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1. Introduction

1.1. Presentation of the problem

Consider the following multiplicative conformable fractional Sturm-Liouville equation of order
α ∈ (0, 1] (α−∗SL):

Lα

[
y
]

:=
(
e−1 ⊙ τ2y(x)

)
⊕

(
eq(x) ⊙ y(x)

)
= eλ ⊙ y(x), x ∈ [a, b], (1.1)

with the conditions
U1(y) := (ec1 ⊙ y(a)) ⊕ (ec2 ⊙ τy(a)) = 1, (1.2)

U2(y) :=
(
ed1 ⊙ y(b)

)
⊕

(
ed2 ⊙ τy(b)

)
= 1, (1.3)

where q(x) is a real-valued continuous and multiplicative conformable fractional (CF) integrable
function on [a, b]; λ is a spectral parameter;

(
c2

1 + c2
2

) (
d2

1 + d2
2

)
, 0, ci, di ∈ R (i = 1, 2). Throughout

this study, τ· denotes ∗Tα· =
d∗α·
d∗αx (the multiplicative CF derivative of order α ∈ (0, 1] with respect to x);

τ2· denotes ∗(2)Tα· =
∗Tα

∗Tα· =
d∗2α ·
d∗αx2 (the second order multiplicative CF of order α ∈ (0, 1] with respect

to x) for brevity.
Using the properties of multiplicative CF calculus [1], we can formally reduce this problem and

arrive at the following α−∗SL problem:

Lα

[
y
]

:= (τ2y)−1yq(t) = yλ, (1.4)

U1(y) := (y(a))c1 (τy(a))c2 = 1,
U2(y) := (y(b))d1 (τy(b))d2 = 1.

(1.5)

A brief summary of the study is as follows:
The current section will examine several works that are directly linked to the current issue and

provide some fundamental definitions and characteristics of the multiplicative, multiplicative CF
calculus, and the theory of CF calculus. In Section 2, asymptotic estimations of the ∗eigenfunctions for
the problems (1.1)–(1.3) will be computed. We will look into some of the problem’s spectral aspects in
Section 3, including the self-adjointness, the reality, the eigenvalues of the operator, the orthogonality
of different eigenfunctions, etc. The Green’s function of this problem will be reconstructed in Section 4.

1.2. Investigating research on the problem

Starting with the need to create and apply multiplicative (geometric) fractional calculus, let us
emphasize the significance of polar coordinates in addition to Cartesian coordinates, which are
previously known. Additionally, multiplicative and fractional calculus theories are combined to form
multiplicative fractional calculus theories. It is therefore important to look at these two theories
independently.

Let us start by talking about the theory of fractional calculus. Fractional calculus is an extension
of classical calculus that is widely used in many scientific and technical domains with a wide range of
applications [2–6]. Nearly every fractional derivative utilized in the literature, including the Riemann-
Liouville, Caputo and Jumarie, Grünwald-Letnikov, Marchaud, and Riesz derivatives cannot satisfy
some fundamental requirements. The conformable derivative, which is a new version of fractional
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calculus, was examined in our work because the derivative is local and behaves better in terms of the
chain rule, the product rule, and the differentiation of a constant function compared to the previous
Riemann-Liouville and Caputo fractional derivatives. Moreover, the definition of the conformable
fractional derivative is simpler and contains no-delay, whereas other fractional derivatives are presented
in terms of kernel integrals. For this reason, in this study, we favor the conformable fractional
derivative. A relatively recent development in the field of fractional calculus, which means the
differentiation and integration of an non-integer order for a given function, is conformable fractional
calculus. Conformable fractional calculus can be applied in many domains, such as mathematical
modeling, signal processing, physics, and engineering, where fractional operators are employed to
characterize systems and phenomena that exhibit non-local behaviors and memory effects. Basic
characteristics and primary findings on fractional derivatives can be found in [7, 8], while further
findings can be found in [4, 9–14].

The multiplicative calculus theory will be discussed next. In [15, 16], Grossman and Katz initially
introduced multiplicative calculus as a substitute for traditional calculus. Geometric calculus is a
subfield of non-Newtonian calculus, also known by the same term. Numerous writers subsequently
provided explanations of the fundamentals of multiplicative calculus, leading to the achievement of
significant outcomes [17–20].

Because of the logarithmic features, this calculus modifies the roles of well-known operations like
division and subtraction. For example, multiplication becomes addition instead of subtraction. In a
roundabout way, it develops additive computations. Even though the application field of this calculus
is rather limited (it only covers positive functions) several challenging issues from the usual calculus
may be set up quite simply in this context. Certain principles in the multiplicative calculus allow for
the definition of each feature in the usual calculus.

The multiplicative derivatives are used to explain many occurrences in which the logarithmic scale
is present. Thus a better physical interpretation of these occurrences may be obtained by substituting
multiplicative calculus for ordinary calculus. In many domains, including chaos theory [21, 22];
biology [23]; engineering [24]; demography, earthquakes [25]; economics [26, 27]; medicine [28];
business [29] and applied mathematics [30–35] this calculus produces better results than the normal
case (see also [36, 37]).

Lastly, the article [1], which inspires us and provides the foundation for the multiplicative fractional
calculus, is cited. Here, some of the characteristics of Riemann, Caputo, and multiplicative CF calculus
is investigated.

From mathematical analysis to physics and engineering, the Sturm-Liouville (SL) operator offers a
strong foundation for deriving solutions to boundary value issues and evaluating differential equations.
It also helps to comprehend the behavior of linear operators. It is a fundamental idea in many branches
of mathematics and science, including spectral theory, mathematical modeling, and quantum physics.
The Schrödinger equation for a quantum system can frequently be expressed as a SL eigenvalue
problem in quantum mechanics. The related quantum states are represented by the eigenfunctions, and
the permitted energy levels of the system are indicated by the eigenvalues. A set of orthogonal functions
with respect to a weight function is formed by the eigenfunctions of Sturm-Liouville operators, and
any function may be expressed in terms of these orthogonal functions. In many branches of analysis
and approximation theory, this feature is essential. As a natural result of these reasons, recent years
have seen a significant increase in interest in SL theory as a promising area of study since it naturally
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arises in tackling several issues in the natural, engineering, physics, and social sciences. Considering
the problems (1.1)–(1.3) form, the α−∗SL problem may be generated by substituting the fractional
derivative for the multiplicative CF derivative. Many writers have implemented this method in a similar
way by substituting the ordinary derivative for the fractional derivative [38–42].

1.3. Preliminaries

This section includes some fundamental definitions and characteristics of the multiplicative,
multiplicative CF, and CF calculus theories. These concepts will be used throughout the remainder
of this study.

Let us first discuss a few of the arithmetic operations we performed throughout the course of
the study. Multiplicative algebraic operations are the arithmetic operations that are performed by
exponential functions. Using the arithmetic table for q, q1, q2 ∈ R

+ below, let us indicate some
characteristics of these operations.

q1 ⊕ q2 = q1 q2, q1 ⊖ q2 =
q1

q2
, q1 ⊙ q2 = qln q2

1 = qln q1
2 , q2G = q ⊙ q = qln q.

Many algebraic structures are constructed by the methods above. Given an operation ⊕ : D×D→ D
for D , ∅ and D ⊂ R+, then (D,⊕) is a ∗ group. Comparably, in the multiplicative sense, (D,⊕,⊙)
defines a ring [43].

Definition 1.1. [7,8] Take the function χ : [a,∞)→ R into consideration. Next, the following defines
left- and right-sided CF derivatives of χ of order α ∈ (0, 1]:

T a
αχ(t) := lim

k→0

χ(t + k(t − a)1−α) − χ(t)
k

,

b
αTχ(t) := − lim

k→0

χ(t + k(b − t)1−α) − χ(t)
k

.

The left-sided CF derivative is denoted by Tα when a = 0. It follows that Tαχ(t) = t1−αχ′(t) if χ is
usually differentiable.

Definition 1.2. [7, 8] Think about the function χ : [0,∞) → R. Next, the following defines left- and
right-sided CF integrals of χ of order α ∈ (0, 1] for t > 0, respectively:

Ia
αχ(t) :=

t∫
a

χ(ζ)dα(ζ, a) =

t∫
a

(ζ − a)α−1χ(ζ)dζ,

bIαχ(t) :=

b∫
t

χ(ζ)dα(b, ζ) =

b∫
t

(b − ζ)α−1χ(ζ)dζ.

Final integrals of these equations are the standard Riemann integrals. The left CF integral is
expressed as Iα when a = 0.
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Definition 1.3. [1] The function χ : R → R+ is under consideration. Next, we define the forward
multiplicative derivative and the backward multiplicative derivative of χ(t), respectively, as follows:

d∗

dt∗
χ(t) = χ∗(t) := lim

h→0

(
χ(t + h)
χ(t)

) 1
h

,

d∗
dt∗

χ(t) = χ∗(t) := lim
h→0

(
χ(t)

χ(t − h)

) 1
h

.

It is simple to demonstrate that

χ∗(n)(t) = χ∗(n)(t) = exp
(

dn

dxn ln χ(t)
)
.

Definition 1.4. [1] Let χ : [a, b] → R+ be considered. Next, we define the forward and backward
multiplicative integrals of χ(ζ) as follows:

b∫
a

χ(ζ)dζ =

b∫
a

χ(ζ)dζ = exp


b∫

a

ln χ(ζ)dζ

 .
Definition 1.5. [1] Let χ : [a, b] → R+. Then, the α ∈ (0, 1] order multiplicative left- and right-sided
CF derivatives of χ, respectively, are determined by

∗T a
αχ(t) := lim

k→0

(
χ(t + k(t − a)1−α)

χ(t)

) 1
k

,

b
αT ∗χ(t) := lim

k→0

(
χ(t + k(b − t)1−α)

χ(t)

)− 1
k

.

Proposition 1.1. [1] For α ∈ (0, 1] and the function χ : [a, b]→ R+,

(i) ∗T a
αχ(t) = exp

{
T a
α ln χ(t)

}
= exp

{
T a
αχ(t)
χ(t)

}
, (1.6)

(ii) b
αT ∗χ(t) = exp

{
b
αT ln χ(t)

}
= exp

{b
αTχ(t)
χ(t)

}
are satisfied.

Definition 1.6. [1] Consider the function χ : [a, b] → R+, α ∈ (n, n + 1] and β = α − n. Then, the
higher order multiplicative left and right CF derivatives of χ, respectively, are defined by

(∗Ta
αχ

)
(t) :=

(
∗T a

βχ
(n)
∗

)
(t) = exp

{
T a
β ln(χ(n)

∗ (t))
}
= exp

{
T a
β

dn

dtn ln(χ(t))
}
,

(
b
αT∗χ

)
(t) :=

(
b
βT
∗χ(n)
∗

)
(t) = exp

{
b
βT ln(χ(n)

∗ (t))
}
= exp

{
b
βT

dn

dtn ln(χ(t))
}
.
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For α ∈ (0, 1] and n ∈ Z+,
∗(n)T a

αχ(t) = ∗T a
α
∗T a

α . . .
∗T a

α︸            ︷︷            ︸
n−times

χ(t),

b
αT ∗(n)χ(t) = b

αT ∗ b
αT ∗ . . .bα T ∗︸            ︷︷            ︸
n−times

χ(t)

define the sequential multiplicative left and right CF derivatives of nth order, respectively.

Definition 1.7. [1] Consider the function χ : [a, b] → R+. Then, the α ∈ (0, 1] order multiplicative
left and right CF integrals of χ, respectively, are defined as follows for t > 0:

(∗Ia
αχ)(t) : =

t∫
a

χ(ζ)d∗α(ζ,a) = exp


t∫

a

ln χ(ζ)dα(ζ, a)


=

t∫
a

χ(ζ)(ζ−a)α−1

dζ = exp


t∫

a

(ζ − a)α−1 ln χ(ζ)dζ

 ,
(1.7)

(b
αI∗χ)(t) : =

b∫
t

χ(ζ)d∗α(b,ζ) = exp


b∫

t

ln χ(ζ)dα(b, ζ)


=

b∫
t

χ(ζ)(b−ζ)α−1

dζ = exp


b∫

t

(b − ζ)α−1 ln χ(ζ)dζ

 .
The multiplicative left CF integral may be expressed as ∗Iα, and d∗α(ζ, a) = d∗αζ for a = 0.

Proposition 1.2. [1] The following properties are satisfied for α ∈ (0, 1] and χ : [a, b]→ R+:

(i) (∗T a
α
∗Ia
αχ)(t) = χ(t), i f χ is continuous,

(ii) (b
αT ∗ b

αI∗χ)(t) = χ(t), i f χ is continuous,

(iii) (∗Ia
α
∗T a

αχ)(t) =
χ(t)
χ(a)

, (1.8)

(iv) (b
αI∗ b

αT ∗ f )(t) =
χ(t)
χ(b)

.

Definition 1.8. [1] Consider the function χ : [a, b] → R+, α ∈ (n, n + 1] and β = α − n. Then, the
higher order multiplicative left and right CF integrals of χ, respectively, are defined by:

(∗Ia
αχ)(t) = aIn+1

∗

(
χ(t)(t−a)β−1)

,

(b
αI∗χ)(t) = ∗In+1

b

(
χ(t)(b−t)β−1)

.

Theorem 1.3. [38] Assume that ξ is CF differentiable of order α ∈ (0, 1] at t and that χ, χ1, χ2 :
[0, b]→ R+ is multiplicative (left) CF differentiable of the same order. For a positive constant c,

(i) τ (cχ) (t) = τχ(t),
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(ii) τ (χ1χ2) (t) = τχ1(t) τχ2(t),

(iii) τ

(
χ1

χ2

)
(t) =

τχ1(t)
τχ2(t)

,

(iv) τ
(
χξ

)
(t) = {τχ(t)}ξ(t) χ(t)Tαξ(t), (1.9)

(v) τ (χ ◦ ξ) (t) = {(τχ) (ξ(t))}Tαξ(t)ξ(t)
α−1
,

(vi) τ (χ1 + χ2) (t) = [τχ1(t)]
χ1(t)

χ1(t)+χ2(t) [τχ2(t)]
χ2(t)

χ1(t)+χ2(t) .

Theorem 1.4. [38] Let χ, χ1, χ2 : [0, b]→ R+ be multiplicative (left) CF integrable of order α ∈ (0, 1]
at ζ. Thus, the following properties are given:

(i)

b∫
0

[
χ(ζ)

]k
d∗αζ =


b∫

0

χ(ζ)d∗αζ


k

, k ∈ R,

(ii)

b∫
0

[
χ1(ζ)χ2(ζ)

]
d∗αζ =

b∫
0

χ1(ζ)d∗αζ

b∫
0

χ2(ζ)d∗αζ ,

(iii)

b∫
0

[
χ1(ζ)
χ2(ζ)

]
d∗αζ
=

b∫
0
χ1(ζ)d∗αζ

b∫
0
χ2(ζ)d∗αζ

,

(iv)

b∫
0

χ(ζ)d∗αζ =

c∫
0

χ(ζ)d∗αζ

b∫
c

χ(ζ)d∗αζ , c ∈ [a, b] is a constant,

(v)

b∫
0

[
τχ1(ζ)

]χ2(ζ)
d∗αζ
=
χ1(b)χ2(b)

χ1(0)χ2(0)


b∫

0

χ1(ζ)Tαχ2(ζ)
d∗αζ


−1

. (1.10)

The last formula is known as integration by parts of α−∗.

Definition 1.9. [38] Let χ : [0, b]→ R+ and α ∈ (0, 1]. The ∗inner product space

∗L2
α[0, b] =

χ :

b∫
0

[
χ(ζ) ⊙ χ(ζ)

]
d∗αζ < ∞

 ,
has

<, >∗: ∗L2
α[0, b] × ∗L2

α[0, b]→ R+,

< χ1, χ2 >∗=

b∫
0

[
χ1(ζ) ⊙ χ2(ζ)

]
d∗αζ ,

where χ1, χ2 ∈
∗L2

α[0, b] are positive functions.
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2. Asymptotic estimates of ∗eigenfunctions

By setting c1/c2 = −h and d1/d2 = H, such that neither h nor H is infinite, the boundary
conditions (1.5) are converted to

(y(a))−h (τy(a)) = 1, (y(b))H (τy(b)) = 1.

Denote the solutions of (1.1) by κ (t, λ) and ς (t, λ) , which satisfy

κ (0, λ) = e, τκ (0, λ) = eh, (2.1)

and
ς (0, λ) = 1, τς (0, λ) = e,

respectively.

Theorem 2.1. Let λ = µ2. The ∗eigenfunctions of the problems (1.1)–(1.3) have the following
asymptotic estimates:

κ(t, λ) = ecos
(
µ tα
α

)
+ h
µ sin

(
µ tα
α

) t∫
0

[
κ(s, λ)q(s) sin

{
µ
(

tα
α −

sα
α

)}] 1
µ

d∗αs
, (2.2)

ς(t, λ) = e
1
µ sin

(
µ tα
α

) t∫
0

[
ς(s, λ)q(s) sin

{
µ
(

tα
α −

sα
α

)}] 1
µ

d∗αs
. (2.3)

Proof. The asymptotic estimate (2.2) will be proved. The same method may be used to get the
asymptotic estimate (2.3).

Since κ(x, λ) satisfies (1.4), we get

t∫
0

[
κ(s, λ)q(s) sin

{
µ
(

tα
α −

sα
α

)}]
d∗αs

=

t∫
0

[{
τ2κ(s, λ)

}sin
{
µ
(

tα
α −

sα
α

)}]
d∗αs

t∫
0

[
κ(s, λ)sin

{
µ
(

tα
α −

sα
α

)}]µ2

d∗αs
.

(2.4)

The equality
t∫

0

[{
τ2κ(s, λ)

}sin
{
µ
(

tα
α −

sα
α

)}]
d∗αs

=
{κ(t, λ)}µ

{τκ(0, λ)}sin(µ tα
α ) {κ(0, λ)}µ cos(µ tα

α )


t∫

0

κ(s, λ)sin
{
µ
(

tα
α −

sα
α

)}
−µ2

d∗αs

,

is produced if the first multiplier on the right side of the last equality is twice subjected to the
α−∗integration by parts (1.10). Then, by considering the conditions (2.1) in (2.4) with the above
relation, this completes the proof. □
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3. Certain spectral characteristics of α−∗SL problem

In this part, we look at a few qualities related to the α−∗SL problem, including self-adjointness,
orthogonality, reality, and simplicity.

Lemma 3.1. (α−∗Lagrange Identity) Let κ, ς ∈ ∗L2
α[0, b]. Thus,

(Lα [κ] ⊙ ς) ⊖ (κ ⊙ Lα [ς]) = τ ([κ, ς]t) , (3.1)

where
[κ, ς]t = (κ(t) ⊙ τς(t)) ⊖ (ς(t) ⊙ τκ(t)) . (3.2)

Proof. Let κ, ς ∈ ∗L2
α[0, b]. From (1.4), we have

(Lα [κ] ⊙ ς) ⊖ (κ ⊙ Lα [ς]) =
({

(τ2κ)−1 κq(t)
}
⊙ ς

)
⊖

(
κ ⊙

{
(τ2ς)−1 ςq(t)

})
=

(
κ ⊙ τ2ς

)
⊖

(
ς ⊙ τ2κ

)
= τ {(κ ⊙ τς) ⊖ (ς ⊙ τκ)} ,

which establishes the outcome. □

Lemma 3.2. (α−∗Green’s Formula) Let κ, ς ∈ ∗L2
α[0, b]. Then,

b∫
0

[(Lα [κ] ⊙ ς) ⊖ (κ ⊙ Lα [ς])]d∗αt = [κ, ς]t

∣∣∣∣∣b
0
. (3.3)

Proof. By multiplicative CF integration on [0, b] on both sides of (3.1), the proof can be readily
demonstrated. □

Theorem 3.3. Formally, on ∗L2
α[0, b] the α−∗SL operator Lα in (1.1) is self-adjoint .

Proof. We obtain
[κ, ς]b = (κ(b) ⊙ τς(b)) ⊖ (ς(b) ⊙ τκ(b))

=

(
{τκ(b)}

−d2
d1 ⊙ τς(b)

)
⊖

(
{τς(b)}

−d2
d1 ⊙ τκ(b)

)
= 1,

from the boundary conditions (1.2). Similarly, we get [κ, ς]0 = 1 from (1.3).
Thus, we get

b∫
0

[(Lα [κ] ⊙ ς) ⊖ (κ ⊙ Lα [ς])]d∗αt =
[κ, ς]b

[κ, ς]0
= 1,

or
< Lα [κ] , ς >∗=< κ,Lα [ς] >∗, (3.4)

by (3.3), which validates the theorem. □

Theorem 3.4. For α−∗SL problems (1.1)–(1.3), all of the eigenvalues are real.
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Proof. Assume that the eigenvalue λ has the eigenfunction κ = κ(t, λ). Thus,

< Lα [κ] , κ >∗=< eλ ⊙ κ, κ >∗= eλ⊙ < κ, κ >∗ (3.5)

and
< κ,Lα [κ] >∗=< κ, eλ ⊙ κ >∗= eλ̄⊙ < κ, κ >∗ . (3.6)

We get
eλ⊙ < κ, κ >∗= eλ̄⊙ < κ, κ >∗ or < κ, κ >λ−λ̄∗ = 1,

from (3.4)–(3.6). κ(t) , 1 is the result of λ = λ̄, which validates the theory. □

Theorem 3.5. For the α−∗SL problems (1.1)–(1.3), the ∗eigenfunctions κ = κ(t, λ1) and ς = ς(t, λ2),
which correspond to the distinct ∗eigenvalues λ1 and λ2, are orthogonal, meaning that

b∫
0

[κ(t, λ1) ⊙ ς(t, λ2)]d∗αt = 1.

Proof. Upon considering Lα [κ] = eλ1 ⊙ κ and Lα [ς] = eλ2 ⊙ ς from (1.4) in the equality (3.4), we get

< eλ1 ⊙ κ, ς >∗=< κ, eλ2 ⊙ ς >∗ or < κ, ς >λ1−λ2
∗ = 1.

Given that λ1 , λ2, < κ, ς >∗= 1. Therefore, we see that κ(t) and ς(t) are orthogonal. □

The α−∗Wronskian of κ(t) and ς(t) will now be defined using the formula (3.2).

Theorem 3.6. Any solution to Eq (1.1) has an α−∗Wronskian that is independent of t.

Proof. Assume that κ(t) and ς(t) are the two solutions of (1.1). By using (3.2), Lα [κ] = eλ ⊙ κ, and
Lα [ς̄] = eλ̄ ⊙ ς̄, we can get

t∫
0

[
κ(x, λ) ⊙ ς(x, µ)

]λ−λ̄
d∗αx =

[κ, ς̄]t

[κ, ς̄]0
.

However, due to λ = λ̄ (obtained using theorem 3.4) and [κ, ς̄]0 = 1, and thus, ∗Wα (κ, ς) (t) =
[κ, ς]t = 1, namely; the α−∗Wronskian is independent of t. □

Theorem 3.7. If the α−∗Wronskian of any two solutions to Eq (1.1) equals one, then the solutions are
multiplicatively linearly dependent.

Proof. If the α−∗Wronskian of any two solutions to the Eq (1.1) equals one, then the solutions are
multiplicatively linearly dependent. Hence,

∗Wα (κ, ς) (t) = [κ, ς]t = (κ(t) ⊙ τς(t)) ⊖ (ς(t) ⊙ τκ(t))

= (ς(t)c ⊙ τς(t)) ⊖ (ς(t) ⊙ τς(t)c) = 1.

On the other hand, κ(t) = ς(t)c since ∗Wα (κ, ς) (t) = 1, meaning that κ(t) and ς(t) are the two
multiplicatively linearly dependent ones. □
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Lemma 3.8. From a geometric perspective, all of the eigenvalues of the α−∗SL problems (1.1)–(1.3)
are simple.

Proof. Consider µ as an eigenvalue with κ(t) and ς(t) as its ∗eigenfunctions.
We obtain ∗Wα (κ, ς) (0) = [κ, ς]0 = 1 by the condition (1.2), which indicates that the set {κ(t), ς(t)}

is linearly dependent. This means that there is a matching one ∗eigenvalue and ∗eigenfunction. □

We now have to explain how we were able to determine the ∗eigenvalues and ∗eigenfunctions of the
given problem. Assume that ϕ1 (·, λ) and ϕ2 (·, λ) are linearly independent solutions of (1.1) that fulfill
the condition

τ j−1ϕi(0, λ) = δ∗i j, i, j = 1, 2,

where δ∗i j =

{
e, i = j
1, i , j

represents the ∗Kronecker delta. Consequently, any solution to Eq (1.1) will

have the following form:
y(t, λ) = ϕ1 (t, λ)A1 ϕ2 (t, λ)A2 ,

where the constants A1 and A2 are independent on t. In this case, the solution given Eq (1.1) will be
the ∗eigenfunction of the associated problem if it provides conditions (1.2) and (1.3). To put it another
way, if a non-trivial solution to

A1 ln U1 (ϕ1) + A2 ln U1 (ϕ2) = 0,
A1 ln U2 (ϕ1) + U2 ln L2 (ϕ2) = 0,

can be found, it will be an ∗eigenfunction, with U1 and U2 specified by (1.5). Thus, λ is an ∗eigenvalue
of the given problem iff

∗∆α(λ) =

∣∣∣∣∣∣ ln U1 (ϕ1) ln U1 (ϕ2)
ln U2 (ϕ1) ln U2 (ϕ2)

∣∣∣∣∣∣ = 0.

In this case, zeros of ∗∆α(λ) are ∗eigenvalues of (1.1)–(1.3), and the function ∗∆α(λ) is referred to as
the α−∗SL characteristic determinant, denoted by (1.1)–(1.3).

Theorem 3.9. For the α−∗SL problems (1.1)–(1.3), all of the eigenvalues are simple zeros of ∗∆α(λ).

Proof. Assume that θ1 (·, λ) and θ2 (·, λ) are given by the following equalities:

θ1 (t, λ) =
[
U1 (ϕ2) ⊙ ϕ1 (t, λ)

]
⊖

[
U1 (ϕ1) ⊙ ϕ2 (t, λ)

]
, (3.7)

θ2 (t, λ) =
[
U2 (ϕ2) ⊙ ϕ1 (t, λ)

]
⊖

[
U2 (ϕ1) ⊙ ϕ2 (t, λ)

]
. (3.8)

According to this definition, they can be written as

θ1 (t, λ) =
[
(ϕ2(0))c1 (τϕ2(0))c2

]ln ϕ1(t,λ)[
(ϕ1(0))c1 (τϕ1(0))c2

]ln ϕ2(t,λ) ,

and

θ2 (t, λ) =

[
(ϕ2(b))d1 (τϕ2(b))d2

]ln ϕ1(t,λ)[
(ϕ1(b))d1 (τϕ1(b))d2

]ln ϕ2(t,λ) .
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Consequently, the below conditions are satisfied.

θ1 (0, λ) = ec2 , τθ1 (0, λ) = e−c1 ,

θ2 (b, λ) = ed2 , τθ2 (b, λ) = e−d1 .
(3.9)

However, if we use the α−∗Wronskian definition, we have

∗Wα(θ1 (t, λ) , θ2 (t, λ)) = {∗Wα(ϕ1 (t, λ) , ϕ2 (t, λ))}
∗∆α(λ)

= e
∗∆α(λ). (3.10)

For the problems (1.1)–(1.3), let λ̃ be an ∗eigenvalue. As ∗eigenfunctions with multiplicative linear
dependence, θ1

(
t, λ̃

)
and θ2

(
t, λ̃

)
are obtained from (3.10). Thus,

θ1

(
t, λ̃

)
= θ2

(
t, λ̃

)ξ
,

is satisfied by the existence of a nonzero constant, ξ. Hence, by (3.8) and (3.9), we arrive at

θ1

(
b, λ̃

)
= θ2 (b, λ)ξ , τθ1

(
b, λ̃

)
= τθ2 (b, λ)−ξ .

By setting κ(t) = θ1 (t, λ), ς(t) = θ1

(
t, λ̃

)
and (3.3), we get

b∫
0

[
θ1 (t, λ) ⊙ θ1

(
t, λ̃

)]λ−λ̄
d∗αt
= ∗∆ξα(λ).

Since ∗∆α(λ) is an ∗entire function of λ, we arrive at

∗∆∗α

(
λ̃
)
= lim

λ→λ̃
(∗∆α (λ))

1
λ−λ̃ =

b∫
0

[
θ1 (t, λ) ⊙ θ1

(
t, λ̃

)] 1
ξ

d∗αt
, 1,

where ∗∆∗α
(
λ̃
)

is the multiplicative derivative of ∗∆α
(
λ̃
)
. Hence, λ̃ is a simple zero of ∗∆α(λ). □

4. α−∗Green’s function

This part will describe α−∗Green’s function for non-homogeneous α−∗SL and list some of its
characteristics. We take up the problem

(τ2y)−1yq(t)−λ = e f (t), (4.1)

with the condition (1.5), where q(t) is real-valued continuous and multiplicative conformable fractional
integrable function on [0, b]; λ is a spectral parameter; α ∈ (0, 1];

(
c2

1 + c2
2

) (
d2

1 + d2
2

)
, 0, ci, di ∈ R

(i = 1, 2), f (t) ∈ ∗L2
α[0, b].

Theorem 4.1. Let us admit that λ is not an eigenvalue of the problems (4.1) and (1.5). In addition,
ψ (·, λ) satisfies Eq (4.1) and the boundary conditions (1.5). Then,

ψ (x, λ) =

b∫
0

(
∗Gα(x, ζ, λ) ⊙ e f (ζ)

)
d∗αζ
, ζ ∈ [0, b] , (4.2)
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where ∗Gα(x, ζ, λ) is α−∗Green’s function for (4.1), (1.5) defined by

∗Gα(x, ζ, λ) = e
−1
∗∆α(λ) ⊙

{
θ1(ζ, λ) ⊙ θ2(x, λ), 0 ≤ ζ ≤ x
θ1(x, λ) ⊙ θ2(ζ, λ), x ≤ ζ ≤ b

. (4.3)

On the other hand, the problems (4.1) and (1.5) are satisfied by the function φ (·, λ) as stated by (4.2).
Moreover, ∗Gα(x, ζ, λ) is unique. Here, θ1 and θ2 are multiplicative linearly independent solutions of
the problems (1.1)–(1.2) and (1.1)–(1.3), respectively.

Proof. The α−∗Green’s function definition leads us to

∗Gα(x, ζ, λ) ⊙ e f (ζ) =


{
θ1(ζ) f (ζ)

}ln θ2(x) −1
∗∆α(λ) , 0 ≤ ζ ≤ x

{
θ2(ζ) f (ζ)

}ln θ1(x) −1
∗∆α(λ) , x ≤ ζ ≤ b

. (4.4)

From (4.2), performing multiplicative CF integration of (4.4) with regard to ζ on [0, b], we get

ψ (x, λ) =


x∫

0

[
θ1(ζ) f (ζ)

]
d∗αζ


− ln θ2(x)
∗∆α(λ)


b∫

x

[
θ2(ζ) f (ζ)

]
d∗αζ


− ln θ1(x)
∗∆α(λ)

. (4.5)

Now, we get

τ2ψ(x, λ) =


x∫

0

[
θ1(ζ) f (ζ)

]
d∗αζ


−T2
α ln θ2(x)
∗∆α(λ)


b∫

x

[
θ2(ζ) f (ζ)

]
d∗αζ


−T2
α ln θ1(x)
∗∆α(λ)

× [∗Wα (θ1, θ2) (x)]−
f (x)
∗∆α(λ) ,

after the twice multiplicative CF derivative with regard to x on both sides of the Eq (4.5). Then, since
θ1(x) and θ2(x) are solutions of Eq (1.1), from (3.10), we obtain

τ2ψ(x, λ) =


x∫

0

[
θ1(ζ) f (ζ)

]
d∗αζ


−(q(x)−λ) ln θ2(x)

∗∆α(λ)


b∫
x

[
θ2(ζ) f (ζ)

]
d∗αζ


−(q(x)−λ) ln θ1(x)

∗∆α(λ)

= {ψ(x, λ)}(q(x)−λ) e− f (x).

So, this proves the validity of (4.1) for ψ(x, λ) defined by (4.2).
Let us now demonstrate the uniqueness of α−∗Green’s function for the problems (4.1) and (1.5).

Admittedly, for the identical issue, there exists another α−∗Green’s function ∗G̃α(x, ζ, λ). Then,

ψ (x, λ) =

b∫
0

[
∗Gα(x, ζ, λ) ⊙ e f (ζ)

]
d∗αζ

and

ψ (x, λ) =

b∫
0

[
∗G̃α(x, ζ, λ) ⊙ e f (ζ)

]
d∗αζ
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are obtained. Thence, we get the by multiplicative subtraction

b∫
0

[{
∗Gα(x, ζ, λ) ⊖ ∗G̃α(x, ζ, λ)

}
⊙ e f (ζ)

]
d∗αζ
= 1

all functions f (x) ∈ ∗L2
α[0, b]. By establishing f (x) = ln

(
∗Gα(x, ζ, λ) ⊖ ∗G̃α(x, ζ, λ)

)
, we get

b∫
0

[
∗Gα(x, ζ, λ) ⊖ ∗G̃α(x, ζ, λ)

]2G

d∗αζ
= 1,

and in this case,
∗Gα(x, ζ, λ) ⊖ ∗G̃α(x, ζ, λ) = 1.

Finally, we obtain
∗Gα(x, ζ, λ) = ∗G̃α(x, ζ, λ).

□

Theorem 4.2. The features of α−∗Green’s function in (1.1)–(1.3) are as follows:
(i) ∗Gα(x, ζ, λ) is continuous at (0, 0) .
(ii) ∗Gα(x, ζ, λ) = ∗Gα(ζ, x, λ).
(iii) For any x ∈ R as a function of t, ∗Gα(x, ζ, λ) fulfills (1.2), (1.3), and Eq (1.1).
(iv) Consider an eigenvalue of ∗∆α (λ) to be λ0. Hence,

∗Gα(x, ζ, λ) =
[
ψ0(x)−ψ0(ζ)

] 1
λ−λ0 ∗Ğα(x, ζ, λ),

and λ0 is the simple pole point of ∗Gα(x, ζ, λ). In this case, for λ in the neighborhood of λ0, ∗Ğα(x, ζ, λ)
is a type of holomorphic function. The normalized eigenfunction associated with λ0 is ψ.

Proof. (i) For any λ ∈ C, continuity of θ1 (., λ) and θ2 (., λ) gives proof.
Then, if some fundamental concepts from multiplicative CF calculus are used, (ii) and (iii) may be

demonstrated with ease.
(iv) Assume that ∗R(x, ζ) is the residue of ∗Gα(x, ζ, λ) at λ = λ0 and that λ0 is the pole point of

∗Gα(x, ζ, λ). Then, we get

∗R(x, ζ) = ψ0(x, λ0)−ψ0(ζ,λ0).

The proof is finished. □

Now, we give an example to illustrate the validity of the main results.

Example 4.1. Let us consider the below α−∗SL:

(τ2y)−1 = yλ, x ∈ [0, 1] , (4.6)

U1 (y) := y(0) = 1, U2 (y) := τy(1) = 1. (4.7)
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It is clear that the functions
ϕ1 (t, λ) = ecos

(√
λ tα
α

)
,

ϕ2 (t, λ) =


e

sin
(√

λ tα
α

)
√
λ , λ , 0

e
tα
α , λ = 0

are solutions of (4.6) [1, 40, 44]. Moreover, from (3.7), (3.8), we have

θ1 (t, λ) =
[
U1 (ϕ2) ⊙ ϕ1 (t, λ)

]
⊖

[
U1 (ϕ1) ⊙ ϕ2 (t, λ)

]
=

[
ϕ2 (0) ⊙ ϕ1 (t, λ)

]
⊖

[
ϕ1 (0) ⊙ ϕ2 (t, λ)

]
= e−

sin
(√

λ tα
α

)
√
λ

and
θ2 (t, λ) =

[
U2 (ϕ2) ⊙ ϕ1 (t, λ)

]
⊖

[
U2 (ϕ1) ⊙ ϕ2 (t, λ)

]
=

[
τϕ2 (1) ⊙ ϕ1 (t, λ)

]
⊖

[
τϕ1 (1) ⊙ ϕ2 (t, λ)

]
= ecos

( √
λ
α

)
cos

(√
λ tα
α

)
+sin

( √
λ
α

)
sin

(√
λ tα
α

)

= ecos
( √

λ
α (1−tα)

)
respectively. Furthermore, we give the α−∗SL characteristic determinant

∗∆α(λ) =

∣∣∣∣∣∣ ln U1 (ϕ1) ln U1 (ϕ2)
ln U2 (ϕ1) ln U2 (ϕ2)

∣∣∣∣∣∣ = cos
 √λ
α

.
So, zeros of cos

( √
λ
α

)
are ∗eigenvalues of (4.6) and (4.7).

Hence, α−∗Green’s function is obtained by

∗Gα(x, ζ, λ) = e
−1
∗∆α(λ) ⊙

{
θ1(ζ, λ) ⊙ θ2(x, λ), 0 ≤ ζ ≤ x
θ1(x, λ) ⊙ θ2(ζ, λ), x ≤ ζ ≤ 1

= e
−1

cos
( √

λ
α

)
⊙

 e−
sin

(
√
λ
ζα

α

)
√
λ ⊙ ecos

( √
λ
α (1−xα)

)
, 0 ≤ ζ ≤ x

e−
sin

(√
λ xα
α

)
√
λ ⊙ ecos

( √
λ
α (1−ζα)

)
, x ≤ ζ ≤ 1

=


e

sin
(
√
λ
ζα

α

)
cos

( √
λ
α (1−xα)

)
√
λcos

( √
λ
α

)
, 0 ≤ ζ ≤ x

e

sin
(√

λ xα
α

)
cos

( √
λ
α (1−ζα)

)
√
λcos

( √
λ
α

)
, x ≤ ζ ≤ 1.

5. Conclusions

The multiplicative conformable Sturm-Liouville problem was established. In reality, this problem
is a fractional extension of the Sturm-Liouville problem in multiplicative form for the situation
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α = 1 [36]. Initially, we were able to derive the ∗eigenfunctions of the problem. We later demonstrated
that the ∗eigenfunctions are orthogonal in ∗L2

α[0, b]-space and that the ∗eigenvalues are real and simple.
Green’s function was established for the multiplicative case. We believe that this problem will
greatly contribute to mathematical physics in multiplicative situations, since it is of utmost importance
for quantum physics and effective in both fractional and classical cases. As it turns out, the problem
we looked at in the multiplicative case matches one that requires a lot more work and effort to evaluate
in fractional or classical calculus. The significance of the outcomes and the many calculations we
employed were amplified in this case.
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10. T. Gülşen, E. Yilmaz, H. Kemaloǵlu, Conformable fractional Sturm-Liouville equation and some
existence results on time scales, Turk. J. Math., 42 (2018), 1348–1360. https://doi.org/10.3906/mat-
1704-120

11. J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun.
Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027

12. M. D. Ortigueira, J. A. T. Machado, What is a fractional derivative?, J. Comput. Phys., 293 (2015),
4–13. https://doi.org/10.1016/j.jcp.2014.07.019

13. R. Kumar, S. Kumar, S. Kaur, S. Jain, Time fractional generalized Korteweg-de Vries equation:
Explicit series solutions and exact solutions, J. Frac. Calc. Nonlinear Sys., 2 (2021), 62–77.
https://doi.org/10.48185/jfcns.v2i2.315

14. R. Ferreira, Generalized discrete operators, J. Frac. Calc. Nonlinear Sys., 2 (2021), 18–23.
https://doi.org/10.48185/jfcns.v2i1.279

15. M. Grossman, An introduction to Non-Newtonian calculus, Int. J. Math. Educ. Sci. Technol., 10
(1979), 525–528. https://doi.org/10.1080/0020739790100406

16. M. Grossman, R. Katz, Non-Newtonian calculus, Pigeon Cove, MA: Lee Press, 1972.

17. A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications, J. Math.
Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081

18. A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. Appl. Eng. Math., 1
(2011), 75–85.

19. K. Boruah, B. Hazarika, G-calculus, TWMS J. Appl. Eng. Math., 8 (2018), 94–105.

20. D. A. Stanley, A multiplicative calculus, Primus IX, 9 (1999), 310–326.

21. D. Aniszewska, Multiplicative Runge-Kutta methods, Nonlinear Dyn., 50 (2007), 265–272.
https://doi.org/10.1007/s11071-006-9156-3

22. D. Aniszewska, M. Rybaczuk, Chaos in multiplicative systems, Chaotic Syst., 2010, 9–16.
https://doi.org/10.1142/9789814299725_0002

23. A. E. Bashirov, G. Bashirova, Dynamics of literary texts and diffusion, Online J. Commun. Media
Technol., 1 (2011), 60–82.

24. A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyapici, On modeling with multiplicative differential
equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-
2767-6

AIMS Mathematics Volume 9, Issue 8, 22794–22812.

https://dx.doi.org/https://doi.org/10.1016/j.cam.2014.10.016
https://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
https://dx.doi.org/https://doi.org/10.1515/math-2015-0081
https://dx.doi.org/https://doi.org/10.3906/mat-1704-120
https://dx.doi.org/https://doi.org/10.3906/mat-1704-120
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2010.05.027
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.07.019
https://dx.doi.org/https://doi.org/10.48185/jfcns.v2i2.315
https://dx.doi.org/https://doi.org/10.48185/jfcns.v2i1.279
https://dx.doi.org/https://doi.org/10.1080/0020739790100406
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2007.03.081
https://dx.doi.org/https://doi.org/10.1007/s11071-006-9156-3
https://dx.doi.org/https://doi.org/10.1142/9789814299725_0002
https://dx.doi.org/https://doi.org/10.1007/s11766-011-2767-6
https://dx.doi.org/https://doi.org/10.1007/s11766-011-2767-6


22811

25. A. Benford, The Law of anomalous numbers, Proc. Am. Phil. Soc., 78 (1938), 551–572.

26. M. Cheng, Z. Jiang, A new class of production function model and its application, J. Syst. Sci. Inf.,
4 (2016), 177–185. https://doi.org/10.21078/JSSI-2016-177-09

27. D. Filip, C. Piatecki, A non-Newtonian examination of the theory of exogenous economic growth,
Math. Aeterna, 4 (2014), 101–117.

28. L. Florack, H. van Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging
Vis., 42 (2012), 64–75. https://doi.org/10.1007/s10851-011-0275-1
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