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Abstract: Local discovery plays an important role in Bayesian networks (BNs), mainly addressing
PC (parents and children) discovery and MB (Markov boundary) discovery. In this paper, we
considered the problem of large local discovery. First, we focused on an assumption about conditional
independence (CI) tests: We explained why it was unreasonable to assume all CI tests were reliable
in large local discovery, studied how the power and reliability of CI tests changed with the data size
and the number of degrees of freedom, and then modified the assumption about CI tests in a more
reasonable way. Second, we concentrated on improving local discovery algorithms: We posed the
problem of premature termination of the forward search, analyze why it arose frequently in large
local discovery when implementing the existing local discovery algorithms, put forward an idea of
preventing the premature termination of forward search called information connection (IC), and used
IC to build a novel algorithm called ICPC; the theoretical basis of ICPC was detailedly presented. In
addition, a more steady incremental algorithm as the subroutine of ICPC was proposed. Third, the
way of breaking ties among equal associations was considered and optimized. Finally, we conducted
a benchmarking study by means of six synthetic BNs from various domains. The experimental results
revealed the applicability and superiority of ICPC in solving the problem of premature termination of
the forward search that arose frequently in large local discovery.
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1. Introduction

Bayesian networks (BNs) are graphical structures used to represent the probabilistic relations
among a number of variables [1, 2]. In recent years, BNs are becoming one of the most powerful tools
in encoding uncertain knowledge in expert systems [3, 4]; they have been widely used in many actual
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domains such as medical diagnosis, financial analysis, bioinformatics, and industrial applications [5].
There are three components in a BN denoted by (G,P): (a) Graphical component: G is a directed

acyclic graph (DAG); (b) probabilistic component: P is a set of conditional probability distributions
with respect to every node conditioned on its parents; (c) Markovianity: G and P are supposed to
satisfy the Markov condition: Every node is conditionally independent of its nondescendants given
its parents. This means that structure learning and parameter learning are two primary subtasks of
capturing a complete BN from data. This paper focuses on local structure learning.

Local structure learning mainly addresses two types of local discovery for a target variable, T : One
is to discover the set of parents and children (PC) of T , and the other is to find a Markov boundary (MB)
of T . Here, an MB of T is a minimal variable set that renders T independent of all other variables.
Under the faithfulness condition, all the PC and spouses of T constitute its unique MB. This paper
mainly focuses on large PC and MB discovery.

PC discovery is the most critical technique used for the divide-and-conquer local-to-global strategy
for learning BNs [6–9], while MB discovery plays a central role in feature selection [10,11] as well as
in the local-to-global strategy for learning Markov networks or moralized BNs [12]. Pearl [1] showed
that the conditional probability for T given other variables coincides with the one with an MB as the
conditional set. Pellet and Elisseeff [13] proved an MB is the theoretically optimal set of features under
the faithfulness condition. Further, under certain assumptions about the learner and the loss function,
MB is the solution to the feature selection problem [14–16]. This is why local discovery techniques
are receiving more and more attention in recent years [17–19].

In the literature, there have been lots of independence-based (or called constraint-based) approaches
for local discovery. Each of these algorithms requires a number of conditional independence (CI)
tests to identify the members of the PC or MB. When the PC or MB of a target is not large, these
algorithms are often enough for practitioners. However, in the case of large PCs or MBs, the existing
local discovery algorithms may not effectively return the expected results due to the unreliability of
some CI tests. This paper addresses how to effectively deal with large local discovery problems.

The remainder of this paper is organized as follows. Section 2 poses three problems as the
motivation of this paper. Section 3 addresses an assumption about the reliability of CI tests and
provides a more reasonable modification. In Section 4, a novel information connection (IC) based
algorithm called ICPC is proposed to overcome the problem of premature termination of the forward
search. Section 5 presents a new way of breaking the possible ties. A benchmarking study is conducted
in Section 6. Section 7 concludes this paper and makes some discussions. The appendices provide
proofs for theoretical results and also the list of all acronyms.

2. Motivation

This section poses three problems (denoted by Pi for i = 1, 2, 3, respectively) around the
shortcomings of independence-based local discovery algorithms. They are the motivation of this paper.

Assumption 1. Assume all CI tests are reliable. Denote this assumption by A1.

Problem P1 concerns the unreliability of CI tests with large conditional sets, especially when
the data size is comparatively small. This well-known problem is common to all independence-
based algorithms [10], meaning that the commonly used assumption, A1, is unreasonable. For a
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local discovery algorithm, when there are some unreliable CI tests involved and thus A1 is violated,
some true positives (TPs) may become false negatives (FNs), while some true negatives (TNs) may
become false positives (FPs). Note that the unreliability of CI tests may lead to spurious information
equivalence [16, 20, 21].

The above analysis motivates us: (a) To modify the assumption A1 in a reasonable way; (b) to build
a more efficient local discovery algorithm that can output as many TPs as possible and as few FPs as
possible under the modified assumption. Note that the quality of statistical decisions is not fixed by
the correctness of an independence-based algorithm. This inspires us to take the quality of statistical
decisions into account when dealing with (a) and (b).

Problem P2 concerns the premature termination of the forward search; it is an inherent consequence
of the first problem. To be intuitive, we provide the following Example 1, by which we find the
detection of true dependencies becomes harder and harder as the conditional set size increases. In
Section 3, we will explain why this phenomenon happens.

Example 1. Consider the six BNs used in Section 6. For each BN and for every case of the conditional
set size (denoted by q for convenience), we randomly select 30 true dependencies with nearly the same
theoretical degrees of freedom; Figure 1 presents the results, in which each value is averaged over the
corresponding 30 true dependencies for every case of q. By the figure, the power of CI tests declines
sharply with q, almost closing to zero when q > 9 for any case.

This example indicates that a seemingly very large data size may be not large enough for detecting
true dependencies. As a consequence of data insufficiency, a local discovery algorithm may not include
all TPs and thus cannot effectively exclude all FPs. This motivates us to seek a feasible method to
prevent or alleviate the premature termination of the forward search.

Problem P3 concerns the way of breaking ties. As we know, in the growing phase of a local
discovery algorithm, there is usually a re-ordering procedure by means of an association function, fD.
Here, the most widely used selection for fD is the negative p-value in conjunction with Pearson’s χ2

test or the log-likelihood ratio G2 test [7–9, 16, 22]. This paper uses the G2 test. The use of fD is an
efficient dynamic heuristic. In the meanwhile, it may also lead to some ties in the sense that two or
more variables have the largest association with the target mainly because (i) the test statistics are very
large such that all the related association values are set to be 0, or (ii) the dataset is insufficient such
that these association values happen to be identical. In the literature, the ties are often simply broken
at random [10, 23]. However, this way of breaking ties does not consider the case that the selected
variable may be an FP; if this is the case, it will lower the quality of the subsequent CI tests. Therefore,
it is meaningful to seek some heuristic or optimized criterion, and then use it to guide the way of
breaking ties rather than simply breaking ties at random.
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Figure 1. An illustration on the power of CI tests versus the conditional set size.
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3. Two algorithmic aspects

This section addresses a part of the problem P1 posed in Section 2: How to modify the assumption
A1 in a reasonable way. We use the G2 test in this paper. In addition, the negative p-value as an
association function will be briefly discussed in this section.

For convenience, we collect the main symbols used in this paper and list them in Table 1.

Table 1. Main symbols with descriptions.

Symbol Description
(G,P) A BN with G and P as its graphical and probabilistic components
Pi (i = 1, 2, 3) Three problems constituting the motivation of this paper
Ai (i = 1, 2, 3) Three assumptions presented in Section 2 and Section 3
D A data set containing n data instances
X y Y | Z X and Y are conditionally independent given Z
X yD Y | Z X and Y are deemed to be conditionally independent given Z based onD
X 6y Y | Z X and Y are conditionally dependent given Z
X 6yD Y | Z X and Y are deemed to be conditionally dependent given Z based onD
I(X; Y | Z) Conditional mutual information between X and Y given Z assumed to be a random variable with

I(X; Y | Z) ∼ g(τ) ,
{

g+(τ), τ > 0
δ(τ/g0) = g0 · δ(τ), τ = 0

where g+(τ) is a nonnegative integrable function on τ ∈ (0,+∞); g0 = 1 −
∫ +∞

0
g+(τ)dτ ∈ (0, 1); δ(τ)

is the Dirac δ-function
ID(X; Y | Z) Empirical estimate of I(X; Y | Z) based onD
G2
D

(X; Y | Z) G2 statistic defined as G2
D

(X; Y | Z) , 2n · ID(X; Y | Z)
pD(X; Y | Z) p-value defined as pD(X; Y | Z) , P{χ2(r) > G2

D
(X; Y | Z)}

fD(X; Y | Z) Association function taken as the negative p-value: fD(X; Y | Z) , −P{χ2(r) > G2
D

(X; Y | Z)}
χ2(r) Central χ2-variate with r degrees of freedom
fr(x) Probability density function of χ2(r)
Fr(x) Cumulative distribution function of χ2(r)
χ2
α(r) Upper α-quantile of χ2(r)
χ2(r, δ) Noncentral χ2-variate with r degrees of freedom and the noncentrality parameter δ
fr,δ(x) Probability density function of χ2(r, δ)
Fr,δ(x) Cumulative distribution function of χ2(r, δ)
α Significance level used to making CI tests, taken as 0.001 in the experiment of this paper
r Number of the theoretical degrees of freedom of a G2 statistic
δ Noncentrality parameter of the G2 statistic, G2

D
(X; Y | Z), defined as δ , 2n · I(X; Y | Z)

rn Number of the valid degrees of freedom based on the dataD

〈X; Y | Z〉 Random variable in the sense of 〈X; Y | Z〉 =

{ 1, if X y Y | Z
0, if X 6y Y | Z

Ey True independence defined as Ey , “X y Y | Z′′ = “〈X; Y | Z〉 = 1′′
E 6y True dependence defined as E6y , “X 6y Y | Z′′ = “〈X; Y | Z〉 = 0′′

〈X; Y | Z〉D Random variable in the sense of 〈X; Y | Z〉D =

{ 1, if X yD Y | Z
0, if X 6yD Y | Z

EyD Tested independence defined as EyD , “X yD Y | Z′′ = “pD(X; Y | Z) > α′′ = “〈X; Y | Z〉D = 1′′
E 6yD Tested dependence defined as E6yD , “X yD Y | Z′′ = “pD(X; Y | Z) 6 α′′ = “〈X; Y | Z〉D = 0′′
kmax A parameter of GLL used to place an absolute limit on the conditional set size, taken as 3 in this paper
PAT Parents of T
CHT Children of T
PCT Parents and children of T : PCT , PAT ∪ CHT
SPT Spouses of T
MBT MB of T with MBT = PCT ∪ SPT under the faithfulness condition
TPCT Any available tentative PC of T that is a superset of PCT
EPCT Extended PCT defined by Aliferis et al. [8] as EPCT , PCT ∪ {X ∈ V \ PCT \ {T } : T 6y X | Z, ∀Z ⊆ PCT }

MB
(Y)
T Y-EMB of T in the sense that it is an MB of T in V \ {Y}

Mi (i = 1, 2) Information flow metaphor of Cheng et al. [24] and our extended information flow metaphor
A × B Cartesian product of A and B employed in Eq. (5.1)
Γ(·) Gamma function defined as Γ(α) ,

∫ +∞

0
e−x xα−1dx
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3.1. CI test

Denote now X y Y | Z (resp., X 6y Y | Z) if X and Y are conditionally independent (resp.,
dependent) given Z, and denote the conditional mutual information between X and Y given Z by
I(X; Y | Z). It is well-known that I(X; Y | Z) > 0, with equality holding if and only if X y Y | Z.
For a practical problem, we cannot access to the true value of I(X; Y | Z); instead, we use its empirical
estimate, namely, ID(X; Y | Z), based on the dataD as Cheng et al. did [24]. Note that ID(X; Y | Z) > 0
also holds for any X, Y, and Z.

For X, Y, and Z, G2 test tries to determine if the null hypothesis, X y Y | Z, holds for the
significance level α (taken as 0.001 in the experiment of this paper). Let n be the data size.
Then, the G2 statistic is defined as G2

D
(X; Y | Z) , 2n · ID(X; Y | Z), which approximates to a

noncentral χ2-variate with r , (rX − 1)(rY − 1)rZ theoretical degrees of freedom and the noncentrality
parameter δ , 2n · I(X; Y | Z). Here, rξ is the number of configurations for ξ [25–27]. That is,
G2
D

(X; Y | Z) �∼ χ2(r, δ). If the null hypothesis holds, G2
D

(X; Y | Z) �∼ χ2(r). Denote the corresponding
p-value by pD(X; Y | Z) , P{χ2(r) > G2

D
(X; Y | Z)}. Then, the G2 test concludes X yD Y | Z if

pD(X; Y | Z) > α, and asserts X 6yD Y | Z if pD(X; Y | Z) 6 α. Accordingly, the negative p-value is
used as the association function, fD. That is, fD(X; Y | Z) , −P{χ2(r) > G2

D
(X; Y | Z)}.

In practical situations, D may not be large enough for testing X y Y | Z in the sense that there are
some invalid cells (low expected counts) in the associated contingency table, as Cochran [28, p. 420]
recommended about the working rules for the G2 test. For this case, many authors have considered
some improvements by adjusting G2 [29–32]. Brin et al. [33] and Silverstein et al. [34] used two
heuristic “solutions” as follows: (i) Simply ignore the invalid cells when calculating G2; and (ii) use
the contingency table support.

Let the number of valid degrees of freedom based on D be rn. Although rn is actually unknown, it
is clear that rn 6 r, with inequality holding whenD is insufficient for this CI test. In what follows, we
assume rn is increasing with n in the probabilistic sense.

Denote the upper α-quantile of χ2(r) by χ2
α(r), and

Ey , “X y Y | Z′′, EyD , “X yD Y | Z′′ = “G2
D

(X; Y | Z) 6 χ2
α(r)′′ = “pD(X; Y | Z) > α′′,

E 6y , “X 6y Y | Z′′, E 6yD , “X 6yD Y | Z′′ = “G2
D

(X; Y | Z) > χ2
α(r)′′ = “pD(X; Y | Z) 6 α′′.

(3.1)

Note that we have treated the truth of the hypothesis “X y Y | Z” as a binary random variable located in
a meta-space representing all possible independencies in the domain, as Bromberg and Margaritis [22,
p. 305] did. Also, this treatment coincides with the viewpoint of Aliferis et al. [9, p. 249] that
statistical reliability of a single test is a misleading concept in the context of complex independence-
based algorithms. With these notations, we show the following theorem in Appendix A.1.

Theorem 1. [Power and Reliability of CI Tests] AssumeD is an insufficient dataset. Then, we have

a) P
(
EyD |Ey,D

)
is decreasing with n and increasing with r.

b) P
(
E6yD |E 6y,D

)
is increasing with n and decreasing with r.

c) P
(
Ey |EyD ,D

)
is increasing with n and decreasing with r.

d) P
(
E 6y |E 6yD ,D

)
is decreasing with n and increasing with r. �

In what follows, we discuss Theorem 1 and then modify the assumption A1 in a reasonable way. For
convenience, we call aD-based CI test with the null hypothesis (i.e., “y”) as its decision to be a “yD-
test”, and call a test with the alternative hypothesis (i.e., “ 6y”) as its decision a “6yD-test”. According to
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Theorem 1, there are two factors influencing the power and reliability of CI tests: One is the data size,
n, and the other is the number of theoretical degrees of freedom, r. Further, Theorem 1 in conjunction
with Lemma 2 indicates the following conclusions:

• Power of CI tests: On the one hand, the type-I error is not larger than α since

rn 6 r ⇒ P
(
E 6yD |Ey,D

)
= 1 − Frn

(
χ2
α(r)

)
6 1 − Fr

(
χ2
α(r)

)
= α

⇒ P
(
EyD |Ey,D

)
> 1 − α.

This means almost all true independencies can be correctly detected in any case of the data size.
On the other hand, the type-II error P(EyD |E 6y,D) increases when n decreases or r increases. This
explains the phenomenon shown in Example 1 that the detection of true dependencies becomes
harder and harder when (i) the data size decreases, or (ii) the conditional set size increases.
This also explains why non-PC-based algorithms such as InterIAPC and InterIAMB become
inefficient and even invalid when used for large local discovery. In comparison, the PC-based
algorithms such as GLL and PCMB possess better performance in resisting this kind of violation
but still inevitably become invalid if the PCs or MBs are large enough.
• Reliability of CI tests: Note that limn→∞ Frn, 2nτ

(
χ2
α(r)

)
= 0 and limn→∞ Frn

(
χ2
α(r)

)
= 1 − α.

Employing (d) of Theorem 1 and Eq (A.7) of Appendix A.1, we have

P
(
E 6y |E6yD ,D

)
> lim

n→∞

[
1 +

( 1
g0

∫ +∞

0
g+(τ)

1 − Frn, 2nτ
(
χ2
α(r)

)
1 − Frn

(
χ2
α(r)

) dτ
)−1]−1

=
1 − g0

1 − (1 − α)g0
.

Here, this lower bound of P(E 6y |E6yD ,D) is near to 1, revealing that most of 6yD-tests are reliable
in the probabilistic sense, especially when the data size is small. Consequently, it is reasonable to
assume “all 6yD-tests are reliable”.

Conversely, (c) of Theorem 1 implies the reliability of yD-tests decreases when n decreases or r
increases. Moreover, noting limτ→0+ χ2

α(rn, 2nτ) < χ2
α(r) and limτ→+∞ χ

2
α(rn, 2nτ) > χ2

α(r) since
r > rn, there must be some τr,n > 0 such that χ2

α(rn, 2nτr,n) = χ2
α(r). Then, Frn, 2nτ

(
χ2
α(r)

)
> 1 − α

holds for any τ ∈ (0, τr,n). Putting gr,n ,
∫ τr,n

0
g+(τ)dτ, it follows from Eq (A.6) that

P
(
Ey |EyD ,D

)
<

(
1 +

1
g0

∫ τr,n

0
g+(τ)

Frn, 2nτ
(
χ2
α(r)

)
Frn

(
χ2
α(r)

) dτ
)−1

<
(
1 +

(1 − α)gr,n

g0

)−1

,

in which the upper bound will approximate to g0 if r is large enough (corresponds to the case
that all CI-tests become yD-tests). Consequently, it is unreasonable to assume “all yD-tests are
reliable”. This is the key of modifying A1.

By the above analysis, the fewer instances in D or the more cells in the contingency table, the less
reliable yD-tests are, and thus the more reliable 6yD-tests are. Combined with the idea of heuristic
power size (hps) employed by Aliferis et al. [8, 9] and the heuristic suggested by Yaramakala [35] that
“we add variables as long as the CI tests are reliable enough”, we modify A1 to A2 as follows:

Assumption 2. The assumption A2 contains two parts: (a) All 6yD-tests are reliable; (b) all yD-tests
are reliable except for the following case: If a yD-test “X yD Y | Z” with r degrees of freedom is

AIMS Mathematics Volume 9, Issue 8, 22743–22793.



22750

incompatible to another ` (> 1) yD-tests “Xi yD Yi | Zi” (i = 1, · · · , `) with at most r0 degrees of
freedom subject to r > r0, then “X yD Y | Z” is deemed unreliable given no further evidence of
independence for it. �

Consider again the situation where D is an insufficient dataset. Aliferis et al. [8, 9] recommended
an hps-based criterion to deal with this problem in practice: A CI test is reliable if and only if at
least hps sample instances per cell in the contingency table are available, and deem an unreliable CI
test (but required to make further decisions in the forward or backward searches of an algorithm) to
return independence given no evidence of dependence. In their works, hps is set to be 10 in PC-based
algorithms and 5 in non-PC-based algorithms. Besides hps, Aliferis et al. [8, 9] provided a second
parameter, kmax, to place an absolute limit on the conditional set size. The kmax-based criterion forces
those CI tests with the conditional set sizes larger than kmax not to be performed. Thus, as pointed out
by Aliferis et al. [8, p. 201], this criterion participates in the reliability judgment and also restricts the
computational complexity of the algorithm involved. In the experimental section of this paper, we set
hps and kmax as 10 and 3, respectively.

Under the above criteria based on hps and kmax, the following assumption about whether a CI
test will be done is then useful for supplementing A1 and A2. That is, A1 or A2 works under
this assumption.

Assumption 3. A3 assumes that, for any T, X ∈ V and Z ⊆ V \ {T, X}, the CI test for T and X
conditioned on Z is done if, and only if, the conditions (rT − 1)(rX − 1)rZ · hps 6 n and |Z| 6 kmax are
satisfied simultaneously. �

3.2. Association function

Negative p-value is one of the most widely used association functions [7–9, 16]. This subsection
provides a property of this function. For X,Y, Z ⊆ V and a dataset D, recall that the theoretical
degrees of freedom, the noncentrality parameter, and the valid degrees of freedom based on the data
D are denoted by r , (rX − 1)(rY − 1)rZ, δ , 2n · I(X; Y | Z), and rn, respectively. The following
theorem presents the probabilistic monotonicity of the negative p-value, fD(X; Y | Z), with respect
to these parameters.

Theorem 2. AssumeD is an insufficient dataset. Then, the negative p-value fD(X; Y | Z) is increasing
with δ and n and decreasing with r.

Proof. Note that G2
D

(X; Y | Z) , 2n · ID(X; Y | Z) is an approximate χ2-variate with r theoretically
degrees of freedom in which only rn (< r) ones are valid. With the notations in Appendix A.1, we have

fD(X; Y | Z) = −P
{
χ2(r) > G2

D(X; Y | Z)
}

= −P
{
G2
D(X; Y | Z) 6 χ2(r)

}
= −

∫ +∞

0
Frn, δ(x) fr(x)dx (3.2)

= P
{
χ2(r) < G2

D(X; Y | Z)
}
− 1 =

∫ +∞

0
Fr(x) frn, δ(x)dx − 1. (3.3)

Combined with the conclusion (a) of Lemma 2, Eq (3.2) implies fD(X; Y | Z) is increasing with δ and
n, while Eq (3.3) indicates fD(X; Y | Z) is decreasing with r. �

This theorem reveals how the negative p-value changes with r, δ, and n. Combined with Theorem 1,
we find this association function has similar monotonicity to the power and reliability of CI tests. In
Section 5, we give a brief discussion about how to improve the way of breaking ties via this theorem.
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4. Local discovery algorithms

In this section, we address the problems P2 posed in Section 2: How to alleviate premature
termination of the forward search. We first analyze the existing local discovery algorithms and then
present a novel algorithm based on the idea of information connection.

4.1. Existing local discovery algorithms

Consider a BN (G,P) over V , {X1, · · · , Xv}, assuming P is faithful to G and T ∈ V is the target
variable of interest. For convenience, we denote the parents, children, and spouses of T by PAT , CHT ,
and SPT respectively, and put PCT , PAT ∪ CHT and MBT , PCT ∪ SPT .

First, Spirtes et al. [36] showed the following conclusion:

Lemma 1. Let (G,P) be a BN over V satisfying the faithfulness condition. For given T, X ∈ V, we
have X ∈ PCT if, and only if, T 6y X | Z holds for any Z ⊆ V \ {T, X}. �

Based on this property, Aliferis et al. [8] analyzed a localized version of SGS [36] and then put
forward their GLL-PC algorithmic framework. Their analysis focuses on how to implement the local
SGS algorithm more efficiently by reducing the search space of the cut set, Z. They first reduced the
search space from {Z : Z ⊆ V \ {T, X}} to {Z : Z ⊆ PAT or Z ⊆ PAX}. This holds if X < PCT because
of the Markov condition: T y X | PAT if X is a nondescendant of T ; and X y T | PAX otherwise
(in this case, T is a nondescendant of X). However, the parents of a node are practically unknown, so
Aliferis et al. [8] made a relaxation as follows:

i) Let TPCT be any available tentative PC of T , which is a superset of PCT .
ii) For each X ∈ TPCT , remove it from TPCT if there is Z ⊆ TPCT \ {X} such that T y X | Z.

iii) Repeat (ii) until no such X exists.

This procedure refines TPCT such that it approximates PCT quite closely, with PCT ⊆ TPCT ⊆ EPCT ,
where EPCT was defined by Aliferis et al. [8] as EPCT , PCT ∪ {X ∈ V \ PCT \ {T } : T 6y X | Z, ∀Z ⊆
PCT }. To avoid the situation where TPCT \ PCT , Ø as illustrated in Figure 2, Aliferis et al. [8] used a
pruning procedure via the AND operator* as Peña et al. [23] did in their PCMB algorithm: (iv) For each
X ∈ TPCT , remove it from TPCT if T < TPCX, where TPCX is obtained by running the above refining
procedure (ii)∼(iii). These are the main ideas of the GLL-PC framework.

2 Xu-Qing Liu, Xin-Sheng Liu

Their analysis addresses how to implement the local SGS algorithm more efficiently by reducing the
search space of S:

{
S : S ⊆ V \ {T,X}}, as they argued that the sooner we identify good candidate S that

renders X conditionally independent of T, the fewer CI tests will be necessary. They first reduced the
search space of S to

{
S : S ⊆ PAT or S ⊆ PAT

}
. This holds true if X < PCT because of the Markov condition:

T y X | PAT if X is a nondescendant of T, and X y T | PAX otherwise (in this case, T is a nondescendant of
X). However, the parents of a node are practically unknown, so Aliferis et al. (2010a) made a relaxation as
follows: (i) Let TPCT be any available tentative PC of T, which is a superset of PCT; (ii) For each X ∈ TPCT, if
there is S ⊆ TPCT \{X} such that T y X | S, then remove X from TPCT; (iii) Repeat (ii) until no such X exists.
This procedure refines TPCT such that it approximates PCT quite closely, with PCT ⊆ TPCT ⊆ EPCT, where
EPCT was defined by Aliferis et al. (2010a) as EPCT , PCT ∪

{
X ∈ V \ PCT \ {T} : T 6y X | S, ∀S ⊆ PCT

}
.
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In the literature, an ideal local learning algorithm should be theoretically correct, data efficient, and
time efficient (Peña et al., 2007; Aliferis et al., 2010a; de Morais and Aussem, 2010)

A third factor is that practical implementations of sound algorithms are statistically imperfect (in
other words, a theoretical assumption that conveniently leads to a proof of correctness, for example that
a conditional test of independence is correct, does not entail immediate or flawless practical feasibili-
ty since all such tests admit errors in practice). An alternative set of assumptions for correctness may
require vaguely ’sufficient sample size’ disregarding the practical difficulty of determining whether in
any given analysis this requirement is met. As a result, practical implementations may claim sound-
ness without being demonstrably sound in applied settings. We address the small-sample behavior of
GLL algorithms with empirical analysis in the companion paper (Aliferis et al., 2010). make-or-break
MB PC SP SupMB SupPC SupSP

6 Large Markov Boundary Discovery: ICMB Algorithm

This section ......

explains why IAMB is inefficient in discovering large MBs and how to improve it???????????????

Finally, because the quality of statistical decisions is not addressed in the proofs of correctness
provided earlier, it was implicitly assumed that whenever sufficient sample size is provided to the
algorithms statistical decisions are reliable.

7 Concluding Remarks

This section ......

Figure 2. An illustration of the situation where TPCT \PCT , ∅: TPCT = EPCT = {C, X}while
PCT = {C}. See [8, p. 189] for a more detailed explanation. Aliferis et al. [8] also mentioned
that such situations are rare in practice, so in general TPCT outputted by the refining procedure
(ii)∼(iii) can approximate PCT quite closely.

*The AND operator means that a node X is regarded as a PC member of T if, and only if, X ∈ PCT and T ∈ PCX hold simultaneously.
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GLL-PC uses a tentative-PC discovery algorithm ATPC subject to some admissible rules [8], the data
D, a target T as its input, and outputs PCT . Here, ATPC contains the following steps: (i) Initialize
TPCT with S ⊆ V \ {T }, and initialize a priority queue ρ for V \ TPCT \ {T }; (ii) Apply the inclusion
heuristic function to update TPCT and ρ; (iii) Refine TPCT ; (iv) Interleave and repeat (ii)∼(iii) until the
termination criterion is met. Aliferis et al. [8, 9] employed two specified parameters, hps and kmax, to
reduce the number of CI tests. The pseudo-code of GLL-PC is described by (a) of Algorithm 1.

An alternative method of discovering the PC of a target, T , is to remove all non-PC nodes from the
output of an incremental MB discovery algorithm, taking InterIAPC [10] for example. InterIAPC is
pseudo-coded by (b) of Algorithm 1: It first calls InterIAMB to get the MB of T and then removes the
spouses of T from the output. In the pseudo-code of InterIAPC, we suppose this algorithm can start
learning with any particular set, S, of potential PC nodes, while Morais and Aussem [10] started their
InterIAPC from an empty set.

For these two different kinds of PC discovery techniques, as Aliferis et al. [8] and Morais and
Aussem [10] argued, GLL-PC has an exponential complexity and thus it is time inefficient although it
performs relatively well in data efficiency, while InterIAPC is data inefficient although it usually runs
very fast. However, the assumption A2 implies that the AND operator used by PCMB and GLL-PC may
lead to an over-high threshold for finding PC nodes. Therefore, GLL-PC is not suitable for the discovery
of large PCs, just as Aliferis et al. [8, p. 217] pointed out in their paper. As a meta-procedure of PC
discovery, the PCOR algorithm of Morais and Aussem [10] successfully applies the OR operator† (just
like the idea of the local-to-global strategy) to combine the strategy of dividing-and-conquering that
GLL-PC uses and the advantage of InterIAPC. PCOR is pseudo-coded by (c) of Algorithm 1.

For MB discovery, there are lots of independence-based approaches in the literature. Among them,
PCMB [23], BFMB [37], GLL-MB [8], and the algorithm proposed by Khan et al. [38] are divide-and-
conquer search techniques; these PC-based algorithms are data efficient. In contrast, those incremental
non-PC-based algorithms such as KS [39] and GS [40,41] as well as some variants of GS including IAMB
and InterIAMB [42] and the Three-Fast-InterIAMB [43] are far more time efficient (but also far
less data efficient) than the PC-based algorithms. Here, InterIAMB is pseudo-coded by the subroutine
of (b) in Algorithm 1, whereas GLL-MB is described by (d) of Algorithm 1. When the MB of a target
variable T is not large, these algorithms are enough for practitioners to select features for T ; when
the MB is moderately large, the LRH algorithm [17] performs desirably; In the case of large MBs, the
MBOR algorithm put forward by Morais and Aussem [10] is recommended; (e) of Algorithm 1 presents
its pseudo-code.

As an extension of PCOR, the MBOR algorithm inherits the merits of the former. It tries to apply an
ensemble technique to combine the advantages of both divide-and-conquer and incremental methods
to improve accuracy and efficiency, especially on densely connected networks [10, p. 580]. MBOR [10]
uses InterIAMB and InterIAPC as its subroutines; it overwhelmingly outperforms other existing MB
discovery algorithms, especially for the case of large MBs. Here, we mention that MBOR may require
some longer time to run than other existing algorithms. However, this flaw of MBOR is negligible
comparing with its advantage in improving accuracy.

Recently, Liu et al. [44] put forward a novel algorithm called fast shrinking parents-children
learning for Markov blanket-based feature selection (FSMB). Their simulation study reveals that
the accuracy of MBOR and that of FSMB are generally comparable. Considering that MBOR can use

†The OR operator means that a node X is regarded as a PC member of T if X ∈ PCT or T ∈ PCX holds.

AIMS Mathematics Volume 9, Issue 8, 22743–22793.



22753

different PC discovery algorithms as its subroutine, we will choose MBOR as one of the algorithms for
our simulation study.

Algorithm 1: Existing Local Discovery Algorithms
Procedure (a): PCT ← GLL-PC(ATPC ,D,T,S,L)
Input: ATPC is an algorithm used to find a tentative PC; D

is a data set; T is a target; S , {SX is a starting set:
X ∈ V}; L , {LX is a blacklist: X ∈ V}.

Output: The output is the PC of T .

1 TPCT ← ATPC(D,T,ST , LT )
2 foreach X ∈ TPCT do
3 if T < ATPC(D, X,SX , LX) then TPCT ← TPCT \ {X} ;
4 end
5 return PCT ← TPCT

Procedure (b):
[
PCT , MBT

]
← InterIAPC(D,T,S, L)

Input: S is a starting set; L is a blacklist.
Output: The output is the PC and MB of T .

1 MBT ← InterIAMB(D,T,S, L) and TPCT ← MBT

2 foreach X ∈ TPCT do
3 if ∃ Z ⊆ MBT s.t. T yD X | Z then

TPCT ← TPCT \ {X} ;
4 end
5 return PCT ← TPCT and MBT

//MBT ← InterIAMB(D,T,S, L)
6 MBT ← S and CanMBT ← V \ MBT \ {T } \ L
7 while CanMBT , Ø do
8 Y ← arg maxX∈CanMB fD(T ; X | MBT )
9 if T 6yD Y | MBT then

10 CanMBT ← CanMBT \ {Y} and MBT ← MBT ∪ {Y}
11 end
12 foreach X ∈ MBT do
13 if T yD X | MBT \ {X} then MBT ← MBT \ {X} ;
14 end
15 end
16 return MBT

Procedure (c): PCT ← PCOR(APC ,D,T )
Input: APC is an incremental PC discovery algorithm

with the same input as ATPC .
Output: The output is the PC of T .

1 PCST ← V \ {T }
2 foreach X ∈ PCST do
3 if T yD X then PCST ← PCST \ {X} and CX ← Ø ;
4 end
5 foreach X ∈ PCST do
6 if ∃Y ∈ PCST \ {X} s.t. T yD X | Y then
7 PCST ← PCST \ {X} and CX ← {Y}
8 end
9 end

10 SPST ← Ø

11 foreach X ∈ PCST do
12 SPSX ← Ø
13 foreach Y ∈ V \ PCST \ {T } do
14 if T 6yDY | CY ∪ {X} then SPSX ← SPSX∪{Y};
15 end
16 foreach Y ∈ SPSX do
17 if ∃Z ∈ SPSX \ {Y} s.t. T yD Y | {X,Z} then
18 SPSX ← SPSX \ {Y}
19 end
20 end
21 SPST ← SPST ∪ SPSX

22 end
23 MBST ← PCST ∪ SPST

24 PCT ← APC(D,T,Ø,V \ MBST )
25 foreach X ∈ PCST \ PCT do
26 if T ∈ APC(D, X,Ø,Ø) then PCT ← PCT ∪ {X};
27 end
28 return PCT

Procedure (d): MBT ← GLL-MB(ATPC ,D,T,S,L)
Input: The same as GLL-PC.
Output: The output is the MB of T .

1 PCT ← GLL-PC(ATPC ,D,T,ST , LT )
2 foreach Y ∈ PCT do
3 PCY ← GLL-PC(ATPC ,D,Y,SY , LY )
4 end
5 TMBT ← PCT and TSPT ← (∪Y∈PCT PCY ) \ PCT \ {T }
6 foreach X ∈ TSPT do
7 find Z s.t. T yD X | Z
8 foreach Y ∈ PCT s.t. X ∈ PCY do
9 if T 6yD X | Z ∪ {Y} then TMBT ← TMBT∪{X};

10 end
11 end
12 return MBT ← TMBT

Procedure (e): MBT ← MBOR(APC ,D,T )
Output: The output is the MB of T .

1 PCT ← PCOR(APC ,D,T ) and SPT ← Ø
2 foreach X ∈ PCT do
3 foreach Y ∈ APC(D, X,Ø,Ø) \ PCT \ {T } do
4 find minimal Z ⊆ MBST \ {T,Y} s.t. T yDY |Z
5 if T 6yD Y | Z ∪ {X} then
6 SPT ← SPT ∪ {Y}
7 end
8 end
9 end

10 return MBT ← PCT ∪ SPT
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4.2. Information connection based method for local discovery

Premature termination of forward search (i.e., P2) is a potential problem for independence-based
algorithms of local discovery (especially for large cases), and it is quite meaningful and challenging
to seek an effective solution to this problem. A well-known idea is to use the “divide-and-conquer”
strategy (done by PCMB and GLL) that tries to reduce the conditional set size as much as possible [10].
This idea plays an important role in exploring more new algorithms (such as PCOR and MBOR) for local
discovery and, indeed, leads to great improvements on data efficiency. However, this idea still cannot
solve the problem P2 desirably for large local discovery (see [8, p. 217] for a similar argument), and
thus it is necessary to develop new approaches to further improve the learning accuracy.

Before presenting the main idea of our method, we first give an example as follows:

Example 2. Consider a BN (G,P) over V , {T, X1, X2, Y1, · · · ,Y4, Z1}, in which G is presented in
Figure 3. Take T as the target with PCT = {Y2,Y3,Z1} and MBT = {Y2,Y3,Y4,Z1}. Note that there are
more than one information channels between Y1 and T . Let PCAT , {Y1,Y2,Y3} and MBAT , {Y1, · · · ,Y4}

be the best outputs‡ of the existing local discovery algorithms except PCOR and MBOR. Specifically, GLL
finds PCAT as the PC of T and then adds Y4 to PCAT to return MBAT , while InterIAPC first discovers
MBAT and then removes Y4 from MBAT to derive PCAT . The TP, Z1, is excluded because of the premature
inclusion of the FP, Y1, and the potential insufficiency of the dataD. This is the direct consequence of
the problem P2. In comparison, PCOR and MBOR may detect Z1; however, they may not exclude the FP
Y1 due to their partial inefficiency inheriting from the subroutines, InterIAMB and InterIAPC.

“divide-and-conquer” strategy that has been widely used in the literature [8–10, 20] but it cannot fundamentally278

solve the problem P2 for large-scale local discovery as Example 2 illustrates; and (b) the other is to purposefully279

activate (i.e., cancel to inactivate) some of the valves that were inactivated such that more other valves can receive280

the information from the target T (i.e., more potential TPs can be identified). We will call (b) the information281

connection based method (IC). In this method, the purpose of cancelling to inactivate some valves is to save some282

driving force such that the saved driving force can be used to enhance the transmission of information.283

The main idea of IC instantiated in PC discovery is as follows:284

(i) Preliminary discovery: First, we employ a particular PC discovery algorithm,APC , to obtain a coarse PC of T,285

denoted by PCAT . Here,APC can be any PC discovery algorithm; however, those with time efficiency and with286

as high data efficiency as possible are preferred, considering that APC is only a subroutine of IC and it may287

be used repeatedly. Besides InterIAPC, subsection 4.4 will provide an alternative forAPC by combining the288

advantages of GLL-PC and InterIAPC. In this phase, a coarse MB of T, denoted by MBAT , is also outputted.289

(ii) Enhanced forward search: This phase is the kernel of IC. To detect more theoretically reachable valves (other290

than those in PCAT ), we may cancel to inactivate some of the valves in PCAT ; these activated valves can be291

any subset of PCAT , but we will take them to be all the single-point subsets considering the time efficiency.292

Algorithmically, for each Y ∈ PCAT , we use APC to get a new PC and a new MB of T, denoted by PC(Y)
T and293

MB
(Y)
T respectively, by moving Y to the blacklist temporarily and starting with PCAT \ {Y}. Then, uniting PC(Y)

T294

and MB(Y)
T , respectively, to update PCAT and MBAT .295

(iii) Backward search: This phase removes those redundant nodes in PCAT based on MBAT without needing the296

pruning procedure (i.e., symmetry correction; 7) that is required in PCMB and GLL-PC.297

The resulting algorithm, called ICPC, is pseudo-coded in the procedure (d) of Algorithm 1.298

Use the following after the Example!!!!!!!! On the other hand, MBOR uses InterIAMB as its subroutine, meaning299

that MBOR has to inherit some shortcomings from InterIAMB. We will discuss these shortcomings and analyze300

how to overcome them to further improve MBORwhen working on local discovery. NOTE: move this paragraph to301

Section 5!!!302

As an incremental method, InterIAPC is very fast but data inefficient. MBOR combines several runs of InterIAPC303

using ensemble techniques to alleviate its data inefficiency. In this section, we put forward a novel incremental304

PC discovery algorithm.305
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Figure 3. A BN over V , {T, X1, X2, Y1, · · · ,Y4, Z1}, with PCT = {Y2,Y3,Z1} and MBT =

{Y2,Y3,Y4,Z1}.

This example illustrates the following two facts:

• Although the divide-and-conquer strategy usually improves the data efficiency substantially, the
resulting algorithms may still suffer from the consequences of the problem P2.
• As two meta-procedures, PCOR and MBOR may possess overwhelming advantages over other

existing algorithms in local discovery (especially in large local discovery); however, these two
algorithms still inherit some shortcomings of their subroutines.

‡Specifically, for a certain PC (or MB) algorithm, if after a certain forward search step, the tentative PC of the target T is obtained as
U = {Y2,Y3,Y1}, in which Y2 and Y3 are the true PC nodes of T , while Y1 is not. Y1 enters U because there are two information channels
from T to Y1 and therefore Y1 can carry more information about T than Z1, which is actually a true PC node. Next, to examine if Z1 can
enter U, we need to perform the CI test: T y Z1 | U. At this time, due to the possible insufficiency of the data to allow Z1 to carry the
most of remaining information about T , this CI test may incorrectly give a conclusion of T yD Z1 | U. Furthermore, as Z1 does not enter
U, the false PC node Y1 can not be excluded from U in subsequent CI tests until the end of the algorithm.
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In brief, it is very attractive to build an effective subroutine for PCOR and MBOR. In the following, we
focus on this issue for these two algorithms.

In (c) and (e) of Algorithm 1, we replace InterIAPC in PCOR and MBOR with any particular PC
discovery algorithm, APC . This replacement is theoretically feasible in practice, provided APC is also
time efficient (so GLL-PC is not suitable for this role); besides InterIAPC, one can choose APC by
applying the refining procedure of InterIAPC to any other non-PC-based MB discovery algorithms
(such as GS and IAMB). Naturally, we expect APC can output as few FPs and as many TPs as possible.
However, all of its above existing alternatives (even GLL-PC) severely suffer the problem P2 . In
what follows, we propose a novel method of solving this problem and use it to enhance APC in PCOR
and MBOR.

To clearly describe how we deal with the problem P2, we quote the following information flow
metaphor that Cheng et al. [24] used: A BN can be viewed as a network of information channels or
pipelines, where each node is an in-out valve that is either active (when the corresponding node is not
instantiated) or inactive (when instantiated), the valves are connected by noisy information channels
(edges), and the information can flow through an active valve but not an inactive one.

The metaphor of Cheng et al. [24] says that performing the CI test for the hypothesis “X y Y | Z”
is equivalent to observing the information flow between X and Y when instantiating the nodes within
Z (i.e., inactivating the corresponding valves). However, it works only under the assumption M1.
Now, we follow Theorem 1 to extend this metaphor to the assumption M2 by regarding each node as a
valve that possesses some resistance and adding a data-driven force (or called “energy”) of propagating
information to the network, and assume:

i) Each node is an in-out valve, and each valve has a different resistance. More precisely, the
resistance of a valve is increasing with the number of configurations (i.e., number of degrees
of freedom) for the corresponding node.

ii) The driving force is increasing with the data size.
iii) Inactivating any valve will consume some driving force. More precisely, the amount of consumed

energy increases with the resistance of valves that are inactivated. Further, when some valves
are inactivated, if the remaining driving force is not sufficient, it may not be possible to further
inactivate additional valves.

For convenience, we call this extension to be the extended information flow metaphor. In what follows,
for convenience, we use M1 and M2, respectively, to denote the information flow metaphor of [24]
and our extended metaphor.

In our metaphor M2, the terminology “data-driven force” coincides mathematically with the power
of the 6yD-tests in some sense. Such an explanation combined with Theorem 1 reveals the reasonability
of M2 as well as the inappropriateness of M1. In fact, M1 means

a) information cannot be propagated without driving force, and
b) information can be transmitted to any reachable node if there is driving force,

while M2 means

a’) information cannot be propagated without sufficient driving force, and
b’) information can be transmitted to any reachable node if there is sufficient driving force.

Note that (a’) and (b’) are slightly different from (a) and (b). Further, M2 indicates
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c) information can only be transmitted to some (not all) of the reachable nodes if no sufficient driving
force is provided.

As seen, these intuitive descriptions about the metaphors M1 and M2 coincide with the assumptions
A1 and A2, respectively. The following remark applies our metaphor M2 to explain the
result of Example 2.

Remark 1. Consider Example 2 again. If the data D is large enough, the information from T
can flow to every theoretically reachable valve even when inactivating any other valves such that
only one information channel is left. However, if D is not large enough, the data-driven force
may not be sufficient for propagating the information to every theoretically reachable valve when
inactivating some valves. Specifically, after making {Y1,Y2,Y3,Y4} inactive, the remainder driving
force may become insufficient for transmitting the information from T to Z1. In this case, the result
of Example 2 follows.

This remark explains about the essence of the problem P2 (i.e., premature termination of the
forward search). In the meanwhile, Remark 1 hints two ways of solving P2 as follows: One is to
increase the amount of data instances such that sufficient driving force can be supplied; and the other
is to inactivate as few valves as possible such that there is sufficient driving force used to convey the
information from the target, T , to a particular valve which is theoretically reachable (from T ). In
general, the former is impractical while the latter is feasible, so we need only to consider the latter
way. Two methods can be employed to achieve the goal of this way: (I) One is the “divide-and-
conquer” strategy that has been widely used in the literature [8–10,23], but it cannot solve the problem
P2 desirably for large local discovery as Example 2 illustrates; and (II) the other is to purposefully
cancel to inactivate some of the valves such that more other valves can receive the information from the
target T (i.e., more potential TPs can be identified). We will call (II) the information connection based
method (IC), in which the purpose of cancelling to inactivate some valves is to save some driving force
such that the saved driving force can be used to enhance the transmission of information.

The main idea of IC instantiated in PC discovery is as follows:

(i) Preliminary discovery: First, we employ a particular PC discovery algorithm, APC , to obtain a
coarse PC of T , denoted by PCAT . Here, APC can be any PC discovery algorithm; however, those
with time efficiency and with as high data efficiency as possible are preferred, considering that
APC is only a subroutine of IC and it may be used repeatedly. Besides InterIAPC, Subsection 4.4
will provide an alternative for APC by combining the advantages of GLL-PC and InterIAPC. In
this phase, a coarse MB of T denoted by MBAT is also outputted.

(ii) Enhanced forward search: This phase is the kernel of IC. To detect more theoretically reachable
valves (other than those in PCAT ), we may cancel to inactivate some of the valves in PCAT ; these
valves can be any subset of PCAT , but we will take them to be all the single-point subsets
considering the time efficiency. Algorithmically, this phase contains three subphases: (ii-a)
Extended forward search: For each Y ∈ PCAT , we use APC to get a new PC and a new MB
of T , denoted by PC (Y)

T and MB(Y)
T , respectively, by moving Y to the blacklist temporarily and

starting with PCAT \ {Y}. (ii-b) Refining procedure: Then, we use Y to refine MB(Y)
T and PC (Y)

T . (ii-
c) Remedying procedure: Finally, interleave a remedying procedure into (ii-b). After that, unite
PC

(Y)
T and MB(Y)

T , respectively, to update PCAT and MBAT .
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(iii) Backward search: This phase removes those redundant nodes in PCAT based on MBAT without
needing the pruning procedure (i.e., symmetry correction; cf. [7]) that is required in PCMB
and GLL-PC.

The resulting algorithm, called ICPC, is pseudo-coded in Algorithm 2. In this algorithm, Line 1
carries out the preliminary discovery; Line 3, Line 5/Line 11, and Line 7 accomplish the three sub-
phases of the enhanced forward search; and Line 14 performs the final backward search.

In what follows, we give an example to illustrate how our ICPC algorithm works.

Algorithm 2: ICPC
Procedure: PCT ← ICPC(APC ,D,T,S, L)
Input: APC is an incremental PC discovery algorithm (the same as in PCOR);D is a data set; T is a target; S is a

starting set of variables; L is a blacklist.
Output: The output is the PC of T .

1 [PCT , MBT ]← APC(D,T,S, L) and X ← Ø ; // (i) preliminary discovery

2 foreach Y ∈ PCT do
3

[
PC

(Y)
T , MB(Y)

T
]
← APC(D,T, PCT \ {Y},Y ) ; // (ii-a) extended forward search

4 while ∃ X ∈ MB(Y)
T s.t. T y X |

(
MB

(Y)
T \ {X}

)
∪ {Y} do

5 MB
(Y)
T ← MB

(Y)
T \ {X}; PC

(Y)
T ← PC

(Y)
T \ {X}; and X ← X ∪ {X} ; // (ii-b) refining procedure

6 while ∃ X′ ∈ X \ {X} s.t. T 6y X′ | MB(Y)
T ∪ {Y} do

7 MB
(Y)
T ← MB

(Y)
T ∪ {X

′}; PC(Y)
T ← PC

(Y)
T ∪ {X

′}; and X ← X \ {X′} ; // (ii-c) remedying procedure

8 end
9 end

10 end
11 PCT ←

[(
∪Y∈PCT PC

(Y)
T

)
∪ PCT

]∖
X and MBT ←

[(
∪Y∈PCT MB

(Y)
T

)
∪ MBT

]∖
X ; // (ii-b) refining procedure (continued)

12 foreach X ∈ PCT do
13 if ∃ Z ⊆ MBT s.t. T y X | Z then
14 PCT ← PCT \ {X} ; // (iii) backward search

15 end
16 end
17 return PCT

Example 3. [Information Connection] Consider the BN in Example 2 again. Let PCAT , {Y1,Y2,Y3}

be a coarse PC of T companied by MBAT , {Y1, · · · ,Y4} as a coarse MB of T . The TP Z1 has not
been identified because of the insufficiency of data and the fact that the FP Y1 may collect too much
information of T that Z1 and Y3 have. Now, we apply IC to every Y ∈ PCAT , taking Y3 for a typical
example. When Y3 is temporarily deemed hidden (and thus removed from the conditional set), there
are two possible consequences:

(a) Detection of more TPs: Some driving force is saved such that the enhanced propagation of
information can reach one or more other TPs than the ones in PCAT \ {Y3}. Specifically, the TP,
Z1, may be detected and thus enters PC (Y3)

T . In this case, the problem P2 gets alleviated to a
certain degree.

(b) Addition of redundant variables: Information is propagated to the members of MBY3 \ {T } along the
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paths in which Y3 is a head-to-tail (HT) node or a tail-to-tail (TT) node. Specifically, we have

“T // Y3
// Y1” ⇒ “T // Y1”, “Y4

// Y3
// Y1” ⇒ “Y4

// Y1”,

“T // Y3
// X1” ⇒ “T // X1”, “Y4

// Y3
// X1” ⇒ “Y4

// X1”.

In the meanwhile, the collision “T // Y3
oo Y4” is decomposed into “T // Y1

oo Y4” and
“T // X1

oo Y4”, meaning that the variables in CHY play the same role as Y3 in a path where Y3

is a head-to-head (HH) node. Figure 4 illustrates such an evolution. Thus, X1 enters PC (Y3)
T while

X2 enters MB(Y3)
T .

need only to consider the latter way. Two methods can be employed to achieve the goal of this way: (a) one is the277

“divide-and-conquer” strategy that has been widely used in the literature [8–10, 20] but it cannot fundamentally278

solve the problem P2 for large-scale local discovery as Example 2 illustrates; and (b) the other is to purposefully279

activate (i.e., cancel to inactivate) some of the valves that were inactivated such that more other valves can receive280

the information from the target T (i.e., more potential TPs can be identified). We will call (b) the information281

connection based method (IC). In this method, the purpose of cancelling to inactivate some valves is to save some282

driving force such that the saved driving force can be used to enhance the transmission of information.283

The main idea of IC instantiated in PC discovery is as follows:284

(i) Preliminary discovery: First, we employ a particular PC discovery algorithm,APC , to obtain a coarse PC of T,285

denoted by PCAT . Here,APC can be any PC discovery algorithm; however, those with time efficiency and with286

as high data efficiency as possible are preferred, considering that APC is only a subroutine of IC and it may287

be used repeatedly. Besides InterIAPC, subsection 4.4 will provide an alternative forAPC by combining the288

advantages of GLL-PC and InterIAPC. In this phase, a coarse MB of T, denoted by MBAT , is also outputted.289

(ii) Enhanced forward search: This phase is the kernel of IC. To detect more theoretically reachable valves (other290

than those in PCAT ), we may cancel to inactivate some of the valves in PCAT ; these activated valves can be291

any subset of PCAT , but we will take them to be all the single-point subsets considering the time efficiency.292

Algorithmically, for each Y ∈ PCAT , we use APC to get a new PC and a new MB of T, denoted by PC(Y)
T and293

MB
(Y)
T respectively, by moving Y to the blacklist temporarily and starting with PCAT \ {Y}. Then, uniting PC(Y)

T294

and MB(Y)
T , respectively, to update PCAT and MBAT .295

(iii) Backward search: This phase removes those redundant nodes in PCAT based on MBAT without needing the296

pruning procedure (i.e., symmetry correction; 7) that is required in PCMB and GLL-PC.297

The resulting algorithm, called ICPC, is pseudo-coded in the procedure (d) of Algorithm 1.298

Use the following after the Example!!!!!!!! On the other hand, MBOR uses InterIAMB as its subroutine, meaning299

that MBOR has to inherit some shortcomings from InterIAMB. We will discuss these shortcomings and analyze300

how to overcome them to further improve MBORwhen working on local discovery. NOTE: move this paragraph to301

Section 5!!!302

As an incremental method, InterIAPC is very fast but data inefficient. MBOR combines several runs of InterIAPC303

using ensemble techniques to alleviate its data inefficiency. In this section, we put forward a novel incremental304

PC discovery algorithm.305
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Definition 1 (Extended Markov Boundary). For T,Y ∈ V , we call M ⊆ V \ {T,Y} a Y-extended Markov boundary326

(Y-EMB) of T if it is an MB of T in V \ {Y}. Denote it by MB(Y)
T . That is, T y (V \ {Y}) \ MB(Y)

T \ {T} | MB(Y)
T , in which MB(Y)

T327

cannot be replaced with its any proper subset. �328

Before characterizing the property of EMB, the notion of d-separation [1, 2] is briefly presented as follows. For329

a DAG G over V , letting X,Y,Z ⊆ V be disjoint, we say Z d-separates X and Y if it blocks every path between X330

and Y, and if this is the case we write X ⊥ Y | Z. Here, Z blocking a path p means that p has a head-to-tail node331

or a tail-to-tail node belonging to Z, or that p has a head-to-head node C such that C and its all descendants are332

not in Z. As well known, X ⊥ Y | Z ⇔ X y Y | Z, if the BN (G,P) satisfies the faithfulness condition [2]. This333

implication provides a convenient way of identifying CI relationships. For example, consider a BN with the graph334

presented in Figure 4 as its DAG. Then, X2 and X8 are d-separated by {X4,X5}, meaning X2 ⊥ X8 | {X4,X5} and335

thus X2 y X8 | {X4,X5}; X3 and X4 are d-separated by Ø, indicating X3 ⊥ X4, so X3 y X4.336

Theorem 3. For a BN (G,P) over V satisfying the faithfulness condition, the following statements hold:337

• In one of the following cases: (i) Y ∈ PAT, (ii) Y ∈ CHT with CHY , Ø, (iii) Y ∈ SPT, the Y-EMB of T can be expressed338

as MB(Y)
T = (MBT ∪ MBY) \ {T,Y}.339

• If Y ∈ CHT with CHY = Ø, then MB(Y)
T ⊆ MBT \ {Y}.340

• If Y < MBT, then MB(Y)
T = MBT.341

Markov Blanket andMarkov Boundary ofMultiple Variables

The following lemma presents the well-known chain rule for CMI (Cover & Thomas, 2006,114

Theorem 2.5.2), which is very useful to prove the main results of this paper.115

Lemma 1 (Chain Rule for CMI) The formula I(X; Y1 ∪ Y2 |Z) = I(X; Y1 |Z) + I(X; Y2 |Z ∪ Y1) holds116

for any four sets of variables X,Y1,Y2, and Z from V . The same formula also holds for ID(·).117

i Directed Separation and Directed Connection. The notions of directed separation (D-separation)118

and directed connection (D-connection) provide a convenient way of identifying the CIs in119

a BN: For the DAG G, X and Y are d-separated by Z, denoted by X ⊥ Y |Z, if every chain120

between X and Y, saying c, is blocked by Z (Pearl, 1988, p. 117; Neapolitan, 2004, p. 72).121

Here, Z blocking c means either (i) c has a serial node (head-to-tail) or a diverging node122

(tail-to-tail) belonging to Z, or (ii) c has a converging node C (head-to-head) such that C and123

its all descendants are not in Z. Further, X and Y are d-connected by Z, denoted by X 6⊥ Y |Z, if124

X and Y are not d-separated by Z. For example, considering the DAG presented in (1): X2 and125

X8 are d-separated by {X4,X5}, meaning X2 ⊥ X8 | {X4,X5}; X4 and X5 are d-separated by X2,126

meaning X4 ⊥ X5 |X2; X3 and X4 are d-separated by Ø but d-connected by X6 or X7, meaning127

X3 ⊥ X4 but X3 6⊥ X4 |X6 and X3 6⊥ X4 |X7.128
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Figure 1:

For any BN, the implication “X ⊥ Y |Z ⇒ X y Y |Z” can facilitates the identification of CIs.130

Taking the BN with (1) as its DAG for example, we have X2 y X8 | {X4,X5}; X4 y X5 |X2; and X3 y X4.131

Further, under the faithfulness condition, D-separation coincides with conditional independence132

while D-connection is equivalent to conditional dependence (Neapolitan, 2004, Theorem 2.5). That133

is, X ⊥ Y |Z ⇔ X y Y |Z while X 6⊥ Y |Z ⇔ X 6y Y |Z. This conclusion describes the relationship134

between the graphical side (G) and the probabilistic side (P) of a BN.135

In what follows, the concepts of MB and Mb for a single variable are presented (see Neapolitan,136

2004, pp. 108–109). The definition for multivariate case is similarly given in Definition 3.137

Definition 2 (Univariate MB and Mb) Let P be a joint probability distribution over V , and T ∈ V . Then138

a Markov blanket (MB), M, of T is any set of variables from V such that T y V \M \ {T} |M. A Markov139

boundary (Mb) of T is any MB such that none of its proper subsets is an MB of T.140

This definition requires that an Mb is a minimal MB in a sense. In other words, an Mb of T is141

a minimal variable set conditioned on which all other variables are independent of T, so it carries142

all information of T that cannot be obtained from other variables. The following lemma collects143

the main results of MB and Mb for the univariate case existing in the literature. The proofs can be144

found in Neapolitan (2004, p. 109) and Pearl (1988, pp. 97 and 141).145
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Figure 4. An illustration on the case of addition of some redundant variables.

According to the above analysis, we assume to get

PC
(Y3)
T = {Y1,Y2,Z1, X1} and MB(Y3)

T = {Y1,Y2,Y4,Z1, X1, X2}.

Next, we use Y3 to refine MB(Y3)
T and PC (Y3)

T via Line 5 of Algorithm 2. This procedure is also a key to our
ICPC algorithm. First, the parent node Y2 is unfortunately excluded due to the insufficiency of data.
Second, in view of the fact that “Y3 d-separates T and {X1, X2}”§, the two redundant variables, X1 and
X2, added in the previous step can be excluded timely by associated CI tests. Third, by T ⊥ Y1 | {Z1,Y3}

(since {Z1,Y3} d-separates T and Y1) and, therefore, T y Y1 | {Z1,Y3}, the FP, Y1, having spuriously
high association with T can also be identified immediately. Hence, Y2, X1, X2, and Y1 enter X after
the refining procedure is performed. Here, note that Y2 is a true PC/MB member of T . Fortunately, the
exclusion of {X1, X2,Y1} results in sufficiency of data, so the subsequent remedying procedure helps Y2

re-enter PC (Y3)
T and MB(Y3)

T , and it updates X to {X1, X2,Y1}.
In summary, PC (Y3)

T = {Y2,Z1} and MB(Y3)
T = {Y2,Z1,Y4}. As seen, X1, X2, and Y1 are permanently

excluded in this process. In a similar fashion, we apply IC to Y1 and Y2, assuming to get PC (Y1)
T =

{Y2,Y3,Z1}, MB
(Y1)
T = {Y2,Y3,Z1,Y4}; and PC (Y2)

T = {Y3,Z1}, MB
(Y2)
T = {Y3,Z1,Y4}. Then, using them

to update

PCAT ←
[(
∪Y∈PCAT

PC
(Y)
T

)
∪ PCAT

]∖
X = {Y2,Y3,Z1} and

§For the concept of d-separation, the readers can refer to [1,2] for the details. Appendix A.2 also provides a concise explanation: for
a BN defined on a set of nodes, V, we say Z d-separates X and Y (X,Y, Z ⊂ V), if Z blocks every path between X and Y; and if this is
the case we write X ⊥ Y | Z. Here, Z blocking a path p means that p has a head-to-tail node or a tail-to-tail node belonging to Z, or
that p has a head-to-head node C such that C and its all descendants are not in Z. It is well known that X ⊥ Y | Z ⇒ X y Y | Z holds
in any case, and vice versa if the BN satisfies the faithfulness condition. As seen, Y3 is a head-to-tail node of the path “T → Y3 → X1”
and also a tail-to-tail node of the path “T → Z1 → Y1 ← Y3 → X1”, indicating T ⊥ X1 | Y3; and X1

(
< {Y3}

)
is a head-to-head node of

the two pathes from T to X2, implying T ⊥ X2 | Y3.
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MBAT ←
[(
∪Y∈PCAT

MB
(Y)
T

)
∪ MBAT

]∖
X = {Y2,Y3,Z1,Y4},

respectively. Finally, the backward search does not remove any node and returns PCAT = {Y2,Y3,Z1}.
As seen, PCAT contains no redundant variables, so ICPC correctly outputs the PC of T .

To be more intuitive, we summarize the above process in Table 2, where the operations are listed in
pseudo-code order of Algorithm 2.

Table 2. Detailed operations (in pseudo-code order of Algorithm 2) of ICPC for discovering
the PC,

{
Y2,Y3,Z1

}
, of T for the network presented in Figure 3.

Phase Result 

(i) preliminary discovery 𝑃𝑃𝑃𝑃𝑇𝑇𝔸𝔸 ← {𝑌𝑌1,𝑌𝑌2,𝑌𝑌3}, 𝑀𝑀𝑀𝑀𝑇𝑇𝔸𝔸 ← {𝑌𝑌1,𝑌𝑌2,𝑌𝑌3,𝑌𝑌4}, 𝒳𝒳 ← ∅ 

(ii-a) extended forward search 
(ii-b) refining procedure 
(ii-c) remedying procedure 

𝑌𝑌 = 𝑌𝑌1
(ii−a)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  
(ii−b)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  
(ii−c)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  

𝑌𝑌 = 𝑌𝑌2
(ii−a)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  
(ii−b)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  
(ii−c)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}
𝒳𝒳 ← ∅

  

𝑌𝑌 = 𝑌𝑌3
(ii−a)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌1,𝑌𝑌2,𝑍𝑍1,𝑋𝑋1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌1,𝑌𝑌2,𝑌𝑌4,𝑍𝑍1,𝑋𝑋1,𝑋𝑋2}
𝒳𝒳 ← ∅

  
(ii−b)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑍𝑍1}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌4,𝑍𝑍1}
𝒳𝒳 ← {𝑌𝑌2,𝑋𝑋1,𝑋𝑋2,𝑌𝑌1}

  
(ii−c)
�����

𝑃𝑃𝐶𝐶𝑇𝑇
(𝑌𝑌) ← {𝑍𝑍1,𝑌𝑌2}

𝑀𝑀𝑀𝑀𝑇𝑇
(𝑌𝑌) ← {𝑌𝑌4,𝑍𝑍1,𝑌𝑌2}
𝒳𝒳 ← {𝑋𝑋1,𝑋𝑋2,𝑌𝑌1}

  

(ii-b) refining procedure (continued) 𝑃𝑃𝐶𝐶𝑇𝑇𝔸𝔸 ← ��∪𝑌𝑌∈𝑃𝑃𝐶𝐶𝑇𝑇𝔸𝔸 𝑃𝑃𝑃𝑃𝑇𝑇
(𝑌𝑌)� ∪ 𝑃𝑃𝐶𝐶𝑇𝑇𝔸𝔸�\𝒳𝒳 = {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1}, 𝑀𝑀𝑀𝑀𝑇𝑇𝔸𝔸 ← ��∪𝑌𝑌∈𝑃𝑃𝐶𝐶𝑇𝑇𝔸𝔸 𝑀𝑀𝑀𝑀𝑇𝑇

(𝑌𝑌)� ∪ 𝑀𝑀𝑀𝑀𝑇𝑇𝔸𝔸�\𝒳𝒳 = {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1,𝑌𝑌4}  

(iii) backward search 𝑃𝑃𝐶𝐶𝑇𝑇𝔸𝔸 ← {𝑌𝑌2,𝑌𝑌3,𝑍𝑍1}  

 

This example reveals that the ICPC algorithm may capture as many TPs as possible (thus, as much
information as possible about the target). Consequently, as few FPs as possible can remain undetected
by the end of the enhanced forward search (up to Line 11 of Algorithm 2). In this intuitive sense, ICPC
may be as a desirable selection of APC in PCOR and MBOR. The resulting algorithms are expected to
perform well in large local discovery.

4.3. Theoretical basis of ICPC

We introduced a novel algorithm, ICPC, to deal with the problem P2 in Subsection 4.2. Its
working mechanism is inspired by the extended information flow metaphor, M2, and thus is intuitively
reasonable. In what follows, we explain its theoretical soundness in making the enhanced forward
search. Specifically, we show: (a) Why the extended forward search (Line 3 of Algorithm 2) can
capture more TPs; (b) why we need the refining procedure (Line 5 and Line 11 of Algorithm 2) and
why it can remove FPs effectively; (c) why we need the remedying procedure (Line 7 of Algorithm 2).

We first define the output of the enhanced forward search as follows:

Definition 1. [Information Connection] For T,Y ∈ V, we call M ⊆ V \ {T,Y} a Y-extended Markov
boundary (Y-EMB) of T if it is an MB of T in V \ {Y}. Denote it by MB(Y)

T . That is, T y (V \ {Y}) \
MB

(Y)
T \ {T } | MB

(Y)
T , in which MB(Y)

T cannot be replaced with its any proper subset. �

The following theorem characterizes the structure of EMB; the proof is given in Appendix A.2.

Theorem 3. For a BN (G,P) over V satisfying the faithfulness condition, the following statements hold:
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• In one of the following cases: (i) Y ∈ PAT , (ii) Y ∈ CHT with CHY , Ø, (iii) Y ∈ SPT , the Y-EMB
of T can be expressed as MB(Y)

T = (MBT ∪ MBY) \ {T,Y}.
• If Y ∈ CHT with CHY = Ø, then PCT \ {Y} ⊆ MB

(Y)
T ⊆ MBT \ {Y}.

• If Y < MBT , then MB(Y)
T = MBT .

This theorem indicates the uniqueness of EMB under the faithfulness condition. By means of this
result, we show the following theorem in Appendix A.3:

Theorem 4. For a BN (G,P) over V satisfying the faithfulness condition, let MB(Y)
T be the Y-EMB of T ,

and M ⊆ MB(Y)
T subject to

(
MB

(Y)
T \ M

)
∩ MBT = Ø. Then, for any X ∈ M, we have X < MBT ⇔ T y X |

(M \ {X}) ∪ {Y}.

By Theorems 3 and 4 in conjunction with the pseudo-code of ICPC, it follows that:

(a) Why the extended forward search can capture more TPs: On the one hand, the forward search
of every existing PC discovery algorithm, APC , will be prematurely terminated when the dataset
is insufficient, so the coarse PC of T returned by APC (pseudo-coded in Line 1 of Algorithm 2)
may be undesirable in practice. On the other hand, as illustrated in Remark 1 and as shown by
Theorem 3, the extended forward search may lead to the detection of more TPs. If so, some PC
members swamped by MB(Y)

T due to insufficiency of data will be identified, and thus the problem
P2 about the premature termination of the forward search can get solved or alleviated.

(b) Why we need the refining procedure and why it can remove FPs: Although the extended forward
search can capture more TPs, it may also lead to another consequence: Addition of redundant
variables. These redundant variables will increase the computational cost of the final backward
search to a large extent; they may also increase the possibility of excluding some TPs from PCT

due to the unreliability of some CI tests in practical situations. This explains the importance
of doing a refining procedure before making the final backward search. More importantly,
Theorem 4 reveals that the refining procedure pseudo-coded in Line 5 and 11 of Algorithm 2 can
remove all and only redundant variables (in any case) that enter MB(Y)

T and PC (Y)
T in the extended

forward search.

In brief, ICPC can detect some more true members without shielding any redundant variables. In
other words, while all existing PC discovery algorithms may prematurely terminate the forward search
and thus fail to be used for large local discovery, our ICPC algorithm can selectively enhance the
forward search and is expected to identify as many TPs as possible and as few FPs as possible.

Finally, we use the following theorem (proven in Appendix A.4) to explain the subsequent issue (c).

Theorem 5. For T ∈ V and M ⊆ V \ {T }, put X` , {X1, · · · , X`} ⊆ M and M` , M \ X`, in which
each X` is subject to the yD-test “T yD X` | M`”, ` = 1, · · · , k. Then, for any Xi ∈ Xk−1, the yD-test
“T yD Xi | Mi” is unreliable under the assumption A2, if T 6yD Xi | Mk.

By this theorem, it follows that:

(c) Why we need the remedying procedure: Theorem 4 implies ICPC remains the theoretical
correctness of APC if A1 holds. However, just as pointed out by Aliferis et al. [8, p. 216],
practical implementations of sound algorithms in the sense of A1 may be statistically imperfect,
because A1 does not entail any practical feasibility in practice (although it can lead to a convenient
proof of correctness). Specifically, the yD-tests in the form of T yD X |

(
MB

(Y)
T \ {X}

)
∪ {Y}
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used in the refining procedure (see Theorem 4 for details) may be unreliable and thus lead to
incorrect deletions of TPs from MB(Y)

T and PC (Y)
T , so we insert the remedying procedure after the

refining procedure to avoid such unexpected situations. Theorem 5 shows the reasonability of this
procedure under the assumption A2.

4.4. InterHyPC: Combining GLL-PC and InterIAPC

We put forward ICPC in Subsection 4.2 and provided its theoretical basis to show its superiority
in enhancing the forward search in Subsection 4.3. Although ICPC may overcome most of the
shortcomings inherited from its subroutine, APC , we believe a good selection for APC may still be
more preferred. However, as we argued in Subsection 4.2, any selection of APC should be time efficient
just like InterIAPC because it may be used repeatedly when implementing ICPC; this narrows the
choices of APC (in particular, GLL-PC is not suitable for the role of APC although it is data efficient). In
this subsection, we put forward a new selection for APC , called InterHyPC, by combining GLL-PC and
InterIAPC. Here, “Hy” denotes “hybrid”.

To build InterHyPC, let us first recall Example 2, imagining that Z1 ∈ PCT may not be incorrectly
excluded any longer due to insufficiency of data if Y4 (< PCT ) can be delayed to be included. A feasible
heuristic for such an imagination is to partially apply the elimination strategy of GLL-PC [8, p. 192]
in the sense that all variables conditionally independent of T should be discarded in each iteration
and never considered again. This strategy can lead to an improvement on efficiency to a great degree,
because the resulting algorithm (pseudo-coded from Line 1 to Line 10 of Algorithm 3; we call it
the TPC-subroutine for convenience) can avoid a number of disruptive CI tests and hence detect true
members of PCT as early as possible. Nevertheless, as Figure 2 illustrates, only a tentative PC of T ,
namely, TPCT , can be returned theoretically in this process. This is why GLL-PC proceeds to employ a
pruning procedure (pseudo-coded from Line 2 to Line 4 of (a) in Algorithm 1) after the TPC-subroutine.
PCMB [23] also uses the same procedure to ensure its output. However, the pruning procedure will
increase the computational complexity many times and, thus, greatly decrease the time efficiency. A
natural way of solving this problem is to implement InterIAPC by starting from TPCT such that the
data efficiency of GLL-PC and the time efficiency of InterIAPC can be appropriately traded off. This
is the main idea of our InterHyPC algorithm. As seen, InterHyPC is actually a hybrid of GLL-PC and
InterIAPC. We present its pseudo-code in Algorithm 3. Algorithm 3 with its Line 11 replaced by
“MBT ← InterIAMB(D,T, TPCT , L)” to be InterHyMB.

It should be mentioned here that, as Aliferis et al. [8, p. 189] argued, although TPCT may contain
some nonmembers of PCT , such situations are rare in practice so, in general, TPCT can approximate
PCT quite closely. In other words, the TPC-subroutine provides a good start to InterIAPC, so the
resulting InterHyPC algorithm is expected to perform better than InterIAPC.

Here, we shortly discuss the time complexity of InterHyPC/InterHyMB. For any independence-
based PC or MB algorithm, as Aliferis et al. [8, p. 199] did, we also use the number of CI
tests performed (or the associations computed) to measure its complexity. In fact, in Lines 3–6 of
Algorithm 3, we need |CanPCT | tests and only one computation for the association: |CanPCT | + 1 =

O
(
|V|

)
. In Lines 7–9, we need at most

|TPCT |−1∑
i=1

2i + 2|TPCT |
(
|V| − 2|TPCT |

)
= 2|TPCT |

(
|V| − 2|TPCT | + 1

)
− 2 = O

(
|V| · 2|MBT |

)
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CI tests. Finally, Line 11 needs further O
(
|TPCT | · |MBT | + 2|MBT | · |MBT |

)
= O

(
2|MBT | · |MBT |

)
CI tests. In

summary, InterHyPC is of the complexity O
(
|V| + |V| · 2|MBT | + 2|MBT | · |MBT |

)
= O

(
|V| · 2|MBT |

)
, f5(T ).

Similarly, the time complexity of InterHyMB is O
(
|V|+ |V| ·2|MBT |

)
= O

(
|V| ·2|MBT |

)
, g5(T ) = f5(T ). The

complexities of the other independence-based PC or MB algorithms are presented in Tables 4 and 5.
Algorithm 3: InterHyPC

Procedure: PCT ← InterHyPC(D,T,S, L)
Input: D is a dataset; T is a target; S is a starting set; L is a blacklist.
Output: The output contains the PC of T .

1 TPCT ← S and CanPCT ← V \ TPCT \ {T } \ L
2 while CanPCT , Ø do
3 Y ← arg maxX∈CanPCT fD(T ; X | TPCT )
4 if T 6y Y | TPCT then
5 CanPCT ← {X ∈ CanPCT : T 6y X | TPCT } \ {Y} and TPCT ← TPCT ∪ {Y}
6 end
7 foreach X ∈ TPCT do
8 if ∃ Z ⊆ TPCT \ {X} s.t. T y X | Z then TPCT ← TPCT \ {X};
9 end

10 end
11 PCT ← InterIAPC(D,T, TPCT , L)
12 return PCT and MBT

5. Breaking ties

This section addresses the problem P3 about the way of breaking ties among equal negative p-
values. We consider this problem because it may arise frequently in large local discovery.

In the literature, the ties are often simply broken at random [10, 23]. However, this way of dealing
with P3 does not consider the possible consequence that the selected variable may be an FP; if this
is the case, the quality of the subsequent CI tests will be lowered due to the so-called cascading
errors [22]. Besides, Tsamardinos et al. [7] used the G2 statistic, G2

D
(·), to break ties without giving

a reason. In what follows, we analyze why the way of borrowing G2
D

(·) to break ties is theoretically
reasonable, then we explain why this way can only be used in rare situations. After that, we present a
new method accompanied by an example used to illustrate how the new method works.

5.1. Using the G2 statistic to break ties

Assume we are trying to choose one from all the ` variables, {Y1, · · · ,Y`} , Y, with equal largest
negative p-values given M; i.e., fD(T ; Y1 | M) = · · · = fD(T ; Y` | M) = maxX∈V\M\{T } fD(T ; X | M).
Further, assume the G2 statistic, G2

D
(T ; Yi | M), is an approximate χ2-variate with ri theoretically

degrees of freedom (in which only rn,i (< ri) ones are valid) and the noncentrality parameter δi (i =

1 · · · , `). It is mentioned here that ifD is large enough, it is unnecessary to consider the problem P3;
the way of breaking ties at random may have been desirable. In the following, we only consider the
case of data insufficiency.

First of all, Theorem 2 reveals fD(T ; Yi | M) is increasing with n and δi and decreasing with ri. This
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means fD(T ; Yi | M) will no longer properly measure the association of Yi with T in the case of data
insufficiency, because in this case the value of G2

D
(T ; Yi | M) only can match rn,i out of the ri theoretical

degrees of freedom. Briefly, data inefficiency is a potential reason for leading to ties, since in this case
ri is spuriously large and may overly decrease the associated negative p-value.

The above analysis implies we can break ties by alleviating the influence of ri on fD(T ; Yi | M).
This hint can be just what the way of borrowing G2

D
(·) follows. In fact, by G2

D
(T ; Yi | M) �∼ χ2(rn,i, δi),

the expectation of G2
D

(T ; Yi | M) approximates to rn,i + δi, meaning that G2
D

(T ; Yi | M) is increasing
with rn,i and δi. Here, rn,i is increasing with n and ri. In the meanwhile, a larger ri may lead to a
larger dispersion of data instances and, thus, more invalid degrees of freedom; that is, (ri − rn,i) is also
increasing with ri. Mathematically, letting rn,i ≈ γ(ri), then the derivative of γ(·) has the following
property: γ′(·) > 0 and 1 − γ′(·) > 0, or, equivalently, 0 < γ′(·) < 1. In other words, rn,i is increasing
with ri at a slower speed. In summary, G2

D
(T ; Yi | M) is increasing with n and δi; it is also increasing

with ri, but the speed of increase is slow. This explains why the way of borrowing G2
D

(·) to break ties
that Tsamardinos et al. [7] used is theoretically reasonable.

Although the G2 statistic can be used to break ties from the theoretical angle, such situations are
actually rare. In fact, by the proof of Theorem 2, it is easily concluded that fD(T ; Yi | M) is decreasing
with ri and increasing with g2

D
(T ; Yi | M), given G2

D
(T ; Yi | M) = g2

D
(T ; Yi | M). This means

ri = r j ⇔ g2
D

(T ; Yi | M) = g2
D

(T ; Y j | M),

under the condition fD(T ; Yi | M) = fD(T ; Y j | M). Without loss of generality, we assume ` = 2.
It follows that ξ , fD(T ; Y1 | M) − fD(T ; Y2 | M) is a continuous random variable if r1 , r2 and
it degenerates to zero otherwise. Hence, we have: (a) In the case of r1 = r2, g2

D
(T ; Y1 | M) =

g2
D

(T ; Y2 | M), so the way of borrowing G2
D

(·) to break ties fails to work; (b) In the case of r1 , r2,
g2
D

(T ; Y1 | M) , g2
D

(T ; Y2 | M), but

P
{
fD(T ; Y1 | M) = fD(T ; Y2 | M)

}
= P

(
ξ = 0

)
= 0.

This explains that the way of borrowing G2
D

(·) to break ties can only be used in rare situations. The
analysis also implies that the G2

D
(·)-based method coincides with choosing the variable in Y with the

largest number of configurations.

5.2. Replacing procedure

We briefly present a more practical way of breaking ties as follows: For X ∈ M and Y ∈ Y, we
wonder if X has a higher association with T than Y; if not, replace X with Y . Mathematically, use
(M \ {X}) ∪ {Y} to replace M in the current search, if fD(T ; X | (M \ {X}) ∪ {Y}) < fD(T ; Y | M),
in which

(X,Y ) = arg min
(ξ,η) ∈ M×Y

fD
(
T ; ξ | (M \ {ξ}) ∪ {η}

)
. (5.1)

If there are ties when determining (X,Y ) via (5.1), a pair of X and Y will be selected randomly from
the pairs corresponding to the ties. After this operation, we check if there are ties with respect to the
updated M. If the answer is “yes”, we break the ties at random and then proceed to the current search.
This is the main idea of our replacing procedure.

The following example illustrates how such a procedure works.
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Example 4. Consider the BN in Example 2 again. Assume we have obtained M , {Y1,Y2,Y3} in
a certain stage with ties over Y , {Y4,Z1}: fD(T ; Y4 | M) = fD(T ; Z1 | M). If breaking the ties
at random, one may select Y4 entering M; if it is the case, the consequence of Example 2 follows
immediately. Thus, we use the replacing procedure to break ties. Observing T y Y1 | (M \ {Y1})∪ {Z1},
we assume (Z1,Y1) is the only pair of nodes satisfying (5.1). Following the replacing procedure, M is
updated with (M\{Y1})∪{Z1} = {Z1,Y2,Y3}, conditioned on which no ties exist in the current stage. Note
that the updated M has optimized its original version, because the FP Y1 is replaced with the TP Z1.

6. Experimental results

This section makes a benchmarking study based on six synthetic BNs considered in [7, 8]. These
BNs are representatives of a wide range of problem domains with different complexities. The details
of the six networks are summarized in Table 3. See [7, 8] for more details.

Table 3. Summary of BNs.

BN Number of
Nodes

Number of
Edges

|T | max
T ∈ T
|PCT | mean

T ∈ T
|PCT | min

T ∈ T
|PCT | max

T ∈ T
|MBT | mean

T ∈ T
|MBT | min

T ∈ T
|MBT |

Alarm 37 46 18 6 3.80 3 8 5.53 4
Alarm10 370 570 24 9 5.96 4 13 9.42 8
Child10 200 257 20 8 6.50 5 8 8.00 8
Gene 801 977 22 11 7.41 5 15 11.09 10
Lung Cancer 800 1476 24 29 14.54 9 56 27.54 20
Pigs 441 592 18 41 10.39 5 68 16.22 8

The following items are clarified before presenting the experimental results:

• Data. For each network, we generate 10 datasets (with high Bayesian information criterion (BIC)
scores¶) of size n with the aid of FullBNT [45], where the data size n is taken as 300, 500, 800,
1000, 2000, 5000; there are in total 360 (= 10×6×6) datasets used in our experiment. To alleviate
the randomness of data, the runs of these 10 datasets will be averaged.
• Targets. To highlight the topic of this paper, we select a set of about 20 targets, T , having the

most PC or MB members for each BN. The details of T are described in Table 3. Each result
is also averaged over the runs of these |T | selected targets to evaluate the overall performance
of an algorithm.
• Algorithms. The experiment contains two parts: One part is for PC discovery and the other is

for MB discovery. For the former, we consider nine independence-based algorithms including
four InterIAPC-based ones (including InterIAPC), four InterHyPC-based ones (including
InterHyPC), and the GLL-PC algorithm; for the latter, we consider seven independence-based
algorithms including three InterIAMB- or InterIAPC-based ones (including InterIAMB), three
InterHyMB- or InterHyPC-based ones (including InterHyMB), and the GLL-MB algorithm.
Tables 4 and 5 describe these local discovery algorithms. In addition, all algorithms use the
replacing procedure to break ties.

¶Specifically, for given n = 300, 500, 800, 1000, 2000, 5000 and for every i = 1, · · · , 10, we randomly generated 100 sets of data
samples, calculated their BIC scores, and selected the dataset with the highest score as the experimental dataset.
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Table 4. Independence-based PC discovery algorithms performed in this section.

Notation Description Complexity Reference(s)
InterIAPC The InterIAPC algorithm O

(
|V| · |MBT | + 2|MBT | · |MBT |

)
, f1(T ) [10, 42]

ICPC.InterIAPC ICPC with APC , “InterIAPC′′ f1(T ) +
∑

Y∈PCT
f1(Y) , f2(T ) [24, this paper]

PCOR.InterIAPC PCOR with APC , “InterIAPC′′ O
(
|V|2

)
+ f1(T ) +

∑
X∈PCT

f1(X) = O
(
|V|2

)
+ f2(T ) , f3(T ) [10]

PCOR.ICPC.InterIAPC PCOR with APC , “ICPC.InterIAPC′′ O
(
|V|2

)
+ f2(T ) +

∑
X∈PCT

f2(X) , f4(T ) [10, this paper]
InterHyPC The InterHyPC algorithm O

(
|V| · 2|MBT |

)
, f5(T ) [24, this paper]

ICPC.InterHyPC ICPC with APC , “InterHyPC′′ f5(T ) +
∑

Y∈PCT
f5(Y) , f6(T ) [24, this paper]

PCOR.InterHyPC PCOR with APC , “InterHyPC′′ O
(
|V|2

)
+ f5(T ) +

∑
X∈PCT

f5(X) = O
(
|V|2

)
+ f6(T ) , f7(T ) [10, this paper]

PCOR.ICPC.InterHyPC PCOR with APC , “ICPC.InterHyPC′′ O
(
|V|2

)
+ f6(T ) +

∑
X∈PCT

f6(X) , f8(T ) [10, this paper]
GLL-PC The GLL-PC algorithm O

(
|V| · |PCT | · 2|PCT |

)
, f9(T ) [8]

Table 5. Independence-based MB discovery algorithms performed in this section.

Notation Description Complexity Reference(s)
InterIAMB The InterIAMB algorithm O

(
|V| · |MBT |

)
, g1(T ) [42]

MBOR.InterIAPC MBOR with APC , “InterIAPC′′ f3(T ) +
∑

X∈PCT

[
f3(X) + O

(
|PCX | · 2|PCT |

)]
, g3(T ) [10]

MBOR.ICPC.InterIAPC MBOR with APC , “ICPC.InterIAPC′′ f4(T ) +
∑

X∈PCT

[
f4(X) + O

(
|PCX | · 2|PCT |

)]
, g4(T ) [10, this paper]

InterHyMB The InterHyMB algorithm O
(
|V| · 2|MBT |

)
, g5(T ) [24, this paper]

MBOR.InterHyPC MBOR with APC , “InterHyPC′′ f5(T ) +
∑

X∈PCT

[
f5(X) + O

(
|PCX | · 2|PCT |

)]
, g7(T ) [10, this paper]

MBOR.ICPC.InterHyPC MBOR with APC , “ICPC.InterHyPC′′ f6(T ) +
∑

X∈PCT

[
f6(X) + O

(
|PCX | · 2|PCT |

)]
, g8(T ) [10, this paper]

GLL-MB GLL-MB f9(T ) +
∑

Y∈PCT
f9(Y) , g9(T ) [8]

Here, motivated by one of the referees, we also compare the score-based algorithm, score-
based simultaneous Markov blanket discovery (S2TMB), proposed by Gao and Ji [46] with
independence-based algorithms. This algorithm is an improved version of the score-based local
learning [47, SLL]. For SLL and S2TMB, the subroutine of learning the substructures can use
any global structure learning algorithm such as the dynamic programming-based [48] or the
integer linear programming-based [49], both of which are score-based methods. By preliminary
experiments, we find any of both [48, 49] as the subroutine will need a very long time to run.
For this reason, we will employ the independence-based three-phase dependency analysis (TPDA)
algorithm of Cheng et al. [24] to learn the substructures involved in the S2TMB algorithm.
• Measurements. We use the Euclidean distance from ( precision, recall) to (1, 1) over all selected

targets to evaluate the accuracy of an algorithm in the sense that the smaller the better, where
precision is the number of TPs in the output divided by the number of nodes in the output, while
recall is the number of TPs in the output divided by the number of TPs in the true network. To
observe the mechanism of an algorithm in improving the accuracy, precision and recall are also
separately studied. We also compute their F-measure values (or called F1 scores), defined as the
harmonic mean of precision and recall, to measure the PC/MB algorithms.

By the above descriptions, the experiment is done with the aid of FullBNT [45] and
MIToolbox [50]. The results on precision, recall, Euclidean distance, and F-measure for PC
algorithms are presented in Figures 13, 15, 17, and 19, respectively, while the results for MB
algorithms are given in Figures 14, 16, 18, and 20. We also provide the results on running time in
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Figures 21 and 22. To be more concise, we integrate the runs of the six BNs by further averaging them
and present the results in Figures 5–10. From the figures, it is concluded that our methods perform
desirably in large local discovery. Specifically, we have

(a) InterHyPC outperforms InterIAPC: (i) InterHyPC has larger precision and recall values (and
thus smaller Euclidean distance and larger F-measure values) than InterIAPC in any case of data
size n. (ii) The precision of InterIAPC tends to decrease along with the increase of n, meaning
that a larger dataset may lead to the inclusion of more FPs for InterIAPC; while the precision
of InterHyPC increases steadily with n or remains at a high level, indicating the robustness of
InterHyPC. (iii) The recall of InterHyPC grows faster than that of InterIAPC.

(b) Each InterHyPC-based algorithm outperforms the corresponding InterIAPC-based algorithm
with respect to each of the four measurements (precision, recall, Euclidean distance, and
F-measure). This may be attributed to the inheritance of the performances of InterHyPC
and InterIAPC.

(c) The APC-based ICPC algorithm performs better than APC , as expected when building ICPC: (i)
This holds true when n is not very small. (ii) When n is very small, the APC-based ICPC algorithm
may have smaller precision than APC ; even so, ICPC still remains its capacity of capturing more
information about T in such situations. Section 7 explains why it is the case and how we deal
with this possibility. (iii) ICPC improves APC substantially on recall, so the idea of IC (information
connection) reaches the goal of detecting more TPs in the true sense.

(d) PCOR and MBOR inherit the superiority of ICPC specified in (c): On the one hand, the APC-based
PCOR or MBOR algorithm overwhelmingly outperforms APC ; on the other hand, “A.ICPC.APC” can
further improve “A.APC”, in which A stands for PCOR or MBOR, and APC denotes InterIAPC
or InterHyPC. This is just what we expected when building ICPC. Finally, we mention
that “A.ICPC.InterHyPC” possesses more robust performance than “A.ICPC.InterIAPC” in
most situations.

In summary, the InterHyPC algorithm can be used to replace InterIAPC for local discovery
due to its more desirable performance on precision and recall; the APC-based ICPC algorithm can
usually lead to a great improvement on APC ; the ICPC-based PCOR and MBOR algorithms can be an
ideal solution to the problem of premature termination of the forward search that arises frequently in
large local discovery.
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Figure 5. Precision, recall, and their 95% confidence bands averaged over the six
synthetic BNs.

Figure 6. Euclidean distance, F-measure, and their 95% confidence bands averaged over the
six synthetic BNs.
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Figure 7. Precision, recall, and 95% confidence bands averaged over the 1000 random BNs.

Figure 8. Euclidean distance, F-measure, and 95% confidence bands averaged over the 1000
random BNs.
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Figure 9. Running time and 95% confidence bands averaged over the six synthetic BNs.

Figure 10. Running time and 95% confidence bands averaged over the 1000 random BNs.

7. Conclusions and Discussion

In this paper, we address the challenges of local discovery in three aspects: i) Examining the
reliability of CI tests and proposing a more realistic approach; ii) enhancing existing local discovery
algorithms to prevent premature termination of forward search, introducing the concept of information
connection and a novel algorithm; and iii) optimizing the method for breaking ties among equal
associations. Specifically, as motivated by the three problems, we studied how to modify the
assumption A1 more reasonably, put forward the ICPC algorithm based on the idea of information
connection and the extended information flow metaphor by providing detailed theoretical backgrounds,
and presented a new way of breaking ties among equal negative p-values. By discussing the impact
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of data size on the reliability of CI tests and defining the concept of extended Markov boundary, we
theoretically proved the correctness of ICPC. As demonstrated, compared to the existing state of the
art algorithms, the PCOR and MBOR algorithms based on ICPC perform better in most cases and thus can
be deemed to be a desirable solution when the PC or MB of the target contains too many nodes.

Before ending this paper, we present two concluding remarks as follows:

• Complexity of ICPC, PCOR, and MBOR. By Algorithm 2, ICPC calls APC repeatedly when the
enhanced forward search is done. However, every such a calling may be finished very rapidly
because it starts from PCT \{Y} instead of an empty set. Therefore, the complexity of ICPC is only
slightly higher than that of APC ‖. As a consequence, the complexities of “PCOR.ICPC.APC” and
“MBOR.ICPC.APC” are only a bit higher than that of “PCOR.APC” and “MBOR.APC”, respectively.
• Measurements used in the experiment. In the benchmarking study, we used the Euclidean distance

and F-measure based on precision and recall to evaluate the accuracy of an algorithm. Denote
the true and discovered PCs or MBs of T by M and MA, respectively. Then, precision and recall
are defined as follows:

precision ,
|M ∩ MA|

|MA|
and recall ,

|M ∩ MA|

|M |
.

These definitions are applicable to the cases that |M| and |MA| are not very small. However, when
|M| or |MA| is very small, precision and recall cannot measure the accuracy of an algorithm very
well; we provide an illustration on this assertion in Example 5. This example implies that we
can weigh precision and recall with their opposites to alleviate the phenomenon that Example 5
presents. Following this hint, we denote MC = (V \ {T }) \ M, MC

A = (V \ {T }) \ MA, and put

precisionw ,
1
2

(
|M ∩ MA|

|MA|
+
|MC ∩ MC

A|

|MC
A|

)
=

1
2

(
|M ∩ MA|

|MA|
+
|(V \ {T }) \ (M ∪ MA)|
|V \ {T } \ MA|

)
,

recallw ,
1
2

(
|M ∩ MA|

|M|
+
|MC ∩ MC

A|

|MC|

)
=

1
2

(
|M ∩ MA|

|M|
+
|(V \ {T }) \ (M ∪ MA)|

|V \ {T } \ M|

)
.

When |M| or |MA| is very small, precisionw and recallw may be more suitable than precision and
recall for measuring the accuracy of an algorithm, as do the corresponding Euclidean distance
and F-measure. Example 5 illustrates this idea.

Example 5. Let V be a set of 20 variables, D be a dataset over M, A1 and A2 be two local discovery
algorithms. For T ∈ V, denote its PC (or MB) by M with |M| = 9. Assume Mi is the output of Ai, with

|M1| = 1, |M ∩ M1| = 1; |M2| = 8, |M ∩ M2| = 7.

Then we have

precision(1) = 1, recall(1) = 0.1111; precision(1)
w = 0.7778. recall(1)

w = 0.5556,
precision(2) = 0.8750. recall(2) = 0.7778; precision(2)

w = 0.8466, recall(2)
w = 0.8389.

Hence, the weighted version of precision and recall can measure the algorithms in a more suitable way.
‖According to the simulation study, we find that this is very applicable for the results of 1000 random BNs. However, for the six

real-world BNs, it is only suitable when the sample size is not very large (e.g., not larger than 1000). Note that, when the data size is
large, the running time increases sharply, which may be related to the original intention (or motivation) of our algorithms. Our motivation
is to solve the problem of low efficiency of local learning when the sample size is not sufficient. In fact, when the sample size is large,
more nodes will stay in the MBAT at Line 11 of Algorithm 2, greatly increasing the running cost of backward search. We are planning to
undertake how to solve this problem in the near future, but this may be a long process.
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A. Proofs

This appendix provides the proofs of some theoretical results.

A.1. Proof of Theorem 1

Let fr, δ(x) and Fr, δ(x) ,
∫ x

0
fr, δ(t)dt be the probability density function and the cumulative

distribution function, respectively, for the χ2-variate with r degrees of freedom and the noncentrality
parameter δ (namely, χ2(r, δ)), where

fr, δ(x) =
e−(x+δ)/2 xr/2−1

2r/2

∞∑
k=0

(δ/2)k (x/2)k

k!Γ(k + r/2)
,

if x > 0 and fr, δ(x) = 0 otherwise. For distinction, we slightly abuse these notations and use fr(x) and
Fr(x) as shorthand for fr, 0(x) and Fr, 0(x), respectively. By direct calculations, it concludes that:

∂ fr, δ(x)
∂x

= 1
2

[
fr−2, δ(x) − fr, δ(x)

]
, (A.1)

∂ fr, δ(x)
∂δ

= 1
2

[
fr+2, δ(x) − fr, δ(x)

]
. (A.2)

Before presenting the proof of Theorem 1, we first prove a lemma.

Lemma 2. For any 4δ > 0, the following statements hold:

a) Fr, δ(x) is increasing with x and decreasing with r or δ.
b) fr+2, δ(x)/ fr, δ(x) is increasing with x.
c) For any 4δ > 0, Fr, δ+4δ(x)/Fr, δ(x) and [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] are increasing with x and

decreasing with r; specifically, Fr, δ(x)/Fr(x) and [1 − Fr, δ(x)]/[1 − Fr(x)] are increasing with x
and decreasing with r.

Proof. The first statement is shown in [51, 52].
To prove (b), we denote

ai, j =
(δ/2)i+ j(x/2)i+ j

i! j!

[
1

Γ(i + r/2)Γ( j + r/2)
−

1
Γ(i + r/2 + 1)Γ( j + r/2 − 1)

]
.

In view of Eq (A.1), it follows that

∂

∂x

(
fr+2, δ(x)
fr, δ(x)

)
=

[
∂ fr+2, δ(x)

/
∂x

]
fr, δ(x) −

[
∂ fr, δ(x)

/
∂x

]
fr+2, δ(x)

f 2
r, δ(x)

=

1
2

[
fr, δ(x) − fr+2, δ(x)

]
fr, δ(x) − 1

2

[
fr−2, δ(x) − fr, δ(x)

]
fr+2, δ(x)

f 2
r, δ(x)

=
gr, δ(x)
2 f 2

r, δ(x)
, (A.3)

with gr, δ(x) , f 2
r, δ(x)− fr+2, δ(x) fr−2, δ(x) = 2−ne−(x+δ)xn−2 ∑∞

i=0
∑∞

j=0 ai, j. For any i > 0 and j > 1, we have

ai,0 =
(δ/2)i(x/2)i

i!

[ 1
Γ(i + r/2)Γ(r/2)

−
1

Γ(i + r/2 + 1)Γ(r/2 − 1)

]
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=
(δ/2)i(x/2)i

i!Γ(i + r/2 + 1)Γ(r/2)

[(
i +

r
2

)
−

( r
2
− 1

)]
> 0,

ai,i+1 =
(δ/2)2i+1(x/2)2i+1

i!(i + 1)!

[ 1
Γ(i + r/2)Γ(i + 1 + r/2)

−
1

Γ(i + r/2 + 1)Γ(i + 1 + r/2 − 1)

]
= 0.

Furthermore, for any i > 0 and j > 1 with j , i + 1, we obtain

ai, j + a j−1,i+1 =
(δ/2)i+ j(x/2)i+ j

i! j!

[ 1
Γ(i + r/2)Γ( j + r/2)

−
1

Γ(i + r/2 + 1)Γ( j + r/2 − 1)

]
+

1
( j − 1)!(i + 1)!

[ (δ/2) j−1+i+1(x/2) j−1+i+1

Γ
(
j − 1 + r

2

)
Γ
(
i + 1 + r

2

) − (δ/2) j−1+i+1(x/2) j−1+i+1

Γ
(
j − 1 + r

2 + 1
)
Γ
(
i + 1 + r

2 − 1
)]

=
(δ/2)i+ j(x/2)i+ j[(i + 1)

(
i + r

2

)
− (i + 1)

(
j + r

2 − 1
)

+ j
(
j + r

2 − 1
)
− j

(
i + r

2

)]
(i + 1)! j!Γ(i + 1 + r/2)Γ( j + r/2)

=
(δ/2)i+ j(x/2)i+ j(i − j + 1)2

(i + 1)! j!Γ(i + 1 + r/2)Γ( j + r/2)

> 0.

According to the hint of Table 6, it is concluded that

gr, δ(x) = 2−r e−(x+δ) xr−2
∞∑

i=0

∞∑
j=0

ai, j

= 2−r e−(x+δ) xr−2
[
∞∑

i=0
ai,0 +

∞∑
i=0

ai,i+1 +
∞∑

i=1

i∑
j=1

(
ai, j + a j−1,i+1

)]
> 0.

Table 6. Explanation for the following equality:
∑∞

i=0
∑∞

j=0 ai, j =
∑∞

i=0 ai,0 +
∑∞

i=0 ai,i+1 +∑∞
i=1

∑i
j=1

(
ai, j + a j−1,i+1

)
, in which the first part is tabulated with dark grey as the back color,

the second part is with black, and the third part is multicolored.

i j
0

1
2

3
· · ·

0
a
0,0

0
a
0,2

a
0,3
· · ·

1
a
1,0

a
1,1

0
a
1,3
· · ·

2
a
2,0

a
2,1

a
2,2

0
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
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This combined with Eq (A.3) implies

∂

∂x

(
fr+2, δ(x)
fr, δ(x)

)
=

gr, δ(x)
2 f 2

r, δ(x)
> 0,

so fr+2, δ(x)/ fr, δ(x) is increasing with respect to x.
Now, we prove (c) by means of (b). The proof is divided into the following four parts:

c1) Proving Fr, δ+4δ(x)/Fr, δ(x) is increasing with x: In fact, by (b), fr+2, δ(y)/ fr, δ(y) < fr+2, δ(x)/ fr, δ(x)
holds for any x and y with 0 < y < x, or equivalently, we have fr+2, δ(y) fr, δ(x) < fr+2, δ(x) fr, δ(y).
By means of Eq (A.2), this gives

∂

∂δ

(
fr, δ(y)
fr, δ(x)

)
=

[
∂ fr, δ(y)

/
∂δ

]
fr, δ(x) −

[
∂ fr, δ(x)

/
∂δ

]
fr, δ(y)

f 2
r, δ(x)

=

1
2

[
fr+2, δ(y) − fr, δ(y)

]
fr, δ(x) − 1

2

[
fr+2, δ(x) − fr, δ(x)

]
fr, δ(y)

f 2
r, δ(x)

=
fr+2, δ(y) fr, δ(x) − fr+2, δ(x) fr, δ(y)

2 f 2
r, δ(x)

< 0,

which further indicates fr, δ+4δ(y)/ fr, δ+4δ(x) < fr, δ(y)/ fr, δ(x). Note that fr, δ+4δ(y)/ fr, δ+4δ(x) −
fr, δ(y)/ fr, δ(x) is a continuous function of y in the closed interval [0, x]. It follows that

fr, δ+4δ(y)
fr, δ+4δ(x)

<
fr, δ(y)
fr, δ(x)

⇒
Fr, δ+4δ(x)
fr, δ+4δ(x)

=

∫ x

0

fr, δ+4δ(y)
fr, δ+4δ(x)

dy <
∫ x

0

fr, δ(y)
fr, δ(x)

dy =
Fr, δ(x)
fr, δ(x)

⇒ fr, δ+4δ(x)Fr, δ(x) > fr, δ(x)Fr, δ+4δ(x)

⇒
∂

∂x

(
Fr, δ+4δ(x)

Fr, δ(x)

)
=

fr, δ+4δ(x)Fr, δ(x) − fr, δ(x)Fr, δ+4δ(x)
F 2

r, δ(x)
> 0.

This means Fr, δ+4δ(x)/Fr, δ(x) is increasing with x.
c2) Proving [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is increasing with respect to x: According to the proof of

(c1), we have fr, δ+4δ(y)/ fr, δ+4δ(x) > fr, δ(y)/ fr, δ(x) for any x and y with y > x > 0. For any z (> x),
noting fr, δ+4δ(y)/ fr, δ+4δ(x) − fr, δ(y)/ fr, δ(x) is a continuous function of y ∈ [x, z], it follows that

fr, δ+4δ(y)
fr, δ+4δ(x)

>
fr, δ(y)
fr, δ(x)

⇒

∫ z

x

fr, δ+4δ(y)
fr, δ+4δ(x)

dy >
∫ z

x

fr, δ(y)
fr, δ(x)

dy and
∫ +∞

z

fr, δ+4δ(y)
fr, δ+4δ(x)

dy >
∫ +∞

z

fr, δ(y)
fr, δ(x)

dy

⇒
1 − Fr, δ+4δ(x)

fr, δ+4δ(x)
=

∫ +∞

x

fr, δ+4δ(y)
fr, δ+4δ(x)

dy >
∫ +∞

x

fr, δ(y)
fr, δ(x)

dy =
1 − Fr, δ(x)

fr, δ(x)

⇒
[
1 − Fr, δ+4δ(x)

]
fr, δ(x) >

[
1 − Fr, δ(x)

]
fr, δ+4δ(x)

⇒
∂

∂x

(
1 − Fr, δ+4δ(x)

1 − Fr, δ(x)

)
=
− fr, δ+4δ(x)

[
1 − Fr, δ(x)

]
+ fr, δ(x)

[
1 − Fr, δ+4δ(x)

][
1 − Fr, δ(x)

]2 > 0.

This means [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is increasing with respect to x.
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c3) Proving Fr, δ+4δ(x)/Fr, δ(x) is dereasing with r: Let ξ ∼ χ2(r− 2), η ∼ χ2(1), ζ ∼ χ2(1, δ+4δ), and
τ ∼ χ2(1, δ) be four independent χ2 variables. Then,

Fr, δ+4δ(x) = P(ξ + η + ζ 6 x) =
∫ x

0
f1(y)P(ξ + ζ 6 x − y)dy =

∫ x

0
f1(y)Fr−1, δ+4δ(x − y)dy,

Fr, δ(x) = P(ξ + η + τ 6 x) =
∫ x

0
f1(y)P(ξ + τ 6 x − y)dy =

∫ x

0
f1(y)Fr−1, δ(x − y)dy.

According to (c1), Fr−1, δ+4δ(x − y) < Fr−1, δ(x − y)Fr−1, δ+4δ(x)/Fr−1, δ(x) holds for any y ∈ (0, x).
Therefore,

Fr, δ+4δ(x)
Fr, δ(x)

=

∫ x

0
f1(y)Fr−1, δ+4δ(x − y)dy∫ x

0
f1(y)Fr−1, δ(x − y)dy

<

∫ x

0
f1(y)Fr−1, δ(x − y)Fr−1, δ+4δ(x)/Fr−1, δ(x)dy∫ x

0
f1(y)Fr−1, δ(x − y)dy

=
Fr−1, δ+4δ(x)

Fr−1, δ(x)
.

This implies that Fr, δ+4δ(x)/Fr, δ(x) is decreasing with respect to r.
c4) Proving [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is dereasing with r: First, using (c2), it concludes that

1 − Fr−1, δ+4δ(x − y) <
[
1 − Fr−1, δ(x − y)

]
·

1 − Fr−1, δ+4δ(x)
1 − Fr−1, δ(x)

, (A.4)

holds for any y ∈ (0, x). Inserting (A.4), we have

1 − Fr, δ+4δ(x)
1 − Fr, δ(x)

=

∫ +∞

x
f1(y)

[
1 − Fr−1, δ+4δ(x − y)

]
dy∫ +∞

x
f1(y)

[
1 − Fr−1, δ(x − y)

]
dy

<
1 − Fr−1, δ+4δ(x)

1 − Fr−1, δ(x)
.

Hence, [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is decreasing with respect to r.

The proof is completed. �

Using this lemma, we prove the following theorem:

Theorem 1 (Power and Reliability of CI Tests). AssumeD is an insufficient dataset. Then, we have

a) P
(
EyD |Ey,D

)
is decreasing with n and increasing with r.

b) P
(
E6yD |E 6y,D

)
is increasing with n and decreasing with r.

c) P
(
Ey |EyD ,D

)
is increasing with n and decreasing with r.

d) P
(
E6y |E 6yD ,D

)
is decreasing with n and increasing with r.

Proof. First, it is easily seen that P
(
EyD |Ey,D

)
= Frn

(
χ2
α(r)

)
. This indicates (a) of Theorem 1 is just a

direct consequence of (a) of Lemma 2, since rn is increasing with n.
To compute P

(
E 6yD |E6y, D

)
, we let 〈X; Y | Z〉 and 〈X; Y | Z〉D denote two random variables in the

sense of

〈X; Y | Z〉 =

{ 1, if X y Y | Z
0, if X 6y Y | Z

and 〈X; Y | Z〉D =

{ 1, if X yD Y | Z,
0, if X 6yD Y | Z,

respectively. These two notations are inspired by the notion of “meta-space” [22] representing all
possible independencies in the domain. Similarly, we also regard I(X; Y | Z) as a random variable with

I(X; Y | Z) ∼ g(τ) =

{ g+(τ), τ > 0,
δ(τ/g0) = g0 · δ(τ), τ = 0,
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where g+(τ) is a nonnegative integrable function on τ ∈ (0,+∞); g0 = 1 −
∫ +∞

0
g+(τ)dτ ∈ (0, 1); δ(τ)

is the Dirac δ-function. Figure 11 presents a meta-BN for the relationship among I(X; Y | Z), r, D,
〈X; Y | Z〉, and 〈X; Y | Z〉D. Using these notions, we have

P
(
E6yD

∣∣∣ E6y,D)
= P

(
〈X; Y | Z〉D = 0

∣∣∣ I(X; Y | Z) > 0,D
)

=

∫ +∞

0
g+(τ)P

(
〈X; Y | Z〉D = 0

∣∣∣ I(X; Y | Z) = τ,D
)
dτ∫ +∞

0
g+(τ)dτ

=

∫ +∞

0
g+(τ)

[
1 − Frn, 2nτ

(
χ2
α(r)

)]
dτ

1 − g0
. (A.5)

This means that (b) of Theorem 1 is also a direct consequence of (a) of Lemma 2, since rn and 2nτ are
increasing with n.

6 Xu-Qing Liu, Xin-Sheng Liu

c3) Proving Fr, δ+4δ(x)/Fr, δ(x) is monotonically dereasing with n: Let ξ ∼ χ2(r − 2), η ∼ χ2(1), ζ ∼ χ2(1, δ + 4δ), and τ ∼ χ2(1, δ) be four
independent χ2 variables. Then,

Fr, δ+4δ(x) = P(ξ + η + ζ 6 x) =
∫ x

0 f1(y)P(ξ + ζ 6 x − y)dy =
∫ x

0 f1(y)Fr−1, δ+4δ(x − y)dy,

Fr, δ(x) = P(ξ + η + τ 6 x) =
∫ x

0 f1(y)P(ξ + τ 6 x − y)dy =
∫ x

0 f1(y)Fr−1, δ(x − y)dy.

According to (c1), Fr−1, δ+4δ(x − y) < Fr−1, δ(x − y)Fr−1, δ+4δ(x)/Fr−1, δ(x) holds for any y ∈ (0, x). Therefore,

Fr, δ+4δ(x)
Fr, δ(x)

=

∫ x
0 f1(y)Fr−1, δ+4δ(x − y)dy∫ x

0 f1(y)Fr−1, δ(x − y)dy
<

∫ x
0 f1(y)Fr−1, δ(x − y)Fr−1, δ+4δ(x)/Fr−1, δ(x)dy∫ x

0 f1(y)Fr−1, δ(x − y)dy
=

Fr−1, δ+4δ(x)
Fr−1, δ(x)

.

This implies that Fr, δ+4δ(x)/Fr, δ(x) is monotonically decreasing with respect to n.

c4) Proving [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is monotonically dereasing with r: First, using (c2), it concludes that

1 − Fr−1, δ+4δ(x − y) <
[
1 − Fr−1, δ(x − y)

] · 1 − Fr−1, δ+4δ(x)
1 − Fr−1, δ(x)

(5)

holds for any y ∈ (0, x). Inserting (5), we have

1 − Fr, δ+4δ(x)
1 − Fr, δ(x)

=

∫ +∞
x f1(y)

[
1 − Fr−1, δ+4δ(x − y)

]
dy∫ +∞

x f1(y)
[
1 − Fr−1, δ(x − y)

]
dy

<
1 − Fr−1, δ+4δ(x)

1 − Fr−1, δ(x)
.

Hence, [1 − Fr, δ+4δ(x)]/[1 − Fr, δ(x)] is monotonically decreasing with respect to r.

The proof is completed. �

Using this lemma, we prove the following theorem:

Theorem 1 (Power and Reliability of CI Tests) AssumeD is an insufficient data set. Then we have

a) P
(
EyD |Ey

)
is monotonically decreasing with n and increasing with r.

b) P
(
Ey |EyD

)
is monotonically increasing with n and decreasing with r.

c) P
(
E 6yD |E 6y

)
is monotonically increasing with n or I(X; Y |Z) and decreasing with r.

d) P
(
E 6y |E6yD

)
is monotonically decreasing with n or I(X; Y |Z) and increasing with r.
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Observe P
(
EyD |Ey

)
= Frn

(
χ2
α(r)
)

and P
(
E 6yD |E6y

)
= 1 − Frn , δ

(
χ2
α(r)
)
. This indicates that (a) and (c) of Theorem 1 are direct

consequences of (a) of Lemma 1, since (i) rn is increasing with n; and (ii) δ = 2n · I(X; Y |Z).

Next, we prove (b) and (d). In fact, note that

1
P
(
Ey |EyD

) = 1 +
P
(
E 6y
)

P
(
Ey
) · P

(
EyD |E 6y

)

P
(
EyD |Ey

) , with
P
(
EyD |E 6y

)

P
(
EyD |Ey

) =
Frn , δ

(
χ2
α(r)
)

Frn

(
χ2
α(r)
) ,

1
P
(
E 6y |E 6yD

) = 1 +
P
(
Ey
)

P
(
E 6y
) · P

(
E 6yD |Ey

)

P
(
E 6yD |E 6y

) , with
P
(
E6yD |Ey

)

P
(
E 6yD |E6y

) =
1 − Frn

(
χ2
α(r)
)

1 − Frn , δ
(
χ2
α(r)
) = 1

/[
1 − Frn , δ

(
χ2
α(r)
)

1 − Frn

(
χ2
α(r)
)
]
.

Therefore, (b) and (d) of Theorem 1 follow directly from (a) and (c) of Lemma 1. This completes the proof. �
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Figure 11. A meta-BN for the relationship among I(X; Y | Z), r, D, 〈X; Y | Z〉,
and 〈X; Y | Z〉D.

Next, we prove (c) and (d). In fact, similar to the computation of (A.5), we have

1
P
(
Ey |EyD ,D

) = 1 +
P
(
E6y

)
P
(
Ey

) · P
(
EyD |E6y,D

)
P
(
EyD |Ey,D

) = 1 +
1
g0

∫ +∞

0
g+(τ)

Frn, 2nτ
(
χ2
α(r)

)
Frn

(
χ2
α(r)

) dτ, and(A.6)

1
P
(
E 6y |E6yD ,D

) = 1 +
P
(
Ey

)
P
(
E6y

) · P
(
E 6yD |Ey,D

)
P
(
E 6yD |E6y,D

) = 1 +

( 1
g0

∫ +∞

0
g+(τ)

1 − Frn, 2nτ
(
χ2
α(r)

)
1 − Frn

(
χ2
α(r)

) dτ
)−1

.(A.7)

Therefore, (c) and (d) of Theorem 1 follow directly from (c) of Lemma 2. This completes the proof.
�

A.2. Proof of Theorem 3

This appendix provides the proof of Theorem 3.
Before characterizing the property of EMB, the notion of d-separation [1, 2] is briefly presented as

follows. For a DAG G over V, letting X,Y, Z ⊆ V be disjoint, we say Z d-separates X and Y if it
blocks every path between X and Y, and if this is the case we write X ⊥ Y | Z. Here, Z blocking a path
p means that p has an HT node or a TT node belonging to Z, or that p has an HH node C such that
C and its all descendants are not in Z. As is well-known, X ⊥ Y | Z ⇔ X y Y | Z, if the BN (G,P)
satisfies the faithfulness condition [2]. This implication provides a convenient way of identifying CI
relationships. For example, consider a BN with the graph presented in Figure 12 as its DAG. Then, X2

and X8 are d-separated by {X4, X5}, meaning X2 ⊥ X8 | {X4, X5} and, thus, X2 y X8 | {X4, X5}; X3 and X4

are d-separated by Ø, indicating X3 ⊥ X4, so X3 y X4.
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The following lemma presents the well-known chain rule for CMI (Cover & Thomas, 2006,114

Theorem 2.5.2), which is very useful to prove the main results of this paper.115

Lemma 1 (Chain Rule for CMI) The formula I(X; Y1 ∪ Y2 |Z) = I(X; Y1 |Z) + I(X; Y2 |Z ∪ Y1) holds116

for any four sets of variables X,Y1,Y2, and Z from V . The same formula also holds for ID(·).117

i Directed Separation and Directed Connection. The notions of directed separation (D-separation)118

and directed connection (D-connection) provide a convenient way of identifying the CIs in119

a BN: For the DAG G, X and Y are d-separated by Z, denoted by X ⊥ Y |Z, if every chain120

between X and Y, saying c, is blocked by Z (Pearl, 1988, p. 117; Neapolitan, 2004, p. 72).121

Here, Z blocking c means either (i) c has a serial node (head-to-tail) or a diverging node122

(tail-to-tail) belonging to Z, or (ii) c has a converging node C (head-to-head) such that C and123

its all descendants are not in Z. Further, X and Y are d-connected by Z, denoted by X 6⊥ Y |Z, if124

X and Y are not d-separated by Z. For example, considering the DAG presented in (1): X2 and125

X8 are d-separated by {X4,X5}, meaning X2 ⊥ X8 | {X4,X5}; X4 and X5 are d-separated by X2,126

meaning X4 ⊥ X5 |X2; X3 and X4 are d-separated by Ø but d-connected by X6 or X7, meaning127

X3 ⊥ X4 but X3 6⊥ X4 |X6 and X3 6⊥ X4 |X7.128
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Figure 1:

For any BN, the implication “X ⊥ Y |Z ⇒ X y Y |Z” can facilitates the identification of CIs.130

Taking the BN with (1) as its DAG for example, we have X2 y X8 | {X4,X5}; X4 y X5 |X2; and X3 y X4.131

Further, under the faithfulness condition, D-separation coincides with conditional independence132

while D-connection is equivalent to conditional dependence (Neapolitan, 2004, Theorem 2.5). That133

is, X ⊥ Y |Z ⇔ X y Y |Z while X 6⊥ Y |Z ⇔ X 6y Y |Z. This conclusion describes the relationship134

between the graphical side (G) and the probabilistic side (P) of a BN.135

In what follows, the concepts of MB and Mb for a single variable are presented (see Neapolitan,136

2004, pp. 108–109). The definition for multivariate case is similarly given in Definition 3.137

Definition 2 (Univariate MB and Mb) Let P be a joint probability distribution over V , and T ∈ V . Then138

a Markov blanket (MB), M, of T is any set of variables from V such that T y V \M \ {T} |M. A Markov139

boundary (Mb) of T is any MB such that none of its proper subsets is an MB of T.140

This definition requires that an Mb is a minimal MB in a sense. In other words, an Mb of T is141

a minimal variable set conditioned on which all other variables are independent of T, so it carries142

all information of T that cannot be obtained from other variables. The following lemma collects143

the main results of MB and Mb for the univariate case existing in the literature. The proofs can be144

found in Neapolitan (2004, p. 109) and Pearl (1988, pp. 97 and 141).145

4

Figure 12. The DAG of the ASIA network used to illustrate the notions of d-separation.

In addition, the following properties are helpful [1, 16]. For any X,Y, Z,W ⊆ V, we have (i)
decomposition: X y Y ∪W | Z implies X y Y | Z and X y W | Z; (ii) weak union: X y Y ∪W | Z
implies X y Y | Z∪W; (iii) contraction: X y Y | Z∪W and X yW | Z imply X y Y∪W | Z. Further,
under the faithfulness condition, besides (i)∼(iii), we also have (iv) intersection: X y Y | Z ∪ W
and X y W | Z ∪ Y imply X y Y ∪ W | Z; (v) composition: X y Y | Z and X y W | Z
imply X y Y ∪W | Z.

Lemma 3. Let G be a DAG over V. The statements below hold [2]:

• For given T, X ∈ V, we have X ∈ PCT if, and only if, T 6⊥ X | Z holds for any Z ⊆ V \ {T, X}.
• For an uncoupled meeting “T Y X” (i.e., T and X are not adjacent), the following are

equivalent: (a) Y is a collider of T and X; (b) there is a set of nodes not containing Y and its
descendants that d-separates T and X; (c) any set of nodes containing Y or its a descendant does
not d-separate T and X. �

Lemma 4. For a BN (G,P) over V satisfying the faithfulness condition, we have MB(Y)
T ⊆ (MBT ∪ MBY) \

{T,Y}.

Proof. By the uniqueness of MB (under the faithfulness condition), it suffices to prove

T y (V \ {Y}) \ [(MBT ∪ MBY) \ {T,Y}] \ {T } | (MBT ∪ MBY) \ {T,Y}. (A.8)

In fact, according to the definition of MB, we have

T y V \ MBT \ {T } | MBT , (A.9)
Y y V \ MBY \ {Y} | MBY . (A.10)

Putting now MTY , (MBY \ MBT \ {T }) ∪ ({Y} \ MBT ) and MYT , (MBT \ MBY \ {Y}) ∪ ({T } \ MBY), we
employ the weak union property to obtain the following implications:

(A.9) ⇒ (V \ MBT \ {T }) \ MTY y T | MBT ∪ MTY

⇒ V \ [(MBT ∪ MBY) \ {T,Y}] \ {T,Y} y T | [(MBT ∪ MBY) \ {T,Y}] ∪ {Y}, (A.11)
(A.10) ⇒ (V \ MBY \ {Y}) \ MYT y Y | MBY ∪ MYT

⇒ V \ [(MBT ∪ MBY) \ {T,Y}] \ {T,Y} y Y | [(MBT ∪ MBY) \ {T,Y}] ∪ {T }. (A.12)

Using the intersection property, (A.11) and (A.12) imply V \ [(MBT ∪ MBY) \ {T,Y}] \ {T,Y} y {T,Y} |
(MBT∪MBY)\{T,Y}, or, equivalently, {T,Y} y (V\{Y})\[(MBT∪MBY)\{T,Y}]\{T } | (MBT∪MBY)\{T,Y}.
By the decomposition property, (A.8) follows immediately. The proof is completed. �

Theorem 3. For a BN (G,P) over V satisfying the faithfulness condition, the following statements hold:
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• In one of the following cases: (i) Y ∈ PAT , (ii) Y ∈ CHT with CHY , Ø, (iii) Y ∈ SPT , the Y-EMB
of T can be expressed as MB(Y)

T = (MBT ∪ MBY) \ {T,Y}.
• If Y ∈ CHT with CHY = Ø, then PCT \ {Y} ⊆ MB

(Y)
T ⊆ MBT \ {Y}.

• If Y < MBT , then MB(Y)
T = MBT .

Proof. First, by Definition 1 and Lemma 1, it is readily seen that PCT \ {Y} ⊆ MB
(Y)
T holds in any case.

Here, we recall that SPT denotes the set of the spouses of T , excluding its parents and children. Based
on the d-separation theory (under the faithfulness condition) and Lemma 3, we have

• Case 1. Y ∈ PAT . Clearly, SPT ⊆ MB
(Y)
T because Y < CHT ⊆ MB

(Y)
T , in view of the

acyclicity of a DAG.
Now, we show MBY \ {T } ⊆ MB

(Y)
T . In fact, Y is the only HT node in the path “P // Y // T”,

while it is the only TT node in the path “C oo Y // T”, where P ∈ PAY and C ∈ CHY . Hence,
any node set without Y cannot d-separate T and PCY \ {T }, so PCY \ {T } ⊆ MB

(Y)
T . Further, any

C ∈ CHY \ {T } is an HH node in the path “S // C oo Y // T” for S ∈ SPY{T }; also, Y is the only TT
node in this path. This indicates that any set of nodes containing CHY \ {T } but not containing Y
cannot d-separate T and SPY . Therefore, SPY ⊆ MB

(Y)
T .

In summary, MB(Y)
T ⊇ (MBT ∪ MBY) \ {T,Y}. On the other hand, MB(Y)

T ⊆ (MBT ∪ MBY) \ {T,Y}
follows from Lemma 4, so we have shown MB(Y)

T = (MBT ∪ MBY) \ {T,Y} in this case.
• Case 2. Y ∈ CHT with CHY , Ø. In this case, Y is the only HT node in the path “T // Y // C”

for C ∈ CHY . Hence, any set of nodes without Y cannot d-separate T and CHY , so CHY ⊆ MB
(Y)
T .

Further, C is an HH node in the path “T // Y // C oo S ” for S ∈ SPY \ {T }, while Y is the only HT
node in this path. Thus, any set of nodes containing CHY but not containing Y cannot d-separate
T and SPY , indicating SPY ⊆ MB

(Y)
T . Moreover, it can be readily concluded that

CHT \ {Y} ⊆ MB
(Y)
T ⇒ SPT \ PAY ⊆ MB

(Y)
T

CHY , Ø ⇒ PAY \ {T } ⊆ MB
(Y)
T

 ⇒ SPT ∪ (PAY \ {T }) ⊆ MB
(Y)
T .

The above analysis combined with Lemma 4 means MB(Y)
T = (MBT ∪ MBY) \ {T,Y} in this case.

• Case 3. Y ∈ CHT with CHY = Ø. By Lemma 4, MB(Y)
T ⊆ (MBT ∪ MBY) \ {T,Y}. On the other hand,

CHY = Ø implies SPY = Ø and, thus, MBY = PAY ⊆ SPT ∪ {T }, since Y ∈ CHT . Consequently,
MB

(Y)
T ⊆ MBT \ {Y}.

• Case 4. Y ∈ SPT . In this case, T and Y have a common child, C. That is, T // C oo Y; C is an HH
node. Similar to the case of Y ∈ PAT , it can be easily shown that MB(Y)

T = (MBT ∪ MBY) \ {T,Y}, in
view of C ∈ PCT = PCT \ {Y} ⊆ MB

(Y)
T .

• Case 5. Y < MBT . In this case, it is not hard to see MBT ⊆ MB
(Y)
T . Using the definition of MB, we

obtain T y V\MBT \{T } | MBT , which combined with decomposition gives T y (V\{Y})\MBT \{T } |
MBT since Y < MBT , indicating MB(Y)

T ⊆ MBT . Thus, MB(Y)
T = MBT .

The proof is completed. �

A.3. Proof of Theorem 4

This appendix provides the proof of Theorem 4.

Theorem 4. For a BN (G,P) over V satisfying the faithfulness condition, let MB(Y)
T be the Y-EMB of T ,

and M ⊆ MB(Y)
T subject to

(
MB

(Y)
T \ M

)
∩ MBT = Ø. Then, for any X ∈ M, we have X < MBT ⇔ T y X |

(M \ {X}) ∪ {Y}.
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Proof. We first show the sufficiency. Clearly, X < PCT in view of Lemma 3. Suppose X ∈ SPT , meaning
there is Z ∈ CHT such that T , Z, and X constitute a collision “T // Z oo X”. Then, it follows from
Lemma 3 that any set, N, of nodes containing Z cannot d-separates T and X. That is, T 6⊥ X | N, so
T 6y X | N. On the other hand, according to Theorem 3, MB(Y)

T ⊇ PCT\{Y}, so (M\{X})∪{Y} ⊇ PCT ⊇ {Z}
since (MB(Y)

T \ M) ∩ MBT = Ø and X < PCT . Consequently, T 6y X | (M \ {X}) ∪ {Y}. This contradicts
T y X | (M \ {X}) ∪ {Y}, implying X < SPT . This combined with X < PCT shows X < MBT .

To prove the necessity, we assume X < MBT . By Theorem 3, we have

• If Y ∈ PAT ∪SPT or Y ∈ CHT but CHY , Ø, then MB(Y)
T = (MBT ∪MBY) \ {T,Y}. This combined with

(MB(Y)
T \ M) ∩ MBT = Ø and X < MBT implies (M \ {X}) ∪ {Y} ⊇ MBT ; that is, (M \ {X}) ∪ {Y} is

a Markov blanket of T . By the weak union property and the decomposition property, it is readily
concluded that T y X | (M \ {X}) ∪ {Y} in these cases.
• If Y < MBT or Y ∈ CHT but CHY = Ø, we have M ⊆ MB(Y)

T ⊆ MBT . Therefore, M ≡ MB(Y)
T and no

such an X exists in these two cases, since (MB(Y)
T \ M) ∩ MBT = Ø.

The proof of the necessity is also completed. �

A.4. Proof of Theorem 5

Before proving Theorem 5, we first show the following lemma:

Lemma 5. If T 6y X | M and T y Y | M, then T 6y X | M ∪ {Y}.

Proof. Supposing T y X | M ∪ {Y}, by the contraction property, this combined with T y Y | M
gives T y {X,Y} | M. By the decomposition property, we obtain T y X | M, which contradicts
T 6y X | M. �

Theorem 5. For T ∈ V and M ⊆ V \ {T }, put X` , {X1, · · · , X`} ⊆ M and M` , M \ X`, in which
each X` is subject to the yD-test “T yD X` | M`”, ` = 1, · · · , k. Then, for any Xi ∈ Xk−1, the yD-test
“T yD Xi | Mi” is unreliable under the assumption A2, if T 6yD Xi | Mk.

Proof. First of all, all 6yD-tests are deemed reliable in view of A2, so we have

T 6yD Xi | Mk ⇒ T 6y Xi | Mk. (A.13)

Now we show “T yD Xi | Mi” is incompatible to the yD-tests “T 6yD X` | M`” for ` = i + 1, · · · , k. In
fact, assuming these (k − i) yD-tests are reliable, it follows from Lemma 5 and (A.13) that

T 6y Xi | Mk

T y Xk | Mk

}
⇒ T 6y Xi | Mk ∪ {Xk} (noting Mk ∪ {Xk} = Mk−1)

⇒ T 6y Xi | Mk−1 (combined with T y Xk−1 | Mk−1)
⇒ · · ·

⇒ T 6y Xi | Mi+1 (combined with T y Xi+1 | Mi+1)
⇒ T 6y Xi | Mi.

This proves “T yD Xi | Mi” is incompatible to “T 6yD X` | M`” (` = i + 1, · · · , k). Observe that these
(1 + k − i) yD-tests have

ri , (rT − 1)(rXi−1)rMi = (rT − 1)(rXi−1)rXi+1 rMi+1

AIMS Mathematics Volume 9, Issue 8, 22743–22793.



22779

ri+1 , (rT − 1)(rXi+1−1)rMi+1 (< ri)
...

rk , (rT − 1)(rXk−1)rMk (< rk−1),

degrees of freedom, respectively. According to the assumtion A2, the yD-test “T yD Xi | Mi” is
deemed unreliable. The proof is completed. �

B. Figures

This appendix displays the figures derived in Section 6.

Figure 13. Average precision of PC algorithms versus data size.
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Figure 14. Average precision of MB algorithms versus data size.
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Figure 15. Average recall of PC algorithms versus data size.
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Figure 16. Average recall of MB algorithms versus data size.
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Figure 17. Average Euclidean distance of PC algorithms versus data size.
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Figure 18. Average Euclidean distance of MB algorithms versus data size.
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Figure 19. Average F-measure value of PC algorithms versus data size.
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Figure 20. Average F-measure value of MB algorithms versus data size.
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Figure 21. Average running time of PC algorithms versus data size.
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Figure 22. Average running time of MB algorithms versus data size.

C. Acronyms

BFMB breadth first search of Markov boundary algorithm [37].
BIC Bayesian information criterion [53].
BN Bayesian network.
CI conditional independence.

AIMS Mathematics Volume 9, Issue 8, 22743–22793.
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DAG directed acyclic graph.
EMB extended Markov boundary (Definition 1).
FN false negative.
FP false positive.
FSMB fast shrinking parents-children learning for Markov blanket-based feature selection algorithm [44].
FullBNT BN toolbox created by Prof. Kevin P. Murphy [45]; see http://www.cs.ubc.ca/˜murphyk/ for

details.
GLL generalized local learning: an algorithmic framework proposed by Aliferis et al. [8, 9], used for local

causal discovery and feature selection.
GLL-MB a sub-framework of GLL used for MB discovery [8, 9]; see (d) of Algorithm 1 for details.
GLL-PC a sub-framework of GLL used for PC discovery [8, 9]; see (a) of Algorithm 1 for details.
GS grow-shrink algorithm [40, 41].
HH head-to-head (converging) node.
hps heuristic power size as a parameter in GLL of Aliferis et al. [8, 9].
HT head-to-tail (serial) node.
IAMB incremental association Markov boundary algorithm [42].
IC information connection based method.
ICPC our PC discovery algorithm based on the IC strategy (Algorithm 2).
InterHyMB our MB discovery algorithm as a combination of GLL-PC and InterIAMB; see Algorithm 3 for details.
InterHyPC our PC discovery algorithm as a combination of GLL-PC and InterIAPC; see Algorithm 3 for details.
InterIAMB interleaved incremental association MB algorithm [42]; see (b) of Algorithm 1 for details.
InterIAPC InterIAMB-based PC discovery algorithm.
KS Koller-Sahami algorithm [39].
LRH an MB discovery algorithm used to overcome swamping and masking [17].
MB Markov boundary.
MBOR an MB discovery algorithm proposed by Morais and Aussem [10]; see (e) of Algorithm 1 for details.
MIToolbox a toolbox developed by Brown et al. [50] for Shannon’s information theory functions; Please refer to

http://www.cs.man.ac.uk/˜pococka4/MIToolbox.html for the details.
PC parents and children.
PCMB parents and children based MB algorithm proposed by Peña et al. [23].
PCOR an PC discovery algorithm proposed by Morais and Aussem [10]; see (c) of Algorithm 1 for details.
SGS a PC discovery algorithm proposed by Spirtes, Glymour, and Scheines [36].
S2TMB score-based simultaneous Markov blanket discovery algorithm [46].
TN true negative.
TP true positive.
TPDA three-phase dependency analysis algorithm [24].
TT tail-to-tail (diverging) node.
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