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1. Introduction

Matrix equations play a fundamental role in several fields, such as engineering, natural sciences,
and physics [1–3]. In particular, Sylvester matrix equations have generated attention due to their
applications in control theory, estimation theory, and sensitivity analysis, impacting topics such
as system design [4], singular system control [5], and linear descriptor systems [6]. Moreover,
in engineering, the relevance of generalized Sylvester matrix equations extends to various other
applications, supported by foundational numerical methods for matrices [7]. Recent studies have
focused on extensions and computations of the Moore-Penrose inverse (MPI), a concept of matrix
theory that can be used to solve different types of these equations [8]. Growing interest in
these complex matrix equations has led to the exploration of advanced algebraic systems, such as
quaternions, which offer a broader framework for solving multidimensional problems.

The introduction of quaternionic mathematics has further diversified the applied mathematical
field [9–12]. Quaternions are central in describing three-dimensional (3D) rotations and are widely
utilized in computer graphics, navigation, and robotics, as well as in mechanics, quantum physics, and
signal processing, extensively discussed in [13]. Recent advancements include explicit formulas and
determinantal representations for quaternion matrix equations, which have allowed new approaches to
address both standard and quaternion systems [14–16].

Contemporary research has focused on Sylvester-type matrix equations and quaternion
matrices [17–24] creating a new framework. An approach to solving quaternion Sylvester equations
using neural networks, with practical applications in controlling chaotic systems, was introduced
in [25]. The advancements in this framework reflect the application of complex mathematical
techniques in diverse systems, as seen in recent studies on time-varying multi-linear tensor
equations [26] and algorithmic solutions for matrix equations [27]. These advancements include
representations based on determinants and Cramer rules in quaternionic systems [28–34], alongside
explorations into numerical solutions for quaternionic Riccati equations [20] and coupled quaternion
matrix equations [21]. Recent interdisciplinary studies have further extended these mathematical
frameworks to diverse fields, demonstrating significant applications in bio-economics, industrial
systems, and software development best practices [35–37]. Additionally, recent investigations have
focused on the domain of algorithmic approaches and solvability conditions for quaternion matrix
equations, improving our comprehension in the mentioned framework.

Despite such advancements, analyses focusing on the solvability of quaternionic Sylvester matrix
equations, particularly for multifaceted and highly complex systems, appear to be lacking, creating a
gap in this solvability and in the application of these equations to fields such as high-dimensional data
analysis [38], quantum mechanics, and robotics [39], where noncommutative operations are essential.
Our research aims to bridge this gap, offering an in-depth theoretical and practical exploration of
Sylvester-type quaternion matrix equations within this sophisticated multidimensional framework.

The motivation of this study stems from the need for mathematical approaches in the solvability
of Sylvester-type quaternion matrix equations and their application to the high-dimensional data
analysis and representation of complex physical phenomena. Sylvester equations in quaternions offer
a promising methodology for handling essential noncommutative operations in areas such as quantum
mechanics, 3D computer graphics, and robotics. The present work aims to contribute both to the
theoretical development of quaternion matrix theory and computational strategies for complex systems.
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The contributions of this article are twofold. First, we establish the necessary and sufficient
conditions for solving Sylvester-type quaternion matrix equations, utilizing generalized inverses. This
contribution of our work builds upon the research of various scholars [16, 28, 32, 33, 40–42]. Second,
we develop a new algorithmic approach that addresses the computational challenges commonly
associated with these equations, as demonstrated through numerical examples [22–24]. Our study
aims to enrich theoretical understanding and provide computational tools for Sylvester-type quaternion
matrix equations.

The remainder of this article is organized as follows. Section 2 discusses quaternion algebra and
the specific problems addressed. In Section 3, we present our main results on solvability conditions.
In Section 4, our algorithmic approach with a numerical example is detailed. Section 5 concludes with
a summary of findings and future research directions.

2. Mathematical framework

This section begins with an exposition on quaternion algebra, necessary for addressing the more
complex matrix structures and equations, such as Sylvester matrix equations and their general
solutions, which form the basis of our study. It is important to note that, throughout this article,
we deliberately follow the practice of reusing symbols for the coefficients of equations to indicate
the consistent function of these matrices across various systems of matrix equations. This practice
is intended to facilitate the reader understanding of the applicability of solution methods, solvability
conditions, and structural relationships between the equations. While the matrices may not be identical
in terms of their specific values in each instantiation, they are conceptually consistent in terms of their
application and role within the equations presented.

2.1. Quaternion algebra

Quaternions are hypercomplex numbers that incorporate three distinct imaginary units, namely
i, j, k, each paired with real number coefficients. They enable the representation of rotations in 3D
space and represent a four-dimensional construct. Let R denote the field of real numbers and H the
quaternion algebra defined as

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}. (2.1)

The coefficients a0, a1, a2, a3 presented in the expression stated in (2.1) are all real numbers, indicating
that while quaternions comprise imaginary numbers, their components are rooted in real numbers.

We denote the set of all m × n matrices over H by Hm×n. Quaternions extend into matrix algebra
through matrices composed of quaternion elements. A quaternion matrix A of dimension m× n, within
Hm×n, encompasses elements from a quaternion algebra, allowing for complex spatial transformations
and rotations to be represented in matrix form. This extension of quaternions into matrices facilitates
advanced calculations in a 3D space and beyond.

For a quaternion matrix A ∈ Hm×n, the conjugate transpose is denoted by A∗. The MPI of A,
represented as A†, satisfies the conditions AA†A = A, A†AA† = A†, (AA†)∗ = AA†, and (A†A)∗ = A†A.
Also, we introduce the projection operators LA and RA for a quaternion matrix A as

LA = I − A†A, RA = I − AA†, (2.2)
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which are idempotent and Hermitian, satisfying LA = L†A = L∗A = L2
A and RA = R∗A = R2

A = R†A. These
operators are used in our subsequent analysis of quaternion matrix equations and denote the left and
right projection operators applied to a matrix, reflecting operations that act on that matrix from the left
and right sides, respectively. For example, LA and RA denote the left and right projection operators
applied to matrix A, reflecting operations that act on A from the left and right sides, respectively.

The exploration of quaternion-related matrix equations in various applications, such as signal
processing and system control, brings us to the Sylvester matrix equation, which is typically
represented as

AX + XB = C, (2.3)

where A, B, and C are known matrices, and X is the matrix to be determined, all of them being
quaternion matrices. The equation stated in (2.3), a standard form of the Sylvester equation, has been
the subject of extensive study [43], primarily due to its applications in control theory and linear systems.

The solvability and general solution for a variation of the standard Sylvester equation presented
in (2.3) have been explored in [44–46]. This equation involves an additional unknown quaternion
matrix Y, which adds complexity to the problem, being particularly relevant in scenarios involving
coupled or interconnected systems. The system defined by

A1X1 + Y1B1 = O1, A2X2 + Y1B2 = O2, (2.4)

has been stated for its solvability and general solution [47, 48]. The system formulated in (2.4),
an extended version of the Sylvester equation involving multidimensional matrices, encapsulates the
complexity of quaternion-related matrix equations, where significant research has focused on analyzing
its condition number [49] and establishing necessary and sufficient conditions for its solution [50].

Other studies include the analysis of mixed forms of these equations [51] and the development of
solutions for their restricted versions [52]. Such studies address specific constraints and conditions
within the mentioned systems, demonstrating the depth of study in this area. A notable example is the
system of equations established in (2.4), which represents a pair of mixed generalized Sylvester matrix
equations. Necessary and sufficient conditions for the solvability of this system, as well as its general
solution, have been provided in [51]. Furthermore, general solutions for some mixed type generalized
Sylvester matrix equations involving four variable matrices have been explored in [47].

Recent studies, as cited in [53–56], have expanded the discussion to include general solutions for
various matrix equation systems, as the complex system given by

A1X1 + Y1B1 + F1V1G1 = O1, A2X2 + Y2B2 + F2V1G2 = O2, (2.5)

considered in [50], offering a broader perspective on the solvability of complex matrix equations. In
addition, the system stated as

A1X1 = C1, A2X2 = C2, Y1B1 = C3, Y2B2 = C4, A3V1 = C5, V1B3 = C6,

A4X1 + Y1B4 + F1V1G1 = O1, A5X2 + Y2B5 + F2V1G2 = O2,
(2.6)

is considered in [14, 41], and its general solution has been obtained. More recently, the system
established by

A6X1 + Y1B6 + D1U1E1 + F1V1G1 = O3, A7X2 + Y2B7 + D2U2E2 + F2V1G2 = O4, (2.7)

was studied in [57] showing advances in understanding the consistency and solvability of increasingly
complex matrix systems.
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2.2. Sylvester matrix equations and general solutions

Building on the comprehensive examination of quaternion-related matrix equations and their roles
in system control, signal processing, and related fields, our investigation extends into Sylvester matrix
equations. These equations, historically crucial in contemporary applications, address the intricate
noncommutative operations encountered in areas such as quantum mechanics, 3D computer graphics,
and robotics. Highlighted in [58] and further detailed in [59], Sylvester equations underpin feedback
mechanisms and perturbation theory, offering effective solutions to both theoretical and practical
challenges across various domains.

Prompted by the above-mentioned aspects, our focus is on the derivation of general solutions
for complex systems characterized by Sylvester-type quaternion matrix equations. This derivation
motivates our exploration into a consistent system formulated as

A1X1 = C1, A2X2 = C2, Y1B1 = C3, Y2B2 = C4, A3U1 = C5,

U1B3 = C6, A4U2 = C7, U2B4 = C8, A5V1 = C9, V1B5 = C10,

A6X1 + Y1B6 + D1U1E1 + F1V1G1 = O3, A7X2 + Y2B7 + D2U2E2 + F2V1G2 = O4,

(2.8)

where the matrices A1, . . . , A7, B1, . . . , B7, D1,D2, E1, E2, F1, F2 and G1,G2 work as coefficient
matrices that interact with the unknown matrix variables X1,Y1,U1,U2,V1, whereas the matrices
C1, . . . ,C10 and O3,O4 serve as constant matrices representing the known terms or outcomes within
the equations. A thorough understanding of the role and interaction of each coefficient and constant
matrix is essential to comprehending the system overall behavior and for devising effective solutions.

The equations stated in (2.4)–(2.7) can be viewed as particular instances of the system presented
in (2.8), illustrating its role in a broader mathematical context. The flowchart depicted in Figure 1
visually encapsulates these equations, offering a clear depiction of how each system progressively
builds upon the previous one. We delineate the precise conditions that ensure the solvability of the
system represented in (2.8), and construct a comprehensive framework for its general solution. This
is achieved through an analytical approach, elaborated in the key lemmas that follow. The projection
operators LA and RA introduced in (2.2), along with the MPI A†, play crucial roles in the analysis
of quaternion matrix equations. These concepts are utilized in the following lemmas to explore the
relations and solvability conditions of specific systems of matrix equations. The following lemma
establishes a set of relations used in our analysis [60].

Lemma 2.1. Let A ∈ Hm×n, B ∈ Hm×t, and C ∈ Hl×n. Then, the following relations hold:

rank
([

A
C

])
− rank(CLA) = rank(A), rank

([
A B

])
− rank(RBA) = rank(B).

The next lemma addresses a system of matrix equations and conditions for its consistency [61].

Lemma 2.2. Given the matrices A ∈ Hm×n, B ∈ Hr×s,C ∈ Hm×r, and D ∈ Hn×s, consider the unknown
matrix X ∈ Hn×r. The system formulated as

AX = C, XB = D, (2.9)

is consistent if, and only if, the conditions RAC = 0, DLB = 0, and AC = DB are met. Under these
conditions, the general solution to the system presented in (2.9) is given by X = A†C+LADB†+LAURB,

where U is an arbitrary matrix with appropriate dimensions over H.
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Figure 1. Flowchart illustrating the progression and relationships between the equations.

The subsequent lemma, as detailed in [62], focuses on specific matrix relationships and
their equivalences.

Lemma 2.3. Consider the matrices A, B,C,D, E, F, and G over H with suitable dimentions. Define
the new matrices P = RAC, Q = DLB, R = RAE, S = FLB, T = RAF, U = GLB, and V = CLF , where
RA = I − AA† and LB = I − B†B denote the right and left projection operators for matrices A and B,
respectively. Then, the following statements are equivalent:

(i) The equation given by A O + VB + C WD + E YZ = G has a solution.
(ii) The conditions RT RAV = 0, VLBLU = 0, RAVLD = 0, and RCVLB = 0 are satisfied.
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(iii) The rank conditions are stated as

rank
(

G E C A
B 0 0 0

)
= rank(B) + rank(E C A),

rank


G A
D 0
F 0
B 0

 = rank


D
F
B

 + rank(A),

rank


G C A
F 0 0
B 0 0

 = rank(A C) + rank
(

F
B

)
,

rank


G E A
D 0 0
B 0 0

 = rank(A E) + rank
(

D
B

)
.

Under these conditions, the general solution to the equation system is specified as

O = A†(G − E WD − E YZ) − A†S 7B + LAS 6,

V = RA(G − E WD − E YZ)B† + AA†S 7 + S 8RB,

W = P†GB† − P†CS †GB† − P†OT †GE†DB† − P†OS 2RU DB† + LAS 4 + S 5RB,

Z = S †GD† + O†OT †GE† + LF LOS 1 + LFS 2RU + S 3RD,

where S 1, . . . , S 8 are arbitrary matrices of appropriate dimensions over H.

In this section, we have addressed the outlined objectives by establishing a detailed mathematical
framework for the solution of the system formulated in (2.8). Our approach, integrating generalized
inverses, offers an alternative to traditional iterative methods.

3. Main results and theoretical contributions

This section presents and proves the main theorem that emerged from our investigation, along with
related corollaries and their uses, demonstrating the wide range and flexibility of the theorem.

3.1. Main result

Next, we state the main theorem which establishes the necessary and sufficient conditions for the
consistency of the system described in (2.8), within the quaternion algebra H. The formulation and
analysis of this theorem rely on the utilization of projection operators LA and RA, as detailed in the
system presented in (2.2), offering a methodological advantage in dissecting the complexity of the
system under study.

Theorem 3.1. Consider the matrices A1, . . . , A7, B1, . . . , B7, C1, . . . ,C10, D1,D2, E1, E2, F1, F2, G1,G2,
and O1,O2 of appropriate dimensions over H, as well as the transformations and relations between
them defined as
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A8 = A5LA1 , B8 = RB1 B5, D3 = D1LA3 , E3 = RB3 E1, F3 = F1LA7 , X1 = A†1C1,Y1 = C3B†1,

G3 = RB7G1, D4 = RA8 D3, E4 = E3LB8 ,U1 = A†3C5 + LA3C6B†3, F4 = RA8 F3, G4 = G3LB8 ,

O3 = O1 − (A5A†1C1 −C3B†1B5 − D1A†3C5E1 − D1LA3C6B†3E1 − F1A†7C9G1 − F1LA8C10B†7G1),
O4 = RA8O3LB8 , M1 = RD4 F4, N1 = G4LE4 , S 1 = F4LM1 ,V1 = A†7C9 + LA7C10B†7,

A9 = A6LA2 , B9 = RB2 B6, D6 = D2LA4 , E6 = RB4 E2, F6 = F2LA7 , G6 = RB7G2,

O5 = O2 − (A6A†2C2 −C4B†2B6 − D2A†4C7E2 − D2LA4C8B†4E2 − F2A†7C9G2 − F2LA7C10B†7G2),
D7 = RA9 D6, E7 = E6LB9 , F7 = RA9 F6, G7 = G6LB9 , X2 = A†2C2,Y2 = C4B†2,

O6 = RA9O5LB9 , M2 = RD7 F7, N2 = G7LE7 , S 2 = F7LM2 ,U2 = A†4C7 + LA2C8B†4,

A =
[

LM1 LS 1 LM2 LS 2

]
, B =

[
RG4

RG7

]
, T9 = −T4, N3 = G8LE8 , S 3 = F8LM3 ,

W1 = M†

2O6G
†

7 + S †2S 2F†7O6N†2 , W2 = M†

1O4G
†

4 + S †1S 1F†4O4N†1 , M3 = RD8 F8,

W3 = W1 −W2, D8 = RALM1 , E8 = RN1 LB, F8 = RALM2 , G8 = RN2 LB, O8 = RAW3LB. (3.1)

Then, the following statements are equivalent:

(i) The system represented in (2.8) is consistent.
(ii) This system satisfies the conditions stated as

RA1C1 = 0,C3LB1 = 0,RA3C5 = 0,C6LB3 = 0, A3C6 = C5B3,RA4C7 = 0,C8LB4 = 0,
A4C8 = C7B4,RA2C2 = 0,C4LB2 = 0,RA7C9 = 0,C10LB7 = 0, A7C10 = C9B7, (3.2)

RD4O4LG4 = 0,RD7O6LG7 = 0,RD8O8LG8 = 0, (3.3)
RF4O4LE4 = 0,O4LE4 LN1 = 0,RM1RD4O4 = 0,RF7O6LE7 = 0,O6LE7 LN2 = 0,

RM2RD7O6 = 0,RF8O8LE8 = 0,O8LE8 LN3 = 0,RM3RD8O8 = 0. (3.4)

(iii) The conditions among the matrices defined in (ii) are established as

rank
[

A1 C1

]
= rank(A1), rank

[
C3

B1

]
= rank(B1),

rank
[

A2 C2

]
= rank(A2), rank

[
C4

B2

]
= rank(B2),

rank
[

A3 C5

]
= rank(A3), rank

[
C6

B3

]
= rank(B3),

rank
[

A4 C7

]
= rank(A4), rank

[
C8

B4

]
= rank(B4),

rank
[

A8 C9

]
= rank(A7), rank

[
C10

B7

]
= rank(B7), (3.5)

A3C6 = C5B3, A4C8 = C7B4, A7C10 = C9B7,
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rank


O1 D1 A5 F1C10 C3

G1 0 0 B7 0
B5 0 0 0 B1

C5E1 A3 0 0 0
C1 0 A1 0 0


= rank


A5 D1

A1 0
0 A3

 + rank
[

G1 B7 0
B5 0 B1

]
,

rank


O1 F1 A5 D1C6 C3

E1 0 0 B3 0
B5 0 0 0 B1

C9G1 A7 0 0 0
C1 0 A1 0 0


= rank


A5 F1

0 A7

A1 0

 + rank
[

E1 B3 0
B5 0 B1

]
,

rank


O1 A5 F1C10 D1C6 C3

G1 0 B7 0 0
E1 0 0 B3 0
B5 0 0 0 B1

C1 A1 0 0 0


= rank

[
A5

A1

]
+ rank


G1 B7 0 0
E1 0 B3 0
B5 0 0 B1

 ,

rank


O1 F1 D1 A5 C3

B5 0 0 0 B1

C9G1 A7 0 0 0
C5G1 0 A3 0 0

C1 0 0 A1 0


= rank

[
B5 B1

]
+ rank


F1 D1 A5

A7 0 0
0 A3 0
0 0 A1

 ,

rank


O2 D2 A6 F2C10 C4

G2 0 0 B7 0
B6 0 0 0 B2

0 A4 0 0 0
C2 0 A2 0 0


= rank


A6 D2

0 A4

A2 0

 + rank
[

G2 B7 0
B6 0 B2

]
,

rank


O2 F2 A6 D2C8 C4

E2 0 0 B4 0
B6 0 0 0 B2

C9G2 A7 0 0 0
C2 0 A2 0 0


= rank


A6 F2

0 A7

A2 0

 + rank
[

E2 B4 0
B6 0 B2

]
,

rank


O2 A6 F2C10 D2C8 C4

G2 0 B7 0 0
E2 0 0 B4 0
B6 0 0 0 B2

C2 A2 0 0 0


= rank

[
A6

A2

]
+ rank


G2 B7 0 0
E2 0 B4 0
B6 0 0 B2

 ,

AIMS Mathematics Volume 9, Issue 8, 19967–19996.



19976

rank


O2 F2 D2 A6 C4

B6 0 0 0 B2

C9G2 A7 0 0 0
C7E2 0 A4 0 0

0 0 0 A2 0


= rank

[
B6 B2

]
+ rank


F2 D2 A6

A7 0 0
0 A4 0
0 0 A2

 ,

rank



0 −G2 G1 0 0 0 0 B7 0 0 0 0 0
0 −G2 0 G1 0 0 0 0 B7 0 0 0 0
−F1 0 0 O1 D1 A5 0 0 0 0 0 0 C3

F2 O2 0 0 0 0 A6 0 0 D2C8 C4 0 0
0 E2 0 0 0 0 0 0 0 B4 0 0 0
0 B6 0 0 0 0 0 0 0 0 B2 0 0
0 0 B5 0 0 0 0 0 0 0 0 B1 0
0 0 0 B5 0 0 0 0 0 0 0 0 B1

A7 C9 0 C5E1 A3 0 0 0 0 0 0 0 0
0 0 0 C1 0 A1 0 0 0 0 0 0 0
0 C2 0 0 0 0 A2 0 0 0 0 0 0



=rank



G2 G1 0 0 0 0 B7 0 0
0 −G1 G2 B7 0 0 0 0 0
E2 0 0 0 0 0 0 B4 0
0 B5 0 0 B1 0 0 0 0
0 0 B6 0 0 B2 0 0 0
B6 0 0 0 0 0 0 0 B2


+ rank



−F1 D1 0 A5

F2 0 A6 0
A7 0 0 0
0 A3 0 0
0 0 A2 0
0 0 0 A1


,

rank



0 −G1 G1 0 0 0 0 B7 0 0 0 0 0
0 −G1 0 G2 0 0 0 0 B7 0 0 0 0
−F2 0 0 O2 D2 A6 0 0 F2C10 0 0 0 C4

F1 O1 0 0 0 0 A5 0 0 −D1C6 −C3 0 0
0 E1 0 0 0 0 0 0 0 B3 0 0 0
0 B5 0 0 0 0 0 0 0 0 B1 0 0
0 0 B5 0 0 0 0 0 0 0 0 B1 0
0 0 0 B6 0 0 0 0 0 0 0 0 B2

A7 −C9G1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 C7E2 A4 0 0 0 0 0 0 0 0
0 0 0 C2 0 A2 0 0 0 0 0 0 0
0 −C1 0 0 0 0 A1 0 0 0 0 0 0



=rank



G1 G1 0 B7 0 0 0 0 0
0 −G1 G2 0 B7 0 0 0 0
E1 0 0 0 0 0 0 0 B3

0 B5 0 0 0 B1 0 0 0
0 0 B6 0 0 0 B2 0 0
B5 0 0 0 0 0 0 B1 0


+ rank



−F2 D2 0 A6

F1 0 A5 0
A7 0 0 0
0 A4 0 0
0 0 A1 0
0 0 0 A2


,
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rank



0 G2 G1 0 0 0 B7 0 0 0 0 0 0
0 G2 0 G1 0 0 0 B7 0 0 0 0 0
−F1 0 O1 0 A5 0 0 0 0 D1C6 0 C3 0
F2 O2 0 0 0 A6 0 0 D2C8 C4 0 0 0
0 E2 0 0 0 0 0 0 B4 0 0 0 0
0 0 E1 0 0 0 0 0 0 B3 0 0 0
0 B6 0 0 0 0 0 0 0 0 B2 0 0
0 0 B5 0 0 0 0 0 0 0 0 B1 0
0 0 0 B5 0 0 0 0 0 0 0 0 B1

A7 0 C9 0 0 0 0 0 0 0 0 0 0
0 0 C1 0 A1 0 0 0 0 0 0 0 0
0 C2 0 0 0 A2 0 0 0 0 0 0 0



=rank


G1 G2 B7 0
B5 0 0 B1

0 B6 0 0

 + rank


−F1 A5 0
F2 0 A6

A7 0 0
0 A1 0
0 0 A2


,

rank



0 G1 G2 0 0 0 0 B7 0 C4

−F2 0 O2 D2 0 A6 0 0 0 0
F1 O1 0 0 D1 0 A5 0 C3 0
0 B5 0 0 0 0 0 0 B1 0
0 0 B6 0 0 0 0 0 0 B2

A7 0 −C9E2 0 0 0 0 0 0 0
0 0 C7E2 A4 0 0 0 0 0 0
0 C5E1 0 0 A3 0 0 0 0 0
0 0 C2 0 0 A2 0 0 0 0
0 C1 0 0 0 0 A1 0 0 0



=rank



−F2 D2 0 A6 0
F1 0 D1 0 A5

A7 0 0 0 0
0 A4 0 0 0
0 0 A3 0 0
0 0 0 A2 0
0 0 0 0 A1


+ rank


G1 G2 B7 0
B5 0 0 B1

0 B6 0 0

 . (3.6)

When these conditions are met, the system formulated in (2.8) admits a general solution that can
be expressed as

X1 = A†1C1 + LA1W1, Y1 = C3B†1 + W3RB1 , U1 = A†3C5 + LA3C6B†3 + LA3W5RB3 ,

V1 = A†7C9 + LA7C10B†7 + LA7W7RB7 , X2 = A†2C2 + LA2W2,

Y2 = C4B†2 + W4RB2 , U2 = A†4C7 + LA4C8B†4 + LA4W6RB4 . (3.7)
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Additionally, the auxiliary variables used in these solutions are defined by

W1 = A†7(O3 − D3W5E3 − F3W7G3) − A†7Z1B7 + LA7Z2,

W3 = RA7(O3 − D3W5E3 − F3W7G3)B†7 + A7A†7Z1 + Z3RB7 ,

W5 = D†4O4E†4 − D†4F4M†

1O4E†4 − D†4S 1F†4O4N†1G4E†4 − D†4S 1Z4RN1G4E†4 + LD4Z5 + Z6RE4 ,

W7 = M†

1O4G
†

4 + S †1S 1F†4O4N†1 + LM1 LS 1Z7 + LM1Z4RN1 + Z8RG4 .

For W7 an alternative formulation is W7 = M†

2O6G
†

7+S †2S 2F†7O6N†2 +LM2 LS 1T7+LM2T4RN2+T8RG7 .
Continuing with the definitions of other auxiliary variables, we have that

W2 = A†8(O5 − D6W6E6 − F6W7G6) − A†8T1B8 + LA8T2,

W4 = RA8(O5 − D6W6E6 − F6W7G6)B†8 + A8A†8T1 + T3RB8 ,

W6 = D†7O6E†7 − D†7F7M†

2O6E†8 − D†7S 2F†7O6N†2G7E†7 − D†7S 2T4RN2G7E†7 + LD7T5 + T6RE7 ,

Z7 =
[

I 0
]

[A†(W3 − LM1Z4RN1 − LM2T9RN2) − A†K1B + LAK2],

T7 =
[

0 I
]

[A†(W3 − LM1Z4RN1 − LM2T9RN2) − A†K1B + LAK2],

Z8 = [RA(W3 − LM1Z4RN1 − LM2T9RN2) + AA†K1 + K3RB]
[

I
0

]
,

T8 = [RA(W3 − LM1Z4RN1 − LM2T9RN2) + AA†K1 + K3RB]
[

0
I

]
,

Z4 = D†8O8E†8 − D†8F8M†

3O8E†8 − D†8S 3F†8O8N†3G8E†8 − D†8S 3K4RN3G8E†8 + LD8 K5 + K6RE8 ,

T9 = M†

3O8G
†

8 + S †3S 3F†8O8N†3 + LM3 LS 3 K7 + LM3 K4RN3 + K8RG8 .

The auxiliary variables Z2, . . . ,Z8,T1, . . . ,T8, and K1, . . . ,K8 play a central role in defining the
primary variables of the solution W1, . . . ,W7. While they do not appear directly in the final
expression of the solution, these auxiliary variables are essential in formulating the necessary
conditions and ensuring that the solution conforms to the structure of the equation system
and quaternion algebra. The variables Z2, . . . ,Z8,T1, . . . ,T8, K1, . . . ,K8, and W1, . . . ,W7 have
dimensions conforming to the algebraic operations involved and are defined over H.

Proof. To state equivalence between (i) and (ii), we reform the expression given in (2.8) as

A1X1 = C1,Y1B1 = C3, A3U1 = C5,U1B3 = C6, A5V1 = C9,V1B5 = C10, A5X1 + Y1B5 + D1U1E1 + F1V1G1 = O1, (3.8)

A2X2 = C2,Y2B2 = C4, A4U2 = C7, U2B4 = C8, A6X2 + Y2B6 + D2U2E2 + F2V1G2 = O2. (3.9)

By Lemma 2.2, the general solution to A1X1 = C1, Y1B1 = C3, A3U1 = C5, U1B3 = C6, A5V1 = C9,
and V1B5 = C10 is presented as

X1 = A†1C1 + LA1W1, Y1 = C3B†1 + W3RB1 , (3.10)

U1 = A†3C5 + LA3C6B†3 + LA3W5RB3 , V1 = A†7C9 + LA7C10B†7 + LA7W7RB7 , (3.11)

where W1, W3, W5, and W7 are matrices with dimensions suitable for the given operations.
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After substituting the equations formulated in (3.10) and (3.11) into the expression stated in (3.8)
and performing simplifications, we arrive at

A7W1 + W3B7 + D3W5E3 + F3W7G3 = O3. (3.12)

According to Lemma 2.3, the expression stated in (3.12) is solvable if, and only if, RD4O4LG4 = 0,
RF4O4LE4 = 0, O4LE4 LN1 = 0, and RM1RD4O4 = 0. Then, the corresponding general solution of the
equation established in (3.12) can be presented as

W1 = A†7(O3 − D3W5E3 − F3W7G3) − A†7Z1B7 + LA7Z2,

W3 = RA7(O3 − D3W5E3 − F3W7G3)B†7 + A7A†7Z1 + Z3RB7 ,

W5 = D†4O4E†4 − D†4F4M†

1O4E†4 − D†4S 1F†4O4N†1G4E†4 − D†4S 1Z4RN1G4E†4 + LD4Z5 + Z6RE4 ,

W7 = M†

1O4G
†

4 + S †1S 1F†4O4N†1 + LM1 LS 1Z7 + LM1Z4RN1 + Z8RG4 . (3.13)

In each case, the matrices Z1, . . . ,Z8 can be chosen arbitrarily having dimensions compatible with the
quaternion algebra H. Continuing in the same vein as in Lemma 2.2, the general solutions to the
equations A2X2 = C2, Y2B2 = C4, A4U2 = C7, and U2B4 = C8 can be expressed as

X2 = A†2C2 + LA2W2,

Y2 = C4B†2 + W4RB2 ,

U2 = A†4C7 + LA4C8B†4 + LA4W6RB4 , (3.14)

where W2, W4, and W6 serve as free matrices with dimensions that conform to the relevant equation.
By substituting the equations defined in (3.11)–(3.14) into the expression stated in (3.9) and then

simplifying, we attain that

A8W2 + W4B8 + D6W6E6 + F6W7G6 = O5. (3.15)

According to Lemma 2.3, the formula defined in (3.15) is solvable if, and only if, RD7O6LG7 = 0,
RF7O6LE7 = 0, O6LE7 LN2 = 0, and RM2RD7O6 = 0. Then, the general solution to the equation stated
in (3.15) is given by

W2 = A†8(O5 − D6W6E6 − F6W7G6) − A†8T1B8 + LA8T2,

W4 = RA8(O5 − D6W6E6 − F6W7G6)B†8 + A8A†8T1 + T3RB8 ,

W6 = D†7O6E†7 − D†7F7M†

2O6E†8 − D†7S 2F†7O6N†2G7E†7 − D†7S 2T4RN2G7E†7 + LD7T5 + T6RE7 ,

W7 = M†

2O6G
†

7 + S †2S 2F†7O6N†2 + LM2 LS 1T7 + LM2T4RN2 + T8RG7 , (3.16)

where T1, . . . ,T8 are arbitrary matrices of suitable dimensions over H.
Upon comparing the equations established in (3.13) and (3.16) and performing further

simplifications, we obtain

A
[

Z7

T7

]
+

[
Z8 T8

]
B + LM1Z4RN1 + LM2T9RN2 = W3. (3.17)
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According to Lemma 2.3, the expression given by (3.17) is solvable if, and only if, the conditions
RD8O8LG8 = 0,RF8O8LE8 = 0,O8LE8 LN3 = 0,RM3RD8O8 = 0 hold. Hence, the general solution to the
equation stated in (3.17) is given by

Z7 =
[

I 0
]

[A†(W3 − LM1Z4RN1 − LM2T9RN2) − A†K1B + LAK2],

T7 =
[

0 I
]

[A†(W3 − LM1Z4RN1 − LM2T9RN2) − A†K1B + LAK2],

Z8 = [RA(W3 − LM1Z4RN1 − LM2T9RN2) + AA†K1 + K3RB]
[

I
0

]
,

T8 = [RA(W3 − LM1Z4RN1 − LM2T9RN2) + AA†K1 + K3RB]
[

0
I

]
,

Z4 = D†8O8E†8 − D†8F8M†

3O8E†8 − D†8S 3F†8O8N†3G8E†8 − D†8S 3K4RN3G8E†8 + LD8 K5 + K6RE8 ,

T9 = M†

3O8G
†

8 + S †3S 3F†8O8N†3 + LM3 LS 3 K7 + LM3 K4RN3 + K8RG8 .

To demonstrate the equivalence between (ii) and (iii), we aim to establish the equivalence between
the set of conditions given in (3.2)–(3.4) and the equalities presented in (3.5) and (3.6). For brevity, we
focus on representative rank equalities, whereas the remaining can be proven analogously. Specifically,
the conditions defined in (3.2) straightforwardly correspond to the equalities stated in (3.5). Moreover,
we demonstrate that the equalities in the formula presented in (3.3) are congruent to their corresponding
equalities defined in (3.6).

Next, employing Lemma 2.1 and applying elementary row operations to rank(RD4O4LE4), we
find that

rank
[

O4 D4

G4 0

]
− rank(D4) − rank(G4)

=rank
[

RA7O3LB7 RA7 D3

G3LB7 0

]
− rank(RA7 D3) − rank(G3LB7)

=rank


O3 D3 A7

G3 0 0
B7 0 0

 − rank
[

D3 A7

]
− rank

[
G3

B7

]

=rank


O1 − A5X01 − Y01B5 − D1U01E1 − F1V01G1 D1LA3 A5LA1

RB15G1 0 0
RB1 B5 0 0


− rank

[
A5LA1 D1LA3

]
− rank

[
RB15G1

RB1 B5

]

=rank


O1 D1 A5 F1C10 C3

G1 0 0 B15 0
B5 0 0 0 B1

C5E1 A3 0 0 0
C1 0 A1 0 0


− rank


A5 D1

A1 0
0 A3

 − rank
[

G1 B15 0
B5 0 B1

]
.

Consequently, rank(RD4O4LE4) = 0 coincides with the fourteenth rank equality stated in (3.6).
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Following the same reasoning, we have that

rank
[

O6 D7

G7 0

]
− rank(D7) − rank(G7)

=rank
[

RA8O5LB8 RA8 D6

G6LB8 0

]
− rank(RA8 D3) − rank(G6LB8)

=rank


O5 D6 A8

G6 0 0
B8 0 0

 − rank
[

D6 A8

]
− rank

[
G6

B8

]

=rank


O2 − A6X02 − Y02B6 − D2U02E2 − F2V01G2 D2LA4 A6LA2

RB15G2 0 0
RB2 B6 0 0


− rank

[
A5LA1 D1LA3

]
− rank

[
RB15G2

RB2 B6

]

=rank


O2 D2 A6 F2C10 C4

G2 0 0 B15 0
B6 0 0 0 B2

0 A4 0 0 0
C2 0 A2 0 0


− rank


A6 D2

A2 0
0 A4

 − rank
[

G2 B15 0
B6 0 B2

]
.

Consequently, rank(RD7O6LG7) = 0 aligns with the eighteenth rank equality in the expression given
in (3.6). Similarly, rank(RD8O8LG8) corresponds to

rank
[

O8 D8

G8 0

]
− rank(D8) − rank(G8)

=rank
[

RAW3LB RALM1

RN2 LB 0

]
− rank(RALM1) − rank(RN2 LB)

=rank


W2 −W1 LM1 A

RN2 0 0
B 0 0

 − rank
[

LM1 A
]
− rank

[
RN2

B

]

=rank


W2 −W1 LM1 A

RN2 0 0
B 0 0

 − rank
[

LM1 A
]
− rank

[
RN2

B

]

=rank


W2 −W1 LM1 LM2 LS 2

RN2 0 0
RG1 0 0
RG7 0 0

 − rank
[

LM1 LM2 LS 2

]
− rank


RN2

RG4

RG7



=rank



W2 −W1 I LM2 0 0 0
I 0 0 N2 0 0
I 0 0 0 G4 0
I 0 0 0 0 G7

0 M1 0 0 0 0
0 0 S 2 0 0 0


− rank


I LM2

M1 0
0 S 2

 − rank


I N2 0 0
I G4 0 0
I 0 G7 0



AIMS Mathematics Volume 9, Issue 8, 19967–19996.



19982

=rank



0 −G2 G1 0 0 0 0 B15 0 0 0 0 0
0 −G2 0 G1 0 0 0 0 B15 0 0 0 0
−F1 0 0 O1 D1 A5 0 0 0 0 0 0 C3

F2 O2 0 0 0 0 A6 0 0 D2C8 C4 0 0
0 E2 0 0 0 0 0 0 0 B4 0 0 0
0 B6 0 0 0 0 0 0 0 0 B2 0 0
0 0 B5 0 0 0 0 0 0 0 0 B1 0
0 0 0 B5 0 0 0 0 0 0 0 0 B1

A15 C9 0 C5E1 A3 0 0 0 0 0 0 0 0
0 0 0 C1 0 A1 0 0 0 0 0 0 0
0 C2 0 0 0 0 A2 0 0 0 0 0 0



− rank



G2 G1 0 0 0 0 B15 0 0
0 G1 G2 B15 0 0 0 0 0
E2 0 0 0 0 0 0 B4 0
0 B5 0 0 B1 0 0 0 0
0 0 B6 0 0 B2 0 0 0
B6 0 0 0 0 0 0 0 B2


− rank



−F1 D1 0 A5

F2 0 A6 0
A15 0 0 0
0 A3 0 0
0 0 A2 0
0 0 0 A1


.

Thus, rank(RD8O8LG8) = 0 is the twenty-second rank equality given in (3.6) completing the proof. �

3.2. Special cases and further implications

We proceed to explore specific cases of the system stated in (2.8). These cases validate the
robustness of Theorem 3.1 and extend its range of application. If A1, . . . , A6, B1, . . . , B6, and
C1, . . . ,C10 are null, then the expression established in (2.5) can be considered a particular case of
the formula presented in (2.8). This results in the following corollary.

Corollary 3.1. Given A5, A6, B5, B6, F1, F2, G1, G2, O1, and O2 matrices over H, assign

A3 = RA5 F1, B3 = G1LB5 , C3 = RA5O1LB5 , B4 = RB3G2, C4 = O2 − F2A†3C3B†3G2,

A = RA6 A4, B = G2LB6 , C = RA6 F2, D = B4LB6 , E = RA6C4LB6 , F = RAC, G = DLB, H = CLF .

Then, the system represented in (2.5) is consistent if, and only if, the following conditions are met: (i)
RA3C3 = 0, (ii) C3LB3 = 0, (iii) RFRAE = 0, (iv) ELBLG = 0, RAELD = 0, and (v) RCELB = 0. Under
these conditions, the general solution to the equations presented in (2.5) is given by

X1 = A†5(O1 − F1V1G1) − A†5T1B5 + LA5T2, Y1 = RA5(O1 − F1V1G1) + A5A†5T1 + T3RB5 ,

V1 = A†3C3B†3 + LA3W1 + W2RB3 , X2 = A†6(C4 − A4W1G2 − F2W2B4) − A†6T4B6 + LA6T5,

Y2 = RA6(C4 − A4W1G2 − F2W2B4)B†6 + A6A†6T4 + T6RB6 ,

with W1 = A†EB† − A†CF†EB† − A†HC†EG†DB† − A†HZ2RGDB† + LAZ3 + Z4RB and W2 = F†ED† +

H†HC†EG†+ LF LHZ5 + LFZ2RG +Z6RD, where T1, . . . ,T6 and Z2, . . . ,Z6 are matrices with dimensions
appropriate for compatibility over H.

Corollary 3.1 aligns with key findings from [50] and shows the versatility of our main theorem.
Now, we explore another case that offers further insights on the wide-ranging effectiveness of
our approach.
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Corollary 3.2. Suppose that A5, A6, B5, B6,O1,O2 are given and the solution to the equation stated
in (2.4) is presented by A = RB5 , B = RA6 A5, C = B6LA, D = RA6(O2 − RA5O1B†5B6)LA. Then, the
equation formulated in (2.4) has a solution if, and only if, the following conditions are reached:
RA5O1LB5 = 0, RBD = 0, and DLC = 0. Under these conditions, the solution of the equation
established in (2.4) is expressed as X1 = A†5C1 − W1B5 + LA5W2, Y1 = RA5O1B†5 + A5W1 + W3RB5 ,
and X2 = A†6(O2 − RA5O1B†5B6 − A5W1B6) − W4A + LA6W5, with W1 = B†DC† + LBW6 + W7RC and
W3 = RA6(O2 − RA5C5B†5B6 − A5W1B6)A† + A6W4 + W8RA, where W1, . . . ,W8 are free matrices with
compatible dimensions over H.

Corollary 3.2, which is based on the research presented in [47], demonstrates the depth and
flexibility of the applications of Theorem 3.1. We now transition to another scenario that considers
simplifications in the matrix configurations as represented in (2.8) and is in line with the solution
approaches documented in [51].

Corollary 3.3. Suppose that A5, A6, B5, B6, and O1,O2 are given matrices defined as A =

R(A6A5)A6, B = RB5 LB6 , and C = R(A6A5)(O2 − A6RA5O1B†5)LB6 . Then, the equation given in (2.4) is
solvable if, and only if, the following conditions are met: RA5O1LB5 = 0, RAC = 0, and CLB = 0. Under
these conditions, the solution to the equations presented in (2.4) is stated as X1 = A†5O1−W1B5+LA5W2,
Y1 = RA5O1B†5 + A5W1 + W3RB5 , and X2 = R(A6A5)(O2 − A6RA5O1B†5 − A6W3RB5)B

†

6 + A6A5W4 + W5RB6 ,
with W3 = A†CB† + LAW6 + W7RB, W1 = (A6A5)†(O2 − A6RA5O1B†5B6 − A6W3RB5) −W4B6 + LA6A5W8,

where W2,W4, . . . ,W8 are arbitrary matrices with suitable dimensions over H.

After the analysis in the previous corollaries, we now turn our attention to another scenario
described in the following corollary.

Corollary 3.4. Consider the matrices A1, A2, A4, A6, B5, B6, B7,C1,C2,C3,C9,C10,G1,G2,G4,O1,O2

with compatible dimensions over H. Define A8 = A5LA1 , B8 = RB1 B5, C7 = F1LA7 , and D7 = RB7 D1.
Additionally, set E3 = O1 − (A5A†1C1 + C3B†1B5 + F1A†7C9G1 + F1LA7C10B†7G1), A9 = RA8C7, and
B9 = D7LB8 . Furthermore, state E4 = RA8 E3LB8 , E5 = O2 − (A6A†2C2 + C4B†2B6 + F2A†7C9G2 +

F2LA7C10B†7G2), A10 = A6LA2, B9 = RB2 B6, and then, A = RA10C9, B = D8LB10 ,C = RA10C8,D =

D9LB10 , E = RA10 E5LB10 , F = RAC,G = DLB, and H = CLF . Hence, the following statements
are equivalent:

(i) The system defined by (2.6) is consistent.
(ii) The conditions RA1C1 = 0, RA7C9 = 0, RA2C2 = 0 = 0, C10LB7 = 0,C3LB1 = 0, C4LB2 =

0, B1C4 = C3B2,RA9 E4 = 0, E4LB9 = 0,RFRAE = 0, ELBLG = 0, RAELD = 0, and RCELB = 0
are required. In this case, the comprehensive solution for the system outlined in (2.6) is given by

X1 = A†1C1 + LA1U1, Y1 = C3B†1 + V1RB1 , V1 = A†7C9 + LA7C10B27† + LA7WRB7 ,

U1 = A†8(E3 −C7WD7) − A†8T4B8 + LA8T5, U11 = RA8(E3 −C7WD7)B†8 + A8A†8T4 + T6RB8 ,

X2 = A†2C2 + LA2U2, Y2 = C4B†2 + V2RB2 , W = A†9E4B†9 + LA9W1 + W2RB9 ,

U2 = A†10(E4 −C9W1D8 −C8W2D9) − A†10T1B10 + LA10T2,

V2 = RA10(E4 −C9W1D8 −C8W2D9)B†10 + A8A†8T1 + T3RB10 ,

with W1 = A†EB† − A†CF†EB† − A†HC†EG†DB† − A†HZ2RGDB† + LAZ3 + Z4RB and W2 =

F†ED† + H†HC†EG† + LF LHZ5 + LFZ2RG + Z6RD, where T1, . . . ,T6,Z2, . . . ,Z6 are matrices of
conformable dimensions over H.

AIMS Mathematics Volume 9, Issue 8, 19967–19996.



19984

Corollary 3.4 provides valuable additions to the findings stated in [41] and supports the applicability
of Theorem 3.1. Moreover, this corollary is consistent with the research presented in [57], particularly
regarding the use of zero matrices within the context of the expression defined in (2.8), as illustrated in
the system described in (2.7).

Having established the theoretical foundations and demonstrated the broad applicability of our main
theorem and its corollaries in this section, we now shift our focus to a solution methodology and its
computational aspects.

4. Solution methodology and computational aspects

This section presents an algorithmic strategy designed to address the computational complexities
often encountered in singular value decomposition methods, especially in the computation of the
MPI for quaternion matrices. We introduce a novel approach utilizing row-column determinants
unique to quaternion matrices, improving standard methods and showing its effectiveness in
different applications.

4.1. Algorithm development

Following the principles outlined in Theorem 3.1, we present an algorithm for explicitly solving
the equations stated in (2.8). This algorithm makes practical use of MPI representations to construct
general solutions, effectively connecting theoretical principles with practical application. To gain a
clearer understanding of the computational aspects of our method, we refer to a lemma from [63] that
provides an approach for representing the MPI, an essential component in the solution process.

Lemma 4.1. Let A ∈ Hm×n. Then, the MPI A† = (a†i j) ∈ H
n×m can be expressed through the

representations stated as

a†i j =

∑
β∈Jr,n{i}

cdeti

(
(A∗A).i

(
a∗. j

))β
β∑

β∈Jr,n

|A∗A|ββ
=

∑
α∈Ir,m{ j}

rdet j

(
(AA∗) j.(a∗i.)

)α
α∑

α∈Ir,m

|AA∗|αα
,

where cdetiA and rdetiA denote the column and row determinants of A ∈ Hm×m, taken along its i-th
column and row, respectively. Furthermore, Aα

α and Aβ
β represent principal submatrices of A, while |A|αα

and |A|ββ signify principal minors in the sense of row-column determinants when A is Hermitian.
The rows and columns of these submatrices and minors are indexed by α := {α1, . . . , αr} ⊆

{1, . . . ,m} and β := {β1, . . . , βr} ⊆ {1, . . . , n}, where Ir,m := {α: 1 ≤ α1 < · · · < αr ≤ m} and
Jr,n := {β: 1 ≤ β1 < · · · < βr ≤ n}. Additionally, a∗. j and a∗i. refer to the j-th column and the i-th
row of A∗, respectively. The matrices Ai.(b) and A. j(c) are obtained by replacing the i-th row and j-th
column of A with the row vector b ∈ H1×n and the column vector c ∈ Hm, respectively.

Now, we proceed to present Algorithm 1, which is designed to solve the system of quaternion matrix
equations as defined in Theorem 3.1.
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Algorithm 1 Approach to solving quaternion matrix equations formulated in (2.8).
1: Input: Matrices {Ai}i=1,...,7, {Bi}i=1,...,7, {Ci}i=1...,10, {Di}i=1,2, {Ei}i=1,2, {Fi}i=1,2, {Gi}i=1,2, and {Oi}i=1,2

over H with appropriate dimensions.
2: Step 1. Initial transformations and definitions
• Apply transformations to the matrices according to the relationships of Theorem 3.1 and

further detailed in (3.1).
• Compute the MPIs of matrices as necessary, facilitating the handling of matrices that are not

directly invertible in the quaternion framework.

3: Step 2. System consistency verification
• Evaluate the system consistency by checking the conditions stated in (3.3) and verifying the

rank conditions as specified. If the conditions are not met, terminate the algorithm as no
solution exists under the given constraints.

4: Step 3. Matrix manipulation for solution preparation
• Calculate the components for the solution, such as M1, N1, S 1, using intermediate matrices.

This involves strategic manipulations based on quaternion algebra to prepare for the final
solution synthesis.

5: Step 4. Auxiliary and solution matrices computation
• Derive auxiliary matrices Zi, Ti, Ki and compute W1, W2, as well as other critical matrices

using the relations established in (3.1).

6: Step 5. Final solution assembly
• Integrate the computed matrices to assemble the solution set {X1,Y1,U1,V1, X2,Y2,U2} in

accordance with the expression given in (3.7).

7: Output: The solution set {X1,Y1,U1,V1, X2,Y2,U2}.

To clarify the individual steps of Algorithm 1, Figure 2 presents its detailed flowchart. Also, it
is pertinent to consider the applicability of Algorithm 1 to broader scenarios, including time-varying
systems. While this algorithm is demonstrated within a static context, its foundational principles can
be adaptable to dynamic environments for addressing real-world applications where system parameters
may evolve over time [64, 65].

Transitioning from the theoretical framework of Algorithm 1 to a practical demonstration, the
next subsection presents a numerical example that applies this algorithm to solve the equations
stated in (2.8).
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Figure 2. Detailed flowchart illustrating the steps of Algorithm 1.
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4.2. Illustrative example

To demonstrate the practical application and effectiveness of Algorithm 1, we present the following
numerical example. This example aims to show how our algorithm can be applied to solve quaternion
matrix equations with specific sets of matrices.
Input matrices: We begin by providing the input matrices as

A1 =


1 + i j + k
j − k i − 1
1 − i j − k

 , A2 =

[
i j k
j −i −1

]
, A3 =

[
2 − i j − k

2j + k −1 − j

]
, A4 =

[
j 3i
k −3

]
,

A5 =


2k 2
−2i 2j
−2i −2

 , A6 =

[
3i + 3k 3j + 3k 3 + 3k
3k − 3 3k − 3j 3i − 3j

]
, A7 =

[
i j
k 1

]
,

B1 =

[
1 − i + k 1 − j + k i + j − 1
i + j + k 1 + j + i −1 − j − k

]
, B2 =


1 j
k −i
i k

 , B3 =


i + k 1 − j
−1 − j i − k
i − k 1 + j

 , B4 =

[
1 − i i − j j − k
k − j i + j 1 − i

]
,

B5 =

[
2 + 2i − 2j 2k − 2i − 2j 2 + 2j + 2k

2i + 2j + 2k 2i − 2j − 2 2k − 2i − 2

]
, B6 =


3 + 3j 3j − 3k
3i + 3j −3 − 3k
3i + 3k 3j − 3

 , B7 =

[
k i j
−1 j −i

]
,

C1 =


−16 −16i −16j
−16j 16k 16
16i −16 16k

 ,C2 =

[
−3 −3i
−3k −3j

]
,C3 =


1 − 2j − k −1 − 2j − k j − i + 2k
1 + 2i + k 1 + 2i − k −2 − i − j
−2 + i − j −2 + i + j 1 − 2i − k

 ,
C4 =

[
i + j − k −1 + i + k
1 − i + j −1 + j − k

]
,C5 =

[
3i −3 3k
−3k −3j 3i

]
,C6 =

[
k − i k − i
k − i −1 − j

]
,C7 =

[
j + 2k − 3i −2 + i + 3j
3 − 2j + k −1 − 2i + 3k

]
,

C8 =

[
1 + i + j − k −1 − i − j − k i + j + k − 1
1 − i + j + k 1 + i − j − k j − i − k − 1

]
,C9 =

[
−2 −2i
2j −2k

]
,C10 =

[
1 − j −1 − j i + k
i + k i − k −1 + j

]
,

D1 =


42 42j
42j −42
42i 42k

 ,D2 =

[
k − j 2 + i
−j − k 2i − 1

]
, E1 =


9k 9 −9i
9 −9k −9j
9i 9j 9k

 , E2 =

[
2 + 2j 2i − 2k

2i + 2k −2 − 2j

]
,

F1 =


2i 2k
2j −2
2k −2i

 , F2 =

[
i + 2k 2 − j
j − 2 i + 2k

]
,G1 =

[
6k 6 −6i
6j −6i −6

]
,G2 =

[
−i 2k
j 2

]
,

O1 =


−436 − 356i + 40j − 16k −8 − 12i − 334j + 430k −19 + 19i + 437j + 367k

16 − 8i − 410j + 338k 330 + 442i − 30j − 62k −421 + 337i + 73j − 5k
395 − 399i − j − 19k −27 + 33i − 447j − 367k 37 + 13i − 331j + 453k

 ,
O2 =

[
−13.4 + 9.6i + 2.6j + 4.8k −3.6 − 6.6i + 5.2j − 8.6k
3.4 − 17.2i + 13.8j − 10.4k 29.6 + 14.2i − 1.6j − 6.2k

]
.

Step 1. Initial transformations and definitions: This step involves the application of initial
transformations and the computation of the MPI for the given matrices. According to Theorem 3.1, we
perform transformations such as A7 = A5LA1 , B7 = RB1 B5, among others, to prepare the matrices for
further analysis. The transformations are based on the relationships specified in (3.1). Additionally,
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we compute the MPI of matrices like A1 and A3 using Lemma 4.1 as

A†1 =
1

12

[
1 − i k − j 1 + i
−j − k −1 − i k − j

]
, A†3 =

1
14

[
2 + i −2j − k
k − j i − 1

]
.

Upon applying these initial transformations and computing the MPIs, we identify that matrices
such as D8, E8, M2, N2, S 1, W1, and W2 turn out to be zero matrices simplifying our results. This
simplification significantly reduces the complexity of the system, facilitating the subsequent steps
of our algorithm. By preparing the matrices in this manner, we ensure they are in the correct form
for further processing and analysis, aligning with the algorithm requirements for system consistency
verification and solution synthesis.
Step 2. System consistency verification: In this step, we verify the consistency of the system by
examining the compatibility of the given matrices with the conditions outlined in (3.3). This involves
checking specific rank conditions to confirm the system solvability. In our case, all conditions were
met, indicating that the system is consistent and a solution can be pursued further.
Step 3. Matrix manipulation for solution preparation: In alignment with the corresponding step
of Algorithm 1, we now focus on manipulating the matrices to prepare the essential components for
constructing the solution. This step involves choosing specific nonzero values for certain auxiliary
matrices to avoid trivial or singular cases. For instance, we set K1 as

K1 =

[
1 + 2i 2 − j 1 + 2k 1 − k
1 + 2j 1 − 2i 2j − 1 1 + i

]
.

For the remaining auxiliary matrices, namely Z1,Z2,Z3,Z5,Z6, T1, . . . ,T7, and K2, . . . ,Z8, we assign
zero matrices. This simplifies our computations without losing generality in the solutions. Next, we
proceed to compute Z7 and Z8, which are determined as

Z7 =
1
8

[
−5 − 6i − 5k −5 − 6j + 5k
5 − 6j − 5k −5 + 6i − 5k

]
, Z8 =

1
4

[
3 + 8i − k 6 − j − k
3 + 8j + k 3 − 5i + 2k

]
.

This step aligns with the algorithm requirements for preparing the matrices, ensuring that we have the
necessary components for the final solution synthesis.
Step 4. Auxiliary and solution matrices computation: Proceeding to Step 4 of Algorithm 1, we
focus on the computation of auxiliary and solution matrices. This step is needed for deriving the
matrices Zi, Ti, Ki, and computing W1, W2, among others, as established by the algorithm framework.
For this purpose, we specifically calculate the matrices Wi. The computation of each Wi is based on
the auxiliary matrices and MPIs calculated earlier, as in the expression stated in (3.1).
Step 5. Final solution assembly: Following Step 5 of Algorithm 1, we integrate the computed
matrices to assemble the solution set in accordance with the definitions given in (3.7). This step
finalizes the preparation of the solution set {X1,Y1,U1,V1, X2,Y2,U2} based on the computations and
transformations performed in the previous steps.
Output: The solution set derived from the application of Algorithm 1 is given by

X1 =
1
4

[
−1 + 25i + 3j + 15k −1 − 19i + 9j − 15k 45 + 27i − 7j + 61k
−3 + 15i + 31j + 7k −9 − 15i + 31j − 13k −25 + 29i + 45j − 27k

]
,

AIMS Mathematics Volume 9, Issue 8, 19967–19996.



19989

Y1 =
1
2


−5 + i + 3j + 2k −5 − 2i − 5j − k
−2 + 6i − 2j + k 2 − i − 2j + 5k
1 − i − 2j + 5k 2 − 8i + 3j − k

 ,
X2 =

1
30


−7 + 38i − 9j + 9k −38 − 7i + 9j + 9k
−3 − 6i + 23j − 4k 6 − 3i − 4j − 23k
3 + 12i − 11j + 29k −12 + 3i + 29j + 11k

 ,
Y2 =

1
15

[
−5 + 5i + j − 10k 5 − 13i + 5j − 10k 5 + 5i + 10j + k

5 + 4k −8 − 15i − 15j − 5k −5i − 4j

]
,

U1 =
1

84

[
−42 + 70i − 3j − k −80 − 12i − 2j + 6k −3 − i − 30j + 74k
4 − 3i + 28j + 42k 6 + 8i + 12j − 68k −44 − 30i − 4j + 3k

]
,

U2 =
1

10

[
4 + 13i − 3j − 18k 6 − 3i − j + 4k
−4 + i + 11j − 2k 2 + 7i − j − 8k

]
,

V1 =

[
i −1
j −k

]
.

After providing a detailed example that illustrates the proposed algorithm, we now present the
computational setup, implementation specifics, and performance measures needed for the numerical
experiments that we performed.

4.3. Computational environment, implementation, and performance metrics

Our numerical experiments were conducted on a system equipped with an Intel Core i7 processor
and 16GB of RAM, utilizing the 2021 Maple software. The choice of Maple was due to its advanced
symbolic computation capabilities, which are crucial for the algebraic manipulations required by our
study. We extensively made use of the LinearAlgebra package within Maple for operations such as
computing the MPI, eigenvalues, and eigenvectors.

To enhance the efficiency and accuracy of our computations, we developed custom scripts and
procedures within Maple. These scripts automated the solving process for the equations presented
in (2.8), and were rigorously tested to ensure computational accuracy. Our algorithm and procedure
underwent multiple test runs, confirming both their precision and efficiency.

For numerical precision, calculations were carried out with a 50-decimal-place accuracy, leveraging
Maple capabilities for arbitrary-precision arithmetic. This high level of precision was essential to
minimize numerical errors and ensure the reliability of our findings. Validation of our solutions
was performed by comparing them with analytical solutions when available, and through sensitivity
analyses to assess the impact of variations in input parameters.

Performance metrics revealed that our methodology requires between 1 to 3 seconds to solve
systems of equations for matrices up to 50 × 50 dimensions, demonstrating the efficiency of our
approach for larger-scale problems. Additionally, we benchmarked our algorithm against existing
methods for similar problems, consistently showing the superior performance in both speed and
accuracy of our proposal.

To further illustrate the robustness of our methodology, we undertook scalability tests, which are
critical for assessing how the algorithm performs as the size of the problem increases. These tests
involved systematically increasing the dimensions of the input matrices, starting from small matrices
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(for example, of 10×10 dimension) and incrementally moving to much larger sizes (up to 1000×1000),
to observe the algorithm response in terms of both computational time and resource utilization.

The purpose of these scalability tests is twofold. Firstly, they provide insight into the algorithm
efficiency across a range of problem sizes, highlighting its performance under varying computational
loads. This is crucial for applications where the algorithm might be applied to problems of different
scales, from small, quickly solvable instances, to large complex systems that challenge computational
limits. Secondly, these tests help to identify the threshold at which the algorithm performance begins
to degrade, indicating the need for optimizations to maintain efficiency. For our algorithm, the tests
suggest that computational efficiency is maintained up to a certain threshold of matrix size, beyond
which the processing time increases more steeply.

The increase in processing time for large-scale matrices suggests that while the algorithm is highly
efficient for a broad range of problem sizes, optimizations such as parallel processing might be required
to handle the computational demands of very large-scale problems efficiently. Parallel processing could
distribute the computational workload across multiple processors or cores, potentially reducing the
execution time significantly for large matrices. This processing is particularly relevant for operations
that are inherently parallelizable, such as certain matrix manipulations involved in our algorithm.

Building on this, we present a formal analysis of the computational efficiency. The core operations
within our algorithm, matrix multiplication and inversion, exhibit a computational complexity that
can be broadly categorized as O(N3) under conventional implementation. However, recognizing
the advancements in computational methods, our approach can potentially benefit from fast matrix
operations, notably through the application of algorithms like Strassen, which reduce the complexity
to O(N log2(7)). This potentiality shows the adaptability of our algorithm to more efficient computational
paradigms, promising significant reductions in processing time for large-scale problems. Furthermore,
the extensive use of block matrix operations within our methodology leverages fast algorithms that can
perform these operations in O(Nω) time, with 2.37 < ω < 3, as detailed in [27], on matrix black-box
algorithms. This insight into the computational architecture of our algorithm aligns with theoretical
expectations and also enhances its practical applicability and efficiency in handling complex problems.

5. Conclusions

This research explored Sylvester-type quaternion matrix equations, a few known area in
contemporary mathematical literature. Our main objective was to develop a new methodological
framework that integrates theoretical rigor with computational efficiency to solve these
complex equations.

Our investigation reinterprets existing studies, including [41, 47, 50, 51, 57], positioning them as
specific instances within our more comprehensive and generalized approach. This positioning shows
the originality of our results and also demonstrates their relevance in the field.

Incorporating the theoretical advancements and algorithmic innovations we introduced, our study
bridged a crucial gap within the Sylvester-type quaternion matrix equations. The explicit formulas
for the general solutions we derived, leveraging generalized inverses, are pivotal in enhancing
the comprehension of these complex mathematical structures. Moreover, our algorithmic unique
application of noncommutative row-column determinants signifies a substantial forward leap in both
the theoretical underpinnings and computational practices concerning quaternionic systems. This
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dual contribution, supported by rigorous mathematical analysis and validated through comprehensive
numerical examples, shows the novelty and applicability of our approach.

We recognize limitations inherent in our methodology, particularly when addressing larger matrix
systems, so that we outline a trajectory for future research. Despite the significant advancements
introduced by our method, we acknowledge its limitations in handling extremely large systems
and the intricate challenges posed by highly complex nonlinear equations. These limitations
stem from the computational intensity required by our algorithm and the complex nature of
noncommutative algebraic operations in quaternionic contexts. Future enhancements will focus not
only on improving computational efficiency, scalability, and the robustness of our methodology but
also on extending our validation efforts to a wider array of datasets and specific conditions. This will
ensure a broader applicability and robustness of our methodology across various mathematical and
engineering challenges.

Furthermore, our forward-looking research agenda is set to time-varying systems — a domain
where the dynamic nature of systems presents unique computational and theoretical challenges. By
embracing parallel computing techniques, we aspire to improve computational efficiency, making
our methodology viable for larger matrix systems. Additionally, we plan to conduct comprehensive
experiments and simulations to explore the application of our methodology in diverse scenarios, further
proving its generalization and robustness. This strategic plan of our research focus, coupled with
the integration of our approach with varying algebraic structures, promises to diversify the potential
applications of our work.

In conclusion, within the domain of quaternionic matrix equations, our research contributes to both
the advancement of theoretical frameworks and the enhancement of computational methodologies.
Recognizing the importance of geometric interpretations, we acknowledge that elucidating the
geometric meaning behind the conditions of these equations is crucial for a comprehensive
understanding and practical application. Future work will aim to direct these geometric insights more
explicitly, ensuring that the theoretical advancements are directly applicable to solving real-world
problems in scientific and engineering disciplines. This direction promises to broaden the applicability
of quaternionic matrix equations, offering innovative solutions to complex mathematical challenges.
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