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Abstract: The spread of rumors has an important impact on the production and life of human society.
Moreover, in the process of rumor propagation, individuals with different educational levels show
different degrees of trust and ability to spread rumors. Therefore, a new rumor propagation model
was established, which considers the influence of education level on rumor propagation. Initially, the
basic reproduction number of the model was calculated. Then, we analyzed the existence and stability
of the rumor equilibrium point. Next, based on the principle of Pontryagin’s maximum value, we
obtained a control strategy, which effectively reduced the spread of rumors. Numerical simulations
verified the results of theoretical analysis. The results showed that the higher the education level of the
population, the slower the spread of rumors to a certain extent, but it could not prevent the spread of
rumors. In addition, through the support of the government and the propaganda of the official media,
strengthening education can improve people’s education level to a certain extent, and then minimize
the speed of rumor propagation.
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1. Introduction

Rumors are unconfirmed information that is spread through public or private channels [1]. Since
ancient times, rumors have had a significant impact on the development of the country and society.
Now, with the development of society, rumors can spread rapidly through platforms such as WeChat,
QQ and Microblogging. This may lead to economic losses and psychological panic. Therefore, in
today’s society, it is of great practical significance to study the spread of rumors.
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Due to the resemblance between the rumor propagation and infectious disease propagation models,
we frequently apply the infectious disease propagation principle when examining the former. Initially,
in 1965, Daley and Kendall assigned the rumor propagation predicament to a mathematical model,
which they named the D-K model [2]. Subsequently, in 1973, Maki and Thomson refined the
propagation law using the D-K model and introduced the M-T model [3].

After people’s in-depth exploration and research on rumor propagation, many researchers
have incorporated the forgetting mechanism [4–6], hesitation mechanism [7, 8] and counterattack
mechanism [9], which is considered by early psychologists into the establishment of the rumor
propagation model. Gu et al. [4] proposed a method to study the transmission process by considering
factors of forgetting mechanism and memory mechanism. They used basic mathematical functions
to characterize the evolution of forgetting and memory over time, and found that the saturation of
rumor propagation is influenced by the “forgetting and remembering” mechanism, and may even lead
to the end of rumor propagation under certain conditions. Zhao et al. [5] introduced the memory
mechanism and forgetting mechanism into a homogeneous network and established a SHIR model to
study the effects of propagation rate, forgetting rate and network average degree on rumor propagation.
They found that the forgetting and memory mechanisms that occur in hibernators delay the end of
the rumor and somewhat reduce the maximum rumor impact. Wang et al. [6] proposed a new SIR
model, which mainly studied the influence of forget-recall mechanism and loss-benefit mechanism
on rumor propagation in complex networks, considering that people would forget and lose interest in
rumors during the propagation process. Xia et al. [7] added a new factor of hesitation mechanism to
the classical SIR model and proposed a SEIR model. Hong et al. [8] added the factor of the actual
situation of the investor network to the SEIR model, and then proposed a SE2IR rumor propagation
model with hesitation mechanism. Zan et al. [9] added a counterattack mechanism to the classical SIR
model, and then proposed two new models: SCIR model and the upgraded SCIR model.

Currently, researchers primarily focus on various aspects including cost control [10],
feedback mechanisms [11], multi-channel network interaction [12], and competitive information
propagation [13]. Jain et al. [10] studied the optimal control of rumor propagation in uniformly
mixed populations by introducing the thinker’s influence delay. They established an SEI model. It
has been concluded that the delay in influence of thinkers ought not to surpass the threshold for
controlling the instability of social network systems. The system can be stabilized when the thinker
has more time to react, and when experts in the media and interpersonal organizations disseminate
information at the optimal speed. The optimal control system is capable of effectively suppressing the
propagation of anti-news during emergency situations, at a minimized cost. Yao et al. [11] employed an
epidemiological theory-based diffusion model to study the propagation of rumors amongst investors.
The model incorporated feedback mechanisms and time-lag factors. The research shows that increasing
the intensity of information supervision and the proportion coefficient related to the infected population
in the short time lag is helpful to control the spread of rumors more effectively. Zhang et al. [12]
proposed a new interaction model for rumor propagation and behavioural propagation in multiplexed
networks-the S1I1R1 − S2I2R2 model. The results of their analysis and calculations indicated that
the final size of the rumor spread was larger than the size of the behavioural spread. Nevertheless,
coupled intensification results in the opposite range of final size changes. This shows that there is
a complex interaction between rumor and behavior propagation in the multiplex network. Yang et
al. [13] proposed a simple linear threshold model with competing generalised versions that takes

AIMS Mathematics Volume 9, Issue 8, 20089–20117.



20091

into account the competition between rumor and truth in the same network. They employ three
distinct heuristics to arrive at our conclusions: Both the diffusion dynamics-based approach (ContrId)
and the centrality based approach (PageRank) possess the same computational complexity, with said
complexity increasing linearly with the number of nodes n, rendering them scalable to large networks.
Upon introducing the proximity effect, ContrId performs equally to MinGreedy, but at a significantly
faster pace. These findings offer significant insights into the investigation of the rivalry between the
propagation of rumors and the propagation of truth.

When discussing the influencing factors of rumor propagation, in addition to the factors discussed
previously, some scholars such as Komi Afassinou [14] introduced the two key variables of population
education rate and forgetting mechanism based on the classical SIR model. They demonstrated
that the greater the proportion of educated individuals in a group, the smaller the eventual scale of
rumor propagation. This highlights the role of education in the process of rumor propagation. Hu
et al. [15] examined the impact of alterations in the proportion of wise individuals in a population
on rumor propagation. They demonstrated that an increase in the proportion of wise individuals in
a population has a systematic effect in resolving the issue of rumor propagation. Furthermore, it
is important to consider the role of social media in rumor propagation. Furthermore, Li et al. [16]
developed an enhanced rumor propagation model, with a particular focus on the impact of knowledge
education and intervention strategies on the reduction of rumor propagation. Their results show that
strengthening rumor recognition education and timely refutation of false information are very effective
in controlling rumor propagation. In the above studies, Afassinou and Li et al. both involved the
influence of education level on rumor propagation, but their classification of education level was
relatively simple, only divided into the educated and the uneducated. Furthermore, the Hu et al. study
only looked at the influence of the proportion of wise men on rumor propagation and did not classify
the population. Therefore, based on the existing literature, we provide a more comprehensive analysis
of the mechanism of rumor propagation. This study comprehensively considers several factors such
as education level, hesitation mechanism and forgetting mechanism, and divides education level into
three categories, namely less educated, more educated and uneducated categories. This comprehensive
classification enables a more nuanced understanding of the role of groups with varying educational
backgrounds in the process of rumor propagation. This, in turn, facilitates a more comprehensive
understanding of the mechanisms underlying rumor propagation.

The rest of this paper is organized as follows: In Section 2, a rumor propagation model is
constructed. In Section 3, the basic reproduction number and the rumor equilibrium point of the
model are calculated, and the stability of the rumor equilibrium point is analyzed. In Section 4, the
optimal control strategy is proposed using the Pontryagin’s maximum principle. In Section 5, the
feasibility of the conditions proposed above is verified by numerical simulation. In Section 6, we draw
the conclusion of the paper.

2. Model building

We discuss the influence of individuals with different levels of education on rumor propagation.
First of all, we divide the total population into three categories according to the level of education: the
first category is the highly educated individuals; the second category is the less educated individuals;
the third category is the uneducated individual. Then, according to the classical rumor propagation
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model, we use N(t) to represent the change in the total number of people at any time t. Then, using the
method of the chamber model, we divided the population into five categories: (1) Rumor unknowers
(people who have never been exposed to rumors); (2) rumor hesitators with less education level (the
less educated rumor unknowers contact the rumor, but do not directly believe the rumor, but think
about the content of the spread); (3) rumor hesitators with higher education (the more educated rumor
unknowers contact the rumors, but do not believe them straight away, but think about them); (4) rumor
spreaders (people who believe and spread rumors); and (5) rumor immunizers (people who will not
believe and will not spread rumors). The above five categories of people are respectively represented
by S (t),D(t), E(t), I(t),R(t).

In the society, the flow of people is a universal phenomenon. Therefore, the model established in
this paper is based on the open system, and we make the following assumptions:

(1) Assume that individuals enter the rumor propagation system with a constant number of Λ. Then,
consider that the population of each chamber has moved out of the system for specific reasons such
as relocation, natural death, etc. Therefore, in order to facilitate the study, we assume that these
five types of chambers have the same removal rate, which is defined as µ.

(2) When rumor unknowers with less education come into contact with rumors spreaders, the contact
rate between them is defined as α1; the proportion of rumor unknowers who received a less level
of education in the total number of rumor unknowers was defined as β1; moreover, when rumor
unknowers with less education are contacted by rumors spreaders, generally speaking, these people
are more likely to hesitate about the information spread by rumors spreaders than directly deny it.
Therefore, we think that these people will transform into less educated rumor hesitators with a
probability of α1(1 + β1).

(3) When rumor unknowers with higher education come into contact with rumors spreaders, the
contact rate between them is defined as α2; the proportion of rumor unknowers who have received
higher education in the total number of rumor unknowers is defined as β2; furthermore, when
rumor unknowers with higher education are contacted by rumor spreaders, generally speaking,
these people tend to directly deny the rumor rather than hesitate to the information spread by
rumor spreaders. Therefore, we believe that these people will transform into highly educated
rumor hesitators with a probability of α2(1 − β2).

(4) When uneducated rumor unknowers come into contact with rumor spreaders, generally speaking,
these rumor unknowers will choose to directly believe the information spread by the rumor
spreaders without their own thinking. We define the probability of these people turning into rumor
spreaders as λ.

(5) In addition, rumor hesitators with less education and rumor hesitators with higher education will be
removed from the system as mentioned above, and the following two situations may occur. In the
first case, after thinking about it, they feel that the information they received before is correct and
choose to continue believing and spreading it. Then, we define the probabilities of them turning
into rumor spreaders as γ1 and γ2 respectively; in the second case, after thinking about it, they
feel that the information they received before is wrong and choose not to continue believing and
spreading it. Thus, we define the probabilities of them turning into rumor immunizers as φ1 and
φ3, respectively. Furthermore, because of the rumor spreading process, the timeliness of the rumor
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spreaders may lose interest in the rumor spreading process, and people have the characteristic of
forgetting and the awakening of people’s own consciousness (people find out that the information
they believe is a rumor and then automatically become rumor immunizers) and other reasons, so
that rumor spreaders will spontaneously become rumor immunizers. Let us define the probability
of its transformation as φ2 .

The parameters of model SDEIR are summarized in Table 1.

Table 1. Description of parameters in the model.

S (t) the number of rumors unknowers at time t
D(t) the number of rumor hesitators with less education at time t
E(t) the number of rumor hesitators with higher educated at time t
I(t) the number of rumor spreaders at time t
R(t) the number of rumor immunizers at time t
Λ the number of people who enter the rumor unknowers per unit time
µ the probability of moving out of the rumor propagation system
α1 the natural contact rate between less educated rumor unknowers

and the rumor spreaders
β1 the proportion of less educated rumor unknowers in the total

number of rumor unknowers
α1(1 + β1) the rate that S (t) transforms into D(t)
α2 the natural contact rate between higher educated rumor unknowers

and rumor spreaders
β2 the proportion of higher educated rumor unknowers in the total

number of rumor unknowers
α2(1 − β2) the rate that S (t) transforms into E(t)
λ the probability of uneducated rumor unknowers transforming into

rumor spreaders
γ1 the probability that D(t) transforms into I(t)
γ2 the probability that E(t) transforms into I(t)
φ1 the probability that D(t) transforms into R(t)
φ2 the probability that I(t) transforms into R(t)
φ3 the probability that E(t) transforms into R(t)
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On this basis, we drew the model flow chart, as shown in Figure 1, and constructed the dynamic
equation, such as Eq (2.1).

Figure 1. Consider the rumor propagation diagram of the education level.



dS (t)
dt = Λ − α1(1 + β1)S I − λS I − α2(1 − β2)S I − µS

dD(t)
dt = α1(1 + β1)S I − γ1D − φ1D − µD

dE(t)
dt = α2(1 − β2)S I − γ2E − φ3E − µE

dI(t)
dt = λS I + γ1D + γ2E − φ2I − µI

dR(t)
dt = φ1D + φ2I + φ3E − µR

(2.1)

where,
Λ, α1, α2, β1, β2, γ1, γ2, φ1, φ2, φ3, µ > 0; S (t) + D(t) + E(t) + I(t) + R(t) = N(t).

3. Model analysis

Lemma 3.1. The closed set Γ =
{
(S ,D, E, I,R) ∈ R5

+|0 ≤ S + D + E + I + R ≤ Λ
µ

}
is the positive

definite invariant set of the model dynamics equation (2.1).
Proof of Lemma 3.1. According to the model dynamics equation, we can easily know dN

dt = Λ − µN.
Thus, we can derive N(t) = Λ

µ
− (Λ

µ
− N0)e−µt, where N(0) = N0 and when t −→ ∞, lim

t→∞
N(t) =

Λ
µ

. This proves that the positive definite invariant set of the model dynamics equation (2.1) is Γ ={
(S ,D, E, I,R) ∈ R5

+|0 ≤ S + D + E + I + R ≤ Λ
µ

}
.

3.1. Basic reproduction number R0

The basic reproduction number R0 represents the number of people that a rumor spreader can infect
during the average period of rumor propagation when all people are rumor unknowers [17]. In general,
R0 = 1 is used as a threshold to determine whether a rumor is dead or not. In other words, when
R0 < 1, the number of people a rumor spreader can infect during the average rumor propagation period
is less than 1, which indicates that rumors will disappear in the future with time. When R0 > 1, a
rumor spreader can infect more than 1 person during the average rumor propagation period, indicating
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that rumors do not disappear over time, but will always exist. This paper uses the method in previous
literature [18], that is, the next generation matrix method, to calculate the basic reproduction number
R0 of the model dynamic equation (2.1).

Let X = (I,D, E,R, S )T , then the model dynamics equation (2.1) can be written as

dN(t)
dt

= F(X) − V(X), (3.1)

where,

F(X) =


λS I + γ1D + γ2E
α1(1 + β1)S I
α2(1 − β2)S I

0
0


,V(X) =


(φ2 + µ)I

(φ1 + γ1 + µ)D
(φ3 + γ2 + µ)D

µR − φ1D + φ2I + φ3E
α1(1 + β1)S I + λS I + α2(1 − β2)S I + µS − Λ


. (3.2)

Thus, we can get

f =


λΛ
µ

γ1 γ2

α1(1 + β1)Λ
µ

0 0
α2(1 − β2)Λ

µ
0 0

 , v =


µ + φ2 0 0

0 φ1 + γ1 + µ 0
0 0 φ3 + γ2 + µ

 . (3.3)

And by calculation, we can get

v−1 =


1

µ+φ2
0 0

0 1
φ1+γ1+µ

0
0 0 1

φ3+γ2+µ

 . (3.4)

Then, f v−1 is used to represent the next generation matrix

f v−1 =


Λλ

µ(µ+φ2)
γ1

µ+γ1+φ1

γ2
µ+γ2+φ3

α1(1+β1)Λ
µ(µ+φ2) 0 0
α2(1−β2)Λ
µ(µ+φ2) 0 0

 . (3.5)

Therefore, according to reference [19], the basic reproduction number of model dynamic
equation (2.1) is the spectral radius of matrix :

R0 =
λΛcd +

√
(λΛcd)2 + 4µecdΛ(bcγ2 + adγ1)

2µecd
, (3.6)

where, 

a = α1(1 + β1)
b = α2(1 − β2)
c = φ1 + γ1 + µ

d = φ3 + γ2 + µ

e = φ2 + µ

. (3.7)
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3.2. Existence of equilibrium points

According to the model dynamics equation (2.1), we can find two equilibrium points, which are:

E0 = (
Λ

µ
, 0, 0, 0, 0)

and
E∗ = (S ∗,D∗, E∗, I∗,R∗)

S ∗ =
ecd

adγ1 + bcγ2 + cdλ
; I∗ =

Λ(λcd + adγ1 + bcγ2) − µecd
ecd(a + d + λ)

D∗ =
aΛ(λcd + adγ1 + bcγ2) − aµecd
c(λcd + adγ1 + bcγ2)(a + d + λ)

; E∗ =
bΛ(λcd + adγ1 + bcγ2) − bµecd
d(λcd + adγ1 + bcγ2)(a + d + λ)

R∗ =
(Λadγ1 + Λbcγ2 + Λcdλ − cdeµ)(cdλφ2 + adeφ1 + bceφ3 + adγ1φ2 + bcγ2φ2)

µecd(λcd + adγ1 + bcγ2)(a + b + λ)
where a, b, c, d, e satisfies Eq (3.7).

3.3. Stability of equilibrium points

Theorem 1. If R0 < 1, Λ
µ
< ecd

λcd+γ1ad+γ2bc , c = d and γ1a < λc holds true, then the rumor-free equilibrium
point E0 = (Λ

µ
, 0, 0, 0, 0) is locally asymptotically stable; If Λ[α1(1 + β1) + α2(1 − β2) + λ] ≤ µ2 holds

true, then the rumor-free equilibrium point E0 = (Λ
µ
, 0, 0, 0, 0) is globally asymptotically stable. Where

a, b, c, d, e satisfies the above Eq (3.7).
Proof. The Jacobian matrix of system (2.1) at E0 = (Λ

µ
, 0, 0, 0, 0) is

J(E0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 0 −aΛ
µ
− λΛ

µ
− bΛ

µ
0

0 −c 0 aΛ
µ

0
0 0 −d bΛ

µ
0

0 γ1 γ2 λΛ
µ
− e 0

0 φ1 φ3 φ2 −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.8)

The characteristic equation of matrix J(E0) is

|θE − J(E0)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ + µ 0 0 aΛ
µ

+ λΛ
µ

+ bΛ
µ

0
0 θ + c 0 −aΛ

µ
0

0 0 θ + d −bΛ
µ

0
0 −γ1 −γ2 θ − λΛ

µ
+ e 0

0 −φ1 −φ3 −φ2 θ + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (θ + µ)2(θ3 + Aθ2 + Bθ + C) = 0

(3.9)

where, 

A = e + c + d − λ
Λ

µ

B = ec + ed + cd − (λc + γ1a + λd + γ2b)
Λ

µ

C = ecd − (λcd + γ1ad + γ2bc)
Λ

µ
.

(3.10)
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This gives us the eigenvalues θ1 = θ2 = −µ and the simplified characteristic equation

θ3 + Aθ2 + Bθ + C = 0. (3.11)

We then construct a cubic polynomial using a0, a1, a2, a3 instead of the coefficients to find the other
eigenvalues of Eq (3.11). We can then rewrite Eq (3.11) as

a0θ
3 + a1θ

2 + a2θ + a3 = 0 (3.12)

where,
a0 = 1

a1 = A = e + c + d − λ
Λ

µ

a2 = B = ec + ed + cd − (λc + γ1a + λd + γ2b)
Λ

µ

a3 = C = ecd − (λcd + γ1ad + γ2bc)
Λ

µ

and

a2a1 − a3a0

= (λ2c + λγ1a + λγ2b + λ2d)(
Λ

µ
)2

− (2λcd + 2λec + 2λed + λc2 + λd2 + γ1ae + γ1ac + γ2be + γ2bd)
Λ

µ

+ (2ecd + e2c + ec2 + e2d + ed2 + c2d + cd2).

(3.13)

The conditions for local asymptotic stability of the rumor-free equilibrium point E0 = (Λ
µ
, 0, 0, 0, 0)

based on the Routh-Hurwitz criterion [20] are as follows: (1) an > 0, n = 0, 1, 2, 3 (2) a2a1 − a3a0 > 0.
Through calculation, it can be concluded that when the condition of Λ

µ
< ecd

λcd+γ1ad+γ2bc , c = d and
γ1a < λc is met, the rumor-free equilibrium point E0 = (Λ

µ
, 0, 0, 0, 0) is locally asymptotically stable.

The above is the proof of the local asymptotic stability of the rumor-free equilibrium point E0 =

(Λ
µ
, 0, 0, 0, 0), followed by the proof of the global asymptotic stability.
We construct a Lyapunov function [21] L(t) = D(t) + E(t) + I(t) + R(t). Then, we can get L

′

(t),

L
′

(t) = D
′

(t) + E
′

(t) + I
′

(t) + R
′

(t)
= α1(1 + β1)S I − γ1D − φ1D − µD

+ α2(1 − β2)S I − γ2E − φ3E − µE

+ λS I + γ1D + γ2E − φ2I − µI

+ φ1D + φ2I + φ3E − µR

= α1(1 + β1)S I + α2(1 − β2)S I + λS I − µI − µD − µE − µR

= {[α1(1 + β1) + α2(1 − β2) + λ]S − µ} I − µ(D + E + R).

(3.14)
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We know S ≤ Λ
µ

from Lemma 1. Obviously, if Λ[α1(1 + β1) + α2(1 − β2) + λ] ≤ µ2 and S ≤ Λ
µ

, then
L
′

(t) ≤ 0 is always true.
Furthermore, L

′

(t) = 0 is true if and only if S (t) = S 0,D(t) = E(t) = I(t) = R(t) = 0. From
system (2.1) we know that when L

′

(t) = 0, E0 is the only solution in Γ. Therefore, based on
Lyapunov function and LaSalle invariance principle [22], it can be shown that every solution of the
system (2.1) tends to E0 infinitely for t −→ ∞. Therefore, the rumor-free existence equilibrium point
E0 = (Λ

µ
, 0, 0, 0, 0) of system (2.1) is globally asymptotically stable. �

Theorem 2. If R0 > 1, P3P2 − P4P1 > 0 and P3P2P1 − P4P2
1 − P2

3 > 0, then the rumor existence
equilibrium point E∗ = (S ∗,D∗, E∗, I∗,R∗) is locally asymptotically stable; If R0 > 1, then the
rumor existence equilibrium point E∗ = (S ∗,D∗, E∗, I∗,R∗) is globally asymptotically stable. Where
a, b, c, d, e satisfies the above Eq (3.7).
Proof. The Jacobian matrix of system (2.1) at E∗ = (S ∗,D∗, E∗, I∗,R∗) is

J(E∗) =


−aI∗ − λI∗ − bI∗ − µ 0 0 −aS ∗ − λS ∗ − bS ∗ 0

aI∗ −c 0 aS ∗ 0
bI∗ 0 −d bS ∗ 0
λI∗ γ1 γ2 λS ∗ − e 0
0 φ1 φ3 φ2 −µ


. (3.15)

The characteristic equation of matrix J(E∗) is

|θE − J(E∗)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ + aI∗ + λI∗ + bI∗ + µ 0 0 aS ∗ + λS ∗ + bS ∗ 0
−aI∗ θ + c 0 −aS ∗ 0
−bI∗ 0 θ + d −bS ∗ 0
−λI∗ −γ1 −γ2 θ − λS ∗ + e 0

0 −φ1 −φ3 −φ2 θ + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (θ + µ)(θ4 + P1θ

3 + P2θ
2 + P3θ + P4) = 0,

(3.16)

where,

P1 = (e + c + d) −
λecd

λcd + γ1ad + γ2bc
+

Λ(λcd + γ1ad + γ2bc)
ecd

P2 = (ec + ed + cd) −
(λc + γ1a + γ2b + λµ + λd)ecd

λcd + γ1ad + γ2bc
+

Λ(e + c + d)(λcd + γ1ad + γ2bc)
ecd

P3 =
Λ(ec + cd + ed)(λcd + γ1ad + γ2bc)

ecd
−

(λc + γ1a + γ2b + λd)µecd
λcd + γ1ad + γ2bc

P4 = Λ(λcd + γ1ad + γ2bc) − µecd.

From this, the eigenvalues θ1 = −µ < 0 and the simplified characteristic equation θ4 + P1θ
3 + P2θ

2 +

P3θ + P4 = 0 can be obtained.
According to the simplified characteristic equation above, with the help of Routh-Hurwitz criterion,

it can be seen that all the coefficients of the characteristic equation are positive numbers, and the
values of each coefficient in the first column of table Routh-Hurwitz are also greater than 0, that is, the
conditions of local asymptotic stability are satisfied [23]. Therefore, we can judge that the condition
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of local stability of the model is R0 > 1, P3P2 − P4P1 > 0 and P3P2P1 − P4P2
1 − P2

3 > 0 when the
equilibrium point E∗ = (S ∗,D∗, E∗, I∗,R∗) exists.

The above is the proof of the local asymptotic stability of the rumor equilibrium point E∗ =

(S ∗,D∗, E∗, I∗,R∗), followed by the proof of the global asymptotic stability.
First, we construct a Lyapunov function W(t) = [(S (t) − S ∗) + (D(t) − D∗) + (E(t) − E∗) + (I(t) −

I∗) + (R(t) − R∗)]2. Then, you get W
′

(t),

W
′

(t) = 2[(S (t) − S ∗) + (D(t) − D∗) + (E(t) − E∗) + (I(t) − I∗)

+ (R(t) − R∗)][S
′

(t) + D
′

(t) + E
′

(t) + I
′

(t) + R
′

(t)]
= 2[(S (t) − S ∗) + (D(t) − D∗) + (E(t) − E∗) + (I(t) − I∗) + (R(t) − R∗)]

(Λ − µS − µD − µE − µI − µR).

(3.17)

From the above discussion, it can be seen that the equilibrium point E∗ = (S ∗,D∗, E∗, I∗,R∗) of
rumors exists. Therefore, Λ − µS ∗ − µD∗ − µE∗ − µI∗ − µR∗ = 0. In other words, Λ = µS ∗ + µD∗ +

µE∗ + µI∗ + µR∗. So, Eq (3.17) can be calculated as

W
′

(t) =2[(S (t) − S ∗) + (D(t) − D∗) + (E(t) − E∗) + (I(t) − I∗) + (R(t) − R∗)]
[µS ∗ + µD∗ + µE∗ + µI∗ + µR∗ − µS − µD − µE − µI − µR]

= − 2µ[(S − S ∗) + (D − D∗) + (E − E∗) + (I − I∗) + (R − R∗)]2 ≤ 0.
(3.18)

Furthermore, W
′

(t) = 0 is true if and only if S (t) = S ∗,D(t) = D∗, E(t) = E∗, I(t) = I∗,R(t) = R∗.
Therefore, based on Lyapunov function and LaSalle invariance principle, it can be obtained that the
rumor existence equilibrium point E∗ = (S ∗,D∗, E∗, I∗,R∗) of system (2.1) is globally asymptotically
stable. �

4. Optimal control

The model developed in this study is predicated on the social environment with the aim of preventing
the propagation of misinformation. Optimal control is a well-known concept involving the purposeful
exertion of control over systems and processes in a variety of contexts, such as production and life
operations, to achieve specific performance targets [24]. Given the alignment between the objectives
of this study and the optimal control theory, the model is analyzed in this section using established
methods from existing literature [25].

First, it is assumed that the model discussed in this paper is operating in a social communication
environment that is closed.

Second, our purpose of this paper is to reduce the number of rumor hesitators and rumor spreaders,
while increasing the number of rumor immunizers. To achieve this goal, we controlled for the following
five parameters: The natural contact rate α1 between rumor unknowers with higher education and
rumor spreaders, and the natural contact rate α2 between rumor unknowers with less education and
rumor spreaders. The proportion β1 of rumor unknowers with less education level and the proportion
β2 of rumor unknowers with higher education level, as well as the probability λ of transforming
uneducated rumor unknowers into rumor spreaders.

Next, we carry out the following analysis:
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(1) We convert the five parameters α1, α2, β1, β2, λ in the model into control variables
α1(t), α2(t), β1(t), β2(t) and λ(t).

(2) In this model, control variables satisfy 0 ≤ α1(t), α2(t), β1(t), β2(t), λ(t) ≤ 1. When α1(t) =

0, α2(t) = 0, β1(t) = 0, β2(t) = 1, λ(t) = 0, we can conclude that rumor unknowers did not transform
into rumor spreaders and rumor hesitators, but directly transformed into rumor immunizers people.
At this point, the desired result of the control has been achieved, which means that the control
measure has been a hundred percent effective; When α1(t) = 1, α2(t) = 1, β1(t) = 1, β2(t) =

0, λ(t) = 1, we can conclude that the rumor unknowers all transform into rumor hesitators, and
then all transform into rumor spreaders, which means that the control measures are completely
ineffective.

From the above statement, we set up an objective function, defined as follows:

J(α1, α2, β1, β2, λ) =

∫ t f

0
e−αt[D(t) + E(t) + I(t) +

c1

2
α2

1(t)

+
c2

2
α2

2(t) +
c3

2
β2

1(t) +
c4

2
β2

2(t) +
c5

2
λ2(t)]

(4.1)

and satisfy the following state system:

dS (t)
dt = Λ − α1(t)(1 + β1(t))S I − λ(t)S I − α2(t)(1 − β2(t))S I − µS

dD(t)
dt = α1(t)(1 + β1(t))S I − γ1D − φ1D − µD

dE(t)
dt = α2(t)(1 − β2(t))S I − γ2E − φ3E − µE

dI(t)
dt = λ(t)S I + γ1D + γ2E − φ2I − µI

dR(t)
dt = φ1D + φ2I + φ3E − µR.

(4.2)

The initial conditions for satisfying formula (4.2) are as follows:

S (0) = S 0 ≥ 0,D(0) = D0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0 (4.3)

where,

α1(t), α2(t), β1(t), β2(t), λ(t) ∈ U , [α1, α2, β1, β2, λ|(α1(t),
α2(t), β1(t), β2(t), λ(t)), 0 ≤ α1(t), α2(t), β1(t), β2(t), λ(t) ≤ 1,∀t ∈ [0, t f ]],

(4.4)

and U is the admissible control set. The control time interval is between 0 and t f . c1, c2, c3, c4, c5

is a positive weight coefficient indicating the prevention intensity and importance of the five control
measures.

4.1. Existence of optimal control

In this paper, we demonstrate the existence of an optimal control policy in the above optimal control
problem by applying the following theorem.
Theorem 4.1. There exists an optimal control for (α∗1, α

∗
2, β

∗
1, β

∗
2, λ

∗) ∈ U such that the function is
established as follows [26]:

J(α∗1, α
∗
2, β

∗
1, β

∗
2, λ

∗) = min
{
J(α∗1, α

∗
2, β

∗
1, β

∗
2, λ

∗), α∗1(t), α∗2(t), β∗1(t), β∗2(t), λ∗(t) ∈ U
}

(4.5)

Proof. In order to prove the existence of optimal control, it is only necessary to verify the following
conditions [27, 28].
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(1) The control admissible set and the set of state variables are non-empty.

(2) The control allows set U to be convex and closed.

(3) The integrand in the objective functional is convex in the control admissible set U.

(4) The right end of the state system is linear with respect to state variables and control variables.

(5) The existence of constants d1, d2 > 0 and ε > 1 makes the integrand expression in the target
functional.

Let X = (S (t),D(t), E(t), I(t),R(t))T and

L(t, X(t), α1(t), α2(t), β1(t), β2(t), λ(t)) , e−αt[D(t) + E(t) + I(t)

+
c1

2
α2

1(t) +
c2

2
α2

2(t) +
c3

2
β2

1(t) +
c4

2
β2

2(t) +
c5

2
λ2(t))]

(4.6)

satisfy
L(t, α1, α2, β1, β2, λ) ≥ d1(|α1|

2 + |α2|
2 + |β1|

2 + |β2|
2 + |λ|2)

ε
2 − d2. (4.7)

Conditions (1)–(3) are obviously true, only the last two need to be verified. From Lemma 1

max {S (t),D(t), E(t), I(t),R(t)} ≤
Λ

µ
. (4.8)

The following inequality can be obtained:

S
′

≤ Λ,D
′

≤ α1(1 + β1)S I, E
′

≤ α2(1 − β2)S I, I
′

≤ γ1D + λS I + γ2E,

R
′

≤ φ1D + φ2E + φ3R.
(4.9)

Thus, the fourth condition holds. If we take d1 = e−αt0

2 min {c1, c2, c3, c4, c5} and ∀d2 ∈ R+, and ε = 2,
then the fifth condition holds. �

4.2. Optimal control expression

According to the optimal control expression given in 4.1, the optimal control system is obtained.
To do this, define the following enlarge Hamiltonian operator L with a penalty term [29]:

L = e−αt[D(t) + E(t) + I(t) +
c1

2
α2

1(t) +
c2

2
α2

2(t) +
c3

2
β2

1(t) +
c4

2
β2

2(t) +
c5

2
λ2(t))]

+ η1(t)[Λ − α1(t)(1 + β1(t))S I − λ(t)S I − α2(t)(1 − β2(t))S I − µS ]
+ η2(t)[α1(t)(1 + β1(t))S I − γ1D − φ1D − µD]
+ η3(t)[α2(t)(1 − β2(t))S I − γ2E − φ3E − µE]
+ η4(t)[λ(t)S I + γ1D + γ2E − φ2I − µI]
+ η5(t)[φ1D + φ2I + φ3E − µR]
− ω11(t)α1(t) − ω12(t)(1 − α1(t)) − ω21(t)α2(t) − ω22(t)(1 − α2(t))
− ω31(t)β1(t) − ω32(t)(1 − β1(t)) − ω41(t)β2(t) − ω42(t)(1 − β2(t))
− ω51(t)λ(t) − ω52(t)(1 − λ(t)),

(4.10)
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where ωi j ≥ 0(i, j = 1, 2, 3, 4, 5) is the penalty operator, it satisfies ω11(t)α1(t) = ω12(1 − α1(t)) = 0, at
optimal control α∗1;

ω21(t)α2(t) = ω22(1 − α2(t)) = 0, at optimal control α∗2;
ω31(t)β1(t) = ω32(1 − β1(t)) = 0, at optimal control β∗1;
ω41(t)β2(t) = ω42(1 − β2(t)) = 0, at optimal control β∗2;
ω51(t)λ(t) = ω52(1 − λ(t)) = 0, at optimal control λ∗.

Theorem 4.2. Given the optimal control pair (α∗1(t), α∗2(t), β∗1(t), β∗2(t), λ∗(t)) and solution
S (t),D(t), E(t), I(t),R(t) of Eq (2.1) of state system , there is a costate variable ηi(t), i = 1, 2, 3, 4, 5,
which satisfies the equation:

η1′ =η1(t)[α1(t)(1 + β1(t))I + λ(t)I + α2(t)(1 − β2(t))I + µ]
− η2(t)α1(t)(1 + β1(t))I − η3(t)α2(t)(1 − β2(t))I − η4(t)λ(t)I

η2′ = − e−αt + η2(t)(φ1 + γ1 + µ) − η4(t)γ1 − η5(t)φ1

η3′ = − e−αt + η3(t)(φ3 + γ2 + µ) − η4(t)γ2 − η5(t)φ3

η4′ = − e−αtη1(t)[α1(t)(1 + β1(t))S + λ(t)S + α2(t)(1 − β2(t))S ]
− η2(t)α1(t)(1 + β1(t))S − η3(t)α2(t)(1 − β2(t))S
− η4(t)(λ(t)S − µ − φ2) − η5(t)φ2

η5′ =η5(t)µ

(4.11)

and terminal conditions
ηi(t f ) = 0, i = 1, 2, 3, 4, 5. (4.12)

Moreover, the expression for optimal control (α∗1(t), α∗2(t), β∗1(t), β∗2(t), λ∗(t)) is expressed as follows:

α∗1(t) = min(1,max(0, η
∗
1(t)(1+β∗1(t))S ∗(t)I∗(t)−η∗2(t)(1+β∗1(t))S ∗(t)I∗(t))

e−αtc1
))

α∗2(t) = min(1,max(0, η
∗
1(t)(1−β∗2(t))S ∗(t)I∗(t)−η∗3(t)(1−β∗2(t))S ∗(t)I∗(t))

e−αtc2
))

β∗1(t) = min(1,max(0, η
∗
1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))

e−αtc3
))

β∗2(t) = min(1,max(0, η
∗
1(t)α∗2(t)S ∗(t)I∗(t)+η∗3(t)α∗2(t)S ∗(t)I∗(t))

e−αtc4
))

λ∗(t) = min(1,max(0, η
∗
1(t)S ∗(t)I∗(t)−η∗4(t)S ∗(t)I∗(t)

e−αtc5
))

(4.13)

Proof. Based on Pontriagin’s maximum principle [30], partial derivatives of the Hamiltonian operator
L with respect to each state variable give the following costate system η

′

1 = − ∂L
∂S , η

′

2 = − ∂L
∂D , η

′

3 =

− ∂L
∂E , η

′

4 = −∂L
∂I , η

′

5 = − ∂L
∂R , and the final value condition ηi(t f ) = 0, i = 1, 2, 3, 4, 5 .

In order to obtain the necessary conditions for optimality, the partial derivative of the operator L
with respect to the control variable α1(t), α2(t), β1(t), β2(t), λ(t) is obtained separately. Subsequently,
the value should be set to zero and get

∂L
∂α1

= e−αtc1α1(t) − η1(t)(1 + β1(t))S I + η2(t)(1 + β1(t))S I − ω11(t) + ω12(t) = 0
∂L
∂α2

= e−αtc2α2(t) − η1(t)(1 − β2(t))S I + η3(t)(1 − β2(t))S I − ω21(t) + ω22(t) = 0
∂L
∂β1

= e−αtc3β1(t) − η1(t)α1(t)S I + η2(t)α1(t)S I − ω31(t) + ω32(t) = 0
∂L
∂β2

= e−αtc4β2(t) + η1(t)α2(t)S I − η3(t)α2(t)S I − ω41(t) + ω42(t) = 0
∂L
∂λ

= e−αtc5λ1(t) − η1(t)S I + η4(t)S I − ω51(t) + ω52(t) = 0.

(4.14)
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To solve it, the expression of optimal control can be obtained in the following form:

α∗1(t) =
η∗1(t)(1+β∗1(t))S ∗(t)I∗(t)−η∗2(t)(1+β∗1(t))S ∗(t)I∗(t))+ω11(t)−ω12(t)

e−αtc1

α∗2(t) =
η∗1(t)(1−β∗2(t))S ∗(t)I∗(t)−η∗3(t)(1−β∗2(t))S ∗(t)I∗(t))+ω21(t)−ω22(t)

e−αtc2

β∗1(t) =
η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))+ω31(t)−ω32(t)

e−αtc3

β∗2(t) =
η∗1(t)α∗2(t)S ∗(t)I∗(t)+η∗3(t)α∗2(t)S ∗(t)I∗(t))+ω41(t)−ω42(t)

e−αtc4

λ∗(t) =
η∗1(t)S ∗(t)I∗(t)−η∗4(t)S ∗(t)I∗(t)+ω51(t)−ω52(t)

e−αtc5

. (4.15)

In order to obtain the concrete expression of optimal control ηi(t)(i = 1, 2, 3, 4, 5) without penalty
term ωi j(i = 1, 2, 3, 4, 5; j = 1, 2), the standard practice of reference [31] is adopted. Taking β∗1(t) as an
example, the specific process is divided into three situations for implementation:

(1) In case 1, when
{
t|0 < β∗1(t) < 1

}
is satisfied, let ω31(t) = ω32(t) = 0.

Therefore, the optimal control is β∗1(t) =
η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))

e−αtc3
.

(2) In case 2, when
{
t|β∗1(t) = 1

}
is satisfied, let ω31(t) = 0.

Therefore, 1 = β∗1(t) =
η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))−ω32(t)

e−αtc3
.

This means that when ω32(t) ≥ 0, η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))
e−αtc3

≥ 1.

(3) In case 3, when
{
t|β∗1(t) = 0

}
is satisfied, let ω32(t) = 0.

Therefore, 0 = β∗1(t) =
η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))+ω31(t)

e−αtc3
.

This means that when ω32(t) ≥ 0, η∗1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))
e−αtc3

≤ 0.

Combining the above three cases, the expression of optimal control β∗1(t) can be obtained: β∗1(t) =

min(1,max(0, η
∗
1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))

e−αtc3
)).

Similar to the discussion, the corresponding expressions for optimal control α∗1(t), α∗2(t), β∗1(t), β∗2(t)
and λ∗(t) can be obtained:

α∗1(t) = min(1,max(0, η
∗
1(t)(1+β∗1(t))S ∗(t)I∗(t)−η∗2(t)(1+β∗1(t))S ∗(t)I∗(t))

e−αtc1
))

α∗2(t) = min(1,max(0, η
∗
1(t)(1−β∗2(t))S ∗(t)I∗(t)−η∗3(t)(1−β∗2(t))S ∗(t)I∗(t))

e−αtc2
))

β∗1(t) = min(1,max(0, η
∗
1(t)α∗1(t)S ∗(t)I∗(t)−η∗2(t)α∗1(t)S ∗(t)I∗(t))

e−αtc3
))

β∗2(t) = min(1,max(0, η
∗
1(t)α∗2(t)S ∗(t)I∗(t)+η∗3(t)α∗2(t)S ∗(t)I∗(t))

e−αtc4
))

λ∗(t) = min(1,max(0, η
∗
1(t)S ∗(t)I∗(t)−η∗4(t)S ∗(t)I∗(t)

e−αtc5
))

.

It is worth noting that the optimal control system comprises the state system (4.1) and its initial
condition (4.3), the costate system (4.11) and its terminal condition (4.12), and the optimal control form
expression (4.13). Every optimal control must fulfill this complex optimal control system structure.
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The following is the optimal control system for future simulations:

dS (t)
dt

= Λ − α1(t)(1 + β1(t))S I − λ(t)S I − α2(t)(1 − β2(t))S I − µS ,

dD(t)
dt

= α1(t)(1 + β1(t))S I − γ1D − φ1D − µD,

dE(t)
dt

= α2(t)(1 − β2(t))S I − γ2E − φ3E − µE,

dI(t)
dt

= λ(t)S I + γ1D + γ2E − φ2I − µI,

dR(t)
dt

= φ1D + φ2I + φ3E − µR,

η1′ = η1(t)[α1(t)(1 + β1(t))I + λ(t)I + α2(t)(1 − β2(t))I + µ]
− η2(t)α1(t)(1 + β1(t))I − η3(t)α2(t)(1 − β2(t))I − η4(t)λ(t)I,

η2′ = −e−αt + η2(t)(φ1 + γ1 + µ) − η4(t)γ1 − η5(t)φ1,

η3′ = −e−αt + η3(t)(φ3 + γ2 + µ) − η4(t)γ2 − η5(t)φ3,

η4′ = −e−αtη1(t)[α1(t)(1 + β1(t))S + λ(t)S + α2(t)(1 − β2(t))S ]
− η2(t)α1(t)(1 + β1(t))S − η3(t)α2(t)(1 − β2(t))S
− η4(t)(λ(t)S − µ − φ2) − η5(t)φ2,

η5′ = η5(t)µ,
S (0) = S 0 ≥ 0,D(0) = D0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0,
ηi(t f ) = 0, i = 1, 2, 3, 4, 5.

5. Numerical simulation

To ensure the accuracy of the aforementioned conclusions, we adopted established methodologies
from existing literature [23] and employed Matlab as a calculation tool for numerical simulation of said
conclusions. We initially introduced hesitators and their corresponding parameters to the fundamental
SIR model. Numerical simulation graphs were drawn to illustrate changes in population density over
time in SIR and SDEIR models. Results indicated that including hesitators and their corresponding
parameters in the SIR model could moderately reduce the speed of rumor propagation. The impact
of each parameter on chamber population density was charted by varying their values. Finally, the
model includes optimal control conditions to numerically simulate and confirm the accuracy of the
aforementioned conclusions. Additionally, understanding how to manage the spread of rumors in real-
life holds considerable practical significance.

5.1. Comparison of results between SIR model and SDEIR model

To facilitate a more precise comparison between the outcomes of SIR and SDEIR models, we
initially constructed an SIR model, adopting the parameters specified in this paper. The model’s flow
chart is presented below (see Figure 2):
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Figure 2. Flow chart of SIR model.

The model dynamics equation is as follows:
dS
dt = Λ − λS I − µS
dI
dt = λS I − φ2I − µI
dR
dt = φ2I − µR.

In the year 2020, there have been a number of rumors circulating in the city of Anshan regarding
the potential prevention of COVID-19 infection. These rumors include the suggestion that alcohol
consumption may offer protection against the virus, that drinking garlic water may prevent infection,
and that the virus may only spread at certain times. In order to simulate these rumors, we initially
conducted a demographic analysis of the city. A survey of the Anshan City population revealed that
the total number of educated individuals is 3170657*, of which 439634*have completed university
studies, 497423* have completed high school, 170689894* have completed junior high school, and
526706*have completed primary school. The total number of uneducated individuals, or those who
are illiterate, is 19911*. The average duration of the formation period for medical and health rumors is
2–3 days†, the average duration of the outbreak period is 5–6 days†, the average duration of the decline
period is 2–3 days†, and the duration of the rumor is mostly 8 days†. Therefore, 1

λ
= 5 is selected,

namely a transmission rate of λ = 0.2, assuming a number of people entering the system Λ = 50, an
immunisation rate φ2 = 0.65 and a removal rate µ = 0.3.

Figure 3 shows the change of population density over time in the SIR model. Among them, Λ =

50, φ2 = 0.65, µ = 0.3, λ = 0.3.

*http://tjj.anshan.gov.cn/html/TJJ/202106/0162398536049853.html
†Ren Qun. A Study on the Law of Rumors in Domeestic Network-An Empirical Study Based on 100 Hot Stops of Rumors Since

2016[D], Shandong University, China, 2017
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Figure 3. Changes of crowd density over time in the SIR model.

Figure 4 illustrates the population density variation in the SDEIR model with the inclusion of two
chambers of rumor hesitators possessing diverse educational backgrounds on the basis of the SIR
model. The results depict the changes over time, among them, Λ = 50, α1 = 0.1, α2 = 0.13, β1 =

0.15, β2 = 0.33, γ1 = 0.23, γ2 = 0.27, φ1 = 0.25, φ2 = 0.65, φ3 = 0.21, µ = 0.3, λ = 0.3.
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Figure 4. Changes of crowd density over time in the SDEIR model.
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By comparing Figures 3 and 4, it can be seen that the scale of rumor outbreaks (the peak of
the spreader curve) decreases significantly after adding the level of education under the condition
of ensuring that the original parameter remains unchanged, (the peak of the number of spreaders in
Figure 3 reaches 0.58524, and then decreases, and finally it is stabilized at 0.30682; the peak of the
number of spreaders in Figure 4 reaches 0.34041, and then decreases, and finally it is stable at 0.20293).
This means that, when people are educated, people will think when facing rumors, which reduces the
scale of rumor outbreaks to a certain extent. By comparing the results of these two models, the practical
significance of the model constructed in this paper can be visualized.

5.2. Numerical simulation of system stability

Let Λ = 1, α1 = 0.1, α2 = 0.13, β1 = 0.15, β2 = 0.33, γ1 = 0.23, γ2 = 0.27, φ1 = 0.25, φ2 =

0.85, φ3 = 0.21, µ = 0.3, λ = 0.23, calculate R0 = 0.8781 < 1, and the setting of parameter values
satisfies the conditions of Theorem 1, then rumor-free equilibrium point E0 is stable under different
initial conditions.

As illustrated in Figure 5, over time, the number of D(t), E(t), I(t),R(t) will approach zero, while the
number of S (t) will approach one. In other words, as time passes, the number of S (t) will eventually
equal the total number of people in the rumor system. Consequently, as time continues to elapse,
rumors will eventually cease to exist.
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Figure 5. Stability of equilibrium E0.

Let Λ = 1, α1 = 0.5, α2 = 0.6, β1 = 0.15, β2 = 0.33, γ1 = 0.23, γ2 = 0.27, φ1 = 0.25, φ2 = 0.85, φ3 =

0.21, µ = 0.3, λ = 0.23. R0 = 1.3364 > 1 is calculated, and the setting of parameter values satisfies the
conditions of Theorem 2. At this time, Figure 6 clearly shows that the equilibrium point E∗ of rumor
propagation is locally asymptotically stable under this set of parameters.
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Figure 6. Stability of equilibrium point E∗.

As can be seen in Figure 6, in the early stage of rumor spreading, rumor unknowers begin to receive
different levels of education and then start to change their views on rumors. As a result, the number
of D(t), E(t),R(t) will drop sharply in a short period of time and then level off, and the number of R(t)
will rise sharply and reach a peak in a short period of time, and then begin to drop and eventually level
off. The above trend shows that over time, rumors can be controlled, but they do not disappear and will
continue to exist.

In order to discuss the effect of different values of parameters in the system (2.1) on rumor
propagation, the following Table 2 is plotted using the uniform distribution assumption. Based on
the data in Table 2, the changes in the number of cabin corresponding to the parameter changes are
plotted separately and conclusions are drawn.

Table 2. The individual compartments and values of the individual parameters.
Compartments and parameters value

S (t) 100
D(t) 50
E(t) 50
I(t) 50
R(t) 50
Λ 100
µ 0.3
α1 0.1
β1 0.15
α2 0.13
β2 0.33
λ 0.23
γ1 0.23
γ2 0.27
φ1 0.25
φ2 0.85
φ3 0.21
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Figure 7. Variation in the number of S (t) under different parameter conditions ((a) is the
number of S (t) under different values of parameter α1; (b) is the number of S (t) under
different values of parameter β1; (c) is the number of S (t) under different values of parameter
λ; (d) is the number of S (t) under different values of parameter α2; (e) is the number of S (t)
under different values of parameter β2)

AIMS Mathematics Volume 9, Issue 8, 20089–20117.



20110

Figure 7 illustrates the variation in the number of S (t) as a function of different values of parameters
α1, β1, λ, α2 and β2, respectively. It can be observed that parameters α1, β1, λ, α2 and S (t) exhibit a
negative correlation, whereas parameters β2 and S (t) exhibit a positive correlation. Consequently, in
order to increase the number of S (t), it is necessary to decrease the value of parameter α1, β1, λ, α2 and
increase the value of parameter β2.

Figure 8 illustrates the variation in the number of D(t) as a function of different values of parameters
α1, β1, γ1 and φ1. It can be observed that parameters α1, β1 and D(t) exhibit a positive correlation, while
parameters γ1, φ1 and D(t) exhibit a negative correlation. Consequently, in order to reduce the number
of D(t), it is necessary to decrease the value of parameter α1, β1 and increase the value of parameter
γ1, φ1.
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Figure 8. Variation in the number of D(t) under different parameter conditions ((a) is the
number of D(t) under different values of parameter α1; (b) is the number of D(t) under
different values of parameter β1; (c) is the number of D(t) under different values of parameter
γ1; (d) is the number of D(t) under different values of parameter φ1.
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Figure 9 illustrates the variation in the number of E(t) as a function of different values of parameters
α2, β2, γ2 and φ3. It can be observed that parameters α2 and E(t) exhibit a positive correlation, while
parameters β2, γ2, φ3 and E(t) exhibit a negative correlation. Consequently, in order to reduce the
number of E(t), it is necessary to decrease the value of parameter α2 and increase the value of parameter
β2, γ2, φ3.
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Figure 9. Variation in the number of E(t) under different parameter conditions ((a) is the
number of E(t) under different values of parameter α2; (b) is the number of E(t) under
different values of parameter β2; (c) is the number of E(t) under different values of parameter
γ2; (d) is the number of E(t) under different values of parameter φ3.
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Figure 10 illustrates the variation in the number of I(t) as a function of different values of parameters
λ, γ1, γ2 and φ2. It can be observed that parameters λ, γ1, γ2 and I(t) exhibit a positive correlation, while
parameters φ2 and I(t) exhibit a negative correlation. Consequently, in order to reduce the number of
I(t) , it is necessary to decrease the value of parameter λ, γ1, γ2 and increase the value of parameter φ2.
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Figure 10. Variation in the number of I(t) under different parameter conditions ((a) is the
number of I(t) under different values of parameter λ; (b) is the number of I(t) under different
values of parameter γ1; (c) is the number of I(t) under different values of parameter γ2; (d) is
the number of I(t) under different values of parameter φ2.
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Figure 11 illustrates the variation in the number of R(t) as a function of different values of parameters
φ1, φ2 and φ3. It can be observed that parameters φ1, φ2, φ3 and R(t) exhibit a positive correlation.
Consequently, in order to increase the number of R(t) , it is necessary to increase the value of parameter
φ1, φ2, φ3 .
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Figure 11. Variation in the number of R(t) under different parameter conditions ((a) is
the number of R(t) under different values of parameter φ1; (b) is the number of R(t)
under different values of parameter φ2; (c) is the number of R(t) under different values of
parameter φ3.

In conclusion, in order to reduce the spread of rumors, it is necessary to decrease the natural contact
rate between rumor unknowers and rumor spreaders, increase the percentage of rumor unknowers
with a higher level of education, and decrease the transmission rate and increase the immunity rate.
Consequently, in order to mitigate the spread of rumors, the following section will continue to detail the
most effective method of controlling the spread of rumors by manipulating parameter α1, α2, β1, β2, λ

values.

5.3. Numerical simulation of optimal control

In this section, by controlling the above five parameters, that is, α1, α2, β1, β2, λ, Figure 12 is drawn.
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Figure 12. The change of the density of D(t), E(t), I(t) with time under different strategies.
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Because optimal control mainly controls the population density of three chambers: Rumor
hesitators with less education, rumor hesitators with higher education, and rumor spreaders. Therefore,
during the drawing process, we only display D(t), E(t) and I(t).

In Figure 12,

(a) optimal control: α1 = 0, α2 = 0, β1 = 0, β2 = 1, λ = 0

(b) middle control: α1 = 0.5, α2 = 0.5, β1 = 0.5, β2 = 0.5, λ = 0.5

(c) constant control: α1 = 1, α2 = 1, β1 = 1, β2 = 0, λ = 1.

After observing Figure 12, it becomes clear that optimal control is more effective than middle
control or constant control at all. With optimal control, the number of less-educated rumor hesitators,
higher-educated rumor hesitators, and rumor spreaders can all be reduced to zero, resulting in
successful rumor control.

Combined with real-life scenarios, specific measures can be employed to regulate the five key
parameters outlined in the article, thus controlling the spread of rumors. The government and official
media are recommended to reinforce their supervision of online information propagation, which
could effectively decrease the natural contact rate between rumor spreaders and rumor unknowers.
Furthermore, the government and schools could enhance the education of those rumors unknowers and
uplift people’s education level to limit the propagation of rumors.

6. Conclusions

We studied the influence of education level on rumor propagation, established the SDEIR model,
analyzed the basic reproduction number, rumor equilibrium point and stability, optimized the control
strategy, and verified the theoretical results through numerical simulation.

The main conclusions of this paper are as follows:

(1) When R0 < 1, the rumor will disappear from the system over time; when R0 > 1, the rumor will
not disappear in the future, but will reach a stable state.

(2) Based on the classical SIR rumor propagation model, the scale of rumor outbreak is significantly
reduced after the education level is introduced.

(3) Reducing the contact rate of I(t) and S (t) with different levels of education, increasing the
proportion of S (t) with higher education level, reducing the transmission rate and improving
the immunization rate can inhibit the spread of rumors to varying degrees.

(4) When controlling parameter α1(t) = 0, α2(t) = 0, β1(t) = 0, β2(t) = 1, λ(t) = 0, the optimal control
effect is achieved and the purpose of controlling rumor propagation is realized.

(5) Although improving people’s education level can reduce the spread of rumors to a certain extent,
it cannot completely stop the spread of rumors.

The spread of rumors is a complex social phenomenon, and further research and comprehensive
measures are needed to effectively deal with the spread of rumors. In fact, in addition to the changes
between different chambers considered in this paper, S (t) may be directly transformed into R(t), which
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also has an important impact on the process of rumor propagation. In addition to government and state
media, other media have the potential to change the way rumors spread. However, these cases are
not detailed in this article. It is hoped that future studies can comprehensively consider the influence
of various factors and provide more effective control measures and prevention strategies to meet the
challenges brought by rumor propagation.
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