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1. Introduction

A classical set has unambiguous boundaries, i.e., a ∈ M or a < M excludes any other possibility.
However, there is a lot of vague and imprecise information in real life. Therefore, as an extension of the
classical set, Zadeh [1] introduced the concept of fuzzy sets (FS). By adding the nonmembership part to
the notion of a fuzzy set, Atanassov [2] proposed the theory of intuitionistic fuzzy sets (IFSs) in 1986.
It takes into account information about membership degree, nonmembership degree, and hesitation
degree simultaneously and is more adaptable to simulate imprecision and ambiguity phenomena. For
IFS theory, Wan et al. [3] proposed a new intuitionistic fuzzy best-worst method for group decision-
making with intuitionistic fuzzy preference relations. Interval-valued intuitionistic fuzzy sets (IVIFSs)
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as extensions of IFSs were proposed by Atanassov et al. [4, 5] in 1989. Dong et al. [6–8] proposed
some new methods on IVIFSs, such as a new consistency definition for interval-valued intuitionistic
multiplicative preference relations and a new concept for type-2 IVIFSs, which makes the IVIFSs
much more abundant. In recent years, scholars have paid great attention to various aggregation
operators of IVIFSs [9–14]. Furthermore, IVIFSs have shown extensive application value in decision-
making [15–18] and pattern recognition [19–21].

Complex fuzzy sets (CFSs) were first introduced by Ramot et al. in 2002 [22]. CFSs are a
suitable mathematical instrument that can simultaneously describe the information’s periodicity and
uncertainty semantics, which results in reduced data loss and more rational solutions to problems.
In 2023, Gong and Wang [23] initiated (r, θ)-cut sets of CFSs, as well as decomposition theorems
and extension principles. It enriches the CFS. In 2012, Alkouri et al. [24, 25] introduced complex
intuitionistic fuzzy sets (CIFSs) as a combination of CFSs and IFSs. In this case, the complex-valued
membership function µA(x) and the nonmembership function νA(x) are represented in the following
form, respectively, µA(x) = rA(x)eiωrA (x), νA(x) = kA(x)eiωkA (x), i2 = −1, rA(x), kA(x) are real-valued
functions, and rA(x), kA(x) ∈ [0, 1] such that 0 ≤ rA(x) + kA(x) ≤ 1, ωrA(x), ωkA(x) are real-valued
functions. For CIFSs, Gong and Wang [26] defined and studied the (α, β)-equalities in 2023. In
many application scenarios, people often face the challenge of understanding the nature of things,
especially when making decisions and evaluations. In order to ensure the scientificity and rationality
of decision-making, reduce the loss of information, and reduce the volatility and fuzziness of decision-
making information, people usually use interval values to express the characteristics that need to be
considered when making judgments. Therefore, Garg and Rani [27] proposed complex interval-valued
intuitionistic fuzzy sets (CIVIFSs) in 2019. This kind of CIVIFS has high practicability. For example,
one company needs to install biometric-based attendance devices at branches across the country. The
company plans to buy from suppliers that offer both the model number of the attendance equipment
and the production date, with the task of selecting the best model of the equipment that is synchronized
with the production date. Enterprises can choose to use CIVIFSs to deal with these two aspects of
information provided by suppliers. The amplitude term represents the decision information of the
equipment model, and the phase term represents the decision information of the production date.

Recently, Tamir et al. [28] introduced the complex number representation of IFSs and obtained
significant properties. For the first time, Ngan et al. [29] introduced the quaternion representation of
complex intuitionistic fuzzy sets (CIFS-Q). Pan et al. [30] presented a quaternion model of Pythagorean
fuzzy sets and its distance measure. The quaternion number theory was initially put forth by William
Rowan Hamilton in 1837. The expression quaternion refers to elements of the type α = a+bi+c j+dk,
where the coefficients a, b, c, and d are real numbers and the symbols i, j, and k are formal symbols
termed as fundamental units. The fundamental tenets of the product of quaternions are shown in
Figure 1. Figure 2 can help you remember the quaternion operations, which are multiplying in a
clockwise direction to get i j = k and in a counterclockwise direction to produce ji = −k. The
properties of the interval quaternion number were first introduced by Moura et al. [31]. Interval
quaternion numbers are elements of the form I(H) = A + iB + jC + kD, where A, B,C, and D ∈ I(R).
Combining CIVIFS and interval quaternion theory, we proposed an interval quaternion representation
of complex interval-valued intuitionistic fuzzy sets (CIVIFS-IQ). Quaternion number and interval
quaternion number representations not only extend the description space of fuzzy information to
a four-dimensional space but also make the transmission of fuzzy information more intuitive and
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effective. Furthermore, the interval quaternion number representation can provide experts with more
flexibility and a greater degree of information loss reduction. In particular, we obtain the degree interval
of real membership, imaginary membership, real nonmembership, and imaginary nonmembership
by combining the degree interval of complex membership with complex nonmembership using the
notion of an interval quaternion number. For example, suppose a business decides to install new
data processing and analytics software. To this end, the company consulted experts who provided
information on (a) different alternatives to the software and (b) versions of the corresponding software.
The company wants to choose both the best software alternative and the best version. The CIVIFS-IQ
theory can be chosen here to express the information provided by the experts. The real membership
and real nonmembership of CIVIFS-IQ can be used to give the company’s decision about software
alternatives, and the imaginary membership and imaginary nonmembership can be used to represent
the company’s decision about software versions.

Figure 1. The fundamental tenets of the
product of quaternion.

Figure 2. Schematic diagram of the
basic principle of quaternion product.

One significant component of decision theory is multi-criteria decision making (MCDM). The
main problem with the MCDM approach is determining how to effectively assess the alternatives
under the multiple criteria and choose the best alternatives from the alternative set. However, due
to the lack of knowledge and uncertainty of information, decision-makers often face difficulties under
standard assessment. Therefore, decision-makers assess alternatives in accordance with the criteria
using techniques for uncertainty and ambiguity. In the process of MCDM, one of the best strategies
to evaluate alternatives is to use CIVIFSs. At present, we still need to figure out how to compare
MCDM described by CIVIFSs. A well-designed ranking system has the power to influence decision-
makers’ choices. In order to address the corporate decision problem, Garg and Rani [27] created a few
new operators using CIVIF information. In order to handle the evaluation in a CIVIF environment,
Zindani et al. [32] presented the CIVIFS-TODIM (an acronym in Portuguese for interactive and multi-
criteria decision making). Khan et al. [33] proposed applying the Aczel-Alsina operator of CIVIFS
to solve the decision-making problem of medical institutions in public hospitals. Although there are
various sorting methods, no sorting method based on the correlation coefficient of CIVIFS has been
found. On the other hand, the correlation coefficient can be used to transfer information between
CIVIFSs. Therefore, we established correlation coefficients based on CIVIFS and applied them to
MCDM studies.

In summary, CIVIFS contains features from both CIFS and IVIFS. CIVIFS membership and
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nonmembership degrees are complex-valued and are represented in polar coordinates. The degree
of belongings or non-belongings of an object in a CIVIFS is indicated by the amplitude term
corresponding to the membership (nonmembership) degree, and extra information, typically linked to
periodicity, is indicated by the phase term connected with the membership (nonmembership) degree.
In some cases, experts involved in solving problems in the field of decision making prefer to give
approximate ranges rather than clear values. In this case, CIFS cannot be used to represent decision
information, but CIVIFS is a better choice because it uses interval values to represent decision
information, thus giving experts more freedom and avoiding information loss to a certain extent.
While CIVIFS uses two-dimensional information to express ambiguity and uncertainty, IVIFS employs
single-dimensional information. However, in the actual world, using two-dimensional information to
explain ambiguity and uncertainty is easier and more effective. The correlation coefficient is now one
of the most significant metrics that can be used to compare two data entities as well as determine the
degree and direction of their link. We are aware that the correlation mesure in the previously stated
studies are unable to handle the CIVIFS data. Motivated by this, the following are this paper’s primary
contributions:

• CIVIFSs are represented by interval quaternion numbers. A compact representation of a CIVIFS
is provided. Order relations, set theory operations, and some other operations are defined.
• In the context of CIVIFSs-IQ, a new scoring function is proposed that can overcome the

shortcomings of other scoring functions to a certain extent, be more loyal to the decision
information, and more truly reflect the will of decision makers.
• In the CIVIFSs-IQ environment, the correlation coefficient and the MCDM method using the

correlation coefficient are proposed, and the proposed method is applied to enterprise decision-
making.

The rest of the text is as follows: In Section 2, we will briefly review some basic concepts and
operations. In Section 3, we introduce a new CIVIFS representation based on interval quaternion
(CIVIFS-IQ), which defines order relations and some operations. In Section 4, we present a new score
function and correlation coefficient in the CIVIFS-IQ environment. In Section 5, we introduce a new
MCDM model based on our proposed correlation coefficients in the CIVIFS-IQ environment and apply
them to the enterprise decision problem, and, finally, the conclusions are discussed in Section 6.

2. Preliminaries

In this section, we recall basic definitions and related notions used in the paper.
Let X be a universe of discourse. A FS A in X is defined as A = {< x, µA(x) > |x ∈ X}, where

µA(x) ∈ [0, 1] is real-valued. For each x ∈ X, the value µA(x) represents the degree of membership of x
in the FS A. An IFS B in X is defined as B = {< x, µB(x), νB(x) > |x ∈ X}, where µB(x) and νB(x) are
the degrees of membership and nonmembership, respectively, such that 0 ≤ µB(x) + νB(x) ≤ 1 for each
x ∈ X.

Definition 2.1. [5] Let X be a nonempty finite set. An IVIFS A in X is expressed by

A = {< x, [u−A(x), u+
A(x)], [υ−A(x), υ+

A(x)] > |x ∈ X},

where [u−A(x), u+
A(x)] ⊆ [0, 1] and [υ−A(x), υ+

A(x)] ⊆ [0, 1], respectively, denote the interval-valued
degrees of membership and nonmembership of the element x ∈ X with the condition u+

A(x)+υ+
A(x) ≤ 1.
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Definition 2.2. [22] Let X be a universe of discourse. A CFS A over X is formed by

A = {〈x, ηA(x)〉 : x ∈ X},

where the complex-valued membership function ηA(x) has the form rA(x)eiωrA (x), where i =
√
−1,

rA(x) ∈ [0, 1] , and ωrA(x) is real-valued. The value of ηA(x) lies in a unit circle in the complex plane.

Definition 2.3. [28] An IFS A over a universe X is characterized by the complex number function
z = µ + iν, where µ, ν : X → [0, 1] satisfying µ + ν ∈ [0, 1] are the functions of membership and
nonmembership, respectively. As a set of ordered pairs, the IFS A can be represented as the set of
ordered pairs

A = {(x, z) | x ∈ U, z = µ(x) + iν(x)}.

Definition 2.4. [29] Let X be a space, FQ is the CIFS-Q on X with the quaternion function Q =

α + iβ + jω + kγ, where i, j, k are complex roots, i2 = j2 = k2 = i jk = −1,

FQ = {(x,Q(x)) : x ∈ X},

for all x ∈ X, and the functions α, β, ω, and γ satisfy the following condition: α(x), β(x), ω(x), and
γ(x) ∈ [0, 1], α(x) + β(x) ≤ 1, ω(x) + γ(x) ≤ 1, α(x) + ω(x) ≤ 1, β(x) + γ(x) ≤ 1.

Definition 2.5. [27] Let X be a universe of discourse. A CIVIFS defined on X is a set given by

A = {(x, [µ−A(x), µ+
A(x)], [ν−A(x), ν+

A(x)]) : x ∈ X},

where µ−A(x), µ+
A(x) and ν−A(x), ν+

A(x) represent the degrees of lower and upper bound of the membership
and nonmembership, respectively, which are defined as µ−A(x) = z−1 = r−Aeiω−rA

(x) and µ+
A(x) = z+

1 =

r+
Aeiω+

rA
(x) such that| z−1 |≤| z

+
1 |, while ν−A(x) = z−2 = k−A(x)eiω−kA

(x) and ν+
A(x) = z+

2 = k+
A(x)eiω+

kA
(x) be such that

| z−2 |≤| z
+
2 |. The amplitude terms are r−A, r

+
A, k

−
A, k

+
A ∈ [0, 1] and satisfy the inequality r−A ≤ r+

A, k
−
A ≤ k+

A
and r+

A + k+
A ≤ 1,∀x ∈ U. On the other hand, the phase terms ω−rA

, ω+
rA
, ω−kA

, ω+
kA

are real-valued which lie
within the interval [0, 2π] and satisfy the inequality ω−rA

≤ ω+
rA
, ω−kA

≤ ω+
kA

and ω+
rA

+ ω+
kA
≤ 2π,∀x ∈ X.

Therefore, mathematically, CIVIFS A defined on X can be represented as

A = {(x, [r−A, r
+
A]ei[ω−rA

,ω+
rA

], [k−A, k
+
A]ei[ω−kA

,ω+
kA

]
}.

Consider the set of closed intervals I(R) = {[a, b] : a ≤ b, a, b ∈ R} endowed with the following
arithmetic:
(1) [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2];
(2) [a1, b1] − [a2, b2] = [a1 − b2, b1 − a2];
(3) [a1, b1] · [a2, b2] = [min{a1a2, a1b2, b1a2, b1b2},max{a1a2, a1b2, b1a2, b1b2}];
(4) [a1, b1]−1 = 1

[a1,b1] = [ 1
b1
, 1

a1
], if 0 < [a1, b1];

(5) [a2,b2]
[a1,b1] = [a2, b2] · [a1, b1]−1.

Definition 2.6. [34] For at ∈ R, t ∈ T, [at, bt] ∈ I(R), where
∨
t∈T

at = sup{at : t ∈ T },
∧
t∈T

at = inf{at : t ∈

T }. Then, there is
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(1)
∨
t∈T

[at, bt] = [
∨
t∈T

at,
∨
t∈T

bt],
∧
t∈T

[at, bt] = [
∧
t∈T

at,
∧
t∈T

bt];

(2) [at, bt]
′

= [b
′

t, a
′

t] = [1 − bt, 1 − at];
(3) [a1, a2] = [b1, b2]⇔ a1 = b1, a2 = b2;
(4) [a1, a2] ≤ [b1, b2]⇔ a1 ≤ b1, a2 ≤ b2.

Definition 2.7. [27] Let A = {x, [r−A(x), r+
A(x)]ei[ω−rA

(x),ω+
rA

(x)], [k−A(x), k+
A(x)]ei[ω−kA

(x),ω+
kA

(x)]
} and B =

{x, [r−B(x), r+
B(x)]ei[ω−rB

(x),ω+
rB

(x)][k−B(x), k+
B(x)]ei[ω−kB

(x),ω+
kB

(x)]
} be any two CIVIFSs in X, then

(1) A ⊆ B if, and only if, r−A(x) ≤ r−B(x), r+
A(x) ≤ r+

B(x), ω−rA
(x) ≤ ω−rB

(x), ω+
rA

(x) ≤ ω+
rB

(x), k−A(x) ≥ k−B(x),
k+

A(x) ≥ k+
B(x), ω−kA

(x) ≥ ω−kB
(x), ω+

kA
(x) ≥ ω+

kB
(x).

(2) A = B if, and only if, A ⊆ B and B ⊇ A.
(3) Ac = {< x, [k−A(x), k+

A(x)]ei[ω−kA
(x),ω+

kA
(x)]
, [r−A(x), r+

A(x)]ei[ω−rA
(x),ω+

rA
(x)] > |x ∈ X}.

3. Representing CIVIFS by interval quaternion

Definition 3.1. Let Ü be a space, Ï IQ is the CIVIFS-IQ on Ü with the interval quaternion function
IQ = Ä + iB̈ + jC̈ + kD̈, where i, j, k are complex roots, i2 = j2 = k2 = i jk = −1, Ä, B̈, C̈, D̈ ∈ I(R), Ä =

[Ä−, Ä+], B̈ = [B̈−, B̈+], C̈ = [C̈−, C̈+], D̈ = [D̈−, D̈+]. Here Ä, B̈, C̈, and D̈ are the interval function
of real membership, imaginary membership, real nonmembership, and imaginary nonmembership,
respectively. For each x ∈ Ü, the interval functions Ä, B̈, C̈, and D̈ satisfy the following conditions:
(1) Ä(x), B̈(x), ¨C(x), D̈(x) ⊆ [0, 1];
(2) [Ä−(x) + C̈−(x), Ä+(x) + C̈+(x)] ⊆ [0, 1];
(3) [B̈−(x) + D̈−(x), B̈+(x) + D̈+(x)] ⊆ [0, 1],

where values Ä(x), B̈(x), C̈(x), and D̈(x) are the degree interval of real membership, imaginary
membership, real nonmembership and imaginary nonmembership, respectively, of x in Ï IQ. Then,
the CIVIFS Ï IQ represented by the interval quaternion function IQ is

Ï IQ = {(x, IQ(x))|x ∈ Ü}, (3.1)

where IQ is called the characteristic interval quaternion function of CIVIFS-IQ. The interval
quaternion function IQ is also written as follows:

IQ = Ä + iB̈ + jC̈ + kD̈ = (Ä + iB̈) + j(C̈ − iD̈) = µ̈ + jν̈,

where µ̈ = Ä + iB̈ is the complex membership interval function, and ν̈ = C̈ − iD̈ is the complex
nonmembership interval function. For each x ∈ U, the values µ̈(x) and ν̈(x) are the complex
membership and complex nonmembership degree intervals of x in Ï IQ, respectively.

Remark 3.1. The following special cases are to be considered from Eq (3.1), which are summarized
as follows:
(1) If Ä− = Ä+, B̈− = B̈+, C̈− = C̈+, D̈− = D̈+, then the CIVIFS-IQ reduces to CIFS-Q.
(2) If Ä− = Ä+, C̈− = C̈+, and B̈− = B̈+ = D̈− = D̈+ = 0, then the CIVIFS-IQ reduces to represent IFS
by complex number.

Now, we consider the set IQ∗ defined by IQ∗ = {IQ = (Ä, B̈, C̈, D̈) = Ä + iB̈ + jC̈ +

kD̈|Ä, B̈, C̈, D̈, [Ä− + C̈−, Ä+ + C̈+], [B̈− + D̈−, B̈+ + D̈+] ⊆ [0, 1]}. In the following, it is assumed that
IQt ∈ IQ∗, and IQt has the representation IQt = (Ät, B̈t, C̈t, D̈t) or IQt = Ät+iB̈t+ jC̈t+kD̈t(t = 1, 2, . . .).
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The order relation on IQ1, IQ2 ∈ IQ∗ is defined by
IQ1 ≤ IQ2 ⇐⇒ Ä1 ≤ Ä2, B̈1 ≤ B̈2, C̈1 ≥ C̈2, D̈1 ≥ D̈2.

Definition 3.2. Let IQt = (Ät, B̈t, C̈t, D̈t)(t = 1, 2) ∈ IQ∗ and Ï IQ1 , Ï IQ2 be two CIVIFSs-IQ on Ü,
where Ät, B̈t, C̈t, D̈t(t = 1, 2) are the interval functions of real membership, imaginary membership,
real nonmembership and imaginary nonmembership, respectively. The set Ï IQ1 is defined to be a subset
of Ï IQ2 , expressed as Ï IQ1 ⊆ Ï IQ2 , if, and only if, IQ1 ≤ IQ2. If the set Ï IQ1 is defined to be equal to set
Ï IQ2 , denoted as Ï IQ1 = Ï IQ2 , if, and only if, Ï IQ1 ⊆ Ï IQ2 and Ï IQ1 ⊇ Ï IQ2 .

Definition 3.3. The hesitation interval of a CIVIFS-IQ is defined as

[π−IQ, π
+
IQ] = [2 − (Ä+ + B̈+ + C̈+ + D̈+), 2 − (Ä− + B̈− + C̈− + D̈−)],

where the real hesitation degree interval is [1 − (Ä+ + C̈+), 1 − (Ä− + C̈−)] and imaginary hesitation
degree interval is [1 − (B̈+ + D̈+), 1 − (B̈− + D̈−)].

Definition 3.4. Given IQ1 = (Ä1, B̈1, C̈1, D̈1) ∈ IQ∗, IQ2 = (Ä2, B̈2, C̈2, D̈2) ∈ IQ∗, and Ï IQ1 , Ï IQ2 are
two CIVIFSs-IQ on Ü, the addition and multiplication operations are defined as:
(1) Addition: Ï IQ1 + Ï IQ2 = (Ä1 + Ä2, B̈1 + B̈2, C̈1 + C̈2, D̈1 + D̈2).
(2) Multiplication: Ï IQ1 · Ï IQ2 = [(Ä1Ä2 − B̈1B̈2 − C̈1C̈2 − D̈1D̈2), (Ä1B̈2 + B̈1Ä2 + C̈1D̈2 − D̈1C̈2), (Ä1C̈2 −

B̈1D̈2 + C̈1Ä2 + D̈1B̈2), (Ä1D̈2 + B̈1C̈2 − C̈1B̈2 + D̈1Ä2)].

Definition 3.5. Let Ï IQ1 and Ï IQ2 be two CIVIFSs-IQ on Ü with IQ1 = Ä1 + iB̈1 + jC̈1 + kD̈1 and
IQ2 = Ä2 + iB̈2 + jC̈2 + kD̈2, respectively. Thus, Ï IQ1

⋃
Ï IQ2, Ï IQ1

⋂
Ï IQ2, and Ï IQ

C
1 are CIVIFSs-IQ on

Ü functions as follows:
Ï IQ1

⋃
Ï IQ2 = [max{Ä−1 , Ä

−
2 },max{Ä+

1 , Ä
+
2 }] + i[max{B̈−1 , B̈

−
2 },max{B̈+

1 , B̈
+
2 }] + j[min{C̈−1 , C̈

−
2 },min{C̈+

1 , C̈
+
2 }]

+ k[min{D̈−1 , D̈
−
2 },min{D̈+

1 , D̈
+
2 }];

Ï IQ1

⋂
Ï IQ2 = [min{Ä−1 , Ä

−
2 },min{Ä+

1 , Ä
+
2 }] + i[min{B̈−1 , B̈

−
2 },min{B̈+

1 , B̈
+
2 }] + j[max{C̈−1 , C̈

−
2 },max{C̈+

1 , C̈
+
2 }]

+ k[max{D̈−1 , D̈
−
2 },max{D̈+

1 , D̈
+
2 }];

Ï IQ
C
1 = C̈1 + iD̈1 + jÄ1 + kB̈1 = [C̈−1 , C̈

+
1 ] + i[D̈−1 , D̈

+
1 ] + j[Ä−1 , Ä

+
1 ] + k[B̈−1 , B̈

+
1 ].

Example 3.1. Let Ï IQ1 = [0.5, 0.7] + i[0.3, 0.6] + j[0.1, 0.3] + k[0.1, 0.2] and Ï IQ2 = [0.3, 0.5] +

i[0.4, 0.6] + j[0.1, 0.2] + k[0.2, 0.3]. We can obtain:
Ï IQ1

⋃
Ï IQ2 = [0.5, 0.7] + i[0.4, 0.6] + j[0.1, 0.2] + k[0.1, 0.2].

Ï IQ1
⋂

Ï IQ2 = [0.3, 0.5] + i[0.3, 0.6] + j[0.1, 0.3] + k[0.2, 0.3].
Ï IQ

C
1 = [0.1, 0.3] + i[0.1, 0.2] + j[0.5, 0.7] + k[0.3, 0.6].

4. Score function and correlation coefficient

In this section, we present a new score function and correlation coefficient that are based on the
CIVIFSs-IQ.

Garg and Rani [27] defined the scoring function and the accuracy functions to be used in ranking
the CIVIFSs. The scoring function S(β) and accuracy function H(β) of a given CIVIFS β are defined
as

S(β) =
1
2

[Ä− + Ä+ + B̈− + B̈+ − C̈− − C̈+ − D̈− − D̈+],
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H(β) =
1
2

[Ä− + Ä+ + B̈− + B̈+ + C̈− + C̈+ + D̈− + D̈+].

For two CIVIFSs β and γ,
(1) If S(β) < S(γ), then β < γ;
(2) If S(β) > S(γ), then β > γ;
(3) If S(β) = S(γ), then

(i) IfH(β) < H(γ), then β < γ;
(ii) If H(β) > H(γ), then β > γ;
(iii) If H(β) = H(γ), then β = γ.

Example 4.1. Suppose that IQ1 = ([0.1, 0.3], [0.3, 0.4], [0.5, 0.6], [0.1, 0.2]) and IQ2 =

([0.2, 0.4], [0.2, 0.3], [0.4, 0.5], [0.2, 0.3]) are two CIVIFSs-IQ. Using the above methods, we have
S(IQ1) = S(IQ2) = −0.15, H(IQ1) = H(IQ2) = 1.25, but IQ1 , IQ2. Thus, the above method
cannot rank these two CIVIFSs-IQ.

After the above analysis, we find that the existing ranking methods have defects in the ranking of
CIVIFSs-IQ. In order to overcome the shortcomings of existing CIVIFS scoring methods and achieve
better CIVIFS-IQ scoring, we set up a new scoring function.

In order to create a new score function with complementary advantages, Gao et al. [35] combined
the accuracy function provided by Hong [36] with the scoring function defined by Zhang [37]. The
idea of [35] is extended to CIVIFs-IQ in this study. The degree intervals of real membership, imaginary
membership, real nonmembership and imaginary nonmembership, as well as the absolute difference
and useful information about these are examined, along with the impact of abstention information on
decision-making. A CIVIFS-IQ has the following score function, which is given.

Give a CIVIFS IQ = ([Ä−, Ä+], [B̈−, B̈+], [C̈−, C̈+], [D̈−, D̈+]) ∈ IQ∗, and we define IQ score function
as follows:

G(IQ) =
1
4

(Ä−+Ä++B̈−+B̈+−C̈−−C̈+−D̈−−D̈+)(1+
1

Ä− + Ä+ + B̈− + B̈+ − (Ä−C̈− + B̈−D̈−) + (Ä+C̈+ + B̈+D̈+)
).

For two CIVIFSs IQ1 and IQ2,
(1) If G(IQ1) < G(IQ2), then IQ1 < IQ2;
(2) If G(IQ1) > G(IQ2), then IQ1 > IQ2;
(3) If G(IQ1) = G(IQ2), then

(i) IfH(IQ1) < H(IQ2), then IQ1 < IQ2;
(ii) IfH(IQ1) > H(IQ2), then IQ1 > IQ2;
(iii) IfH(IQ1) = H(IQ2), then IQ1 = IQ2.

The following uses the above newly defined score function to calculate

G(IQ1) = −0.1375,G(IQ2) = −0.1340,G(IQ1) < G(IQ2),

then
IQ1 < IQ2.

During the decision-making process, one of the most crucial methods to deal with the information
value of imprecise and uncertain data is to quantify the dependence of two variables using the
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correlation coefficient approach. Gerstenkorn and Manko [38] first proposed the concept of the
correlation coefficient of IFSs in 1991. The concept of correlation coefficients was extended in 1995 by
Bustince and Burillo [39] from IFS to an IVIFS environment. Garg introduced correlation coefficients
for Pythagorean fuzzy sets [40, 41]. The researchers also looked at different kinds of correlation
coefficients [42–45] and used them in MCDM. Although a great deal of research has been done on
correlation coefficients, little is known about the correlation coefficient of CIVIFS. So, next, we define
the correlation coefficient in the CIVIFS-IQ environment.

Let X = {x1, x2, x3, ..., xn} be a finite universal set and A, B ∈ CIVIFS − IQ(X) be given by
A = {〈xi, [Ä−A(xi), Ä+

A(xi)], [B̈−A(xi), B̈+
A(xi)], [C̈−A(xi), C̈+

A(xi)], [D̈−A(xi), D̈+
A(xi)] >: xi ∈ X} and B =

{〈xi, [Ä−B(xi), Ä+
B(xi)], [B̈−B(xi), B̈+

B(xi)], [C̈−B(xi), C̈+
B(xi)], [D̈−B(xi), D̈+

B(xi)] >: xi ∈ X}.
The informational energies of two CIVIFSs-IQ A and B are expressed as

T (A) =

n∑
i=1

(Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2 + C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2). (4.1)

T (B) =

n∑
i=1

(Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2 + C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2). (4.2)

C(A, B) =

n∑
i=1

(Ä−A(xi)Ä−B(xi) + Ä+
A(xi)Ä+

B(xi) + B̈−A(xi)B̈−B(xi) + B̈+
A(xi)B̈+

B(xi) + C̈−A(xi)C̈−B(xi)

+ C̈+
A(xi)C̈+

B(xi) + D̈−A(xi)D̈−B(xi) + D̈+
A(xi)D̈+

B(xi)).

(4.3)

From Eq (4.3), it is clearly seen that correlation of CIVIFNs-IQ satisfies the following properties.
(1) C(A, B) = C(B, A).
(2) C(A, A) = T (A).

Next, we determined the correlation coefficient between A and B using these as our basis.

Definition 4.1. If A = {〈xi, [Ä−A(xi), Ä+
A(xi)], [B̈−A(xi), B̈+

A(xi)], [C̈−A(xi), C̈+
A(xi)], [D̈−A(xi), D̈+

A(xi)] >: xi ∈

X} and B = {〈xi, [Ä−B(xi), Ä+
B(xi)], [B̈−B(xi), B̈+

B(xi)], [C̈−B(xi), C̈+
B(xi)], [D̈−B(xi), D̈+

B(xi)] >: xi ∈ X} are two
CIVIFSs-IQ on X, then the correlation coefficient between them is:

K(A, B) =
C(A, B)

√
T (A) × T (B)

=

n∑
i=1

Ä−A(xi)Ä−B(xi) + Ä+
A(xi)Ä+

B(xi) + B̈−A(xi)B̈−B(xi) + B̈+
A(xi)B̈+

B(xi)
+ C̈−A(xi)C̈−B(xi) + C̈+

A(xi)C̈+
B(xi) + D̈−A(xi)D̈−B(xi) + D̈+

A(xi)D̈+
B(xi)



√√
n∑

i=1

Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2

+ C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2


×

√√
n∑

i=1

Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2

+ C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2





.
(4.4)

Theorem 4.1. The correlation coefficient K between two CIVIFSs-IQ A and B defined on X satisfies
the following properties:
(1) 0 ≤ K(A, B) ≤ 1.
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(2) K(A, B) = K(B, A).
(3) K(A, B) = 1 if A = B.

Proof. A = {〈xi, [Ä−A(xi), Ä+
A(xi)], [B̈−A(xi), B̈+

A(xi)], [C̈−A(xi), C̈+
A(xi)], [D̈−A(xi), D̈+

A(xi)] >: xi ∈ X} and B =

{〈xi, [Ä−B(xi), Ä+
B(xi)], [B̈−B(xi), B̈+

B(xi)], [C̈−B(xi), C̈+
B(xi)], [D̈−B(xi), D̈+

B(xi)] >: xi ∈ X} are two CIVIFSs-IQ
defined on X. Then, we have:

(1) The inequality K(A, B) ≥ 0 is obvious due to C(A, B) ≥ 0 being obtained from the Eq (4.4).
Now, we shall prove K(A, B) ≤ 1. For it, based on the Definition 4.1, we get

K(A, B) =
C(A, B)

√
T (A) × T (B)

=

n∑
i=1

Ä−A(xi)Ä−B(xi) + Ä+
A(xi)Ä+

B(xi) + B̈−A(xi)B̈−B(xi) + B̈+
A(xi)B̈+

B(xi)
+ C̈−A(xi)C̈−B(xi) + C̈+

A(xi)C̈+
B(xi) + D̈−A(xi)D̈−B(xi) + D̈+

A(xi)D̈+
B(xi)



√√
n∑

i=1

Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2

+ C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2


×

√√
n∑

i=1

Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2

+ C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2





=


n∑

i=1

Ä−A(xi)Ä−B(xi) +

n∑
i=1

Ä+
A(xi)Ä+

B(xi) +

n∑
i=1

B̈−A(xi)B̈−B(xi) +

n∑
i=1

B̈+
A(xi)B̈+

B(xi)

+

n∑
i=1

C̈−A(xi)C̈−B(xi) +

n∑
i=1

C̈+
A(xi)C̈+

B(xi) +

n∑
i=1

D̈−A(xi)D̈−B(xi) +

n∑
i=1

D̈+
A(xi)D̈+

B(xi)



√√
n∑

i=1

Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2

+ C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2


×

√√
n∑

i=1

Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2

+ C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2





.

By using the Cauchy-Schwarz inequality, n∑
i=1

aibi

2

≤

 n∑
i=1

ai

  n∑
i=1

bi

 .
The equality holds as valid if at least one of ai, bi, i = 1, 2, ..., n is all zero or if b1

a1
= b1

a1
= · · · = bn

an
.

Therefore,
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K(A, B) ≤



√√
n∑

i=1

Ä−A(xi)2

√√
n∑

i=1

Ä−B(xi)2 +

√√
n∑

i=1

Ä+
A(xi)2

√√
n∑

i=1

Ä+
B(xi)2 +

√√
n∑

i=1

B̈−A(xi)2

√√
n∑

i=1

B̈−B(xi)

+

√√
n∑

i=1

B̈+
A(xi)2

√√
n∑

i=1

B̈+
B(xi)2 +

√√
n∑

i=1

C̈−A(xi)2

√√
n∑

i=1

C̈−B(xi)2 +

√√
n∑

i=1

C̈+
A(xi)2

√√
n∑

i=1

C̈+
B(xi)

+

√√
n∑

i=1

D̈−A(xi)

√√
n∑

i=1

D̈−B(xi) +

√√
n∑

i=1

D̈+
A(xi)

√√
n∑

i=1

D̈+
B(xi))



√√
n∑

i=1

(Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2 + C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2)

×

√√
n∑

i=1

(Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2 + C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2)



.

Let us adopt the following notations:
n∑

i=1

Ä−A(xi)2 = a,
n∑

i=1

Ä−B(xi)2 = b,
n∑

i=1

Ä+
A(xi)2 = c,

n∑
i=1

Ä+
B(xi)2 = d,

n∑
i=1

B̈−A(xi)2 = e,
n∑

i=1

B̈−B(xi)2 = f ,
n∑

i=1

B̈+
A(xi)2 = g,

n∑
i=1

B̈+
B(xi)2 = h,

n∑
i=1

C̈−A(xi)2 = k,
n∑

i=1

C̈−B(xi)2 = l,
n∑

i=1

C̈+
A(xi)2 = m,

n∑
i=1

C̈+
B(xi)2 = n,

n∑
i=1

D̈−A(xi)2 = p,
n∑

i=1

D̈−B(xi)2 = q,
n∑

i=1

D̈+
A(xi)2 = r,

n∑
i=1

D̈+
B(xi)2 = t,

and the above inequality is equivalent to

K(A, B) ≤

√
ab +

√
cd +

√
e f +

√
gh +

√
kl +

√
mn +

√
pq +

√
rt√

(a + c + d + e + g + k + l + m + p + r) · (b + d + f + h + l + n + q + t)

K(A, B)2 − 1 ≤
(
√

ab +
√

cd +
√

e f +
√

gh +
√

kl +
√

mn +
√

pq +
√

rt)2

(a + c + d + e + g + k + l + m + p + r) · (b + d + f + h + l + n + q + t)
− 1

K(A, B)2−1 ≤ −



(
√

ab −
√

cd)2 + (
√

a f −
√

be)2 + (
√

ah −
√

bg)2 + (
√

c f −
√

de)2 + (
√

ch −
√

dg)2

+ (
√

eh −
√

g f )2 + (
√

al −
√

bk)2 + (
√

an −
√

bm)2 + (
√

aq −
√

bq)2 + (
√

at −
√

br)2

+ (
√

cl −
√

dk)2 + (
√

cn −
√

dm)2 + (
√

cq −
√

dq)2 + (
√

ct −
√

dr)2 + (
√

el −
√

f k)2

+ (
√

et −
√

f r)2 + (
√

en −
√

f m)2 + (
√

eq −
√

f p)2 + (
√

gl −
√

hk)2 + (
√

gn −
√

hm)2

+ (
√

gq −
√

hp)2 + (
√

gt −
√

hr)2 + (
√

kn −
√

km)2 + (
√

kq −
√

lp)2 + (
√

kt −
√

lr)2

+ (
√

mq −
√

np)2 + (
√

mt −
√

nr)2 + (
√

pt −
√

qr)2


(a + c + d + e + g + k + l + m + p + r) · (b + d + f + h + l + n + q + t)

K(A, B)2 − 1 ≤ 0
K(A, B)2 ≤ 1.

Hence, K(A, B)2 ≤ 1, which implies K(A, B) ≤ 1. So, 0 ≤ K(A, B) ≤ 1.
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(2) For any two CIVIFSs-IQ A and B, the proof of Theorem 4.1 (2) is straightforward.
(3) If A = B, this implies that Ä−A(xi) = Ä−B(xi), Ä+

A(xi) = Ä+
B(xi), B̈−A(xi) = B̈−B(xi), B̈+

A(xi) =

B̈+
B(xi), C̈−A(xi) = C̈−B(xi), C̈+

A(xi) = C̈+
B(xi), D̈−A(xi) = D̈−B(xi), D̈+

A(xi) = D̈+
B(xi), for all i, and, thus, from

Eq (4.4), it follows that K(A, B) = 1.

Example 4.2. Let A = {(x1, [0.3, 0.4], [0.1, 0.3], [0.1, 0.3], [0.3, 0.4]), (x2, [0.1, 0.3], [0.3, 0.4], [0.3, 0.4],
[0.1, 0.3]), (x3, [0.3, 0.4], [0.1, 0.3], [0.1, 0.2], [0.3, 0.5]), (x4, [0.1, 0.3], [0.3, 0.4], [0.3, 0.5], [0.1, 0.2])},
and B = {(x1, [0.2, 0.5], [0.3, 0.4], [0.2, 0.3], [0.1, 0.4]), (x2, [0.3, 0.4], [0.2, 0.5], [0.1, 0.4], [0.2, 0.3]),
(x3, [0.2, 0.4], [0.4, 0.5], [0.1, 0.2], [0.3, 0.5]), (x4, [0.4, 0.5], [0.2, 0.4], [0.3, 0.5], [0.1, 0.2])} be two
CIVIFSs-IQ defined on the universal set X. By Eq(4.1), we obtain the informational energy of A as

T (A) =

n∑
i=1

(Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2 + C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2)

= (0.3)2 + (0.4)2 + (0.1)2 + (0.3)2 + (0.1)2 + (0.3)2 + (0.3)2 + (0.4)2 + (0.1)2 + (0.3)2 + (0.3)2

+ (0.4)2 + (0.3)2 + (0.4)2 + (0.1)2 + (0.3)2 + (0.3)2 + (0.4)2 + (0.1)2 + (0.3)2 + (0.1)2 + (0.2)2

+ (0.3)2 + (0.5)2 + (0.1)2 + (0.3)2 + (0.3)2 + (0.4)2 + (0.3)2 + (0.5)2 + (0.1)2 + (0.2)2

= 2.88.
Similarly, the informational energy of CIVIFS-IQ B is

T (B) =

n∑
i=1

(Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2 + C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2)

= (0.2)2 + (0.5)2 + (0.3)2 + (0.4)2 + (0.2)2 + (0.3)2 + (0.1)2 + (0.4)2 + (0.3)2 + (0.4)2 + (0.2)2

+ (0.5)2 + (0.1)2 + (0.4)2 + (0.2)2 + (0.3)2 + (0.2)2 + (0.4)2 + (0.4)2 + (0.5)2 + (0.1)2 + (0.2)2

+ (0.3)2 + (0.5)2 + (0.4)2 + (0.5)2 + (0.2)2 + (0.4)2 + (0.3)2 + (0.5)2 + (0.1)2 + (0.2)2

= 3.68.
By using Eq (4.3), the correlation between CIVIFSs-IQ A and B is computed as

C(A, B) =

n∑
i=1

(Ä−A(xi)Ä−B(xi) + Ä+
A(xi)Ä+

B(xi) + B̈−A(xi)B̈−B(xi) + B̈+
A(xi)B̈+

B(xi) + C̈−A(xi)C̈−B(xi) + C̈+
A(xi)C̈+

B(xi)

+ D̈−A(xi)D̈−B(xi) + D̈+
A(xi)D̈+

B(xi))
= 0.3 × 0.2 + 0.4 × 0.5 + 0.1 × 0.3 + 0.3 × 0.4 + 0.1 × 0.2 + 0.3 × 0.3 + 0.3 × 0.1 + 0.4 × 0.4

+ 0.1 × 0.3 + 0.3 × 0.4 + 0.3 × 0.2 + 0.4 × 0.5 + 0.3 × 0.1 + 0.4 × 0.4 + 0.1 × 0.2 + 0.3 × 0.3
+ 0.3 × 0.2 + 0.4 × 0.4 + 0.1 × 0.4 + 0.3 × 0.5 + 0.1 × 0.1 + 0.2 × 0.2 + 0.3 × 0.3 + 0.5 × 0.5
+ 0.1 × 0.4 + 0.3 × 0.5 + 0.3 × 0.2 + 0.4 × 0.4 + 0.3 × 0.3 + 0.5 × 0.5 + 0.1 × 0.1 + 0.2 × 0.2

= 3.02.
Thus, the correlation coefficient between A and B is given by Eq (4.4) as

K(A, B) =
C(A, B)

√
T (A) × T (B)

= 0.9277.

Each element of the universal set is given equal weight in the formulas for computing the
coefficient correlation that is defined above. This might not always be feasible, though, in real-
world circumstances. There are components of the universal set that are more significant than others.
Therefore, we need to consider the appropriate weights assigned to each component of the universal set.
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We provide a weighted correlation coefficient between CIVIFSs in the section that follows. Assume
that the weight vector ξ = (ξ1, ξ2, ..., ξn)T corresponds to the elements xi(i = 1, 2, ..., n) where ξi > 0,
n∑

i=1
ξi = 1. Then, we define the weight correlation coefficient as follows:

K(A, B) =
Cw(A, B)

√
Tw(A) × Tw(B)

=

n∑
i=1

ξi

Ä−A(xi)Ä−B(xi) + Ä+
A(xi)Ä+

B(xi) + B̈−A(xi)B̈−B(xi) + B̈+
A(xi)B̈+

B(xi)
+ C̈−A(xi)C̈−B(xi) + C̈+

A(xi)C̈+
B(xi) + D̈−A(xi)D̈−B(xi) + D̈+

A(xi)D̈+
B(xi)



√√
n∑

i=1

ξi

Ä−A(xi)2 + Ä+
A(xi)2 + B̈−A(xi)2 + B̈+

A(xi)2

+ C̈−A(xi)2 + C̈+
A(xi)2 + D̈−A(xi)2 + D̈+

A(xi)2


×

√√
n∑

i=1

ξi

Ä−B(xi)2 + Ä+
B(xi)2 + B̈−B(xi)2 + B̈+

B(xi)2

+ C̈−B(xi)2 + C̈+
B(xi)2 + D̈−B(xi)2 + D̈+

B(xi)2





.
(4.5)

5. MCDM approach based on the proposed correlation coefficient

In this section, we use the correlation coefficients of CIVIFS-IQ to propose the method of MCDM,
and give concrete examples.

5.1. A model for attribute weight

For an IVIFS A = {< x, [u−A(x), u+
A(x)], [υ−A(x), υ+

A(x)] > |x ∈ X}, Wei et al. [46] defined the entropy
formula by

E(A) =
1
n

n∑
i=1

{
min{u−A(x), υ−A(x)} + min{u+

A(x), υ+
A(x)}

max{u−A(x), υ−A(x)} + max{u+
A(x), υ+

A(x)}

}
. (5.1)

For a CIFS P = {< x, rP(x)eiωrP (x), kP(x)eiωkP (x) >: x ∈ U}, Garg and Rani [47] defined the entropy
formula by

E(P) =
1
n

n∑
i=1

 min{rP(xi), kP(xi)} + 1
2π min{ωrP(xi), ωkp(xi)}

max{rP(xi), kP(xi)} + 1
2π max{ωrP(xi), ωkp(xi)}

 . (5.2)

Definition 5.1. For any set A ∈ CIVIFS (X), a real-valued function E: CIVIFS (X) −→ [0, 1] is called
the entropy of CIVIFS (X) if it satisfies the following properties:
(1) 0 ≤ E(A) ≤ 1.
(2) E(A) = 0 if, and only if, A is a crisp set.
(3) E(A) = 1 if, and only if, [r−A(xi), r+

A(xi)] = [k−A(xi), k+
A(xi)] and [ω−rA

(xi), ω+
rA

(xi)] = [ω−kA
(xi), ω+

kA
(xi)].

(4) E(A) = E(Ac).
(5) E(A) ≤ E(B) if either A ⊆ B with r−B(xi) ≤ k−B(xi), r+

B(xi) ≤ k+
B(xi), ω−rB

(xi) ≤ ω−kB
(xi), ω+

rB
(xi) ≤

ω+
kB

(xi) for each x ∈ X, or A ⊇ B with r−B(xi) ≥ k−B(xi), r+
B(xi) ≥ k+

B(xi), ω−rB
(xi) ≥ ω−kB

(xi), ω+
rB

(xi) ≥
ω+

kB
(xi) for each x ∈ X.

Definition 5.2. The entropy measure of CIVIFSs A = {< x, [r−A(x), r+
A(x)]ei[ω−rA

(x),ω+
rA

(x)], [k−A(x), k+
A(x)]

ei[ω−kA
(x),ω+

kA
(x)]

> |x ∈ X} is defined as follows:
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E(A) =
1
n

n∑
i=1




min{r−A(xi), k−A(xi)} +

1
2π

min{ω−rA
(xi), ω−kA

(xi)}

+ min{r+
A(xi), k+

A(xi)} +
1

2π
min{ω+

rA
(xi), ω+

kA
(xi)}


max{r−A(xi), k−A(xi)} +

1
2π

max{ω−rA
(xi), ω−kA

(xi)}

+ max{r+
A(xi), k+

A(xi)} +
1

2π
max{ω+

rA
(xi), ω+

kA
(xi)}




. (5.3)

Theorem 5.1. The CIVIFS entropy measure E satisfies the following properties:
(1) 0 ≤ E(A) ≤ 1.
(2) E(A) = 0 if, and only if, A is a crisp set.
(3) E(A) = 1 if, and only if, [r−A(xi), r+

A(xi)] = [k−A(xi), k+
A(xi)] and [ω−rA

(xi), ω+
rA

(xi)] = [ω−kA
(xi), ω+

kA
(xi)].

(4) E(A) = E(Ac).
(5) E(A) ≤ E(B) if either A ⊆ B with r−B(xi) ≤ k−B(xi), r+

B(xi) ≤ k+
B(xi), ω−rB

(xi) ≤ ω−kB
(xi), ω+

rB
(xi) ≤

ω+
kB

(xi) for each x ∈ X, or A ⊇ B with r−B(xi) ≥ k−B(xi), r+
B(xi) ≥ k+

B(xi), ω−rB
(xi) ≥ ω−kB

(xi), ω+
rB

(xi) ≥
ω+

kB
(xi) for each x ∈ X.

Proof. (1) For any CIVIFS A, the proof property (1) is straightforward.
(2) From A = {[1, 1]ei[0,0], [0, 0]ei[0,0]} or A = {[0, 0]ei[0,0], [1, 1]ei[0,0]}, we have

min{r−A(xi), k−A(xi)} = min{r+
A(xi), k+

A(xi)} = min{ω−rA
(xi), ω−kA

(xi)}} = min{ω+
rA

(xi), ω+
kA

(xi)} = 0,

so E(A) = 0.
(3) If [r−A(xi), r+

A(xi)] = [k−A(xi), k+
A(xi)] and [ω−rA

(xi), ω+
rA

(xi)] = [ω−kA
(xi), ω+

kA
(xi)], we have r−A(xi) =

k−A(xi), r+
A(xi) = k+

A(xi), ω−rA
(xi) = ω−kA

(xi), and ω+
rA

(xi) = ω+
kA

(xi). Thus,

min{r−A(xi), k−A(xi)} = max{r−A(xi), k−A(xi)},min{r+
A(xi), k+

A(xi)} = max{r+
A(xi), k+

A(xi)},

min{ω−rA
(xi), ω−kA

(xi)} = max{ω−rA
(xi), ω−kA

(xi)},min{ω+
rA

(xi), ω+
kA

(xi)} = max{ω+
rA

(xi), ω+
kA

(xi)},

so E(A) = 1.
(4) It is clear that Ac = {[k−A(xi), k+

A(xi)]e
i[ω−kA

(xi),ω+
kA

(xi)], [r−A(xi), r+
A(xi)]ei[ω−rA

(xi),ω+
rA

(xi)]} for x ∈ X. By
applying Eq (5.3), we have E(A) = E(Ac).

(5) When A ⊆ B, with r−B(xi) ≤ k−B(xi), r+
B(xi) ≤ k+

B(xi), ω−rB
(xi) ≤ ω−kB

(xi), ω+
rB

(xi) ≤ ω+
kB

(xi) for each
x ∈ X, we have

r−A(xi) ≤ r−B(xi) ≤ k−B(xi) ≤ k−A(xi),

r+
A(xi) ≤ r+

B(xi) ≤ k+
B(xi) ≤ k+

A(xi),

ω−rA
(xi) ≤ ω−rB

(xi) ≤ ω−kB
(xi) ≤ ω−kA

(xi),

ω+
rA

(xi) ≤ ω+
rB

(xi) ≤ ω+
kB

(xi) ≤ ω+
kA

(xi).

Thus,
min{r−A(xi), k−A(xi)} ≤ min{r−B(xi), k−B(xi)},min{r+

A(xi), k+
A(xi)} ≤ min{r+

B(xi), k+
B(xi)},

max{r−A(xi), k−A(xi)} ≥ max{r−B(xi), k−B(xi)},max{r+
A(xi), k+

A(xi)} ≥ max{r+
B(xi), k+

B(xi)},
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min{ω−rA
(xi), ω−kA

(xi)} ≤ min{ω−rB
(xi), ω−kB

(xi)},min{ω+
rA

(xi), ω+
kA

(xi)} ≤ min{ω+
rB

(xi), ω+
kB

(xi)},

max{ω−rA
(xi), ω−kA

(xi)} ≥ max{ω−rB
(xi), ω−kB

(xi)},max{ω+
rA

(xi), ω+
kA

(xi)} ≥ max{ω+
rB

(xi), ω+
kB

(xi)}.

By Eq (5.3), we have E(A) ≤ E(B).
Similarly, when A ⊇ B with r−B(xi) ≥ k−B(xi), r+

B(xi) ≥ k+
B(xi), ω−rB

(xi) ≥ ω−kB
(xi), ω+

rB
(xi) ≥ ω+

kB
(xi) for

each x ∈ X, one can also prove E(A) ≤ E(B).

Remark 5.1. The entropy measure provided by (5.3) reduces to the CIFSs entropy measure defined
by (5.2) if a CIVIFS A reduces to being a CIFS. Our entropy formula for CIVIFS is therefore, in a way,
a generalization of those for CIFSs.

Remark 5.2. If A = {〈xi, [Ä−A(xi), Ä+
A(xi)], [B̈−A(xi), B̈+

A(xi)], [C̈−A(xi), C̈+
A(xi)], [D̈−A(xi), D̈+

A(xi)] >: xi ∈ X}
is a CIVIFS-IQ defined on X, X = {x1, x2, x3, ..., xn} is a finite universal set. Then, formula (5.3) can be
written as follows:

E(A) =
1
n

n∑
i=1



 min{Ä−A(xi), C̈−A(xi)} + min{Ä+
A(xi), C̈+

A(xi)}
+ min{B̈−A(xi), D̈−A(xi)} + min{B̈+

A(xi), D̈+
A(xi)}

 max{Ä−A(xi), C̈−A(xi)} + max{Ä+
A(xi), C̈+

A(xi)}
+ max{B̈−A(xi), D̈−A(xi)} + max{B̈+

A(xi), D̈+
A(xi)}




. (5.4)

Definition 5.3. In MCDM with CIVIF information, if the value of the q th attribute of the p
th alternative is apq = {[Ä−pq(xi), Ä+

pq(xi)], [B̈−pq(xi), B̈+
pq(xi)], [C̈−pq(xi), C̈+

pq(xi)], [D̈−pq(xi), D̈+
pq(xi)]}(p =

1, 2, ...,m, q = 1, 2, ..., n.), then it is assumed that there are m different alternatives that will be evaluated
under the set of the n criteria. Then, the CIVIF entropy of the q th attribute is

Eq =
1
n

n∑
i=1



 min{Ä−pq(xi), C̈−pq(xi)} + min{Ä+
pq(xi), C̈+

pq(xi)}

+ min{B̈−pq(xi), D̈−pq(xi)} + min{B̈+
pq(xi), D̈+

pq(xi)}

 max{Ä−pq(xi), C̈−pq(xi)} + max{Ä+
pq(xi), C̈+

pq(xi)}

+ max{B̈−pq(xi), D̈−pq(xi)} + max{B̈+
pq(xi), D̈+

pq(xi)}




.

The weight of the q th attribute can be expressed as

Wq =
nc − Eq

n × nc −
n∑

q=1
Eq

where nc is a constant, usually set to 1, and can also be adjusted appropriately according to the weight
relationship. For objective weights, in principle, the maximum weight and minimum weight of the
indicator should be controlled within one time; if the gap is too large, the value of nc can be adjusted
appropriately.

When nc = 1, the weight is

Wq =
1 − Eq

n −
n∑

q=1
Eq

.
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According to entropy theory, if the entropy value of a criterion or feature is smaller in different
alternatives, it can provide more useful information for decision makers. Therefore, criteria or
characteristics should be given greater weight; otherwise, such criteria or characteristics will be
considered unimportant by most decision makers. In other words, such criteria or characteristics should
be evaluated with less weight.

When the attribute information data of each alternative is a CIVIFS-IQ, from the perspective of
reflecting the original decision information, then the more fuzzy and uncertain the attribute information
is, the less information of the attribute that is available for the scheme, the greater the entropy value,
and the smaller the weight that should be assigned, and vice versa. Therefore, using CIVIF entropy to
determine the weight of the attribute index can not only reduce the loss of evaluation information but
also reflect the will of decision-makers.

5.2. MCDM approach based on the proposed correlation coefficient

It is assumed that there are m diverse alternatives, designated by O1,O2, . . . ,Om, for MCDM
with CIVIF information. These alternatives will be assessed under a set of n criteria, denoted by
Q1,Q2, . . . ,Qn. Let’s say a specialist is asked to assess these alternatives based on each set of criteria.
Consider the values offered by CIVIFS-IQ environment experts. These values can be viewed as
CIVIFS-IQ. The following is a representation of the rating values for each alternative as CIVIFSs-
IQ Op(p = 1, 2, . . . ,m).

Op = {(Qq, Äpq(Qq), B̈pq(Qq), C̈pq(Qq), D̈pq(Qq) | q = 1, 2, . . . n; p = 1, 2, . . .m},

where Äpq(Qq) ⊆ [0, 1] represents the satisfaction degree interval of the alternative Op toward the
criteria Qq and C̈pq(Qq) represents the possible degree interval of the rejection for the alternative Op

under the criteria Qq. For convenience, we denote this CIVIFSs-IQ by apq = (Äpq, B̈pq, C̈pq, D̈pq), where
Äpq, B̈pq, C̈pq, D̈pq ⊆ [0, 1] and Äpq + C̈pq ⊆ [0.1], B̈pq + D̈pq ⊆ [0, 1] for p = 1, 2, . . . ,m; q = 1, 2, . . . , n,
and call it a complex interval-value intuitionistic fuzzy number by interval quaternion number
(CIVIFN-IQN). Then, we utilize the following steps based on the proposed correlation coefficients for
solving the MCDM problems in the CIVIFS-IQ environment.
Step 1. Construct a decision matrix based on the collective information of the alternatives
Op(p = 1, 2, . . . ,m) as provided by an expert in terms of CIVIFSs-IQ apq = (Äpq, B̈pq, C̈pq, D̈pq) =

([Ä−pq, Ä
+
pq], [B̈−pq, B̈

+
pq], [C̈−pq, C̈

+
pq], [D̈−pq, D̈

+
pq]). Such a matrix was designated as D = (apq)m×n, which is

expressed as

D =



Q1 Q2 · · · Qn

O1 a11 a12 · · · a1n

O2 a21 a22 · · · a2n
...

...
...

. . .
...

Om am1 am2 · · · amn

.

Step 2. To create the ideal set. The CIVIFS-IQ ideal set is B+ = (b+
1 , b

+
2 , ..., b

+
n ), where b+

q =
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{[r̄−q , r̄
+
q ], [ω̄−rq

, ω̄+
rq

], [k̄−q , k̄
+
q ], [ω̄−kq

, ω̄+
kq

]}, q = 1, 2, ..., n, and where

b+
q =


r̄−q = maxP Ä−pq, r̄+

q = maxp Ä+
pq,

ω̄−rq
= maxp B̈−pq, ω̄+

rq
= maxp B̈+

pq,

k̄−q = minp C̈−pq, k̄+
q = minp C̈+

pq,

ω̄−kq
= minp D̈−pq, ω̄+

kq
= minp D̈+

pq.

Step 3. Use the following formula to calculate the weight value of each criterion.

Wq =
1 − Eq

n −
n∑

q=1
Eq

(5.5)

where

Eq =
1
m

m∑
p=1

 min{Ä−pq, C̈
−
pq} + min{Ä+

pq, C̈
+
pq} + min{B̈−pq, D̈

−
pq} + min{B̈+

pq, D̈
+
pq}

max{Ä−pq, C̈−pq} + max{Ä+
pq, C̈+

pq} + max{B̈−pq, D̈−pq} + max{B̈+
pq, D̈+

pq}

 . (5.6)

Step 4. Calculate the correlation coefficient K(B+,Op) between the alternative Op(p = 1, 2, . . . ,m)
and the ideal set B+ by the following formulas.

K(B+,Op) =
Cw(B+,Op)√
Tw(B+) × Tw(Op)

=

n∑
q=1

wq

Ä−pqr̄−q + Ä+
pqr̄+

q + B̈−pqω̄
−
rq

+ B̈+
pqω̄

+
rq

+ C̈−pqk̄−q + C̈+
pqk̄+

q + D̈−pqω̄
−
kq

+ D̈+
pqω̄

+
kq



√√√ n∑
q=1

wq

(Ä−pq)2 + (Ä+
pq)2 + (B̈−pq)2 + (B̈+

pq)2

+ (C̈−pq)2 + (C̈+
pq)2 + (D̈−pq)2 + (D̈+

pq)2


×

√√√ n∑
q=1

wq

(r̄−q )2 + (r̄+
q )2 + (ω̄−rq

)2 + (ω̄+
rq

)2

+ (k̄−q )2 + (k̄+
q )2 + (ω̄−kq

)2 + (ω̄+
kq

)2





.
(5.7)

Step 5. The alternatives are ranked according to the value of the correlation coefficient calculated in
Step 4. The better the alternatives, the higher the correlation coefficient value.

5.3. Illustrative example

We present an example to highlight the potential uses of the developed methodology. The
source of the example is Garg and Rani [27]. Let’s say a business owner chooses to purchase new
equipment for his enterprise, and the manufacturer offers details on four models, each with a distinct
manufacturing date. The business owner made the decision to choose machinery based on four
criteria: Q1: Reliability; Q2: Safety; Q3: Flexibility; and Q4: Productivity. The same sort of machine’s
manufacture date modification could likewise affect these criteria. The entrepreneur wants to select
the best model from the range of machines that are offered. Assume the person making the decisions
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expresses his preferences using CIVIFS-IQ. Consider the following scenario: From 50% to 60%,
the decision-makers agree that O1 is appropriate at Q1, while from 10% to 30%, they disagree. The
phase term that denotes the production date is provided as the decision-maker agrees, where O1 has
a production date being appropriately at Q1 from 30% to 50% and disagrees from 20% to 40%.
Therefore, the information that the decision-maker has about O1 at Q1 can be written as follows:
([0.5,0.6],[0.3,0.5],[0.1,0.3],[0.2,0.4]). Likewise, all information is acquired in terms of CIVIFN-IQN.
We rate the alternatives using the following steps and apply the defined method to determine which
mechanical device is best.
Step 1. The rating values of each alternative OP(p = 1, 2, 3, 4) are expressed by an expert under the
set of criteria Qq(q = 1, 2, 3, 4) and is represented by the following matrix D as

D =



Q1 Q2 Q3 Q4

O1

(
[0.5, 0.6], [0.3, 0.5],
[0.1, 0.3], [0.2, 0.4]

) (
[0.4, 0.7], [0.4, 0.5],
[0.2, 0.3], [0.1, 0.3]

) (
[0.3, 0.4], [0.1, 0.4],
[0.2, 0.3], [0.3, 0.5]

) (
[0.2, 0.5], [0.3, 0.4],
[0.1, 0.3], [0.1, 0.3]

)
O2

(
[0.2, 0.4], [0.1, 0.3],
[0.3, 0.4], [0.2, 0.6]

) (
[0.4, 0.6], [0.4, 0.5],
[0.1, 0.2], [0.3, 0.4]

) (
[0.2, 0.5], [0.4, 0.6],
[0.2, 0.5], [0.3, 0.5]

) (
[0.3, 0.5], [0.2, 0.5],
[0.2, 0.3], [0.2, 0.5]

)
O3

(
[0.1, 0.5], [0.3, 0.5],
[0.2, 0.4], [0.3, 0.4]

) (
[0.5, 0.6], [0.2, 0.5],
[0.1, 0.2], [0.1, 0.3]

) (
[0.2, 0.4], [0.3, 0.6],
[0.1, 0.3], [0.1, 0.2]

) (
[0.1, 0.5], [0.1, 0.5],
[0.2, 0.4], [0.1, 0.2]

)
O4

(
[0.2, 0.4], [0.3, 0.4],
[0.1, 0.5], [0.1, 0.2]

) (
[0.3, 0.4], [0.2, 0.5],
[0.1, 0.2], [0.1, 0.5]

) (
[0.5, 0.6], [0.3, 0.5],
[0.2, 0.3], [0.1, 0.4]

) (
[0.3, 0.4], [0.3, 0.5],
[0.1, 0.4], [0.2, 0.4]

)


.

Step 2. Set B+ is utilized as an ideal set, and an expert gave their preferences with respect to
all the criteria in terms of CIVIFS-IQ. These can be summed up as follows.

B+ = {(Q1, [0.5, 0.6], [0.3, 0.5], [0.1, 0.3], [0.1, 0.2]), (Q2, [0.5, 0.7], [0.4, 0.5], [0.1, 0.2], [0.1, 0.3]),
(Q3, [0.5, 0.6], [0.4, 0.6], [0.1, 0.3], [0.1, 0.2]), (Q4, [0.3, 0.5], [0.3, 0.5], [0.1, 0.3], [0.1, 0.2])}.

Step 3. We use Eqs (5.6) and (5.5) to calculate the entropy measure Eq and weight value Wq of each
criteria, respectively.

E1 = 0.6411, E2 = 0.5020, E3 = 0.6355, E4 = 0.6800.
W1 = 0.2328, W2 = 0.3230, W3 = 0.2365, W4 = 0.2077.

Step 4. By applying the correlation coefficientK as given in Eq (5.7) between the set OP(p = 1, 2, 3, 4)
and the ideal set B+, we get their measurement values as

K(O1, B+) = 0.9468,K(O2, B+) = 0.9856,K(O3, B+) = 0.9414, K(O4, B+) = 0.9373.
Step 5. Based on the optimal values of the alternative, we conclude that its ranking order is O2 � O1 �

O3 � O4. Therefore, the decision maker can choose alternative O2.

5.4. Comparative analysis

This section provides a comparison between the proposed measure performance and some of the
existing methods used in the CIVIFS as well as IVIFS environments.

5.4.1. Comparison with different CIVIFS methods

An analysis of the taken into consideration data has been done in order to compare the final results
of the proposed method with some of the existing methods [27, 32] within the CIVIFS environment.
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Since the examples used in [27,32] are also used in this article, the analysis that follows is done directly.
The following is an overview of the outcomes that correlate to these approaches:
(1) If we use the method of [27], the ranking of the alternatives is O2 > O3 > O1 > O4, and, hence, we
conclude that the best alternative is O2.
(2) If we use the method of [32], the ranking of the alternatives is O2 > O3 > O4 > O1, and, hence, we
conclude that the best alternative is O2.
The best alternative produced from the proposed method coincides with the existing method, according
to these comparison studies, validating the approach’s feasibility in the CIVIFS-IQ environment.

The method used in [27] is the aggregate operator, and the method used in [32] is TODIM. The
attribute weights of both methods are given directly, but in the method proposed in this paper, the
attribute weights are calculated using the entropy weight method.

The entropy weight method is an objective weighting method based on the principle of information
entropy, which is used for the weight of each index in a multi-index comprehensive evaluation. The
advantage of the entropy weight method is that it has strong objectivity, is not affected by subjective
factors, and can better reflect the difference and importance of indicators. However, it also has some
disadvantages, such as being more sensitive to abnormal values, which can lead to improper weight
allocation. In addition, the entropy weight method has high requirements for data integrity, and missing
data may affect the accuracy of evaluation results.

5.4.2. Comparison with different IVIFS methods

We transform the considered data into the IVIFNs since the IVIFS is a special case of the CIVIFS.
This allows us to compare the performance of the proposed approach in this context. To do this, we set
each CIVIFN’s phase term to zero; this is equivalent to B̈pq = 0, D̈pq = 0.
(1) Utilizing the weighted correlation coefficient (W1) as suggested by [48], the measurement values
for each alternative are summed up as follows: W1(O1, P) = 0.7929, W1(O2, P) = 0.8480, W1(O3, P) =

0.7717, and W1(O4, P) = 0.7986. Then, the ranking of the alternatives is O2 > O4 > O1 > O3 and,
hence, we conclude that the best alternative is O2.
(2) Upon applying the relative similarity measure (W2), as described by [46], to the considered data,
we obtain W2(O1) = 0.4873, W2(O2) = 0.5324, W2(O3) = 0.5029, and W2(O4) = 0.4930. Then, the
ranking of the alternatives is O2 > O3 > O4 > O1 and, hence, we conclude that the best alternative
is O2.
(3) If we use the method of [49], we obtain W3(O1) = 0.2235, W3(O2) = 0.2283, W3(O3) = 0.1557,
and W3(O4) = 0.1432. The ranking of the alternatives is O2 > O1 > O3 > O4, and, hence, we conclude
that the best alternative is O2.
(4) If we use the method of [13], we obtain W4(O1) = 0.0162, W4(O2) = 0.0212, W4(O3) = −0.0307,
and W4(O4) = −0.0292. The ranking of the alternatives is O2 > O1 > O4 > O3, and, hence, we
conclude that the best alternative is O2.
(5) If we use the method of [9], we obtain W5(O1) = 0.2150, W5(O2) = 0.2205, W5(O3) = 0.1495, and
W5(O4) = 0.1400. The ranking of the alternatives is O2 > O1 > O3 > O4, and, hence, we conclude that
the best alternative is O2.

This analysis makes it evident that the results produced by the existing approaches agree with the
proposed one, hence supporting the proposed method.

Table 1 presents an analysis that compares the proposed method with other similar approaches that
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have been described in different literature sources. Compared to other techniques, the CIVIFS-IQ-
MCDM methodology is found to reflect greater levels of overall dominance scores. This is important
because it suggests that the CIVIFS-IQ-MCDM technique could be able to keep the fuzzy information
more in line with actual circumstances, making the rankings more trustworthy.

Table 1. Comparison analysis between the proposed CIVIF-MCDM approach and the
existing fuzzy MCDM approaches.

Method Uncertainty Hesitancy Multi-dimensional Periodicity Whether describe
data information by

interval-valued numbers

FS-MCDM X × × × ×

IFS-MCDM X X × × ×

IVIFS-MCDM X X × × X

CIFS-MCDM X X X X ×

Proposed model X X X X X

5.4.3. Advantages of the proposed approach

From the existing research and the proposed method, the advantages of using the correlation
coefficient to solve the decision problem in the CIVIFSs-IQ environment are as follows.

(1) A CIVIFS is a generalization of the existing studies such as CIFS, CFS, and IVIFS, IFS,
FS. It does this by centralizing the processing of four-dimensional information into a single set and
accounting for more object information. Experts’ processing freedom can be increased by the use
of interval values, which lowers information loss. As a result, compared to the current correlation
coefficient, the correlation coefficient proposed in the CIVIFS-IQ environment is more general.

(2) The proposed decision-making approach’s main benefits are that it takes into account a lot more
data to access alternatives and lessen information loss. Furthermore, the correlation coefficients based
on the with or without weighting factor will enable the decision-maker to select the best alternatives
with increased accuracy.

(3) In the method proposed in this paper, we use the entropy weight method to calculate the criteria
weight. The entropy weight method has higher objectivity, is free from the interference of subjective
factors, and can reflect the difference and importance of indicators more accurately. Therefore, the
method proposed in this paper can deal with the MCDM problem with completely unknown criteria
weights and provide effective help for decision-makers.

6. Conclusions

CIVIFSs are helpful in simulating real-world scenarios that take uncertainty and periodic data into
account simultaneously. Because in the process of data collection, due to the limitations of many
factors, it is not always possible to expect accurate statements to be collected, and one must agree to
minimize errors as much as possible. As a result, selecting an interval value will better reflect the real
world when conveying information value. The CIVIFS is a more extensive extension of the existing
FS theory. In this paper, the interval quaternion is used to represent the CIVIFS, the order relation
is analyzed, and a new operation based on the interval quaternion is introduced. Furthermore, the
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proposed method has the ability to transmit multidimensional fuzzy information and capture complex
features. A new scoring function is proposed in the CIVIFS-IQ environmental. The score function
proposed in this paper overcomes the shortcomings of other score functions to some extent, is more
faithful to decision information, and more truly reflects the will of decision makers. In FS theory,
the degree of reliance between two FSs is determined by the correlation coefficient, which provides
a measure of the correlation between two variables. In this paper, the correlation coefficient in
the CIVIFS-IQ environment is presented, and the interval quaternion representation and correlation
coefficient are applied to the MCDM model, and the model is applied to the enterprise decision
problem.
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