappa_{2}\left(\kappa_{2}-\tau_{2}\right)}{\sqrt{3}}, \quad z_{5}=\frac{\left(\mu_{2} \kappa_{2}-\mu_{2} \tau_{2}\right)^{\prime}-\mu_{2}^{2}\left(\kappa_{2}^{2}+\tau_{2}^{2}\right)}{\sqrt{3}} \\
& z_{6}=\frac{\left(\mu_{2} \tau_{2}\right)^{\prime}+\mu_{2}^{2} \tau_{2}\left(\kappa_{2}-\tau_{2}\right)}{\sqrt{3}}
\end{aligned}
$$

Proof. The derivatives of (3.19) are

$$
\begin{align*}
\beta^{\prime}{ }_{4} & =\frac{\mu_{2}\left(-\kappa_{2} T_{2}+\left(\kappa_{2}-\tau_{2}\right) N_{2}+\tau_{2} B_{2}\right)}{\sqrt{3}}, \\
\beta^{\prime \prime}{ }_{4} & =z_{4} T_{2}+z_{5} N_{2}+z_{6} B_{2} \tag{3.20}\\
\beta^{\prime \prime \prime}{ }_{4} & =\left(z^{\prime}{ }_{4}-z_{5} \mu_{2} \kappa_{2}\right) T_{2}+\left(z^{\prime}{ }_{5}+z_{4} \mu_{2} \kappa_{2}-z_{6} \mu_{2} \tau_{2}\right) N_{2}+\left(z^{\prime}{ }_{6}+z_{5} \mu_{2} \tau_{2}\right) B_{2} .
\end{align*}
$$

In addition, the required vector products and the norms are calculated as

$$
\begin{align*}
& \beta_{4}^{\prime} \wedge \beta^{\prime \prime}{ }_{4}=\frac{\mu_{2}}{\sqrt{3}}\left(\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-z_{5} \tau_{2}\right) T_{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right) N_{2}-\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right) B_{2}\right), \\
& \operatorname{det}\left(\beta^{\prime}{ }_{4}, \beta^{\prime \prime \prime}{ }_{4}, \beta^{\prime \prime \prime}{ }_{4}\right)=\frac{\mu_{2}}{\sqrt{3}}\left(\begin{array}{l}
\left(\kappa_{2} z_{6}-\tau_{2} z_{6}-\tau_{2} z_{5}\right)\left(z_{4}^{\prime}-z_{5} \mu_{2} \kappa_{2}\right) \\
+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)\left(z^{\prime}{ }_{5}+z_{4} \mu_{2} \kappa_{2}-z_{6} \mu_{2} \tau_{2}\right) \\
-\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)\left(z_{6}^{\prime}{ }_{6}+z_{5} \mu_{2} \tau_{2}\right)
\end{array}\right) \tag{3.21}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\beta^{\prime}{ }_{4}\right\| & =\frac{\sqrt{2} \mu_{2}}{\sqrt{3}} \sqrt{\kappa_{2}^{2}-\kappa_{2} \tau_{2}+\tau_{2}^{2}}, \tag{3.22}\\
\left\|{\beta^{\prime}}_{4} \wedge \beta^{\prime \prime}{ }_{4}\right\| & =\frac{\mu_{2}}{\sqrt{3}} \sqrt{\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-z_{5} \tau_{2}\right)^{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)^{2}+\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)^{2}} .
\end{align*}
$$

By substituting relations (3.20), (3.21), and (3.22) into (1.1), the proof is completed.

Theorem 3.17. Let $\kappa_{\beta_{4}}$ and $\tau_{\beta_{4}}$ denote the curvature and the torsion of the $T_{2} N_{2} B_{2}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
\kappa_{\beta_{4}}= & \frac{\sqrt{\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-z_{5} \tau_{2}\right)^{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)^{2}+\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)^{2}}}{\sqrt{2} \mu_{2}\left(\kappa_{2}^{2}-\kappa_{2} \tau_{2}+\tau_{2}^{2}\right) \sqrt{\kappa_{2}^{2}-\kappa_{2} \tau_{2}+\tau_{2}^{2}}}, \\
\tau_{\beta_{4}}= & \frac{\sqrt{3}\binom{\left(\kappa_{2} z_{6}-\tau_{2} z_{6}-\tau_{2} z_{5}\right)\left(z^{\prime}{ }_{4}-z_{5} \mu_{2} \kappa_{2}\right)+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)\left(z^{\prime}{ }_{5}+z_{4} \mu_{2} \kappa_{2}-z_{6} \mu_{2} \tau_{2}\right)}{-\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)\left(z_{6}{ }_{6}+z_{5} \mu_{2} \tau_{2}\right)}}{\mu_{2}\left(\left(z_{6} \kappa_{2}-z_{6} \tau_{2}-z_{5} \tau_{2}\right)^{2}+\left(\tau_{2} z_{4}+\kappa_{2} z_{6}\right)^{2}+\left(\kappa_{2} z_{4}-\tau_{2} z_{4}+\kappa_{2} z_{5}\right)^{2}\right)} .
\end{aligned}
$$

Proof. The proof is done upon substituting the above relations (3.21) and (3.22) into (1.2).
By recalling Example 2.18, Smarandache curves of the N - pedal curve according to the origin $O(0,0,0)$ are illustrated in Figure 4.

(a) $T_{2} N_{2}-$ Smarancahe curve

(c) $N_{2} B_{2}-$ Smarancahe curve

(b) $T_{2} B_{2}$ - Smarancahe curve

(d) $T_{2} N_{2} B_{2}-$ Smarancahe curve

Figure 4. Smarandache curves (black) of the N - pedal curve (red) of the curve $\gamma(t)$ (blue) according to the origin $O(0,0,0)$ where $t \in[-\pi, \pi]$.

4. B-Pedal curve and Smarandache curves of the B-Pedal curve

Definition 4.1. Let B be the binormal vector of a given regular curve α in \mathbb{E}^{3}. The geometric locus of the perpendicular projection of points onto a binormal vector from a point $P \in \mathbb{E}^{3}$ that is not on the curve is called the B-pedal curve of the curve α according to P.
Theorem 4.2. The equation of the B - pedal curve of a given regular curve α is as follows:

$$
\begin{equation*}
\alpha_{B}(t)=\alpha(t)+\langle P-\alpha(t), B(t)\rangle B(t) . \tag{4.1}
\end{equation*}
$$

Proof. Let P^{\prime} be a perpendicular projection point onto the principal normal vector from the point P that is not on the curve α. The perpendicular projection vector $\overrightarrow{\alpha P^{\prime}}$ is calculated by the following formula:

$$
\overrightarrow{\alpha P^{\prime}}=\frac{\left\langle\alpha P, \alpha^{\prime} \wedge \alpha^{\prime \prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}} \overrightarrow{\alpha^{\prime} \wedge \alpha^{\prime \prime}}
$$

Next, let $\alpha_{B}(t)$ be the geometric location of the point P^{\prime}. According to this, we have following relations:

$$
\begin{aligned}
\overrightarrow{\alpha P}=\overrightarrow{\alpha P^{\prime}}+\overrightarrow{P^{\prime} P} & \Rightarrow \overrightarrow{\alpha P}=\frac{\left\langle\alpha P, \alpha^{\prime} \wedge \alpha^{\prime \prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}} \cdot \overrightarrow{\alpha^{\prime} \wedge \alpha^{\prime \prime}}+\overrightarrow{P^{\prime} P} \\
& \Rightarrow P^{\prime}=\alpha+\frac{\left\langle\alpha P, \alpha^{\prime} \wedge \alpha^{\prime \prime}\right\rangle}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}} \cdot \overrightarrow{\alpha^{\prime} \wedge \alpha^{\prime \prime}} \\
& \Rightarrow \alpha_{B}=\alpha+\left\langle\alpha P, \frac{\alpha^{\prime} \wedge \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}\right\rangle \cdot \frac{\overrightarrow{\alpha^{\prime} \wedge \alpha^{\prime \prime}}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}
\end{aligned}
$$

When the principal normal vector from the relation (1.1) is taken into consideration, the proof of the theorem is completed.

Further, if $\xi(t)=\langle P-\alpha(t), B(t)\rangle$, then the relation (4.1) can be written by following:

$$
\begin{equation*}
\alpha_{B}(t)=\alpha(t)+\xi(t) B(t), \tag{4.2}
\end{equation*}
$$

and if the point P is specifically taken as origin, then we have $\xi(t)=-\langle\alpha(t), B(t)\rangle$.
Theorem 4.3. Let α_{B} be the B - pedal curve of the given curve α with unit speed, and $\left\{T_{3}, N_{3}, B_{3}\right\}$ denotes the Frenet vectors of the B - pedal curve of α. Then, among the Frenet vectors, the following relations exist:

$$
\begin{aligned}
& T_{3}=\omega_{3} T-\omega_{3} \tau N+\omega_{3} \xi^{\prime} B, \\
& N_{3}=B_{3} \wedge T_{3}, \\
& B_{3}=-\eta_{3}\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right) T+\eta_{3}\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right) N+\eta_{3}\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right) B,
\end{aligned}
$$

where

$$
\begin{aligned}
\omega_{3} & =\frac{1}{\sqrt{1+\tau^{2}+\xi^{\prime 2}}}, \\
\eta_{3} & =\frac{1}{\sqrt{\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)^{2}+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)^{2}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)^{2}}} .
\end{aligned}
$$

Proof. By taking the derivatives of (4.2), we first have

$$
\begin{align*}
\alpha^{\prime}{ }_{B}= & T-\tau N+\xi^{\prime} B, \\
\alpha^{\prime \prime}{ }_{B}= & \kappa \tau T+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau\right) N+\left(\xi^{\prime \prime}-\tau^{2}\right) B, \\
\alpha^{\prime \prime \prime}{ }_{B}= & \left((\kappa \tau)^{\prime}-\kappa\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau\right)\right) T+\left(\kappa^{2} \tau-\tau^{3}+\tau \xi^{\prime \prime}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau\right)^{\prime}\right) N \tag{4.3}\\
& +\left(\left(\xi^{\prime \prime}-\tau^{2}\right)^{\prime}+\kappa \tau-\tau \tau^{\prime}-\xi^{\prime} \tau^{2}\right) B .
\end{align*}
$$

Further, other necessary relations are obtained as

$$
\begin{align*}
& \alpha_{B}^{\prime} \wedge \alpha_{B}^{\prime \prime}=-\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right) T+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right) N+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right) B, \\
& \operatorname{det}\left(\alpha^{\prime}{ }_{B}, \alpha^{\prime \prime}{ }_{B}, \alpha^{\prime \prime \prime}{ }_{B}\right)=\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)\left(\left(\xi^{\prime \prime}-\tau^{2}\right)^{\prime}+\kappa \tau-\tau \tau^{\prime}-\xi^{\prime} \tau^{2}\right) \\
&+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)\left(\kappa^{2} \tau-\tau^{3}+\tau \xi^{\prime \prime}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau\right)^{\prime}\right) \tag{4.4}\\
&-\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)\left((\kappa \tau)^{\prime}-\kappa^{2}+\tau^{\prime} \kappa+\xi^{\prime} \tau \kappa\right),
\end{align*}
$$

and

$$
\begin{align*}
\left\|\alpha_{B}^{\prime}\right\| & =\sqrt{1+\tau^{2}+\xi^{\prime 2}}, \\
\left\|\alpha^{\prime}{ }_{B} \wedge \alpha^{\prime \prime}{ }_{B}\right\| & =\sqrt{\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)^{2}+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)^{2}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)^{2}} . \tag{4.5}
\end{align*}
$$

By substituting the Eqs (4.3), (4.4), and (4.5) into the relations at (1.1), the proof is completed.
Theorem 4.4. Let α_{B} be the B - pedal curve of the unit speed curve α, and let κ_{3} and τ_{3} denote the curvature and the torsion functions for α_{B}, respectively. Then, the following relations exist among the curvatures

$$
\begin{gathered}
\kappa_{3}=\frac{\sqrt{\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)^{2}+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)^{2}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)^{2}}}{\left(1+\tau^{2}+\xi^{\prime 2}\right) \sqrt{1+\tau^{2}+\xi^{\prime 2}}}, \\
\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)\left(\left(\xi^{\prime \prime}-\tau^{2}\right)^{\prime}+\kappa \tau-\tau \tau^{\prime}-\xi^{\prime} \tau^{2}\right) \\
+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)\left(\kappa^{2} \tau-\tau^{3}+\tau \xi^{\prime \prime}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau\right)^{\prime}\right) \\
\tau_{3}=\frac{-\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)\left((\kappa \tau)^{\prime}-\kappa^{2}+\tau^{\prime} \kappa+\xi^{\prime} \tau \kappa\right)}{\left(\tau \xi^{\prime \prime}-\tau^{3}+\xi^{\prime} \kappa-\xi^{\prime} \tau^{\prime}-\xi^{\prime 2} \tau\right)^{2}+\left(\kappa \tau \xi^{\prime}-\xi^{\prime \prime}+\tau^{2}\right)^{2}+\left(\kappa-\tau^{\prime}-\xi^{\prime} \tau+\kappa \tau^{2}\right)^{2}}
\end{gathered}
$$

Proof. By substituting (4.4) and (4.5) into (1.2), the proof is completed.
Corollary 4.5. The following relations exist between the Frenet vectors of the B - pedal curve and their derivatives:

$$
\begin{equation*}
T_{3}^{\prime}=\mu_{3} \kappa_{3} N_{3}, \quad N_{3}^{\prime}=\mu_{3}\left(-\kappa_{3} T_{3}+\tau_{3} B_{3}\right), \quad B_{3}^{\prime}=-\mu_{3} \tau_{3} N_{3}, \tag{4.6}
\end{equation*}
$$

where $\mu_{3}=\left\|\alpha^{\prime}{ }_{B}\right\|$.

Definition 4.6. By taking the tangent and the principal normal vectors of the B-pedal curve as position vectors, we define a regular curve called the $T_{3} N_{3}$ Smarandache curve as follows:

$$
\begin{equation*}
\delta_{1}=\frac{T_{3}+N_{3}}{\sqrt{2}} . \tag{4.7}
\end{equation*}
$$

Theorem 4.7. Let $T_{\delta_{1}}, N_{\delta_{1}}$, and $B_{\delta_{1}}$ be the Frenet vectors of the $T_{3} N_{3}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
T_{\delta_{1}} & =\frac{-\kappa_{3} T_{3}+\kappa_{3} N_{3}+\tau_{3} B_{3}}{\sqrt{2 \kappa_{3}^{2}+\tau_{3}^{2}}} \\
N_{\delta_{1}} & =B_{\delta_{1}} \wedge T_{\delta_{1}} \\
B_{\delta_{1}} & =\frac{-\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right) T_{3}+\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right) N_{3}-\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right) B_{3}}{\sqrt{\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right)^{2}+\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right)^{2}+\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right)^{2}}}
\end{aligned}
$$

where $x_{7}=-\frac{\left(\mu_{3} \kappa_{3}\right)^{\prime}+\mu_{3}^{2} \kappa_{3}^{2}}{\sqrt{2}}, \quad x_{8}=\frac{\left(\mu_{3} \kappa_{3}\right)^{\prime}-\mu_{3}^{2}\left(\kappa_{3}^{2}+\tau_{3}^{2}\right)}{\sqrt{2}}, \quad x_{9}=\frac{\left(\mu_{3} \tau_{3}\right)^{\prime}+\mu_{3}^{2} \kappa_{3} \tau_{3}}{\sqrt{2}}$.
Proof. The derivatives of (4.7) up to the third degree are as given below.

$$
\begin{align*}
\delta_{1}{ }^{\prime} & =\frac{\mu_{3}\left(-\kappa_{3} T_{3}+\kappa_{3} N_{3}+\tau_{3} B_{3}\right)}{\sqrt{2}}, \\
\delta_{1}{ }^{\prime \prime} & =x_{7} T_{3}+x_{8} N_{3}+x_{9} B_{3}, \tag{4.8}\\
\delta_{1}{ }^{\prime \prime \prime} & =\left(x^{\prime}{ }_{7}-\mu_{3} \kappa_{3} x_{8}\right) T_{3}+\left(x^{\prime}{ }_{8}+\mu_{3} x_{7}-\mu_{3} x_{9}\right) N_{3}+\left(x^{\prime}{ }_{9}+\mu_{3} \tau_{3} x_{8}\right) B_{3} .
\end{align*}
$$

By doing the necessary algebra and by taking the required norms, we have

$$
\begin{align*}
\delta_{1}{ }^{\prime} \wedge \delta_{1}^{\prime \prime} & =\frac{-1}{\sqrt{2}}\left(\mu_{3}\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right) T_{3}-\mu_{3}\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right) N_{3}+\mu_{3}\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right) B_{3}\right), \\
\operatorname{det}\left(\delta_{1}{ }^{\prime}, \delta_{1}{ }^{\prime \prime}, \delta_{1}^{\prime \prime \prime}\right) & =\frac{\mu_{3}}{\sqrt{2}}\binom{\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right)\left(x^{\prime}{ }_{8}+\mu_{3} x_{7}-\mu_{3} x_{9}\right)}{-\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right)\left(x^{\prime}{ }_{7}-\mu_{3} \kappa_{3} x_{8}\right)-\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right)\left(x^{\prime}{ }_{9}+\mu_{3} \tau_{3} x_{8}\right)}, \tag{4.9}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\delta_{1}{ }^{\prime}\right\| & =\frac{\mu_{3}}{\sqrt{2}} \sqrt{2 \kappa_{3}^{2}+\tau_{3}^{2}} \\
\left\|\delta_{1}{ }^{\prime} \wedge \delta_{1}{ }^{\prime \prime}\right\| & =\frac{\mu_{3}}{\sqrt{2}} \sqrt{\left(\kappa_{3} x_{6}+\tau_{3} x_{5}\right)^{2}+\left(\kappa_{3} x_{6}+\tau_{3} x_{4}\right)^{2}+\left(\kappa_{3} x_{5}+\kappa_{3} x_{4}\right)^{2}} . \tag{4.10}
\end{align*}
$$

Substituting the relations (4.8), (4.9), and (4.10) into (1.1) completes the proof.
Theorem 4.8. Let $\kappa_{\delta_{1}}$ and $\tau_{\delta_{1}}$ denote the curvature and the torsion of the $T_{3} N_{3}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
\kappa_{\delta_{1}}= & \frac{2 \sqrt{\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right)^{2}+\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right)^{2}+\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right)^{2}}}{\mu_{3}^{2}\left(2 \kappa_{3}^{2}+\tau_{3}^{2}\right) \sqrt{2 \kappa_{3}^{2}+\tau_{3}^{2}}}, \\
\tau_{\delta_{1}}= & \frac{\sqrt{2}\binom{\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right)\left(x^{\prime}{ }_{8}+\mu_{3} x_{7}-\mu_{3} x_{9}\right)-\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right)\left(x^{\prime}{ }_{7}-\mu_{3} \kappa_{3} x_{8}\right)}{-\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right)\left(x^{\prime}{ }_{9}+\mu_{3} \tau_{3} x_{8}\right)}}{\mu_{3}\left(\kappa_{3} x_{9}+\tau_{3} x_{8}\right)^{2}+\mu_{3}\left(\kappa_{3} x_{9}+\tau_{3} x_{7}\right)^{2}+\mu_{3}\left(\kappa_{3} x_{8}+\kappa_{3} x_{7}\right)^{2}} .
\end{aligned}
$$

Proof. By using (4.9) and (4.10) to substitute into (1.2), the proof is completed.
Definition 4.9. By taking the tangent and the binormal vectors of the B - pedal curve as position vectors, we define a regular curve called the $T_{3} B_{3}$ Smarandache curve as follows:

$$
\begin{equation*}
\delta_{2}=\frac{T_{3}+B_{3}}{\sqrt{2}} . \tag{4.11}
\end{equation*}
$$

Theorem 4.10. Let $T_{\delta_{2}}, N_{\delta_{2}}$, and $B_{\delta_{2}}$ be the Frenet vectors of the $T_{3} B_{3}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
T_{\delta_{2}}=N_{3}, \quad N_{\delta_{2}}=\frac{-\kappa_{3} T_{3}+\tau_{3} B_{3}}{\sqrt{\kappa_{3}^{2}+\tau_{3}^{2}}}, \quad B_{\delta_{2}}=\frac{\tau_{3} T_{3}+\kappa_{3} B_{3}}{\sqrt{\kappa_{3}^{2}+\tau_{3}^{2}}} .
$$

Proof. By taking the derivatives of (4.11), we have

$$
\begin{align*}
\delta_{2}^{\prime}= & \frac{\mu_{3}\left(\kappa_{3}-\tau_{3}\right) N_{3}}{\sqrt{2}}, \\
\delta^{\prime \prime}{ }_{2}= & \frac{\mu_{3}^{2}\left(\kappa_{3}-\tau_{3}\right)\left(-\kappa_{3} T_{3}+\tau_{3} B_{3}\right)}{\sqrt{2}}, \tag{4.12}\\
& -\left(\mu_{3}^{2} \kappa_{3}^{2}-\mu_{3}^{2} \kappa_{3} \tau_{3}\right)^{\prime} T_{3}+\left(-\mu_{3}^{3} \kappa_{3}^{3}+\mu_{3}^{3} \tau_{3}^{3}+\mu_{3}^{3} \kappa_{3}^{2} \tau_{3}-\mu_{3}^{3} \tau_{3}^{2} \kappa_{3}\right) N_{3} \\
\delta^{\prime \prime \prime}{ }_{2}= & \frac{+\left(\mu_{3}^{2} \kappa_{3} \tau_{3}-\mu_{3}^{2} \tau_{3}^{2}\right)^{\prime} B_{3}}{\sqrt{2}} .
\end{align*}
$$

Further, by taking norms and having required vector products, we have

$$
\begin{align*}
\delta^{\prime}{ }_{2} \wedge \delta^{\prime \prime}{ }_{2} & =\frac{\mu_{3}^{3}\left(\kappa_{3}-\tau_{3}\right)^{2}\left(\tau_{3} T_{3}+\kappa_{3} B_{3}\right)}{2}, \\
\operatorname{det}\left(\delta^{\prime}{ }_{2}, \delta^{\prime \prime}{ }_{2}, \delta^{\prime \prime \prime}{ }_{2}\right) & =\frac{\mu_{3}^{5}\left(\kappa_{3}-\tau_{3}\right)^{3}\left(\kappa_{3} \tau_{3}{ }^{\prime}-\tau_{3} \kappa_{3}{ }^{\prime}\right)}{2 \sqrt{2}}, \tag{4.13}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\delta^{\prime}{ }_{2}\right\|=\frac{\mu_{3}\left(\kappa_{3}-\tau_{3}\right)}{\sqrt{2}}, \quad\left\|\delta^{\prime}{ }_{2} \wedge \delta^{\prime \prime}{ }_{2}\right\|=\frac{\mu_{3}^{3}\left(\kappa_{3}-\tau_{3}\right)^{2} \sqrt{\kappa_{3}^{2}+\tau_{3}^{2}}}{2} . \tag{4.14}
\end{equation*}
$$

If we substitute relations (4.12), (4.13), and (4.14) into (1.1), the proof is completed.
Theorem 4.11. Let $\kappa_{\delta_{2}}$ and $\tau_{\delta_{2}}$ denote the curvature and the torsion of the $T_{3} B_{3}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\kappa_{\delta_{2}}=\frac{\sqrt{2 \kappa_{3}^{2}+2 \tau_{3}^{2}}}{\left(\kappa_{3}-\tau_{3}\right)}, \quad \tau_{\delta_{2}}=\frac{\sqrt{2}\left(\kappa_{3} \tau_{3}{ }^{\prime}-\tau_{3} \kappa_{3}{ }^{\prime}\right)}{\mu_{3}\left(\kappa_{3}-\tau_{3}\right)\left(\kappa_{3}^{2}+\tau_{3}^{2}\right)} .
$$

Proof. The proof is clear by the substitution of (4.13) and (4.14) into (1.2).

Definition 4.12. By taking the principal normal and the binormal vectors of the B-pedal curve as position vectors, we define a regular curve called the $N_{3} B_{3}$ Smarandache curve as follows:

$$
\begin{equation*}
\delta_{3}=\frac{N_{3}+B_{3}}{\sqrt{2}} \tag{4.15}
\end{equation*}
$$

Theorem 4.13. Let $T_{\delta_{3}}, N_{\delta_{3}}$, and $B_{\delta_{3}}$ be the Frenet vectors of the $N_{3} B_{3}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
T_{\delta_{3}} & =\frac{-\kappa_{3} T_{3}-\tau_{3} N_{3}+\tau_{3} B_{3}}{\sqrt{\kappa_{3}^{2}+2 \tau_{3}^{2}}} \\
N_{\delta_{3}} & =B_{\delta_{3}} \wedge T_{\delta_{3}} \\
B_{\delta_{3}} & =\frac{-\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right) T_{3}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right) N_{3}+\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right) B_{3}}{\sqrt{\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)^{2}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right)^{2}+\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)^{2}}}
\end{aligned}
$$

where $y_{7}=\frac{\mu_{3}^{2} \tau_{3} \kappa_{3}-\left(\mu_{3} \kappa_{3}\right)^{\prime}}{\sqrt{2}}, \quad y_{8}=-\frac{\mu_{3}^{2}\left(\kappa_{3}^{2}+\tau_{3}^{2}\right)+\left(\mu_{3} \tau_{3}\right)^{\prime}}{\sqrt{2}}, \quad y_{9}=\frac{\left(\mu_{3} \tau_{3}\right)^{\prime}-\mu_{3}^{2} \tau_{3}^{2}}{\sqrt{2}}$.
Proof. By taking the derivatives of (4.15), we have

$$
\begin{align*}
\delta^{\prime}{ }_{3} & =\frac{\mu_{3}\left(-\kappa_{3} T_{3}-\tau_{3} N_{3}+\tau_{3} B_{3}\right)}{\sqrt{2}}, \\
\delta^{\prime \prime}{ }_{3} & =y_{7} T_{3}+y_{8} N_{3}+y_{9} B_{3}, \tag{4.16}\\
\delta^{\prime \prime \prime}{ }_{3} & =\left(y^{\prime}{ }_{7}-\mu_{3} y_{8} \kappa_{3}\right) T_{3}+\left(y_{8}^{\prime}+\mu_{3} y_{7} \kappa_{3}-\mu_{3} y_{9} \tau_{3}\right) N_{3}+\left(y_{9}^{\prime}+\mu_{3} y_{8} \tau_{3}\right) B_{3} .
\end{align*}
$$

Moreover, we calculate the required vector products and the norms as

$$
\begin{align*}
\delta^{\prime}{ }_{3} \wedge \delta^{\prime \prime}{ }_{3}=\frac{\mu_{3}}{\sqrt{2}}\left(\left(-\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right) T_{3}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right) N_{3}+\left(\tau_{3} y_{7}-\kappa_{3} y_{2}\right) B_{3}\right)\right), \tag{4.17}\\
\operatorname{det}\left(\delta^{\prime}{ }_{3}, \delta^{\prime \prime}{ }_{3}, \delta^{\prime \prime \prime}{ }_{3}\right)=\frac{\mu_{3}}{\sqrt{2}}\binom{\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)\left(y_{9}^{\prime}+\mu_{3} y_{8} \tau_{3}\right)-\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)\left(y_{7}^{\prime}-\mu_{3} y_{8} \kappa_{3}\right)}{+\left(y_{7}^{\prime}-\mu_{3} y_{8} \kappa_{3}\right)\left(y^{\prime}{ }_{8}+\mu_{3} y_{7} \kappa_{3}-\mu_{3} y_{9} \tau_{3}\right)},
\end{align*}
$$

and

$$
\begin{align*}
\left\|\delta^{\prime}{ }_{3}\right\| & =\frac{\mu_{3}}{\sqrt{2}} \sqrt{\kappa_{3}^{2}+2 \tau_{3}^{2}} \tag{4.18}\\
\left\|\delta^{\prime}{ }_{3} \wedge \delta^{\prime \prime}{ }_{3}\right\| & =\frac{\mu_{3}}{\sqrt{2}} \sqrt{\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)^{2}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right)^{2}+\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)^{2}}
\end{align*}
$$

When substituting relations (4.16), (4.17), and (4.18) into (1.1), the proof is completed.
Theorem 4.14. Let $\kappa_{\delta_{3}}$ and $\tau_{\delta_{3}}$ denote the curvature and the torsion of the $T_{3} B_{3}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
& \kappa_{\delta_{3}=}=\frac{2 \sqrt{\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)^{2}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right)^{2}+\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)^{2}}}{\mu_{3}^{2}\left(\kappa_{3}^{2}+2 \tau_{3}^{2}\right) \sqrt{\kappa_{3}^{2}+2 \tau_{1}^{2}}}, \\
& \tau_{\delta_{3}}=\frac{\sqrt{2}\binom{\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)\left(y_{9}^{\prime}+\mu_{3} y_{8} \tau_{3}\right)-\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)\left(y^{\prime}{ }_{7}-\mu_{3} y_{8} \kappa_{3}\right)}{+\left(y_{7}^{\prime}-\mu_{3} y_{8} \kappa_{3}\right)\left(y^{\prime}{ }_{8}+\mu_{3} y_{7} \kappa_{3}-\mu_{3} y_{9} \tau_{3}\right)}}{\mu_{3}\left(\left(\tau_{3} y_{9}+\tau_{3} y_{8}\right)^{2}+\left(\kappa_{3} y_{9}+\tau_{3} y_{7}\right)^{2}+\left(\tau_{3} y_{7}-\kappa_{3} y_{8}\right)^{2}\right)} .
\end{aligned}
$$

Proof. The proof is done upon substituting the above relations (4.17) and (4.18) into (1.2).
Definition 4.15. By taking the tangent and principal normal and binormal vectors of the B-pedal curve as position vectors, we define a regular curve called the $T_{3} N_{3} B_{3}$ Smarandache curve as follows:

$$
\begin{equation*}
\delta_{4}=\frac{T_{3}+N_{3}+B_{3}}{\sqrt{3}} \tag{4.19}
\end{equation*}
$$

Theorem 4.16. Let $T_{\delta_{4}}, N_{\delta_{4}}$, and $B_{\delta_{4}}$ be the Frenet vectors of the $T_{3} N_{3} B_{3}$ Smarandache curve. The relations among Frenet vectors are given as follows:

$$
\begin{aligned}
& T_{\delta_{4}}=\frac{-\kappa_{3} T_{3}+\left(\kappa_{3}-\tau_{3}\right) N_{3}+\tau_{3} B_{3}}{\sqrt{2 \kappa_{3}^{2}-2 \kappa_{3} \tau_{3}+2 \tau_{3}^{2}}}, \quad N_{\delta_{4}}=B_{\delta_{4}} \wedge T_{\delta_{4}} \\
& B_{\delta_{4}}=\frac{\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right) T_{3}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right) N_{3}-\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right) B_{3}}{\sqrt{\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)^{2}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)^{2}+\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)^{2}}}
\end{aligned}
$$

where
$z_{7}=-\frac{\left(\mu_{3} \kappa_{3}\right)^{\prime}+\mu_{3}^{2} \kappa_{3}\left(\kappa_{3}-\tau_{3}\right)}{\sqrt{3}}, \quad z_{8}=\frac{\left(\mu_{3} \kappa_{3}-\mu_{3} \tau_{3}\right)^{\prime}-\mu_{3}^{2}\left(\kappa_{3}^{2}+\tau_{3}^{2}\right)}{\sqrt{3}}, \quad z_{9}=\frac{\left(\mu_{3} \tau_{1}\right)^{\prime}+\mu_{3}^{2} \tau_{3}\left(\kappa_{3}-\tau_{3}\right)}{\sqrt{3}}$.
Proof. The derivatives of (4.19) are

$$
\begin{align*}
\delta_{4}^{\prime} & =\frac{\mu_{3}\left(-\kappa_{3} T_{3}+\left(\kappa_{3}-\tau_{3}\right) N_{3}+\tau_{3} B_{3}\right)}{\sqrt{3}}, \quad \delta^{\prime \prime}{ }_{4}=z_{7} T_{3}+z_{8} N_{3}+z_{9} B_{3}, \tag{4.20}\\
\delta^{\prime \prime \prime}{ }_{4} & =\left(z^{\prime}{ }_{7}-z_{8} \mu_{3} \kappa_{3}\right) T_{3}+\left(z^{\prime}{ }_{8}+z_{7} \mu_{3} \kappa_{3}-z_{9} \mu_{3} \tau_{3}\right) N_{3}+\left(z^{\prime}{ }_{9}+z_{8} \mu_{3} \tau_{3}\right) B_{3} .
\end{align*}
$$

In addition, the required vector products and the norms are calculated as

$$
\begin{align*}
& \delta^{\prime}{ }_{4} \wedge \delta^{\prime \prime}{ }_{4}=\frac{\mu_{3}}{\sqrt{3}}\left(\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right) T_{3}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right) N_{3}-\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right) B_{3}\right), \\
& \operatorname{det}\left(\delta^{\prime}{ }_{4}, \delta^{\prime \prime}{ }_{4}, \delta^{\prime \prime \prime}{ }_{4}\right)=\frac{\mu_{3}}{\sqrt{3}}\left(\begin{array}{l}
\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)\left(z^{\prime}{ }_{7}-z_{8} \mu_{3} \kappa_{3}\right) \\
+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)\left(z^{\prime}{ }_{8}+z_{7} \mu_{3} \kappa_{3}-z_{9} \mu_{3} \tau_{3}\right) \\
-\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)\left(z_{9}^{\prime}+z_{8} \mu_{3} \tau_{3}\right)
\end{array}\right), \tag{4.21}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\delta^{\prime}\right\| & =\frac{\sqrt{2} \mu_{3}}{\sqrt{3}} \sqrt{\kappa_{3}^{2}-\kappa_{3} \tau_{3}+\tau_{3}^{2}}, \\
\left\|{\delta^{\prime}}_{4} \wedge \delta^{\prime \prime}{ }_{4}\right\| & =\frac{\mu_{3}}{\sqrt{3}} \sqrt{\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)^{2}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)^{2}+\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)^{2}} . \tag{4.22}
\end{align*}
$$

By substituting relations (4.20), (4.21), and (4.22) into (1.1), the proof is completed.
Theorem 4.17. Let $\kappa_{\delta_{4}}$ and $\tau_{\delta_{4}}$ denote the curvature and the torsion of the $T_{3} N_{3} B_{3}$ Smarandache curve, respectively. The following relations exist among the curvatures as

$$
\begin{aligned}
\kappa_{\delta_{4}}= & \frac{\sqrt{\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)^{2}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)^{2}+\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)^{2}}}{\sqrt{2} \mu_{3}\left(\kappa_{3}^{2}-\kappa_{3} \tau_{3}+\tau_{3}^{2}\right) \sqrt{\kappa_{3}^{2}-\kappa_{3} \tau_{3}+\tau_{3}^{2}}}, \\
\tau_{\delta_{4}}= & \frac{\sqrt{3}\binom{\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)\left(z_{7}^{\prime}-z_{8} \mu_{3} \kappa_{3}\right)+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)\left(z_{8}^{\prime}+z_{7} \mu_{3} \kappa_{3}-z_{9} \mu_{3} \tau_{3}\right)}{-\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)\left(z_{9}^{\prime}+z_{8} \mu_{3} \tau_{3}\right)}}{\mu_{3}\left(\left(z_{9} \kappa_{3}-z_{9} \tau_{3}-\tau_{3} z_{8}\right)^{2}+\left(\tau_{3} z_{7}+\kappa_{3} z_{9}\right)^{2}+\left(\kappa_{3} z_{7}-\tau_{3} z_{7}+\kappa_{3} z_{8}\right)^{2}\right)} .
\end{aligned}
$$

Proof. The proof is done upon substituting the above relations (4.21) and (4.22) into (1.2).
By recalling Example 2.18, Smarandache curves of the B - pedal curve according to the origin $O(0,0,0)$ are illustrated in Figure 5.

Figure 5. Smarandache curves (black) of the B - pedal curve (red) of the curve $\gamma(t)$ (blue) according to the origin $O(0,0,0)$ where $t \in[-\pi, \pi]$.

5. Conclusions

In this study, first we obtain the pedal curves drawn by the geometric locus of the perpendicular projection of points onto a tangent, principal normal, and binormal vectors of a space curve from the origin, and their Frenet vectors, curvature, and torsion functions are calculated. After these calculations, three of the pedal curves (T-pedal, N-pedal, B-pedal curves) are obtained. Second, we get the Smarandache curves defined by taking Frenet elements of each pedal curve as the position vectors. So, we obtain twelve new curves. Therefore, a set of new curves is contributed to the literature of the theory of curves. By taking a different point from the origin, numerous sequences of different new curves can be found to add more curves to the area.

Author contributions

Süleyman Şenyurt: Methodology, Writing-Original draft preparation, Supervision, Formal analysis, Resources; Filiz Ertem Kaya: Investigation, Conceptualization, Validation, Writing, Reviewing, Editing; Davut Canlı: Investigation, Formal analysis, Software, Validation, Visualization. All authors have read and approved the final version of the manuscript for publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. S. G. Mazlum, S. Şenyurt, M. Bektaş, Salkowski curves and their modified orthogonal frames in E^{3}, J. New Theory, 40 (2022), 12-26. https://doi.org/10.53570/jnt. 1140546
2. S. Şenyurt, D. Canlı, K. H. Ayvacı, Associated curves from a different point of view in E^{3}, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 71 (2022), 826-845. https://doi.org/10.31801/cfsuasmas. 1026359
3. A. T. Ali, Special Smarandache curves in the Euclidean space, International J.Math. Combin., $\mathbf{2}$ (2010), 30-36.
4. M. Turgut, S. Yılmaz, Smarandache curves in Minkowski space-time, International J. Math. Combin., 3 (2008), 51-55.
5. S. Şenyurt, S. Sivas, An application of Smarandache curve, Ordu Univ. J. Sci. Tech., 3 (2013), 46-60.
6. A. Y. Ceylan, M. Kara, On pedal and contrapedal curves of Bezier curves, Konuralp J. Math., 9 (2021), 217-221.
7. E. As, A. Sarıoğlugil, On the pedal surfaces of 2-d surfaces with the constant support function in E^{4}, Pure Math. Sci., 4 (2015), 105-120. http://dx.doi.org/10.12988/pms. 2015.545
8. M. P. Carmo, Differential geometry of curves and surfaces, Prentice Hall, 1976.
9. N. Kuruoğlu, A. Sarıoğlugil, On the characteristic properties of the a-Pedal surfaces in the euclidean space E^{3}, Commun. Fac. Sci. Univ. Ank. Series A, 42 (1993), 19-25.
10. O. O. Tuncer, H. Ceyhan, I. Gök, F. N. Ekmekci, Notes on pedal and contrapedal curves of fronts in the Euclidean plane, Math. Methods Appl. Sci., 41 (2018), 5096-5111. https://doi.org/10.1002/mma. 5056
11. Y. Li, D. Pei, Pedal curves of fronts in the sphere, J. Nonlinear Sci. Appl., 9 (2016), 836-844. http://dx.doi.org/10.22436/jnsa.009.03.12
12. Y. Li, D. Pei, Pedal curves of frontals in the Euclidean plane, Math. Methods Appl. Sci., 41 (2018), 1988-1997. https://doi.org/10.1002/mma. 4724
13. Y. Li, O. O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Methods Appl. Sci., 46 (2023), 11157-11171. https://doi.org/10.1002/mma. 9173
14. E. Abbena, S. Salamon, A. Gray, Modern differential geometry of curves and surfaces with mathematica, New York: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/9781315276038
15. M. Özdemir, Diferansiyel geometri, Altin Nokta Yayınevi, 2020.

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

