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1. Introduction

Hopfield neural networks have recently sparked significant interest, due to their versatile
applications in various domains including associative memory [1], image restoration [2], and pattern
recognition [3]. In neural networks, time delays often arise due to the restricted switching speed
of amplifiers [4]. Additionally, when examining long-term dynamic behavior, nonautonomous
characteristics become apparent, with system coefficients evolving over time [5]. Moreover, in
biological nervous systems, synaptic transmission introduces stochastic perturbations, adding an
element of randomness [6]. As we know that time delays, nonautonomous behavior, and stochastic
perturbations can induce oscillations and instability in neural networks. Hence, it becomes imperative
to investigate the stability of stochastic delay Hopfield neural networks (SDHNNs) with variable
coefficients.

The Lyapunov technique stands out as a powerful approach for examining the stability of SDHNNs.
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Wang et al. [7, 8] and Chen et al. [9] employed the Lyapunov-Krasovskii functional to investigate
the (global) asymptotic stability of SHNNs characterized by constant coefficients and bounded delay,
respectively. Zhou and Wan [10] and Hu et al. [11] utilized the Lyapunov technique and some
analysis techniques to investigate the stability of SHNNs with constant coefficients and bounded delay,
respectively. Liu and Deng [12] used the vector Lyapunov function to investigate the stability of
SHNNs with bounded variable coefficients and bounded delay. It is important to note that establishing
a suitable Lyapunov function or functional can pose significant challenges, especially when dealing
with infinite delay nonautonomous stochastic systems.

Meanwhile, the fixed point technique presents itself as another potent tool for stability analysis,
offering the advantage of not necessitating the construction of a Lyapunov function or functional.
Luo used this technique to consider the stability of several stochastic delay systems in earlier
research [13–15]. More recently, Chen et al. [16] and Song et al. [17] explored the stability of SDNNs
characterized by constant coefficients and bounded variable coefficients using the fixed point technique,
yielding intriguing results. However, the fixed point technique has a limitation in the stability analysis
of stochastic systems, stemming from the inappropriate application of the Hölder inequality.

Furthermore, integral or differential inequalities are also powerful techniques for stability analysis.
Hou et al. [18], and Zhao and Wu [19] used the differential inequalities to consider stability of NNs,
Wan and Sun [20], Sun and Cao [21], as well as Li and Deng [22] harnessed variation parameters and
integral inequalities to explore the exponential stability of various SDHNNs with constant coefficients.
In a similar vein, Ruan et al. [23] and Zhang et al. [24] utilized integral and differential inequalities to
probe the pth moment exponential stability of SDHNNs characterized by bounded variable coefficients.

It is worth highlighting that the literature mentioned previously exclusively focused on investigating
the exponential stability of SDHNNs, without addressing other decay modes. Generalized exponential
stability was introduced in [25] for cellular neural networks without stochastic perturbations, and
is a more general concept of stability which contains the usual exponential stability, polynomial
stability, and logarithmical stability. It provides some new insights into the stability of dynamic
systems. Motivated by the above discussion, we are prompted to explore the pth moment generalized
exponential stability of SHNNs characterized by variable coefficients and infinite delay.

dzi(t) =

[
− ci(t)zi(t) +

n∑
j=1

ai j(t) f j(z j(t)) +
n∑

j=1
bi j(t)g j(z j(t − δi j(t)))

]
dt

+
n∑

j=1
σi j(t, z j(t), z j(t − δi j(t)))dw j(t), t ≥ t0,

zi(t) = φi(t), t ≤ t0, i = 1, 2, ..., n.

(1.1)

It is important to note that the models presented in [20,21,25–28] are specific instances of system (1.1).
System (1.1) incorporates several complex factors, including unbounded time-varying coefficients and
infinite delay functions. As a result, discussing the stability and its decay rate for (1.1) becomes more
complicated and challenging.

The contributions of this paper can be summarized as follows: (i) A new concept of stability is
utilized for SDHNNs, namely the generalized exponential stability in pth moment. (ii) We establish
a set of multidimensional integral inequalities that encompass unbounded variable coefficients and
infinite delay, which extends the works in [23]. (iii) Leveraging these derived inequalities, we delve
into the pth moment generalized exponential stability of SDHNNs with variable coefficients, and the
work in [10, 11, 20, 21, 26, 27] are improved and extended.
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The structure of the paper is as follows: Section 2 covers preliminaries and provides a model
description. In Section 3, we present the primary inequalities along with their corresponding proofs.
Section 4 is dedicated to the application of these derived inequalities in assessing the pth moment
generalized exponential stability of SDHNNs with variable coefficients. In Section 5, we present three
simulation examples that effectively illustrate the practical applicability of the main results. Finally,
Section 6 concludes our paper.

2. Preliminaries and model description

Let Nn = {1, 2, ..., n}. | · | is the norm of Rn. For any sets A and B, A− B := {x|x ∈ A, x < B}. For two
matrixes C,D ∈ Rn×m, C ≥ D, C ≤ D, and C < D mean that every pair of corresponding parameters of
C and D satisfy inequalities ≥, ≤, and <, respectively. ET and E−1 represent the transpose and inverse
of the matrix E, respectively. The space of bounded continuous Rn-valued functions is denoted by
BC := BC((−∞, t0];Rn), for ϕ ∈ BC, and its norm is given by

‖ϕ‖∞ = sup
θ∈(−∞,t0]

|ϕ(θ)| < ∞.

(Ω,F , {Ft}t≥t0 ,P) stands for the complete probability space with a right continuous normal filtration
{Ft}t≥t0 and Ft0 contains all P-null sets. For p > 0, let Lp

Ft
((−∞, t0];Rn) := Lp

Ft
be the space of

{Ft}-measurable stochastic processes φ = {φ(θ) : θ ∈ (−∞, t0]} which take value in BC satisfying

‖φ‖
p
Lp = sup

θ∈(−∞,t0]
E|φ(θ)|p < ∞,

where E represents the expectation operator.
In system (1.1), zi(t) represents the ith neural state at time t; ci(t) is the self-feedback connection

weight at time t; ai j(t) and bi j(t) denote the connection weight at time t of the jth unit on the ith unit;
f j and g j represent the activation functions; σi j(t, z j(t), z j(t − δi j(t))) stands for the stochastic effect,
and δi j(t) ≥ 0 denotes the delay function. Moreover, {ω j(t)} j∈Nn is a set of Wiener processes mutually
independent on the space (Ω,F , {Ft}t≥0,P); zi(t, φ) (i ∈ Nn) represents the solution of (1.1) with an
initial condition φ = (φ1, φ2, ..., φn) ∈ Lp

Ft
, sometimes written as zi(t) for short. Now, we introduce the

definition of generalized exponentially stable in pth (p ≥ 2) moment.

Definition 2.1. System (1.1) is pth (p ≥ 2) moment generalized exponentially stable, if for any φ ∈ Lp
Ft

,

there are κ > 0 and c(u) ≥ 0 such that lim
t→+∞

∫ t

t0
c(u)du→ +∞ and

E|zi(t, φ)|p ≤ κmax
j∈Nn
{‖φ j‖

p
Lp}e

−
∫ t

t0
c(u)du

, i ∈ Nn, t ≥ t0,

where −
∫ t

t0
c(u)du is the general decay rate.

Remark 2.1. Lu et al. [25] proposed the generalized exponential stability for neural networks without
stochastic perturbations, we extend it to the SDHNNs.

Remark 2.2. We replace
∫ t

t0
c(u)du by λ(t−t0), λ ln(t−t0+1), and λ ln(ln(t−t0+e)) (λ > 0), respectively.

Then (1.1) is exponentially, polynomially, and logarithmically stable in pth moment, respectively.

Lemma 2.1. [29] For a square matrix Λ ≥ 0, if ρ(Λ) < 1, then (I−Λ)−1 ≥ 0, where ρ(·) is the spectral
radius, and I and 0 are the identity and zero matrices, respectively.

AIMS Mathematics Volume 9, Issue 8, 22910–22926.



22913

3. Main inequalities

Consider the following inequalities yi(t) ≤ ψi(0)e−
∫ t

t0
γi(u)du

+
n∑

j=1
αi j

∫ t

t0
e−

∫ t
s γi(u)duγi(s) sup

s−ηi j(s)≤v≤s
y j(v)ds, t ≥ t0,

yi(t) = ψi(t) ∈ BC, t ∈ (−∞, t0], i ∈ Nn,
(3.1)

where yi(t), γi(t), and ηi j(t) are non-negative functions and αi j ≥ 0, i, j ∈ Nn.

Lemma 3.1. Regrading system (3.1), let the following hypotheses hold:

(H.1) For i, j ∈ Nn, there exist γ(t) and γi > 0 such that

0 ≤ γiγ(t) ≤ γi(t) for t ≥ t0, lim
t→+∞

∫ t

t0
γ(u)du→ +∞, sup

t≥t0

{ ∫ t

t−ηi j(t)
γ∗(u)du

}
:= ηi j < +∞,

where γ∗(t) = γ(t), for t ≥ t0, and γ∗(t) = 0, for t < t0.
(H.2) ρ

(
α
)
< 1, where α = (αi j)n×n.

Then, there is a κ > 0 such that

yi(t) ≤ κmax
j∈Nn
{‖ψ j‖∞}e

−λ
∫ t

t0
γ(u)du

, i ∈ Nn, t ≥ t0.

Proof. For t ≥ t0, multiply eλ
∫ t

t0
γ(u)du on both sides of (3.1), and one has

eλ
∫ t

t0
γ(u)duyi(t) ≤ ψi(t0)eλ

∫ t
t0
γ(u)due−

∫ t
t0
γi(u)du

+

n∑
j=1

eλ
∫ t

t0
γ(s)ds

αi j

∫ t

t0
e−

∫ t
s γi(u)duγi(s) sup

s−ηi j(s)≤v≤s
y j(v)ds

:= Ii1(t) + Ii2(t), i ∈ Nn, (3.2)

where λ ∈ (0,min
i∈Nn
{γi}) is a sufficiently small constant which will be explained later. Define

Hi(t) := sup
ξ≤t

{
eλ

∫ ξ
t0
γ∗(u)duyi(ξ)

}
,

i ∈ Nn and t ≥ t0. Obviously,

Ii1(t) = ψi(t0)eλ
∫ t

t0
γ(u)due−

∫ t
t0
γi(u)du

≤ e(λ−γi)
∫ t

t0
γ(u)du

ψi(t0) ≤ ψi(t0), i ∈ Nn, t ≥ t0. (3.3)

Further, it follows from (H.1) that

Ii2(t) ≤
n∑

j=1

αi j

∫ t

t0
e−

∫ t
s γi(u)duγi(s)e

λ
∫ s

s−ηi j(s) γ
∗(u)du

sup
s−ηi j(s)≤v≤s

{y j(v)}eλ
∫ s−ηi j(s)

t0
γ∗(u)dueλ

∫ t
s γ(u)duds

≤

n∑
j=1

αi jeληi j

∫ t

t0
e−

∫ t
s (γi(u)−λγ(u))duγi(s) sup

s−ηi j(s)≤v≤s
{y j(v)eλ

∫ v
t0
γ∗(u)du

}ds

AIMS Mathematics Volume 9, Issue 8, 22910–22926.
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≤

n∑
j=1

αi jeληi j H j(t)
∫ t

t0
e−

∫ t
s (γi(u)−λγ(u))duγi(s)ds

≤

n∑
j=1

αi jeληi j H j(t)
∫ t

t0
e−

∫ t
s (γi(u)− λ

γi
γi(u))du

γi(s)ds

≤
γi

γi − λ

n∑
j=1

αi jeληi j H j(t), i ∈ Nn, t ≥ t0. (3.4)

By (3.2)–(3.4), we have

eλ
∫ t

t0
γ(s)dsyi(t) ≤ ψi(t0) +

γi

γi − λ

n∑
j=1

αi jeληi j H j(t), i ∈ Nn, t ≥ t0.

By the definition of Hi(t), we get

Hi(t) ≤ ψi(t0) +
γi

γi − λ

n∑
j=1

αi jeληi j H j(t), i ∈ Nn, t ≥ t0,

i.e.,

H(t) ≤ ψ(t0) +
ΓαeληH(t)

Γ − λI
, t ≥ t0, (3.5)

where H(t) = (H1(t), ...,Hn(t))T , ψ(t0) = (ψ1(t0), ..., ψn(t0))T , Γ = diag(γ1, ..., γn), and αeλη =

(αi jeληi j)n×n. Since ρ(α) < 1 and α ≥ 0, then there is a small enough λ > 0 such that

ρ
(

Γαeλη

Γ − λI

)
< 1 and

Γαeλη

Γ − λI
≥ 0.

From Lemma 2.1, we get (
I −

Γαeλη

Γ − λI

)−1

≥ 0.

Denote

N(λ) =

(
I −

Γαeλη

Γ − λI

)−1

= (Ni j(λ))n×n.

From (3.5), we have
H(t) ≤ N(λ)ψ(t0), t ≥ t0.

Therefore, for i ∈ Nn, we get

yi(t) ≤
n∑

i=1

Ni j(λ)ψi(t0)e−λ
∫ t

t0
γ(u)du

≤

n∑
j=1

Ni j(λ)‖ψ j‖∞e−λ
∫ t

t0
γ(u)du

, t ≥ t0,

and then there exists a κ > 0 such that

yi(t) ≤ κmax
i∈Nn
{‖ψi‖∞}e

−λ
∫ t

t0
γ(u)du

, i ∈ Nn, t ≥ t0.

This completes the proof. �

AIMS Mathematics Volume 9, Issue 8, 22910–22926.
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Consider the following differential inequalities D+yi(t) ≤ −γi(t)yi(t) +
n∑

j=1
αi jγi(t) sup

t−ηi j(t)≤s≤t
y j(s), t ≥ t0,

yi(t) = ψi(t) ∈ BC, t ∈ (−∞, t0], i ∈ Nn,
(3.6)

where D+ is the Dini-derivative, yi(t), γi(t), and ηi j(t) are non-negative functions, and αi j ≥ 0, i, j ∈ Nn.

Lemma 3.2. For system (3.6), under hypotheses (H.1) and (H.2), there are κ > 0 and λ > 0 such that

yi(t) ≤ κmax
i∈Nn
{‖ψi‖∞}e

−λ
∫ t

t0
γ(u)du

, i ∈ Nn, t ≥ t0.

Proof. For t > t0, multiply e
∫ t

t0
γi(u)du (i ∈ Nn) on both sides of (3.6) and perform the integration from t0

to t. We have

yi(t) ≤ψi(0)e−
∫ t

t0
γi(u)du

+

n∑
j=1

∫ t

t0
e−

∫ t
s γi(u)duαi jγi(s) sup

s−ηi j(s)≤v≤s
y j(v)ds, i ∈ Nn.

The proof is deduced from Lemma 3.1. �

Remark 3.1. For a given matrix M = (mi j)n×n, we have ρ(M) ≤ ‖M‖, where ‖ · ‖ is an arbitrary norm,
and then we can obtain some conditions for generalized exponential stability. In addition, for any
nonsingular matrix S , define the responding norm by ‖M‖S = ‖S −1MS ‖. Let S = diag{ξ1, ξ2, ..., ξn},
then for the row, column, and the Frobenius norm, the following conditions imply ‖M‖S < 1:

(1)
n∑

j=1

(
ξi
ξ j
|mi j|

)
< 1 for i ∈ Nn;

(2)
n∑

i=1

(
ξi
ξ j
|mi j|

)
< 1 for i ∈ Nn;

(3)
n∑

i=1

n∑
j=1

(
ξi
ξ j
|mi j|

)2

< 1.

Remark 3.2. Ruan et al. [23] investigated the special case of inequalities (3.6), i.e., γi(t) = γi and
ηi j(t) = ηi j. They obtained that system (3.6) is exponentially stable provided

γi >

n∑
j=1

αi j, i ∈ Nn. (3.7)

From Remark 3.1, we know condition ρ(α) < 1 (α =
(αi j

γi

)
n×n) is weaker than (3.7). Moreover, we

discuss the generalized exponential stability which contains the normal exponential stability. This
means that our result improves and extends the result in [23].

4. Main result

This section considers the pth moment generalized exponential stability of (1.1) by applying
Lemma 3.1. To obtain the pth moment generalized exponential stability, we need the following
conditions.

AIMS Mathematics Volume 9, Issue 8, 22910–22926.
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(C.1) For i, j ∈ Nn, there are c(t) and ci > 0 such that

0 ≤ cic(t) ≤ ci(t) for t ≥ t0, lim
t→+∞

∫ t

t0
c(s)ds→ +∞, sup

t≥t0

{ ∫ t

t−δi j(t)
c∗(s)ds

}
:= δi j < +∞,

where c∗(t) = c(t), for t ≥ t0, and c(t) = 0, for t < t0.
(C.2) The mappings f j and g j satisfy f j(0) = g j(0) = 0 and the Lipchitz condition with Lipchitz

constants F j > 0 and G j > 0 such that

| f j(v1) − f j(v2)| ≤ F j|v1 − v2|, |g j(v1) − g j(v2)| ≤ G j|v1 − v2|, j ∈ Nn, ∀v1, v2 ∈ R.

(C.3) The mapping σi j satisfies σi j(t, 0, 0) ≡ 0 and ∀u1, u2, v1, v2 ∈ R, and there are µi j(t) ≥ 0 and
νi j(t) ≥ 0 such that∣∣∣∣∣σi j(t, u1, v1) − σi j(t, u2, v2)

∣∣∣∣∣2 ≤ µi j(t)
∣∣∣∣∣u1 − u2

∣∣∣∣∣2 + νi j(t)
∣∣∣∣∣v1 − v2

∣∣∣∣∣2, i, j ∈ Nn, t ≥ t0.

(C.4) For i, j ∈ Nn,

sup
{t|t≥t0}−{t|ci(t)=|ai j(t)|F j+|bi j(t)|G j=0}

{
|ai j(t)|F j + |bi j(t)|G j

ci(t)

}
:= ρ(1)

i j ,

sup
{t|t≥t0}−{t|ci(t)=µi j(t)+νi j(t)}

{µi j(t) + νi j(t)
ci(t)

}
:= ρ(2)

i j .

(C.5)

ρ
(
M +

Ω(1)

p
+

(p − 1)Ω(2)

p

)
< 1,

where M = diag(m1,m2, ...,mn), mi =
(p−1)

n∑
j=1
ρ(1)

i j

p +
(p−1)(p−2)

n∑
j=1
ρ(2)

i j

2p , Ω(k) = (ρ(k)
i j )n×n, k ∈ N2, and

p ≥ 2.

Conditions (C.1)–(C.4) guarantee the existence and uniqueness of (1.1) [30].

Theorem 4.1. Under conditions (C.1)–(C.5), system (1.1) is pth moment generalized exponentially
stable with decay rate −λ

∫ t

t0
c(s)ds, λ > 0.

Proof. By the Itô formula, one can obtain

dzp
i (t) =

[
− pci(t)z

p
i (t) +

n∑
j=1

pai j(t) f j(z j(t))z
p−1
i (t) +

n∑
j=1

pbi j(t)g j(z j(t − δi j(t)))z
p−1
i (t)

+

n∑
j=1

p(p − 1)
2

|σi j(t, z j(t), z j(t − δi j(t)))|2zp−2
i (t)

]
dt

+

n∑
j=1

pσi j(t, z j(t), z j(t − δi j(t)))z
p−1
i (t)dw j(t), i ∈ Nn, t ≥ t0.

AIMS Mathematics Volume 9, Issue 8, 22910–22926.
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So we get

zp
i (t) = φ

p
i (t0) +

∫ t

t0

[
− pci(s)zp

i (s) +

n∑
j=1

pai j(s) f j(z j(s))zp−1
i (s)

+

n∑
j=1

pbi j(s)g j(z j(s − δi j(s)))zp−1
i (s)

+

n∑
j=1

p(p − 1)
2

|σi j(s, z j(s), z j(s − δi j(s)))|2zp−2
i (s)

]
ds

+

n∑
j=1

∫ t

t0
pσi j(s, z j(s), z j(s − δi j(s)))zp−1

i (s)dw j(s), i ∈ Nn, t ≥ t0.

Since E
[ ∫ t

t0
pσi j(s, z j(s), z j(s − δi j(s)))zp−1

i (s)dw j(s)
]

= 0 for i ∈ Nn and t ≥ t0, we have

E[zp
i (t)] = E[φp

i (t0)] +

∫ t

t0
E
[
− pci(s)zp

i (s) +

n∑
j=1

pai j(s) f j(z j(s))zp−1
i (s)

+

n∑
j=1

pbi j(s)g j(z j(s − δi j(s)))zp−1
i (s)

+

n∑
j=1

|σi j(s, z j(s), z j(t − δi j(s)))|2
p(p − 1)

2
zp−2

i (s)
]
ds, i ∈ Nn, t ≥ t0,

i.e.,

dE[zp
i (t)] = −pci(t)E[zp

i (t)]dt + E
[ n∑

j=1

pai j(t) f j(z j(t))z
p−1
i (t) +

n∑
j=1

pbi j(t)g j(z j(t − δi j(t)))z
p−1
i (t)

+

n∑
j=1

p(p − 1)
2

|σi j(t, z j(t), z j(t − δi j(t)))|2zp−2
i (t)

]
dt, i ∈ Nn, t ≥ t0.

For i ∈ Nn and t ≥ t0, using the variation parameter approach, we get

E[zp
i (t)] = E[φp

i (t0)]e−
∫ t

t0
pci(s)ds

+

∫ t

t0
e−

∫ t
s pci(u)duE

[ n∑
j=1

pai j(s) f j(z j(s))zp−1
i (s)

+

n∑
j=1

pbi j(s)g j(z j(s − δi j(s)))zp−1
i (s) +

n∑
j=1

p(p − 1)
2

|σi j(s, z j(s), z j(s − δi j(s)))|2zp−2
i (s)

]
ds.

For i ∈ Nn and t ≥ t0, conditions (C.2)–(C.4) and the Young inequality yield

E|zi(t)|p ≤ E|φi(t0)|pe−
∫ t

t0
pci(u)du

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du p|ai j(s)|F jE|z j(s)zp−1

i (s)|ds

AIMS Mathematics Volume 9, Issue 8, 22910–22926.
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+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du p|bi j(s)|G jE|z j(s − δi j(s))zp−1

i (s)|ds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du p(p − 1)

2
µi j(s)E|z2

j(s)zp−2
i (s)|ds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du p(p − 1)

2
νi j(s)E|z2

j(s − δi j(s))zp−2
i (s)|ds

≤ E|φi(t0)|pe−
∫ t

t0
pci(u)du

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du|ai j(s)|F j

(
E|z j(s)|p + (p − 1)E|zi(s)|p

)
ds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du|bi j(s)|G j

(
E|z j(s − δi j(s))|p + (p − 1)E|zi(s)|p

)
ds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)duµi j(s)

(
(p − 1)E|z j(s)|p +

(p − 1)(p − 2)
2

E|zi(s)|p
)
ds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)duνi j(s)

(
(p − 1)E|z j(s − δi j(s))|p +

(p − 1)(p − 2)
2

E|zi(s)|p
)
ds

≤ E|φi(t0)|pe−
∫ t

t0
pci(u)du

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du(ρ(1)

i j + (p − 1)ρ(2)
i j

)
ci(s) sup

s−δi j(s)≤v≤s
E|z j(v)|pds

+

n∑
j=1

∫ t

t0
e−

∫ t
s pci(u)du

(
(p − 1)ρ(1)

i j +
(p − 1)(p − 2)

2
ρ(2)

i j

)
ci(s) sup

s−δi j(s)≤v≤s
E|zi(v)|pds.

Then, all of the hypotheses of Lemma 3.1 are satisfied. So there exists κ > 0 and λ > 0 such that

E|zi(t)|p ≤ κmax
j∈Nn
{‖φ j‖

p
Lp}e

−λ
∫ t

t0
c(u)du

, i ∈ Nn, t ≥ t0.

This completes the proof. �

Remark 4.1. Huang et al. [27] and Sun and Cao [21] considered the special case of (1.1), i.e., ai j(t) ≡
ai j, bi j(t) ≡ bi j, ci(t) ≡ ci, µi j(t) ≡ µ j, νi j(t) ≡ ν j, and δi j(t) ≡ δ j(t) is a bounded delay function. [27]
showed that system (1.1) is pth moment exponentially stable provided that there are positive constants
ξi, ..., ξn such that N1 > N2 > 0, where

N1 = min
i∈Nn
{pci −

n∑
j=1

(p − 1)|ai j|(F j + G j) +

n∑
j=1

ξ j

ξi
(|a ji|Fi + (p − 1)µi) +

n∑
j=1

(p − 1)(p − 2)
2

(µi + νi)}

and

N2 = max
i∈Nn

{ n∑
j=1

ξ j

ξi
(|b ji|Gi + (p − 1)νi)

}
.
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The above conditions imply that for each i ∈ Nn,

pci−

n∑
j=1

(p−1)|ai j|(F j +G j) +

n∑
j=1

ξ j

ξi
(|a ji|Fi + |b ji|Gi + (p−1)(µi + ν j)) +

n∑
j=1

(p − 1)(p − 2)
2

(µi + νi) > 0.

Then

0 ≤
n∑

j=1

(p − 1)|ai j|(F j + G j)
pci

+

n∑
j=1

ξ j

ξi

(
|a ji|Fi + |b ji|Gi + (p − 1)(µi + ν j)

pci

)
+

n∑
j=1

(p − 1)(p − 2)
2pci

(µi+νi) < 1.

(4.1)
From Remark 3.1, we know condition (4.1) implies

ρ
(
M +

Ω(1)

p
+

(p − 1)Ω(2)

p

)
< 1,

and this means that this paper improves and enhances the results in [27]. Similarly, our results also
improve and enhance the results in [10, 11, 26]. Besides, the results in [21] required the following
conditions to guarantee the pth moment exponential stability, i.e.,

ρ(C−1(M∗M1I + M∗M2I + NN1 + NN2)) < 1,

where
C = diag(c1, c2, ..., cn), M∗ = diag((4c1)p−1, (4c2)p−1, ..., (4cn)p−1),

N1 = (di j)n×n, di j = µ
p/2
j , N2 = (ei j)n×n, ei j = ν

p/2
j ,

M1 = diag
(
(

n∑
j=1

|a1 jF j|
p

p−1 )p−1, (
n∑

j=1

|a2 jF j|
p

p−1 )p−1, ..., (
n∑

j=1

|an jF j|
p

p−1 )p−1
)
,

M2 = diag
(
(

n∑
j=1

|b1 jG j|
p

p−1 )p−1, (
n∑

j=1

|b2 jG j|
p

p−1 )p−1, ..., (
n∑

j=1

|bn jG j|
p

p−1 )p−1
)
,

N = diag(4p−1Cpnp−1c1−p/2
1 , 4p−1Cpnp−1c1−p/2

2 , ..., 4p−1Cpnp−1c1−p/2
n ) (Cp ≥ 1).

From the matrix spectral analysis [29], we can get

ρ
(
M +

Ω(1)

p
+

(p − 1)Ω(2)

p

)
< ρ(C−1(M∗M1I + M∗M2I + NN1 + NN2).

The above discussion shows that our results improve and extend the works in [21]. Similarly, our
results also improve and broaden the results in [20].

Remark 4.2. When ci(t) ≡ ci, ai j(t) ≡ ai j, bi j(t) ≡ bi j, δi j(t) ≡ δ j, and σi j(t, z j(t), z j(t − δi j(t))) ≡ 0,
then (1.1) turns to be the following HNNs

dzi(t) =

[
− cizi(t) +

n∑
j=1

ai j f j(z j(t)) +

n∑
j=1

bi jg j(z j(t − δ j))
]
dt, i ∈ Nn, t ≥ t0, (4.2)
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or
dz(t) =

[
−Cz(t) + A f (z(t)) + Bg(zδ(t))

]
dt, t ≥ t0, (4.3)

where z(t) = (z1(t), ..., zn(t))T , C = diag(c1, ..., cn) > 0, A = (ai j)n×n, B = (bi j)n×n, f (x(t)) =

( f1(z1(t)), ..., fn(zn(t)))T , and g(zδ(t)) = (g1(z1(t − δ1)), ..., gn(zn(t − δn)))T . This model was discussed
in [16, 28]. For (4.3), using our approach can get the subsequent corollary.

Corollary 4.1. Under condition (C.2), if ρ(C−1D) < 1, then (4.3) is exponentially stable, where D =

(|ai jF j| + |bi jG j|)n×n.

Note that Lai and Zhang [28] (Theorem 4.1) and Chen et al. [16] (Corollary 5.2) required the
following conditions

max
i∈Nn

[ 1
ci

n∑
j=1

|ai jF j| +
1
ci

n∑
j=1

|bi jG j|

]
<

1
√

n

and
n∑

j=1

1
ci

max
i∈Nn
|ai jF j| +

n∑
j=1

1
ci

max
i∈Nn
|bi jG j| < 1

to ensure the exponential stability, respectively. From Remark 3.1, we know that Corollary 4.1 is
weaker than Theorem 4.1 in [28] and Corollary 5.2 in [16]. This improves and extends the results
in [16, 28].

5. Examples

Now, we give three examples to illustrate the effectiveness of the main result.

Example 5.1. Consider the following SDHNNs:
dzi(t) =

[
− ci(t)zi(t) +

2∑
j=1

ai j(t) f j(z j(t)) +
2∑

j=1
bi j(t)g j(z j(0.5t))

]
dt

+
2∑

j=1
σi j(t, z j(t), z j(0.5t))dw j(t), t ≥ 0,

zi(0) = φi(0), i ∈ N2,

(5.1)

where c1(t) = 10(t + 1), c2(t) = 20(t + 2), a11(t) = b11(t) = 0.5(t + 1), a12(t) = b12(t) = t + 1,
a21(t) = b21(t) = 2(t + 2), a22(t) = b22(t) = 2.5(t + 2), f1(u) = f2(u) = arctanu, g1(u) = g2(u) =

0.5(|u+1|−|u−1|), σ11(t, u, v) =
√

2(t+1)(u−v)
2 , σ12(t, u, v) = 2

√
(t + 1)(u−v), σ21(t, u, v) =

√
(t + 1)(u−v),

σ22(t, u, v) =
√

10(t+2)(u−v)
2 , δ11(t) = δ21(t) = δ12(t) = δ22(t) = 0.5t, and φ(0) = (40, 20).

Choose c(t) = 1
t+1 , and then sup

t≥0

{ ∫ t

0.5t
1

s+1ds
}

= ln 2. We can find F1 = F2 = G1 = G2 = 1, ρ(1)
11 = 0.1,

ρ(1)
12 = 0.2, ρ(1)

21 = 0.2, ρ(1)
22 = 0.25, ρ(2)

11 = 0.2, ρ(2)
12 = 1.6, ρ(2)

21 = 0.2, and ρ(2)
22 = 0.5. Then

ρ

(
ρ(1)

11 + 0.5ρ(1)
12 + 0.5ρ(2)

11 0.5ρ(1)
12 + 0.5ρ(2)

12
0.5ρ(1)

21 + 0.5ρ(2)
21 ρ(1)

22 + 0.5ρ(1)
21 + 0.5ρ(2)

22

)
= ρ

(
0.3 0.9
0.2 0.6

)
= 0.9 < 1.

Then (C.1)–(C.5) are satisfied (p = 2). So (5.1) is generalized exponentially stable in mean square
with a decay rate −λ

∫ t

0
1

1+sds = −λln(1 + t), λ > 0 (see Figure 1).
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Figure 1. States z1(t) and z2(t) of Example 5.1.

Remark 5.1. It is noteworthy that all variable coefficients and delay functions in Example 5.1 are
unbounded, and then the results in [12, 23] are not applicable in this example.

Example 5.2. Consider the following SDHNNs:


dzi(t) =

[
− ci(t)zi(t) +

2∑
j=1

ai j(t) f j(z j(t)) +
2∑

j=1
bi j(t)g j(z j(t − δi j(t)))

]
dt

+
2∑

j=1
σi j(t, z j(t), z j(t − δi j(t)))dw j(t), t ≥ 0,

zi(t) = φi(t), t ∈ [−π, 0], i ∈ N2,

(5.2)

where c1(t) = 20(1− sint), c2(t) = 10(1− sint), a11(t) = b11(t) = 2(1− sint), a12(t) = b12(t) = 4(1− sint),
a21(t) = b21(t) = 0.5(1 − sint), a22(t) = b22(t) = 1.5(1 − sint), f1(u) = f2(u) = arctanu, g1(u) =

g2(u) = 0.5(|u + 1| − |u − 1|), σ11(t, u, v) =
√

2(1 − sint)(u − v), σ12(t, u, v) =
√

6(1 − sint)(u − v),
σ21(t, u, v) =

√
(1−sint)(u−v)

2 , σ22(t, u, v) =
√

(1−sint)(u−v)
2 , δ11(t) = δ21(t) = δ12(t) = δ22(t) = π| cos t|, and

φ(t) = (40, 20) for t ∈ [−π, 0].

Choose c(t) = 1 − sin t, and then sup
t≥0

∫ t

t−π| cos t|

(
1 − sin s

)∗ds = π + 2. We can find F1 = F2 = G1 =

G2 = 1, ρ(1)
11 = 0.2, ρ(1)

12 = 0.4, ρ(1)
21 = 0.1, ρ(1)

22 = 0.3, ρ(2)
11 = 0.4, ρ(2)

12 = 1.2, ρ(2)
21 = 0.1, and ρ(2)

22 = 0.1.
Then

ρ

(
ρ(1)

11 + 0.5ρ(1)
12 + 0.5ρ(2)

11 0.5ρ(1)
12 + 0.5ρ(2)

12
0.5ρ(1)

21 + 0.5ρ(2)
21 ρ(1)

22 + 0.5ρ(1)
21 + 0.5ρ(2)

22

)
= ρ

(
0.6 0.8
0.1 0.4

)
= 0.8 < 1.

Then (C.1)–(C.5) are satisfied (p = 2). So (5.2) is generalized exponentially stable in mean square
with a decay rate −λ

∫ t

0
(1 − sins)ds = −λ(t − cost + 1), λ > 0 (see Figure 2).
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Figure 2. States z1(t) and z2(t) of Example 5.2.

Remark 5.2. It should be pointed out that in Example 5.2 the variable coefficients ci(t) = 0 for t =
π
2 + 2kπ, k ∈ N. This means that the results in [12, 23] cannot solve this case.

To compare to some known results, we consider the following SDHNNs which are the special case
of [12, 16, 20–23].

Example 5.3.

 dzi(t) =

[
− cizi(t) +

2∑
j=1

ai j f j(z j(t)) +
2∑

j=1
bi jg j(z j(t − δi j(t)))

]
dt + σi(zi(t))dwi(t), t ≥ 0,

zi(t) = φi(t), t ∈ [−1, 0], i ∈ N2,

(5.3)

where c1 = 2, c2 = 4, a11 = 0.5, a12 = 1, b11 = 0.25, b12 = 0.5, a21 = 1
3 , a22 = 2

3 , b21 = 1
3 ,

b22 = 2
3 , f1(u) = f2(u) = arctanu, g1(u) = g2(u) = 0.5(|u + 1| − |u − 1|), σ1(u) = 0.5u, σ2(u) = 0.5u,

δ11(t) = δ21(t) = δ12(t) = δ22(t) = 1, and φ(t) = (40, 20) for t ∈ [−1, 0].

Choose c(t) = 1, and then sup
t≥0

∫ t

t−1

(
1)∗ds = 1. We can find F1 = F2 = G1 = G2 = 1, ρ(1)

11 = 3
8 ,

ρ(1)
12 = 3

4 , ρ(1)
21 = 1

6 , ρ(1)
22 = 1

3 , ρ(2)
11 = 1

8 , ρ(2)
12 = ρ(2)

21 = 0, and ρ(2)
22 = 1

16 . Then

ρ

(
ρ(1)

11 + 0.5ρ(1)
12 + 0.5ρ(2)

11 0.5ρ(1)
12 + 0.5ρ(2)

12
0.5ρ(1)

21 + 0.5ρ(2)
21 ρ(1)

22 + 0.5ρ(1)
21 + 0.5ρ(2)

22

)
= ρ

( 7
8

3
8

1
12

43
96

)
< 1.

Then (C.1)–(C.5) are satisfied (p = 2). So (5.3) is exponentially stable in mean square (see Figure 3).
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Figure 3. States z1(t) and z2(t) of Example 5.3.

Remark 5.3. It is noteworthy that in Example 5.3,

ρ


4(a2

11F2
1+a2

12F2
2+b2

11G2
1+b2

12G2
2)

c2
1

+
4µ11
c1

0

0 4(a2
21F2

1+a2
22F2

2+b2
21G2

1+b2
22G2

2)
c2

2
+

4µ22
c2

 = ρ

( 33
16 0
0 19

36

)
=

33
16

> 1,

which makes the result in [20–22] invalid. In addition,

4(a2
11F2

1 + a2
12F2

2 + b2
11G

2
1 + b2

12G
2
2)

c2
1

+
4(a2

21F2
1 + a2

22F2
2 + b2

21G
2
1 + b2

22G
2
2)

c2
2

> 1,

which makes the result in [16] not applicable in this example. Moreover

−c1 + (a11F1 + a12F2 + b11G1 + b11F2 +
1
2
µ11) > 0,

which makes the results in [12, 23] inapplicable in this example.

6. Conclusions

In this paper, we have addressed the issue of pth moment generalized exponential stability
concerning SHNNs characterized by variable coefficients and infinite delay. Our approach involves
the utilization of various inequalities and stochastic analysis techniques. Notably, we have extended
and enhanced some existing results. Lastly, we have provided three numerical examples to showcase
the practical utility and effectiveness of our results.
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