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1. Introduction and relevance of subject

Mathematical modeling is indispensable in engineering, natural science, and applied mathematics
to capture the effects of both memory and delay ingrained in the studied actualities. To this end, the
inclusion of both of them is often simplified for presentation purposes, as a specific description of basic
operations can be intricate for mathematical manipulation. A key question to address is how certain
behaviors are related to memory and delays. In this study, we investigate the joint impact of an infinite
memory, distributed delay, and micro-temperature effects on the system (1.1).

In the current work, we study the following thermoelastic laminated beam, together with structural
damping, infinite memory, distributed delay, and micro-temperatures effects:

0wy, + G(p — wy), +yb, =0,

I,(3Y = )y — DBY — §)x — G(¢p — @) — mb + dr,
+ f g)BY — @) (x,t = 5)ds = 0,
0

1.1
31y = 3D +3G( - @) + 400 + 480, + 4 [T @Wi(nt - ods =0, D
Cet - kogxx + m(3lﬁ - ¢)t + YW t klrx = O,
ar, — kary + kar + k10, + dQ3y — @), = 0,
where
(.X, S, t) € (09 1) X (gl’ §2) X R+»
and the initial and boundary conditions are given by
w(xa O) = wy, l//(-x, O) = l/’O, ¢(X, O) = ¢05 O(X, 0) = 00’ r(xa O) =rp, X € (Oa 1)’
wt(xa O) = wi, wt(xa O) = l/’la ¢t(-x’ 0) = ¢1, X € (O’ 1)’ (1 2)

@.(0,1) = ¢(0,1) = ¥(0,1) = 6(0,1) = r(0,1) =0, >0,
@(l,0) = ¢:(1,0) = (1,0 = 6:(1,0) = r(1,1) = 0, ¢h(x,=1) = fo(x,1) >0,

Here, @ denotes the transverse displacement, ¢ represents the rotation angle, ¥ is relative to the
amount of slip occurring along the interface, 6 is the temperature difference and r is the micro-
temperature vector. The coefficients 6, B, o, I,, G, and D, are positive constants representing
the adhesive stiffness, the adhesive damping parameter, the density, the shear stiffness, the flexible
rigidity and the mass moment of inertia, respectively. We denote by the positive constants
¢, ko, ki, ko, k3, d, v, @, m, the physical parameters describing the coupling between the various
constituents of the materials.

Herein, ¢, ¢, are positive numbers such that 0 < ¢; < ¢, and w» is an L™ function satisfying the
following assumption:

e The function u; : [¢1,¢2] — R is bounded and it fulfills
2
B- f lua($)lds > 0.
Sl
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To motivate our work, let us recall some earlier related results. For the problems with the Timoshenko
system with/without thermal law, one can see the works [4, 6,7, 16,23,24] and for problems related to
thermoelasticity, we mention for instance [8,10,11,13,17,18].

We start with the laminated beam model, which has become quite popular, and both scientists and
engineers are interested in it. This model is a pertinent study topic, because of the wide industry
applicability of such materials. Hansen and Spies in [12] were the first to introduce the following beam
with two layers by developing this mathematical model:

P10y + G(¢ - wx)x = 0,
p23¢ = $)u — G(¢p — @) — D3Y — ¢)x = 0, (1.3)
p3Vi + G(p — @) + 3y + 3BY: — Dy, = 0.

The laminated beam equations have produced some results so far, most of which are focused on
the system’s stability and existence. Provided that the assumption of equal wave speeds holds, it was
demonstrated that system (1.3) is exponentially stable, when linear damping terms are incorporated in
two of the three equations. However, if they are included in the three equations, then the system decays
exponentially with no restriction on the speeds of wave propagations, see, for instance [1,22].

Lately, a renewed focus on investigating the asymptotic behavior of the solutions of several
thermoelastic laminated beams has grown. For more details about this topic the reader may
consult [2,9,20].

The thermoelastic laminated beam problem together with nonlinear weights and time-varying delay
was the study topic of Nonato et al. in [20], where the authors considered two cases (with and without
the structural damping) and proved an exponential decay result for both of them. Distributed delay is
one of the main damping factors in our model. It is used to model systems in which there is a delay
of uncertain duration. The physical interpretation of this term differs from the delayed differential
equation, as it can take several values. For example, in incoming signals, distributed delay shortens the
setup and lengthens the hold time. Even moderate distributed delay likely makes setup time negative
on those inputs that are directly connected to the register.

The infinite memory is a critical aspect in addressing problems, and it has been explored in various
contexts such as the work of Liu and Zhao [14], in which they considered a thermoelastic laminated
beam model with past history. The authors managed to establish both exponential and polynomial
stabilities, depending on the kernel function for the system involving structural damping and with no
constraint on the wave speeds. Moreover, concerning the system in the absence of structural damping,
they were able to establish both exponential and polynomial stabilities, in case of equal wave speeds
and lack of exponential stability in the opposite case.

The time delays problems are one of the most significant and active research areas recently.
Numerous studies have demonstrated that delay can lead to instability unless certain conditions are
incorporated, and it also can lead to distinct solutions that differ from those found in prior studies.
Therefore, the issue of stability for systems that involve delay is highly crucial. To learn more about
this term, we refer the reader to the following papers [3,5,21].

In [19], Nicaise and Pignotti made a study on the following wave equation, together with linear
frictional damping and internal distributed delay:

T2
Uy — Au+ pyu, + a(x)f o(Su,(t—s)ds, in Qx(0,00),
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and assuming that

T2
lalle f pals) ds < pur,

1

the authors managed to prove that the solution is exponentially stable.

Problem (1.1) is considered as a delayed system, and it is also called hereditary systems, posteffect
systems, and deviating argument. Distributed delay is a physical phenomenon which is found in a
multitude of applications: Many real systems whose temporal evolution is not defined from a simple
vector of state (expressed in the present tense) but depends irreducibly on the history of the system.
This situation is encountered in the cases-numerous-where a transport of matter, energy or information
generates a “dead time” in the reaction: in information and communication technologies (high-speed
communication networks, control of networked systems, quality of service in Moving Picture Experts
Group (MPEG) video transmissions, tele-operated systems, parallel computing, realtime computing in
robotics), in population dynamics and epidemiology (gestation or incubation time), and in mechanics
(viscoelasticity). Even if the process does not intrinsically contain a post-effect, its control chain can
introduce distributed delays (for example, if the sensors require a significant acquisition/transmission
time). For these reasons, it seems reasonable to consider distributed delay as a universal characteristic
of the interaction between man and nature (hence, of sciences for engineers). The aim of our study
then concerns the interaction between the different damping terms which intervene in the qualitative
properties of the energy associated to the system. Before this analysis, we must ensure the existence
of unique solution and then we can pass to see the asymptotic behavior of the solution with respect
to damping terms. We used classical semigroup theory to find nontrivial results regarding the
well-posedness of solutions. Then, under minimal restrictions on the kernel, we found qualitative
properties of the solution by contracting an appropriate Lyapnov functional. The main goal is to
present fundamental and new techniques for modern models applying science and technology that
can stimulate research interest for exploration of mathematical applications in real life sciences.

The rest of the current paper is structured this way: In Section 2, we provide some resources required
for our research, then highlight our major results. In Section 3, we establish the well-posedness of the
system. In Section 4, we introduce some fundamental lemmas required in the proof later. In Section 35,
we demonstrate our general decay result.

2. Preliminaries and main results

In this section, we provide some materials required in the proof later, then state our major results.

e (A) Letg:R, - R, beaC! function which satisfies
2(0)>0, D—gy=1>0, where g := f g(s) ds. 2.1
0

e (A,) There exists a strictly increasing convex function G : R, — R, of class C'(R,)NC?(]0, +oo[)
which satisfies

im0 G'(£) = +00,

{G(O) = G'(0) = 0,
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such that

ap [ [Ty
ser. Jo GTH(=g'(5)) o G(=g'()
Now, we present the following useful inequalities.

Lemma 2.1. The following inequalities are valid,
1 00 2
fo [fo g(s) By —)() — By = P)(t - 9)) dS] dx < ci(g o Gy = )0,

2

1 00
fo [ fo 8'(5) (BY = ¢)x(1) = BY — §)(t — ) dS] dx < =g(0)(g" o By — $))(1),

2

1 00
fo [fo 8(5) (BY — )x(1) = B¢ = ¢)x(t — 5)) dSl dx < go(g © (3¢ — ¢).)(1),

2

1 00
fo [fo g'(5) By = d)(1) — By — )t — 5)) dS] dx < —c2(8" o By — 9).)(),

where ¢y, ¢, > 0, and

1 00
(gov)() = f f g(H(W(x, 1) — v(x, 1 — 5))’dsdx.
o Jo
Let us start by introducing (see [19])

7'(x,8) = Gy — d)(x,1) — By — P)(x,1 — ),
S(x, p, s, 1) = Yu(x,t = ¢p),

where

(-x5 p’ ga S9 t) € ((0’ 1))2 X (gh §2) X R+ X IR+-
Then, the variables 1’ and S surely satisfy
77? + 77; = (3w - ¢)t7

gSl(x’ JZEY) t) + Sp(x’ JZXY) t) = O,
S(xa O? g’ t) = l//l‘(x, l)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)
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Hence, system (1.1) can be rewritten as

0wy + G(¢p — @)y +yb, = 0,

L3y = )y = DBY — @)ux — G(§ — @) —mO +dry + [ ()3 — $)ult — 5)ds = 0,

3o = 3Ds +3G(@ — @) + 45y + 4B + 4 [ |1a(9)IS(x, 1,6, 0ds = 0,

cl, — ko0 + m(3y — @), + yw, + kyr, =0, (2.8)
ary — kot + ksr + k160, + dQ3y — @), = 0,

¢S+ S, =0.
Certainly, system (2.8) is depending on the initial and boundary conditions below

W(X, O) = woy, ‘ﬁ(x, O) = wO’ ¢(X, 0) = ¢0’ O(X, 0) = 009 r(x, O) =ryp, X€ (0’ l)a
@(x,0) = @1, Yu(x,0) =y, ¢(x,0) =¢1, x€(0,1),
@, (0,1) = ¢(0,1) = (0,7) = 6(0,1) = r(0,£) =0, >0,

w(l,t) = ¢ (1,0) = (1,1) = 0,(1,¢) = r(1,t) = 0, Y,(x,—1t) = fo(x,1) >0, (2.9)
7'(0,s) = 7'(1,5) = 0, 7'(x,0) = 0, B°(x, s) = no(x,5), 1,5>0,
S(x7 p’ S, O) = fb(xa pg)a x’p € (O’ 1)3 S € (gl’gZ)’ tv s > O
Now, let
g = 3'711 - ¢’
40,0 = 41,0 =0, {(x,0) = o, &i(x,0) =41, (x,1) €(0,1) XR,.
Then, system (2.8) is equivalent to
QW + G(Sl,// - é( - wx)x + )’Qx = 0’
1,y — DEy — GBY — { — @y) — mb + dry + fooo g(8) (t — s)ds =0,
ct; — kol + mé; + yw, + kir, =0, (210)

ar, — kyry + kar + k16, + dé, = 0,

o+ =

¢S +S,=0.
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Taking advantage of (2.6), we can rewrite the second equation of (2.10) as

1,6y =1 = GBY — ¢ — @) —mb +dr, — fm g’ (x, s)ds = 0.
0

At this step, let us introduce the vector function U = (@, u, {, v, y, 0, 1,1, S)T, with

U = wy,
V:§t7
y:lr[/l"

then, system (2.10) becomes

2U(t) = AU®), >0,
U(0) = Uy = (@o, @1, Lo, {1, Yo, 15 00, Fos T0» f0)

here, A : D(A) c H :— H stands for a linear operator indicated by

u
_é (G(3¢’ - g - wx)x + 79x)
v
i (l_{xx +GBY - ¢ —w,)+mb—dr, + fooo g’ (x, s)ds)
y

AU =

% (kOQxx —my =Yy — ki rx)

é(erxx - k3}" - klex - de)

Now, we shall consider the ensuing energy space

H =T710,1) x L*(0,1) x J1(0, 1) x L*(0, 1) x J1(0, 1) x L*(0, 1) x L*(0, 1) x L*(0, 1)

XLy X L7 ((0,1) X (0,1) X (51,62)) »
where
0.1 =leeH'0.1): ¢0)=0},
10.1) ={peH'0,1): ¢1)=0},
12(0,1) = H*0,1)NTY0, 1),

J2(0,1) = H*0,1)nTY0,1),

LDy = GOY — £~ w0 — 460 = v - [P 1a(©)IS(x, 1, 6,1ds)

(2.11)
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and

1 00
L, = {90 ‘R, — J}k(O, 1), f f g(s)cpi dsdx < oo}.
0o Jo

For the space L,, we take the following inner product

-
<()01a ()02>Lg = f f g(s)901x<p2x dsdx.
0 Jo
Furthermore, we consider the following domain

L, (R 10, D) = {if € Ly, 7 € Ly, 7(x,0) = 0}.

1 1 1 1 1
Qf m‘tdx+lgf v17dx+319f y)'zdx+cf 99dx+af rr dx
0 0 0 0 0

1 1 1
Zf g’xedx+Gf(3;[/—{—wx)(3;[7—2—z‘vx)dx+46f Wl dx
0 0 0

Then, we introduce

(U, Uy

+

+

1 1l
3D f U, dx + f f g (x, i’ (x, s) dsdx
0 o Jo

1 [y B
+ 4 f f f Slu2(9)ISS dedpdx. (2.12)
0 JOo Jg

We deduce that H together with (2.12) is a Hilbert space, once we do that, we define D(A) by

UeH: wel?0,1); ¢, v €T*0,1);
uell0,1); v, yeJ0,1), 6 €1Y0,1), 6, € L*(0,1);
D(A) = re HX0,1)NHL\0,1), ' € L, (R+,Ji(0, 1));
S, S, € L*((0,1) x (0,1) X (1,62)), S(x,0,5,0) =y
@ (0,0) = £(1,0) = ¢(1,0) = 6,(1,0) = 17 (1, 5) = 0.

Obviously, D(A) is dense in H.
Now, we are ready to state our results.

Theorem 2.1. Let Uy € D(A), then problem (2.9)-(2.10) admits a unique solution
U € CRy, D(A) N C' R, H).

In addition, if Uy € ‘H, then
UeCR,,H.

We give the energy of the solution of problem (2.8)-(2.9) by
1! .
E() =3 f fow? + G(p — @) + L,y — ¢) + 1By — 6.)° + 31,07
0

+3Dy2 +45y7 + o + ar’}dx + % (g By —¢)y) () (2.13)

1 1 1Y)
+2 f f f Sla(6)IS*(x, p, s, 1) dsdpdyx.
0 0 S1

Then, we have the following stability result.

AIMS Mathematics Volume 9, Issue 8, 22602-22626.
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Theorem 2.2. Let (w, ¢, ¢, 0,r,1n',S) be the solution of (2.8)-(2.9), suppose that (T), (A,) and (A,)

hold. Then, for any initial data Uy € D(A) satisfying, for some py > 0,

I
f Mo(x, $)dx < po,  forall s> 0,
0

there exist positive constants a1, a,, and as, such that
E() < o1G; (ot + a3),

where

“ d
G.'(t) = f L Got) = G (et),  forall &> 0.
r Go(s)
3. Existence and uniqueness

In this part, we utilize the semigroup approach to prove our well-posedness result.

(2.14)

(2.15)

Proof of Theorem 2.1. Let’s us establish the dissipativity of A. By (2.12) and for any U € D(A), we

have

1 1
(AU, Uyy = -4 ydx kgfrdx szrdx kofezdx

4 f f S, 1, 6,1) dsdx — 4 f f f (SIS, S dedpdx

+§(g' * (1) < 0.

One can notice that

1 1 'y 1 v 1
4 f f f (SIS, S dedpdx = -2 f f f (610, S dpdgdx
0 0 Sl 0 Sl 0

1 S2
=-2 f f 2 (IS (x, 1,6, 1) dsdx
0 S

1 p)
+2 f f 2(6)IS?(x, 0, 6, 1) dsdx.
0 Jg
Applying Youg’s inequality, we obtain

1 Y) 'y} 1
4 [ [ e dgdxsz( T d§) [ ax
0 Jg Sl 0

1 S
+2 f f l2()IS*(x, 1,6, 1) dsdx,
0 S

therefore, by (T) and given S(x,0) = y, we end up with

S2 1 1 1
(AU, U)y = -4 (ﬁ - f 2 (<)l ds*)f y* dx — k3 f r*dx - sz ry dx
Sl 0 0 0

3.1)
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1
1
—kof 9;2; dx + E(g’ o L)) <0.
0

Thereby, A is dissipative.
Thereafter, we establish the surjectivity of (I — A), that is, we show that

VH = (hy, hy, h3, hy, hs, he, hy, hg, ho, hio)' € H, AU € D(A) :
(I-AVU =H.
Now, we have
w—-u=h,
ou+GQ@BY —{ —wy) + Y0, = ohy,
{—v=hs,
Iy =l —GBY - — @) —mO+dre— [ g(s)1 (x, s)ds = Ihs,
Y —y=hs,

cl — kob + mv + yu, + kyry = chy,
(a + k3)r — koroy + k16, + dv, = ahg,
n' v+ = ho,

sS+ S, = chy.

Solving (3.3),0 and using S(x, 0, ¢, 1) = y(x, 1), we find

S(x, p, s, 1) =y(x, e P + ge™P I) ’ e hy(x,0,¢,1) do.
Hence, 1
S(x, 1,6, =y(x,0)es +ge™* f e hyo(x,0,6,1) do.
Now, we solve Eq (3.3)9, and we find '
n=e"* Ls e’ (v + ho(0)) do.
Inserting (3.5), (3.4), and

u:w—hl,
V:{—h3,
y =y —hs,

into (3.3),, (3.3)4, (3.3)6, (3.3)7 and (3.3)g, we get
QW + G(Sl/’ - g - wx)x + yex = Q(hl + hZ),

cl — kob, + mé + yw, + kyry = yhy, + chy + mhs,
(CZ + k3)r — kzrxx + klgx + dgx = Q’I’lg + dh3x,

31,y = 3Dy + 3G = £ = @) + 400 + 4By + 4 [ a(@)IS(x. 1.5 0ds = 3,

1L = (T+ (0 = e)g(9)ds) Lur — GBW = £ — @) = mB + dr, = L(hs + ha) + h,
H1 = 3D +3GBY — £ — @) = fuhs + 3lghg = 4 [ in(e)ige™ [ ehyg dords,

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

AIMS Mathematics Volume 9, Issue 8, 22602-22626.
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where

ljl = f g(S) f eo—_s(h9 - h3)xx dO'dS,
0 0

2
=31, +40 +48 + 4f e *lux(s)| ds,

S1
and
2
f =31, +48+4 f e"*lua(o)l ds.

S1

We take the following variational formulation to solve (3.6):
Q((w, {’ '70’ 6’ r)’ (ﬁ-’ Z’ lr/_/7 é’ ’7)) = L(/Z_D-’ Z’ lr/_/7 é))’ v(@'7 Z’ lr/_/, é’ 7)) e X’ (3'7)

where,
X =710,1) x 70, 1) x (0, 1) x L*(0, 1) x H}(0, 1),

is a Hilbert space endowed with
2 2 2 2
(@, 4,0, Nllx = 13 = & = @3 + Iy + I + allz + 16.015 + lirllz + 13-

As a part of this step, we provide definitions for both the bilinear form Q : X X X — R and the linear
form L : X — R as follows:

0@, 4, 0,1), (@, L, 4,0,7))
1 1 1 1
:Qf wz‘udx+lgf{2dx+,u1f¢(/_/dx+cf 06 dx
0 0 0 0
1 1 1
+(0/+k3)f r?dx+k2f Ty dx+yf(0xz‘v+wxé) dx
0 0 0
1 1
+k0‘f0 0.6, dx+G‘f0(31//—§—wx)(31/_/—Z—z'vx) dx (3.8)
) 1 1
+(l_+f (1 —e*)g(s) ds)f Coly dx+3Df Uy dx
0 0 0
1 1
+a’f(er+§xf) dx+k1f(rx9+?9x) dx
0 0
1
+mf(§§—g_“9) dx,
0

and

1 I I
L(@',é—',lﬁ,é,l_’)ZQf w(hy + hy) dx+1£,f C(hs + hy) dx+f Ch dx
0 0 0

1 1
+ f O(yh, + mhs + chy) dx + f r(ahg + dhs,) dx
0 0

1 ‘o) 1
+ f 7 [ﬂlhs + 31,hs — 4f |ﬂ2(§)|§‘€_§f e hyo dO'dS‘] dx.
0

S1 0
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We can easily prove the continuity of Q and L. Moreover, from (3.8) together with integration by parts,
we arrive at

O(@,{,4,0,7),(@,{,4.,0,1))

—wa dx+1f§ dx+,ulf¢/ dx+cf 6 dx
+(a’+kg)f r dx+k2f e dx+kof 62dx
0

+Gjﬁ@¢—g—wg%u+3pj“¢@u
0 0

(o] 1
+ (l_+ f (1 —e*)g(s) ds)f 22 dx
0 0

> M(@, 4,6, Pllx, M > 0.

From this, we conclude the coercivity of Q. It follows from the Lax-Milgram lemma that (3.6)
admits a unique solution satisfying
@ €110, 1),

£, ¥ eli0,1),
0e L*0,1),

and
re Hy(0,1).

If we substitute @, £, and ¢ into (3.3);, (3.3); and (3.3)s, we find
u € JL(0, 1),

and
v, y € JN0,1).

In addition, taking (£, ¥, 6, 7) = (0,0,0,0) € (Ji (0, 1))2 x L*(0,1) x H)(0, 1), (3.7) becomes
1 1
Gf Wy dx = f @ (ow + 3Gy, — G, + vO, — o(hy + hy)) dx, 3.9)
0 0

for all @ € J1(0, 1), which indicates that
Gw,, = 0w + 3Gy, — G, + ¥ — o(hy + hy) € L*(0, 1). (3.10)
The standard elliptic regularity implies that
@ € 1?0, 1).

We note that (3.9) remains valid for g € C'([0, 1]) c J1(0, 1), that is (1) = 0. Then, we obtain
1 1
Gf 0w, dx = f @ (—ow — 3Gy, + G — y0, + o(h1 + hyp)) dx.
0 0
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Integrating by parts, it follows that
@(0)p(0) =0, forall @ e C'([0,1]).
Hence
w,(0) =0.
Likewise, we show that
2

&¥) € (720, D)", 0€Il0.1), reH*0,1)NH(0,1),

and (1) = Y1) = 6x(1) = 0.

The standard elliptic regularity guarantees the existence of a unique U € D(A) which fulfills (3.2).
Thereby, A is surjective.

As a consequence, we infer that A is a maximal dissipative operator. Then, the well-posedness
result follows using Lumer-Philips theorem [15]. O

4. Technical lemmas

The main purpose of this section is to establish the essential practical lemmas required to prove our
stability results. To attain this goal, we apply a specific approach known as the multiplier technique,
which enables us to prove the stability results of problem (2.8). Nevertheless, this method necessitates
creating an appropriate Lyapunov functional equivalent to the energy and we will clarify on this in the
next section. To simplify matters, we will employ y. > O to represent a generic constant.

Lemma 4.1. Let (w, ¢, ¢, 0,r,1',S) be the solution of (2.8) and (2.9), then, the energy functional

satisfies
d 1 1 1 1
—E(t)é—mof wtzdx—kof 9§dx—k2f rﬁdx—qu rdx “.1)
dt 0 0 0 0

+%(g' o By, —d))) <0, where my > 0.

Proof. As a start, we multiply (2.8);, (2.8),, (2.8)3, (2.8)4 and (2.8)s by @w;, (3¢, — ¢,), ¥;, 0 and
r respectively, then, we integrate over (0, 1) and use integration by parts together with boundary
conditions (2.9) and (2.6) to find

1d (! .
2ai ), (0w} + G(¢ — @) + 1,3y, — ¢ + 130, — 6.) + 31,07 + 3Dy
1 1 1
+40y* + c6* + a/rz} dx + 4,8f Yrdx + ko f 0dx + k; f ridx
0 0 0
1 1 )
+ k3 f rdx — f By - ¢), f g(s)n' (x, s)dsdx 4.2)
0 0 0

1 Y
+4 f f Uil (§)IS(x, 1,6, 1) dedx = 0.
0 Jgi
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It follows from the sixth equation in (2.8) and the integration by parts that

1 00
fo(?ﬂﬁ—(ﬁ)tf g (x, s)dsdx

0

o0 1
- f g(s)( f i (, s)dx)ds
0 0
co 1
¥ f o(s) ( f o s)dx)ds 4.3)
0

_ _m(g o B — ()

+ i(g' o By = ¢))().

Applying Young’s inequality, we find

1 ) 1 1 2
f f Yl (9)IS(x, 1,6, 1) dgdxsi f f (IS (x, 1,6, 1) dedx
0 Sl 0 Sl
1 ) 1 )
+ 5( f |,Uz(§')|d§) f Yy dx.
S1 0

Next, we multiply (2.8); by S|ux(¢)| and integrate the result over (0, 1) X (0, 1) X (¢1,¢2). We get

2dt f f f Slk($)IS*(x, p. 5. 1) dsdpdix
= _f f f 2 (IS, S(x, p, s, 1) dsdpdx

S f f f 2()10,S(x, p. 5. 1) dsdpdx (4.5)

1
:5( f |ﬂ2(§‘)|d§) f W2 dx
Sl
1
-5 f f (IS 1. .1 ded,
0 Sl

which, together with (4.2)—(4.4) and (T) gives us

d S2 1 1 1 1
—E(t) <-4 (ﬂ -~ f I,uz(g‘)ldg‘) Yrdx — ko f 6dx — k; f r2dx — ks f r*dx
dt @ 0 0 0 0

1
+§(g' o By = )0 < 0.

We have then reached the desired result. O

4.4)

Lemma 4.2. Consider the functional
1 oo
1=, [ G- [ sXG0 =00~ G = 03t = 5)dsd (4.6)
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then, it satisfies

1 1
i < 2 f G - 6%dx + & f (3 — ¢
0 0

1 1 1
+ € f (¢ — @) dx + € f 6dx + . f rdx (4.7)
0 0 0

1
+ X+ (1 + 6_1) (g < (3¢’x - ¢x))(l) _X*(g/ © (3% - ¢x))(t)’ VG] > 0.

Proof. First, we notice that

) ( f 2()GY - B — B — B)(1 - s))ds)

0
_ 4, ( f gt — )(GY — B — B - ¢)<s))ds)
- f = 9(G= 90 - (0 - d5)ds s
+ f ot — 930 - $),(0)ds

= fo 8'()NBy — $)(1) — By — P)(t — 5))ds

+ 83y — ¢).(1).
Next, we proceed by differentiating 7;(¢) and using both (2.8), and relation (4.8), then, integrating by
parts, we get

Fo=-1, G b [ et - 0101 Gur - 93a - asa
-1, [ e ( [ s - 00 - G- ora- s))dsdx)
) fo G- 6 fo ()G~ D)D) — B — Dt — $)dsdx
-G fo - fo ()G~ D) - Gur — B)(t — s))dsdx
- | K [ s =00 Gu - oa - s~ g0 [ G- grdx 49)
-1, [ G- 00 [ #6000~ Gu - - 9pasax
i E [ #6000~ o= 011t pasa

1 00
- fo ( fo g3y — @)(x, 1 — S)dS)

x ( f 8By — @) (1) — By — @), (1t — s))ds) dx.

0
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The last term in (4.9) can be rewritten as

! 00 00
- fo ( fo ()BY = ul(x,1 = s)ds) ( fo 8()(BY = ¢)u(1) = By — §)ult — s))ds) dx

2

1 )
= ﬁ (L g() By — @) (1) — By — @) (t — S))ds) dx

1 00
—goﬁ Gy = @)« (f 8By — ¢).(1) — By — @)1 - S))dS) dx.

0
Now, replacing (4.10) into (4.9), leads to

1 00
Fin=1 fo Gy = ¢x) fo 8By = ¢)(1) = By — )t = 5))d sdx

1 00
G fo 6- ) fo ¢()(BW - O)O) - (B — B)(t — s))dsdx

1 00 1
—-m fo 0 fo 8By = )(1) — BY — )t — s))dsdx — I,go L Gy — ¢ dx

1 00

-, fo G- ) fo ()G — O - B = B)(t — 5))dsdx
1 00

—d fo r fo 2()(BW — D):() — (B — )u(t — s))dsdx

2

1 00
+ fo‘ (f(; g(s)((3l// - ¢)x(t) - (3(’0 - ¢)x(f _ S))ds) dx.

Finally, applying Young’s inequality and making use of Lemma 2.1, we obtain (4.7).

Lemma 4.3. Consider the functional

1 1
L(t) = —cgf wt(f Q(y)dy) dx
0 X

m)<‘—79f @ dx + . f(Swf 60 dx+62f<¢ @) dx

1
+)(*f r dx+)(*(1+—)f 6% dx, Ve, > 0.
0 €/ Jo

Proof. Simple calculations, using (2.8);, (2.8),4 and integration by parts, we get

1 1 1 1
L= [ ( | e(y)dy) dr-co [ ( | e,<y>a'y) dx
0 X 0 X

1 1 1
= ch (¢ —@,)0 dx + kon 0. @ dx + )/cf & dx
0 0 0

then, it satisfies

1 1 1 1
“yo f @2 dx— ko f ro, dx + mo f - f B — 6 ()dydx.
0 0 0 x

(4.10)

(4.11)
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Now, thanks to Young, Poincaré’s and Cauchy—Schwarz inequalities, we get, for any €, > 0,

1(t)<_—79f o dx+)(*f(3¢/t )2 dx+62f(¢ @) dx

1 1
1
+)(*f 72 dx+X*(1 + —)f Q)ZC dx.
0 €/ Jo
Lemma 4.4. Consider the functional

1 1 X
L) = Qf oo dx + Qf ¢(f wt(y)dy) dx
0 0 0

The proof is then completed.

then, it satisfies

1 1 1
L) < _9 f (- w@,)” dx + Qf By = ¢I)2 dx + 3_Q f wzz dx
2 0 0 2 0

)(f@zdx+9gf Yldx.

Proof. We differentiate /3, using (2.8), together with integration by parts, to get

Ié(t)=9flwt2 dxwfwnwdxwfolfﬁt(foxwt(y)dy) dx
f (f w,,(y)dy) dx
—@f o dx - f<¢ @) dx - yf 0, dx
f a»( f wz(y)dy) dx - f - w6 dx—y f 06 dx
—@fw dx - f(¢ @) dx - yf@ @6 dx
f o ( fo w,(y)dy) ix.

1 1 1
f¢,2dx§2f(3wt—¢t)zdx+18f W2 dx.
0 0 0

By Young, Poincaré’s, and Cauchy-Schwarz inequalities, we easily prove (4.13).

Notice that

Lemma 4.5. Consider the functional

1
1) = 1, fo G = 6,00 - §) dx,

(4.12)

(4.13)

(4.14)
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then, it satisfies

7 1 1 1
o< -3 f G — 6 dx +1, f G - 6. dx +x. f (P + 62 dx
0 0 0 (4.15)
. fo (6= @) dx + x.(g © B0 — )0,

Proof. We proceed by differentiating the functional 1, and using Eq (2.8), together with integration by
parts, which leads to

1 1
1) =1, fo GU — )y — ) dx + 1, fo (3 - 6 dx

1 1
:IQ f By — ¢t)2 dx — l_f By — ¢x)2 dx
0 0

1 | (4.16)
+Gf (3 - )6 - @) dx + mf (3 - 8 dx
0 0
1 1 00
+d f (34 - @)y dx - f Gy - ). f S(HGY — D)u(1) — B — Bt — 5)) disdx.
0 0 0
By virtue of Young’s inequality and (2.4), we have
l‘ 1 1 1
L)< -3 f (B — ¢.)” dx +1, f By, — ¢)” dx + x. f (r’ +67) dx
0 0 0
1 1 ) 2
+ X+ f (¢ - @) dx+C' f [ f g(8) (BY — ¢)() — By — @) (t — 5))ds| dx
0 0 0
l_ 1 1 1
<-3 f (B, — ¢)* dx + 1, f Bu, — )% dx + x. f (r +6%) dx
0 0 0
1
x. f 6 — @, dx +x.(8 © (Ury — D).
0
This completes the proof of (4.15). O
Lemma 4.6. Consider the functional
1 1
I5(1) = 31, f Yy dx + 23 f W* dx, (4.17)
0 0
then, it satisfies the estimate
1 1 1 1
IL(1) < —25f e dx—3Df W dx+3lgf w? dx+)(*f (¢ — @,)* dx
0 0 0 0 (4.18)

1 Y]
. f f L OIS2 e 1, p, 1) dedx.
0 Sl
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Proof. Simple computations using Eq (2.8); and integration by parts, yield

1 1 1 1
1;(r):319f0 wfdx—wf widx—45fo wZa’x—3Gf(¢>—wx)wdx
0 0

1 Y]
—4 f f Yl (9)IS(x, 1, p, 1) dsdx.
0 Sl

Employing Young’s inequality, we conclude (4.18).

Lemma 4.7. Consider the functional

1 1 1Y)
Is(0) = f f f e (IS (x, p, <, 1) dsdpdx,
0 Jo S1

then, it satisfies

1 1 2
I5(1) S,Bf Y7 dx —my f f l2(s)IS*(x, 1,6, 1) dsdx
0 0 Sl

1 1 2
—m f f f SIS, p. s, 1) dsdpdsx,
0 JO Jg

where my is a positive constant.

Proof. Taking the derivative of I and using (2.8); and S(x, 0, 1) = ¥,, we have

1 1 Y]
Ig(H) = =2 f f f e Plur (IS, S(x, p, s, 1) dedpdx
0 0 S1

1 1 S2
= - f f f se™P|ur (S (x, ps 5, 1) dsdpdx
0 0 S1

1 e
- fo f () eS8 (x, 1,6,0) — Y7 (x, 1)} dsdx.

From e™ < e™? < 1, where 0 < p < 1, we arrive at

1 1 Y)
1 < - f f f G OISAx, p, . 1) dedpdx
0 0 S

S2 1
- ( f a(s)l dg) f YA(x, 1) dx
S1 0
1 S2
- f f e la(9)IS*(x, 1, 6, Hdsdx.
0 S1
Since —e~*¢ is an increasing function, then
—e < —e %2, forall ¢ € [¢1,5].

Hence, if we denote m; = ¢7** and use (T), we easily prove (4.21).

(4.19)

(4.20)

4.21)

O
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5. Stability results

Let us now prove our stability result by using the lemmas in Section 4.

Proof of Theorem 2.2. We proceed by introducing a Lyapunov functional

6
L(t) = NE(@t) + ) N;(0), (5.1)
=1
where constants N,N; > 0, j=1,---,6, will be chosen later.

From (5.1), we write

dx

1 00
IL(t) = NE(1)| < I,N, fo Gy - ¢)tf0 8By = ¢)1) = By — P)(1 — 8))d's

1 1 1 1 X
+ coN, f (o f 0(y)dy| dx + oN3 f | @|dx + oN3 f ¢ f @, (y)dy
0 X 0 0 0

1 1 1
+ LN, f (G0 — 030 — @)l dx + 3N f Waldx + 28N f Vdx
0 0 0

Ll e
+ No f f f §e—§p|/12(§')|32(x, p.¢, 1) dedpdx.
0 JOo Ja

dx

Thanks to Young, Cauchy-Schwarz and Poincaré’s inequalities, we get
|L(t) - NE(t)| < 9,1E(t), where 9, >0,

i.e.,
(N =9)E@) < L(t) < (N +9)E(). (5.2)

Now, differentiating the Lyapunov functional L(7), using (4.1), (4.7), (4.11), (4.13), (4.15), (4.18),
and (4.21), and fixing

N,=Ns=1 ! G
= =1, g = , € = .
4T PTUN T 4N,
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We find

d
d—tL(t)S (—Nz——N3) f @’ dx

I,
_(égONl_X*NZ ON3 — )f(&ﬂt ¢t)2dx

2

- (o =90 s - 31) [ wiax =1 [ G- g0

G
- (ZNg, - (4_1 + 2/\(*))[0 (¢ — wx)zdx

l‘ 1
) f 6%dx (5.3)
0

1
N
—25f Wldx —koN = o |1+ == | Ny = xuN3 =yt — —
0 N3

1 1 I
- 3Df Wldx - ksz r2dx — (ksN — x.Ny — x.N, _X*)f redx
0 0 0

1 1 S2
— mNe f f f (@IS (x. py . 1) dedpdx
0 JoO S

1 1Y)
— (mNs —X*)f f 2 (6)IS*(x, 1, 6, 1) dsdx
0 Jg

2

N 4N
+ (_ _X*Nl) (g, © (3'70x - ¢x))(t) + (X* (1 + Tl)Nl +X*) (8 < (31;0)6 - ¢x))(t)

Next, we choose our coeflicients in (5.3), in a way that, they all except the last two become negative.

We start by selecting N big enough so that
m Ng — X% > 0,
then, we take Nj fairly wide, such that
G ]
—N;— (= +2y.|>0,
47 (4 x )

after that, we choose N, large enough, so that

Yo 30
ZZN,— =N3> 0,
T

now, we select N, sufficiently large such that

I.QgO

—N, )(*Nz - QN3 - IQ > 0.

2

We can now select N large enough so that we have (5.2) and
IN = x.N; >0,
moN — 9QN3 —ﬁN6 - 319 > 0,
ksN = x.Ni — x.lN2 — x. > 0,

koN = x. (1+ )N = x.Ns =y = 1 >
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Hence, relation (5.3) becomes

1
%L(” < -t fo (@ + (@ - @) + B — )" + 97 + Bu - 6. +

1 1 2
s @)=, [ [ 7 s @IS e ps.) dedpdx
0 JO Jg
+93(8 0 By — D), 2,193 > 0.
Now, exploiting (2.13) and Poincaré’s inequality, we obtain

1
E(1) <94 f (@ + (@ — @) + B — ¢ + 97 + By — 6. + ¥
0

1 I re
wis@er)aes o [ [ s IS e ps. dedpdx
0 JO Jg
+ ﬂ4(g < (3% - ¢x))(t)’ where ﬂ4 > O,

from which 1
- f {@! + (-0 + By — ¢)’ + 07 + By — 6. + 42
0
1 L e
+y} + 6 + ) dx - f f f s P lur(S)IS*(x, p. s, 1) dsdpdx
0 JO Jg

— (g o By — ¢ ))1) < —UsE),
where 5 > 0. Thereby, if we combine (5.5) and (5.4), we have

%L(t) < —U6E() + 0(g o By — d))(), where v, > 0.

Next, we multiply (5.6), by

’ EOE(t)
¢ ( E(0) )
we find
6 E(1) , [ €E() , [ €E()
G’ ( E0) ) —L(t) < —96G ( E0) )E(l) + %G ( E0) )(g<> G — (D).
Now, we estimate the last term in (5.7) and use both (A,) and (2.14), we find
&E(1) , , E(1) ,
G’ ( E0) )(g B = )1 < —E'(1) + 9 60G0(E(0)) ;> 0.

We insert (5.8) in (5.7) and set ¢, = ﬂf?(o) we get

G (GoE(t)

: E@®)
50) ) —L(1) + 9,E'(1) < —FGO( ) r>0.

E(0)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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We consider now the functional

6 E(1)
E(0)

L) =G ( )L(t) + LE(1).

It is clear that
Li(t) ~ E(2),

moreover, noticing that E’(f) < 0, G”(¢) > 0, we obtain

d E(t)
ELIO) < -I'Gy (m) . (5.10)

Next, we present the functional

Li(t)
VE(0)

L) <1,
dith(t) < —arGo(Ly(1)),

L)1) :=b ~ E(t), such that

where, a; is a positive constant, therefore,
G.(Ly(1) 2 as.

We integrate over (0, ) to find
Ly(1) < G, (aat + a3),

from which, we deduce that
E(l) < Cl]G*_](a’zl' + CY3),

where, a; and a3 are positive constants. The proof is then completed. O
6. Conclusions

The article is about the laminated beam system along with structural damping, past history,
distributed delay, and in the presence of both temperatures and micro-temperature effects introduced
in (1.1). By the semigroup approach, we established the existence and uniqueness of the solution
which can be considered as the first main result. In addition, as a second novelty, a general decay
result for the solution unusually with no constraints regarding the speeds of wave propagation is found.
This last new result is considered, as far as we know, the first similar result in the literature for such a
system, where we succeed to improve the earlier works known for the case of finite history, to the case
of infinite history. The relaxation function becomes intended to satisfy a broader class of relaxation
functions.

We mention here that the distributed delay in our system makes a good interaction between the past
history and the other damping terms of system (1.1). This type of damping gives more information and
qualitative properties on the solution and also its impact on stability is very important as it is shown in
the requirement of Theorem 2.2. Of course, the other terms (both temperatures and micro-temperature
effects) act as balances in the stability of the system.
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