
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(8): 19997–20013.
DOI: 10.3934/math.2024975
Received: 22 April 2024
Revised: 11 June 2024
Accepted: 13 June 2024
Published: 20 June 2024

Research article

On the oscillation of fourth-order canonical differential equation with
several delays

Mohammed Ahmed Alomair1,* and Ali Muhib2,3,*

1 Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982,
Saudi Arabia

2 Department of Mathematics, Faculty of Applied and Educational Sciences, Al-Nadera, Ibb
University, Ibb, Yemen

3 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

* Correspondence: Email: ma.alomair@kfu.edu.sa, muhib39@yahoo.com.
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neutral differential equation with multiple delays. Considering the canonical case, we obtain some
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1. Introduction

The main objective of the paper is to investigate the qualitative behavior of a differential equation

(
b (ϑ)

(
(x (ϑ) + g (ϑ) x (τ (ϑ)))′′′

)α)′
+

η∑
i=1

φi (ϑ) xβ (δi (ϑ)) = 0, (1.1)

where ϑ ≥ ϑ0 > 0 and η is a positive integer.
Let us define the corresponding function υ for the solution x as follows:

υ (ϑ) = x (ϑ) + g (ϑ) x (τ (ϑ)) . (1.2)
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Furthermore, we make the following supposition:

(M1) α and β are quotients of odd positive integers;

(M2) b ∈ C ([ϑ0,∞) , (0,∞)) , b′ (ϑ) ≥ 0 and∫ ϑ

ϑ0

1
b1/α (ζ)

dζ → ∞ as ϑ→ ∞; (1.3)

(M3) τ, δi ∈ C ([ϑ0,∞) ,R) , δi (ϑ) ≤ ϑ, τ (ϑ) ≤ ϑ, τ′ (ϑ) > 0, and limϑ→∞ τ (ϑ) = limϑ→∞ δi (ϑ) = ∞,

i = 1, 2, ...η;

(M4) φi, g ∈ C ([ϑ0,∞) ,R) , g (ϑ) > 0, φi ≥ 0 and φi is not identically zero for large ϑ, i = 1, 2, ...η;

(M5) there exists a constant ε ∈ (0, 1) such that

lim
ϑ→∞

(
ϑ

τ (ϑ)

)3/ε 1
g (ϑ)

= 0. (1.4)

By a solution of (1.1), we mean a nontrivial function x ∈ C ([ϑx,∞) ,R), ϑx ≥ ϑ0, which has the
properties υ (ϑ) ∈ C3 ([ϑx,∞) ,R) , b (ϑ) (υ′′′ (ϑ))α ∈ C1 ([ϑx,∞) ,R) and x satisfies (1.1) on [ϑx,∞) .
We focus in our study on the solutions that satisfy sup {|x (ϑ)| : ϑ ≥ ϑa} > 0, for every ϑa ≥ ϑx, and we
assume that (1.1) possesses such solutions. Such a solution of (1.1) is called oscillatory if it is neither
eventually positive nor eventually negative; otherwise, it is called nonoscillatory. An equation is called
oscillatory if all of its solutions are oscillatory.

We frequently see repetitive movements used to illustrate different mechanical actions that occur in
nature. In other words, oscillations abound in our universe. Examples of oscillatory motions include a
ship moving up and down on the waves and a pendulum swing. Finding new necessary conditions for
the oscillation or nonoscillation of the solutions of neutral functional differential equations, which is a
component of so-called dynamical systems, has become increasingly important in recent years. As far
as physicists and engineers are concerned, understanding and managing oscillations in various systems
is their primary objective. Oscillation is a phenomenon that is observed in a variety of fields, including
biology and economics, in addition to physics and mechanics.

One of the important differential equation branching problems is the oscillatory behavior of ordinary
differential equations. The oscillatory problems to the wings of the plane can be modeled by the
oscillatory problems of ordinary differential equations. Delay differential equations with deviating
arguments introduce an additional layer of complexity by incorporating time delays into the modeling
process. Unlike ordinary differential equations, these equations account for the influence of both
current and past values of variables. In fact, differential equations with deviating arguments are widely
used in physics, engineering, biology, economics, and more, making them an indispensable tool for
understanding and predicting the behavior of complex phenomena, see [8, 9, 13, 15, 21, 23, 26, 27]).

Bills and Schoenberg [12] examined certain oscillatory outcomes for a self-adjoint system of
second-order equations. The oscillatory behavior of solutions to various classes of differential
equations with a linear neutral term has been extensively studied in recent decades. However, there
are few results about the oscillation of differential equations with nonlinear neutral terms; see, for
example, Agarwal et al. and Grace and Graef [3, 14, 16].
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Many researchers have studied the oscillatory properties of even-order differential equations on a
larger scale than their odd-order counterparts. Different techniques and methods have been used to
study the oscillation of different types of even-order differential equations. Illustrative and additional
information can be found in references [4, 11, 17–20, 25]. Specifically, we provide some detail.

Bazighifan and Ahmad [10] investigated the qualitative behavior of an even-order advanced
differential equation (

b (ϑ)
(
x(n−1) (ϑ)

)α)′
+

η∑
i=1

φi (ϑ) f (x (δi (ϑ))) = 0, (1.5)

where φi (ϑ) ≥ 0, δi (ϑ) ≥ ϑ, and f (x) /xβ ≥ k > 0 for x , 0. They established sufficient conditions
for oscillation of (1.5) by utilizing the theory of comparison with first-order and second-order delay
equations, as well as the Riccati substitution technique.

The oscillatory behavior of the differential equations

(
b (ϑ)

(
(x (ϑ) + g (ϑ) x (τ (ϑ)))′

)α)′
+

η∑
i=1

φi (ϑ) xβ (δi (ϑ)) = 0 (1.6)

was taken into consideration by Abdelnaser et al. [1]. By introducing a new set of criteria, the
researchers were able to prove that all solutions to Eq (1.6) oscillate.

Muhib et al. [22] considered a class of neutral differential equations(
b (ϑ)

((
x (ϑ) + ρ (ϑ) x~ (σ1 (ϑ)) + g (ϑ) xγ (τ (ϑ))

)(n−1)
)α)′

+ f (ϑ, x(δ(ϑ))) = 0. (1.7)

They used Riccati transformations to present new conditions for the oscillation of (1.7), where
ρ (ϑ) ≥ 0, g (ϑ) ≥ 0, γ and ~ are ratios of odd positive integers with γ ≥ 1, 0 < ~ < 1, and
f ∈ C ([ϑ0,∞) × R,R) and there exists φ ∈ C ([ϑ0,∞) , (0,∞)) such that | f (ϑ, x)| ≥ φ (ϑ) |x|β . Below,
we present one of the results in [22].

Theorem 1.1. Assume that

lim
ϑ→∞

g (ϑ)
(
ϑn−2

∫ ϑ

ϑ0

1
b1/α (ζ)

dζ
)γ−1

= lim
ϑ→∞

ρ (ϑ) = 0 (1.8)

holds. If

lim inf
ϑ→∞

1
ϕ (ϑ)

∫ ∞

ϑ

αλNδn−2 (ζ) δ′ (ζ) b−1/α (ζ)ϕ(α+1)/α (ζ) dζ >
α

(α + 1)(α+1)/α ,

for all λ ∈ (0, 1) and N > 0, then (1.7) is oscillatory, where

ϕ (ϑ) = εβ
∫ ∞

ϑ

φ (u) Ω (u) du

and

Ω (ϑ) =

 kβ−α1 if β ≥ α,

kβ−α2

(
ϑn−2

)β−α (∫ ϑ

ϑ1

1
b1/`(ζ)dζ

)β−α
if β < α,

for some ε ∈ (0, 1) and k1, k2 > 0.
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Agarwal et al. [2] studied the oscillation of a neutral differential equation

(x (ϑ) + g (ϑ) x (τ (ϑ)))(n) + φ (ϑ) x (δ (ϑ)) = 0, (1.9)

where n is even and g (ϑ) ≥ 0. They established some sufficient conditions for oscillation of (1.9) using
the Riccati transformation technique. Below, we present one of the results in [2].

Theorem 1.2. Let n ≥ 4 be even (M3), (M4), and

δ (ϑ) ≤ τ (ϑ) , 1 −
Υn−1 (ϑ)

g
(
τ−1 (

τ−1 (ϑ)
)) ≥ 0

hold. If the equation (
(n − 2)!
λ0ϑn−2 x′ (ϑ)

)′
+ φ (ϑ) g∗ (δ (ϑ))

(
τ−1 (δ (ϑ))

)n−1

ϑn−1 x (ϑ) = 0

is oscillatory for some constant λ0 ∈ (0, 1), and the equation

x′′ (ϑ) +

∫ ∞
ϑ

(s − ϑ)n−3 φ (s) g∗ (δ (s)) τ−1(δ(s))
s ds

(n − 3)!
x (ϑ) = 0

is oscillatory, then (1.9) is oscillatory, where

g∗ (ϑ) =
1

g
(
τ−1 (ϑ)

) (
1 −

Υ (ϑ)
g
(
τ−1 (

τ−1 (ϑ)
))) ,

g∗ (ϑ) =
1

g
(
τ−1 (ϑ)

) (
1 −

Υn−1 (ϑ)
g
(
τ−1 (

τ−1 (ϑ)
)))

and

Υ (ϑ) =
τ−1

(
τ−1 (ϑ)

)
τ−1 (ϑ)

.

The objective of this paper is to provide new results of oscillation (1.1) in canonical form, which
would improve and extend some previous literature. In addition, an example is given that shows the
applicability of the results we obtained.

The following notation will be used in the remaining sections of this work:

δ (ϑ) = min {δi (ϑ) : i = 1, 2, ..., η} .

2. Preliminary lemmas

For the proof of our main results, we need to give the following lemmas:

Lemma 2.1. [5] Let f ∈ Cn ([ϑ0,∞) , (0,∞)), the derivative f (n) (ϑ) is of fixed sign and not identically
zero on a subray of [ϑ0,∞) , and there exists a ϑx ≥ ϑ0 such that f (n−1) (ϑ) f (n) (ϑ) ≤ 0 for all ϑ ≥ ϑ1.
If limϑ→∞ f (ϑ) , 0, then for every λ ∈ (0, 1) there exists a ϑλ ≥ ϑ1 such that

| f (ϑ)| ≥
λ

(n − 1)!
ϑn−1

∣∣∣ f (n−1) (ϑ)
∣∣∣ , (2.1)

for all ϑ ≥ ϑλ.
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Lemma 2.2. [7, Lemma 1] Let the function f satisfy f (n) (ϑ) > 0, n = 1, 2, ..., κ, and f (κ+1) (ϑ) ≤ 0
eventually. Then, for every ε ∈ (0, 1) ,

f (ϑ)
f ′ (ϑ)

≥ ε
ϑ

κ
, (2.2)

eventually.

Lemma 2.3. [6] Let x be a positive solution of (1.1), and (1.3) holds. Then, (b (ϑ) (υ′′′ (ϑ))α)′ < 0, we
also find that there exist two potential cases eventually, which are as follows:

Case (1) : υ (ϑ) > 0, υ′ (ϑ) > 0, υ′′ (ϑ) > 0, υ′′′ (ϑ) > 0, υ(4) (ϑ) ≤ 0,
Case (2) : υ (ϑ) > 0, υ′ (ϑ) > 0, υ′′ (ϑ) < 0, υ′′′ (ϑ) > 0, υ(4) (ϑ) ≤ 0.

Lemma 2.4. [24] If y is a positive and strictly decreasing solution of the integral inequality

y (ϑ) ≥
∫ ∞

ϑ

(ν − ϑ)n−1

(n − 1)!
f (ν, y (g1 (ν)) , y (g2 (ν)) , ..., y (gm (ν))) dν,

then there exists a positive solution x (ϑ) of the differential equation

(−1)n x(n) (ϑ) = f (ϑ, x (g1 (ϑ)) , x (g2 (ϑ)) , ..., x (gm (ϑ))) , , ϑ ≥ ϑ0

being such that x (ϑ) ≤ y (ϑ) for all large ϑ and satisfying limϑ→∞ x(i) (ϑ) = 0 monotonically
(i = 1, 2, ..., n − 1) , where f is a continuous function defined on [ϑ0,∞) × [0,∞)m and g j (ϑ) are
continuous functions on the interval [ϑ0,∞) such that

lim
ϑ→∞

g j (ϑ) = ∞ ( j = 1, 2, ...,m) .

The function f = f (ϑ, u1, u2, ..., um) is assumed to be increasing in each of u1, u2, ..., um. Moreover, it is
supposed that f is positive on [ϑ0,∞) × [0,∞)m and that the delays ϑ − g j (ϑ) are positive for ϑ ≥ ϑ0,
i.e., g j (ϑ) < ϑ for every ϑ ≥ ϑ0 and ( j = 1, 2, ...,m).

3. Main results

We now present the main results of this paper.

Theorem 3.1. Assume that β ≥ 1 and that there exists a positive function µ ∈ C1 ([ϑ0,∞) ,R) such that

µ (ϑ) < τ (ϑ) , µ (ϑ) ≤ δi (ϑ) , µ′ (ϑ) > 0 and lim
ϑ→∞

µ (ϑ) = ∞. (3.1)

If (
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
1 cβ−1

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0 (3.2)

and (
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2 cβ−1

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0 (3.3)

have no positive solutions, then every solution of (1.1) is oscillatory, where q (ϑ) = τ−1 (µ (ϑ)) , c > 0
and ε1, ε2 ∈ (0, 1).
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Proof. Assume that Eq (1.1) has a nonoscillatory solution x (ϑ), say x (ϑ) > 0, x (δ (ϑ)) > 0, and
x (τ (ϑ)) > 0 for ϑ ≥ ϑ1 ≥ ϑ0. From (1.2), we find

x (ϑ) =
υ
(
τ−1 (ϑ)

)
− x

(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

)
and so

x (ϑ) ≥
υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

) − υ
(
τ−1

(
τ−1 (ϑ)

))
g
(
τ−1 (ϑ)

)
g
(
τ−1 (

τ−1 (ϑ)
)) . (3.4)

We first consider what Case (1) holds. Since κ = 3, in view of (2.2), for every ε ∈ (0, 1) , we get

υ (ϑ)
υ′ (ϑ)

≥ ε
ϑ

κ
≥ ε

ϑ

3
, (3.5)

now, (
υ (ϑ)
ϑ3/ε

)′
=

εϑ3/ευ′ (ϑ) − 3υ (ϑ)ϑ(3/ε)−1

εϑ2(3/ε) (3.6)

=
εϑυ′ (ϑ) − 3υ (ϑ)

εϑ(3/ε)+1 ,

using (3.5), we find (
υ (ϑ)
ϑ3/ε

)′
=
εϑυ′ (ϑ) − 3υ (ϑ)

εϑ(3/ε)+1 ≤ 0. (3.7)

Since τ (ϑ) ≤ ϑ and τ′ (ϑ) > 0,
(
τ−1 (ϑ)

)′
> 0 and furthermore ϑ ≤ τ−1 (ϑ). Thus,

τ−1 (ϑ) ≤ τ−1
(
τ−1 (ϑ)

)
. (3.8)

By using (3.7) and (3.8), it follows that

υ
(
τ−1 (ϑ)

)
(
τ−1 (ϑ)

)3/ε ≥
υ
(
τ−1

(
τ−1 (ϑ)

))
(
τ−1 (

τ−1 (ϑ)
))3/ε

and so (
τ−1

(
τ−1 (ϑ)

))3/ε
υ
(
τ−1 (ϑ)

)
≥

(
τ−1 (ϑ)

)3/ε
υ
(
τ−1

(
τ−1 (ϑ)

))
. (3.9)

From (3.4) and (3.9), we find

x (ϑ) ≥
υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

) − τ−1
(
τ−1 (ϑ)

)
τ−1 (ϑ)


3/ε

υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

)
g
(
τ−1 (

τ−1 (ϑ)
))

≥
υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

)
1 −

τ−1
(
τ−1 (ϑ)

)
τ−1 (ϑ)


3/ε

1
g
(
τ−1 (

τ−1 (ϑ)
))

 . (3.10)

From (M5), there exists a ε1 ∈ (0, 1) such thatτ−1
(
τ−1 (ϑ)

)
τ−1 (ϑ)


3/ε

1
g
(
τ−1 (

τ−1 (ϑ)
)) ≤ 1 − ε1.
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Using the above inequality in (3.10) gives

x (ϑ) ≥
υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

) ε1. (3.11)

From (1.1) and (3.11), we have

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+

η∑
i=1

φi (ϑ)
υβ

(
τ−1 (δi (ϑ))

)
gβ

(
τ−1 (δi (ϑ))

) εβ1 ≤ 0

and so (
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
1υ

β
(
τ−1 (δ (ϑ))

) η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) ≤ 0. (3.12)

In view of the fact that µ (ϑ) ≤ δ (ϑ) and υ′ (ϑ) > 0, inequality (3.12) becomes

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
1υ

β
(
τ−1 (µ (ϑ))

) η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) ≤ 0. (3.13)

Since υ (ϑ) > 0 and υ′ (ϑ) > 0, there exists a constant c > 0 such that

υ (ϑ) ≥ c. (3.14)

From (3.13), (3.14), and β ≥ 1, we find the following differential inequality:

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
1 cβ−1

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0, (3.15)

has a positive solution υ. This implies that (3.2) also has a positive solution, which contradicts our
assumption.

Now, we consider what Case (2) holds. Since κ = 1, in view of (2.2), for every ε ∈ (0, 1) , we get

υ (ϑ)
υ′ (ϑ)

≥ ε
ϑ

1
, (3.16)

from which we see that (
υ (ϑ)
ϑ1/ε

)′
=

εϑ1/ευ′ (ϑ) − υ (ϑ)ϑ(1/ε)−1

εϑ2/ε

=
εϑυ′ (ϑ) − υ (ϑ)

εϑ1+(1/ε) ≤ 0. (3.17)

By (3.8) and (3.17), (
τ−1 (ϑ)

)1/ε
υ
(
τ−1

(
τ−1 (ϑ)

))
≤

(
τ−1

(
τ−1 (ϑ)

))1/ε
υ
(
τ−1 (ϑ)

)
. (3.18)

Combining (3.4) and (3.18), we obtain

x (ϑ) ≥
υ
(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

)
1 −

τ−1
(
τ−1 (ϑ)

)
τ−1 (ϑ)


1/ε

1
g
(
τ−1 (

τ−1 (ϑ)
))

 . (3.19)
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From (M5), there exists a ε2 ∈ (0, 1) such thatτ−1
(
τ−1 (ϑ)

)
τ−1 (ϑ)


1/ε

1
g
(
τ−1 (

τ−1 (ϑ)
)) ≤ 1 − ε2,

and using this in (3.19) implies

x (ϑ) ≥
ε2υ

(
τ−1 (ϑ)

)
g
(
τ−1 (ϑ)

) . (3.20)

Using (3.20) in (1.1) yields

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+

η∑
i=1

φi (ϑ)
ε
β
2υ

β
(
τ−1 (δi (ϑ))

)
gβ

(
τ−1 (δi (ϑ))

) ≤ 0

and so (
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2υ

β
(
τ−1 (δ (ϑ))

) η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) ≤ 0. (3.21)

Since µ (ϑ) ≤ δ (ϑ) and υ′ (ϑ) > 0, then (3.21) becomes

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2υ

β
(
τ−1 (µ (ϑ))

) η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) ≤ 0. (3.22)

In view of (3.14) and β ≥ 1, we find the following differential inequality:

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2 cβ−1

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0, (3.23)

has a positive solution υ. This implies that (3.3) also has a positive solution, which contradicts our
assumption. The proof is now complete. �

Theorem 3.2. Assume that β < 1 and there exists a positive function µ ∈ C1 ([ϑ0,∞) ,R) such that (3.1)
holds. If (

b (ϑ)
(
υ′′′ (ϑ)

)α)′
+ ε

β
1 dβ−1

1

(
q3/ε (ϑ)

)β−1
 η∑

i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0 (3.24)

and (
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2 dβ−1

2

(
q1/ε (ϑ)

)β−1
 η∑

i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0, (3.25)

have no positive solutions, then every solution of (1.1) is oscillatory, where q (ϑ) = τ−1 (µ (ϑ)) , d1, d2 >

0 and ε1, ε2 ∈ (0, 1) .

Proof. Assume that Eq (1.1) has a nonoscillatory solution x (ϑ), say x (ϑ) > 0, x (δ (ϑ)) > 0, and
x (τ (ϑ)) > 0 for ϑ ≥ ϑ1 ≥ ϑ0.
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We first consider what Case (1) holds. By performing the same steps as in the proof of Theorem 3.1,
we arrive at (3.7) and (3.13). By (3.7), there exists a constant d1 > 0 such that

υ (ϑ)
ϑ3/ε ≤ d1

and so
υ (ϑ) ≤ d1ϑ

3/ε. (3.26)

Using (3.26) in (3.13) and applying the fact that β < 1 yields

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
1 dβ−1

1

(
q3/ε (ϑ)

)β−1
 η∑

i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0. (3.27)

That is, (3.24) has a positive solution, a contradiction.
Now, we consider what Case (2) holds. By performing the same steps as in the proof of

Theorem 3.1, we arrive at (3.17) and (3.22). By (3.17), there exists a constant d2 > 0 such that

υ (ϑ)
ϑ1/ε ≤ d2

and so
υ (ϑ) ≤ d2ϑ

1/ε. (3.28)

Using (3.28) in (3.22) and applying the fact that β < 1 yields

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+ ε

β
2 dβ−1

2

(
q1/ε (ϑ)

)β−1
 η∑

i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ (q (ϑ)) ≤ 0. (3.29)

That is, (3.25) has a positive solution, a contradiction. The proof is now complete. �

Theorem 3.3. Assume that β ≥ 1 and there exists a positive function µ ∈ C1 ([ϑ0,∞) ,R) such that (3.1)
holds. If

y′ (ϑ) +
λ

3!
ε
β
1 cβ−1 q3 (ϑ)

b1/α (q (ϑ))

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) y1/α (q (ϑ)) = 0 (3.30)

and

ω′ (ϑ) +
ε
β/α
2 c(β−1)/α

ε−1/αq−1/α (ϑ)


∫ ∞

ϑ

(∫ ∞
u

(∑η
i=1

φi(ζ)
gβ(τ−1(δi(ζ)))

)
dζ

)1/α

b1/α (u)
du

ω1/α (q (ϑ)) = 0 (3.31)

are oscillatory, for some constants λ, ε ∈ (0, 1), then every solution of (1.1) is oscillatory, where
q (ϑ) = τ−1 (µ (ϑ)) , c > 0 and ε1, ε2 ∈ (0, 1) .

Proof. Assume that Eq (1.1) has a nonoscillatory solution x (ϑ), say x (ϑ) > 0, x (δ (ϑ)) > 0, and
x (τ (ϑ)) > 0 for ϑ ≥ ϑ1 ≥ ϑ0.

We first consider what Case (1) holds. By performing the same steps as in the proof of Theorem 3.1,
we arrive at (3.15). Since υ (ϑ) > 0 and υ′ (ϑ) > 0, we have limϑ→∞ υ (ϑ) , 0. Thus, by Lemma 2.1,
we obtain

υ (ϑ) ≥
λ

3!
ϑ3υ′′′ (ϑ) , (3.32)
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from which we see that
υ (q (ϑ)) ≥

λ

3!
q3 (ϑ) υ′′′ (q (ϑ)) . (3.33)

Using (3.33) in (3.15) yields(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+
λ

3!
ε
β
1 cβ−1q3 (ϑ)

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ′′′ (q (ϑ)) ≤ 0,

With y (ϑ) = b (ϑ) (υ′′′ (ϑ))α, we find y (ϑ) is a positive solution of the differential inequality

y′ (ϑ) +
λ

3!
ε
β
1 cβ−1 q3 (ϑ)

b1/α (q (ϑ))

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) y1/α (q (ϑ)) ≤ 0. (3.34)

It follows from Lemma 2.4 that the differential equation (3.30) also has a positive solution for all
λ ∈ (0, 1), but this contradicts our assumption on (3.30).

Now, we consider what Case (2) holds. By performing the same steps as in the proof of
Theorem 3.1, we arrive at (3.16) and (3.23). Integrating (3.23) from ϑ to∞ gives(

υ′′′ (ϑ)
)α
≥ ε

β
2 cβ−1υ (q (ϑ))

b (ϑ)

∫ ∞

ϑ

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ

and so

υ′′′ (ϑ) ≥ εβ/α2 c(β−1)/αυ
1/α (q (ϑ))
b1/α (ϑ)

∫ ∞

ϑ

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ

1/α

. (3.35)

Integrating (3.35) from ϑ to∞, we have

−υ′′ (ϑ) ≥ εβ/α2 c(β−1)/α


∫ ∞

ϑ

(∫ ∞
u

(∑η
i=1

φi(ζ)
gβ(τ−1(δi(ζ)))

)
dζ

)1/α

b1/α (u)
du

 υ1/α (q (ϑ))

and so

υ′′ (ϑ) + ε
β/α
2 c(β−1)/α


∫ ∞

ϑ

(∫ ∞
u

(∑η
i=1

φi(ζ)
gβ(τ−1(δi(ζ)))

)
dζ

)1/α

b1/α (u)
du

 υ1/α (q (ϑ)) ≤ 0. (3.36)

Using (3.16) in (3.36) yields

υ′′ (ϑ) +
ε
β/α
2 c(β−1)/α

ε−1/αq−1/α (ϑ)


∫ ∞

ϑ

(∫ ∞
u

(∑η
i=1

φi(ζ)
gβ(τ−1(δi(ζ)))

)
dζ

)1/α

b1/α (u)
du

 (υ′ (q (ϑ))
)1/α
≤ 0. (3.37)

With ω (ϑ) = υ′ (ϑ), we see that ω (ϑ) is a positive solution of the differential inequality

ω′ (ϑ) +
ε
β/α
2 c(β−1)/α

ε−1/αq−1/α (ϑ)


∫ ∞

ϑ

(∫ ∞
u

(∑η
i=1

φi(ζ)
gβ(τ−1(δi(ζ)))

)
dζ

)1/α

b1/α (u)
du

ω1/α (q (ϑ)) ≤ 0, (3.38)

for every ε ∈ (0, 1). We finalize the proof using the same method as outlined in Case (1). The proof is
now complete. �
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Corollary 3.1. Let α = 1 and β ≥ 1 hold. Assume further that there exists a positive function µ ∈
C1 ([ϑ0,∞) ,R) such that (3.1) holds. If

lim
ϑ→∞

∫ ϑ

q(ϑ)

q3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ = ∞ (3.39)

and

lim
ϑ→∞

∫ ϑ

q(ϑ)
q (ζ)


∫ ∞

ζ

(∫ ∞
u

(∑η
i=1

φi(%)
gβ(τ−1(δi(%)))

)
d%

)
b (u)

du

 dζ = ∞, (3.40)

then every solution of (1.1) is oscillatory, where q (ϑ) = τ−1 (µ (ϑ)) .

Proof. We first consider what Case (1) holds. By performing the same steps as in the proof of
Theorem 3.3, we arrive at (3.34). Integrating (3.34) from q (ϑ) to ϑ and then using α = 1 and the
fact that y is a decreasing function, we see that∫ ϑ

q(ϑ)
y′ (ζ) dζ ≤ −

λ

3!
ε
β
1 cβ−1y (q (ζ))

∫ ϑ

q(ϑ)

q3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ

and so

−y (q (ϑ)) ≤ −
λ

3!
ε
β
1 cβ−1y (q (ϑ))

∫ ϑ

q(ϑ)

q3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ,

this can be expressed as follows:

3!

λε
β
1 cβ−1

≥

∫ ϑ

q(ϑ)

q3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ,

so this contradicts (3.39).
Now, we consider what Case (2) holds. By performing the same steps as in the proof of

Theorem 3.3, we arrive at (3.38). Integrating (3.38) from q (ϑ) to ϑ and then using α = 1 and the
fact that ω is a decreasing function, we see that

∫ ϑ

q(ϑ)
ω′ (ζ) dζ ≤ −εεβ2 c(β−1)ω (q (ϑ))

∫ ϑ

q(ϑ)
q (ζ)


∫ ∞

ζ

(∫ ∞
u

(∑η
i=1

φi(%)
gβ(τ−1(δi(%)))

)
d%

)
b (u)

du

 dζ

and so

−ω (q (ϑ)) ≤ −εεβ2 c(β−1)ω (q (ϑ))
∫ ϑ

q(ϑ)
q (ζ)


∫ ∞

ζ

(∫ ∞
u

(∑η
i=1

φi(%)
gβ(τ−1(δi(%)))

)
d%

)
b (u)

du

 dζ,

this can be expressed as follows:

1

εε
β
2 c(β−1)

≥

∫ ϑ

q(ϑ)
q (ζ)


∫ ∞

ζ

(∫ ∞
u

(∑η
i=1

φi(%)
gβ(τ−1(δi(%)))

)
d%

)
b (u)

du

 dζ,

which contradicts (3.40). The proof is now complete. �
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Theorem 3.4. Assume that β < 1 and there exists a positive function µ ∈ C1 ([ϑ0,∞) ,R) such that (3.1)
holds. If

y′ (ϑ) +
ε
β
1 dβ−1

1 λ

3!
q(3(β−1)/ε)+3 (ϑ)

b1/α (q (ϑ))

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) y1/α (q (ϑ)) = 0 (3.41)

and

ω′ (ϑ) +
ε
β/α
2 d(β−1)/α

2

ε−1/αq−1/α (ϑ)


∫ ∞

ϑ


∫ ∞
ζ

(
q1/ε (u)

)β−1
(∑η

i=1
φi(u)

gβ(τ−1(δi(u)))

)
du

b (ζ)


1/α

dζ

ω1/α (q (ϑ)) = 0 (3.42)

are oscillatory for some constants λ, ε ∈ (0, 1) , then every solution of (1.1) is oscillatory, where q (ϑ) =

τ−1 (µ (ϑ)) , d1, d2 > 0 and ε1, ε2 ∈ (0, 1) .

Proof. Assume that Eq (1.1) has a nonoscillatory solution x (ϑ), say x (ϑ) > 0, x (δ (ϑ)) > 0, and
x (τ (ϑ)) > 0 for ϑ ≥ ϑ1 ≥ ϑ0.

We first consider what Case (1) holds. By performing the same steps as in the proof of Theorem 3.2,
we arrive at (3.27). Since υ (ϑ) > 0 and υ′ (ϑ) > 0, we have limϑ→∞ υ (ϑ) , 0 and so by Lemma 2.1,
we find (3.32) holds. Using (3.32) in (3.27) gives

(
b (ϑ)

(
υ′′′ (ϑ)

)α)′
+
ε
β
1 dβ−1

1 λ

3!
q(3(β−1)/ε)+3 (ϑ)

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) υ′′′ (q (ϑ)) ≤ 0.

With y (ϑ) = b (ϑ) (υ′′′ (ϑ))α, we see that y (ϑ) is a positive solution of the differential inequality

y′ (ϑ) +
ε
β
1 dβ−1

1 λ

3!
q(3(β−1)/ε)+3 (ϑ)

b1/α (q (ϑ))

 η∑
i=1

φi (ϑ)
gβ

(
τ−1 (δi (ϑ))

) y1/α (q (ϑ)) ≤ 0. (3.43)

It follows from Lemma 2.4 that the differential equation (3.41) also has a positive solution for all
λ1 ∈ (0, 1), but this contradicts our assumption on (3.41).

Now, we consider what Case (2) holds. Then again (3.16) holds for every ε ∈ (0, 1). By performing
the same steps as in the proof of Theorem 3.2, we arrive at (3.29). Integrating (3.29) from ϑ to ∞, we
obtain

−b (ϑ)
(
υ′′′ (ϑ)

)α
+ ε

β
2 dβ−1

2 υ (q (ϑ))
∫ ∞

ϑ

(
q1/ε (ζ)

)β−1
 η∑

i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ ≤ 0

and so

υ′′′ (ϑ) ≥ εβ/α2 d(β−1)/α
2

 1
b (ϑ)

∫ ∞

ϑ

(
q1/ε (ζ)

)β−1
 η∑

i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ

1/α

υ1/α (q (ϑ)) . (3.44)

Integrating (3.44) from ϑ to∞, we obtain

−υ′′ (ϑ) ≥ εβ/α2 d(β−1)/α
2 υ1/α (q (ϑ))

∫ ∞

ϑ


∫ ∞
ζ

(
q1/ε (u)

)β−1
(∑η

i=1
φi(u)

gβ(τ−1(δi(u)))

)
du

b (ζ)


1/α

dζ
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and so

υ′′ (ϑ) + ε
β/α
2 d(β−1)/α

2


∫ ∞

ϑ


∫ ∞
ζ

(
q1/ε (u)

)β−1
(∑η

i=1
φi(u)

gβ(τ−1(δi(u)))

)
du

b (ζ)


1/α

dζ

 υ1/α (q (ϑ)) ≤ 0. (3.45)

With ω (ϑ) = υ′ (ϑ) and using (3.16) in (3.45), we see that ω (ϑ) is a positive solution of

ω′ (ϑ) +
ε
β/α
2 d(β−1)/α

2

ε−1/αq−1/α (ϑ)


∫ ∞

ϑ


∫ ∞
ζ

(
q1/ε (u)

)β−1
(∑η

i=1
φi(u)

gβ(τ−1(δi(u)))

)
du

b (ζ)


1/α

dζ

ω1/α (q (ϑ)) ≤ 0.

We finalize the proof using the same method as outlined in Case (1). The proof is now complete. �

Corollary 3.2. Let α = 1 and β < 1 hold. Assume further that there exists a positive function µ ∈
C1 ([ϑ0,∞) ,R) such that (3.1) holds. If

lim
ϑ→∞

∫ ϑ

q(ϑ)

q(3(β−1)/ε)+3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ = ∞ (3.46)

and

lim
ϑ→∞

∫ ϑ

q(ϑ)
q (%)

∫ ∞

%

 1
b (ζ)

∫ ∞

ζ

(
q1/ε (u)

)β−1
 η∑

i=1

φi (u)
gβ

(
τ−1 (δi (u))

) du

 dζ

 d% = ∞, (3.47)

then every solution of (1.1) is oscillatory, where q (ϑ) = τ−1 (µ (ϑ)) .

Proof. The details of the proof are omitted as they are similar to those of Corollary 3.1. �

We provide the following example to demonstrate our results:

Example 3.1. Consider the neutral differential equation(
x (ϑ) + ϑx

(
ϑ

A1

))(4)

+
φ0

ϑ2 x
(
ϑ

A2

)
+
φ0

ϑ2 x
(
ϑ

A3

)
= 0, ϑ ≥ 1, (3.48)

It is easy to verify that ∫ ∞

ϑ0

1
b1/α (s)

ds = ∞.

Choosing µ (ϑ) = ϑ/A4 and A = max {A2, A3} , where A4 > A1, A4 ≥ A and A1, A2, A3, A4 > 1,
then (3.1) holds. We also find that

τ−1 (ϑ) = A1ϑ, q (ϑ) =
A1

A4
ϑ, τ−1 (δ1 (ϑ)) =

A1

A2
ϑ and τ−1 (δ2 (ϑ)) =

A1

A3
ϑ.

Let ε = 1/4; we see that (1.4) holds.
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Now, it is easy to check that the condition (3.39) is satisfied, where

lim
ϑ→∞

∫ ϑ

q(ϑ)

q3 (ζ)
b (q (ζ))

 η∑
i=1

φi (ζ)
gβ

(
τ−1 (δi (ζ))

) dζ

= lim
ϑ→∞

∫ ϑ

A1ϑ/A4

(
A1

A4
s
)3 φ0

s2

(
A1

A2
s
)−1

+
φ0

s2

(
A1

A3
s
)−1 ds

= lim
ϑ→∞

∫ ϑ

A1ϑ/A4

φ0

(
A1

A4

)3 (A1

A2

)−1

+

(
A1

A3

)−1 ds = ∞.

Moreover, we find that condition (3.40) is satisfied, where

lim
ϑ→∞

∫ ϑ

q(ϑ)
q (ζ)

∫ ∞

ζ

1
b (u)

∫ ∞

u

 η∑
i=1

φi (%)
gβ

(
τ−1 (δi (%))

) d%

 du

 dζ

= lim
ϑ→∞

∫ ϑ

A1ϑ/A4

A1

A4
ζ

∫ ∞

ζ

∫ ∞

u

φ0

%3

(A1

A2

)−1

+

(
A1

A3

)−1 d%
 du

 dζ

= lim
ϑ→∞

∫ ϑ

A1ϑ/A4

A1

A4
ζ

∫ ∞

ζ

 φ0

2u2

(A1

A2

)−1

+

(
A1

A3

)−1 du
 dζ

= lim
ϑ→∞

∫ ϑ

A1ϑ/A4

A1

A4
ζ

φ0

2ζ

(A1

A2

)−1

+

(
A1

A3

)−1 dζ = ∞.

Thus, using Corollary 3.1, every solution of (3.48) is oscillatory.

Remark 3.1. Consider the neutral differential equation(
x (ϑ) + ϑx

(
ϑ

3

))(4)

+
φ0

ϑ2 x
(
ϑ

2

)
= 0, ϑ ≥ 1, (3.49)

as a special case of Eq (3.48), we see that Theorem 1.1 cannot be applied to (3.49) since

lim
ϑ→∞

g (ϑ)
(
ϑn−2

∫ ϑ

ϑ0

1
b1/α (ζ)

dζ
)γ−1

, 0,

accordingly, Theorem 1.1 fails to study the oscillation of (3.49).
Also, we see that Theorem 1.2 cannot be applied to (3.49) since δ (ϑ) = ϑ/2 is greater than τ (ϑ) =

ϑ/3 for ϑ ≥ 1. Accordingly, Theorem 1.2 fails to study the oscillation of (3.49).
Now, by using Corollary 3.1 and choosing µ (ϑ) = ϑ/4 and ε = 1/4, we see that the conditions (3.39)

and (3.40) are satisfied and therefore, Eq (3.49) is oscillatory.

4. Conclusions

By using comparison principles, we analyze the asymptotic behavior of solutions to a class of
fourth-order neutral differential equations. We have obtained some new oscillation results for (1.1) in
the case where

∫ ∞
ϑ

1/b1/α (ζ) dζ = ∞. These results ensure that all solutions to the studied equation are
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oscillatory, and they also improve and extend some results from previous studies. It will be of interest
to investigate the higher-order differential equations of the form

(
b (ϑ)

(
(x (ϑ) + g (ϑ) x (τ (ϑ)))(n−1)

)α)′
+

η∑
i=1

φi (ϑ) xβ (δi (ϑ)) = 0,

where n ≥ 4 is an even natural number.
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27. E. Tunç, Oscillatory and asymptotic behavior of third-order neutral differential equations with
distributed deviating arguments, Electron. J. Differ. Equations, 2017.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 19997–20013.

http://dx.doi.org/https://doi.org/10.3390/app10175952
http://dx.doi.org/https://doi.org/10.3906/mat-2012-11
http://dx.doi.org/https://doi.org/10.1186/s13660-021-02595-x
http://dx.doi.org/https://doi.org/10.1007/BF01223686
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary lemmas
	Main results
	Conclusions

