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1. Introduction

Stochastic differential equations (SDEs) have been widely applied in many fields, such as biology,
economics and physics for modeling (see, e.g., [1–6]). More and more people have showed their
interests in SDEs. So far, many results of solutions for SDEs have been obtained, such as the existence
and uniqueness of solutions [7–12], Markov property [13], and even the long-term behavior [14]. In
addition, to describe a wide variety of natural and man-made systems precisely, various types of SDEs
are developed (see, e.g., [10, 15]), and the theory of these SDEs has always been a focus.

One of the popular topics of SDEs is the existence and uniqueness of solutions. Generally, the
classical existence and uniqueness theorem for SDEs requires the coefficients to satisfy the global
Lipschitz condition (see, e.g., [16, 17]). Under the local Lipschitz condition and the linear growth
condition, Arnold [18] has showed the existence of the unique solutions for SDEs. However, there
are many interesting SDEs such that their coefficients are only superlinear, for such SDEs, Mao [10]
has derived that there exists a unique regular solution under the locally Lipschitz condition and
the monotone condition. Based on these existence and uniqueness results for the classical SDEs,
many authors have studied the existence and uniqueness problems for other types of SDEs. For
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instance, Zvonkin [19] has investigated the strong solutions of SDEs with singular coefficients. Mao
and Yuan [20] have introduced the existence and uniqueness of solutions for SDEs with Markovian
switching.

Furthermore, although many SDEs have been showed that they each have a unique solution,
it is important to determine precisely under which conditions one obtains a unique solution for
SDEs. Compared with more restrictive conditions, general conditions can provide the existence
and uniqueness of solutions for a larger class of SDEs. By using the Euler method, Krylov [9] has
established the existence and uniqueness theorem under the monotone condition and a more general
condition which is known as the local one-sided Lipschitz condition. Then, Gyöngy and Sabanis [7]
have developed this result to stochastic differential delay equations. Recently, Ji and Yuan [8] have
established the existence and uniqueness result for neutral stochastic differential delay equations. In
this paper, inspired by Li et al. [21] and Krylov [9], we aim to study the existence and uniqueness of
solutions for SDEs under weaker conditions compared with what we have mentioned above. Also, we
can obtain the pth moment boundedness. The main contribution of this paper is that we have included
the case of 0 < p < 2 in our conditions.

The rest organization of this paper is as follows: In Section 2, some notations and preliminaries
are introduced. In Section 3, the existence and uniqueness of solutions is provided by deriving a
localization lemma, and the pth moment is further estimated. An example is given to illustrate our
results in Section 4.

2. Notations and preliminaries

In this paper, we let (Ω, F , P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (that is, it is right continuous and increasing while F0 contains all P-null sets). Denote
N as the set of natural numbers and m, d ∈ N. Let {B(t)}t≥0 be a standard m-dimensional Brownian
motion defined on the probability space. Let R+ = {x ∈ R : x ≥ 0}, Rd be d-dimensional Euclidean
space, and Rd×m be the space of real d × m-matrices. If x ∈ Rd, then |x| is the Euclidean norm. For any
matrix A, define its trace norm by ‖A‖ =

√
trace(AA>), where A> denotes its transpose. Moreover, for

any a ∈ R and b ∈ R, define a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a set G, let IG(x) = 1 if
x ∈ G and otherwise 0. Let inf ∅ = ∞ (as usual, ∅ denotes the empty set). For any x ∈ R, let bxc be the
integer part of x. For any p ∈ (0,+∞), let Lp = Lp(Ω;Rd) be the family of Rd-valued random variables
Z(ω) with E

[
|Z(ω)|p

]
< +∞, and L = L([0,T ];R) denotes the set of R-valued nonnegative integrable

functions on [0,T ].
In this paper, we consider a d-dimensional SDE described by

dX(t) = f (X(t), t)dt + g(X(t), t)dB(t), t ∈ [0,T ], (2.1)

with the initial value X(0) = X0 ∈ Lp, where

f : Rd × R+ → Rd, g : Rd × R+ → Rd×m

is Borel-measurable and has continuous mappings.
Moreover, in order for the main results, we impose the following assumptions.
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Assumption 1. For any R, T ∈ [0,∞), and x ∈ Rd,∫ T

0
sup
|x|≤R

{
| f (x, t)| ∨ ‖g(x, t)‖2

}
dt < ∞.

Assumption 2. (Locally one-sided Lipschitz condition) For any R, T ∈ [0,∞), there exists a KR(t) ∈ L,
which is dependent on R such that

2(x1 − x2)>
(
f (x1, t) − f (x2, t)

)
+ ‖g(x1, t) − g(x2, t)‖2 ≤ KR(t)|x1 − x2|

2,

for all t ∈ [0,T ], x1, x2 ∈ R
d, and |x1| ∨ |x2| ≤ R, where the KR(t) are satisfying

∫ T

0
KR(t)dt < ∞, for any

R, T ∈ [0,∞).

For the regularity and pth moment boundedness of the exact solution, we make the following
assumption.

Assumption 3. For any T ∈ [0,∞) and p ∈ (0,∞), there exists a K(t) ∈ L such that(
1 + |x|2

)(
2x> f (x, t) + ‖g(x, t)‖2

)
− (2 − p)

∣∣∣xT g(x, t)
∣∣∣2 ≤ K(t)

(
1 + |x|2

)2
,

for all t ∈ [0,T ] and x ∈ Rd.

Remark 2.1. If p = 2, we have

2x> f (x, t) + ‖g(x, t)‖2 ≤ K(t)
(
1 + |x|2

)
,

which is the assumption of the paper [9]. In this paper, for any p > 0, the pth moment boundedness of
solutions is also provided.

For the sake of simplicity, throughout the paper, we will fix T ∈ [0,+∞) arbitrarily, and unless
otherwise stated, C denotes a generic positive real constant dependent on T,R etc. Please note that the
values of C may change between occurrences.

3. Existence and uniqueness of solution

In this section, we shall show that there exists a unique regular solution to (2.1). According to [8,9,
12], we prepare a localization lemma below.

Lemma 3.1. Suppose that {Xn(t)}t∈[0,T ] are given continuous, Rd-valued, and Ft-adapted processes
on (Ω, F , P). For n ∈ N such that Xn(0) = X(0), and

dXn(t) = f
(
Xn(t) + Pn(t), t

)
dt + g

(
Xn(t) + Pn(t), t

)
dB(t), t ∈ [0,T ],

where Pn(t) is a progressively measurable process. Moreover, for n ∈ N and R ∈ [0,∞), suppose
that there exists a nonrandom function r : [0,∞) → [0,∞) such that lim

R→∞
r(R) = ∞, and let τn(R) be

Ft-stopping times such that

(i) |Xn(t)| + |Pn(t)| ≤ R for t ∈ [0, τn(R)] a.s.
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(ii) lim
n→∞
E
[ ∫ T∧τn(R)

0
|Pn(t)|dt

]
= 0 for all R, T ∈ [0,∞).

(iii) For any T ∈ [0,∞),

lim
R→∞

lim
n→∞
P
{
τn(R) ≤ T, sup

t∈[0,τn(R)]
|Xn(t)| < r(R)

}
= 0.

Then, also for any T ∈ [0,∞), we have

sup
t∈[0,T ]

|Xn(t) − Xm(t)|
P
−→ 0, as n,m→ ∞. (3.1)

Proof. We borrow the techniques from [12] mainly and divide the proof into 2 steps.
Step 1. For R ∈ [0,∞) and t ∈ [0,T ], from Assumption 1 we assume that

sup
|x|≤R

{
| f (x, t)| ∨ ‖g(x, t)‖2

}
≤ KR(t),

(otherwise, we regard KR(t) as the maximum of KR(t) and the integrand in Assumption 1). Fix R ∈
[0,∞) and define the Ft-stopping time

τ(R, u) = inf
{
t ≥ 0|αR(t) > u

}
, u ∈ (0,∞),

where αR(t) =
∫ t

0
KR(s)ds < ∞. Clearly, τ(R, u) ↑ ∞ as u→ ∞. In particular, there exists u(R) ∈ (0,∞)

such that
P
{
τ(R, u(R)) ≤ R

}
≤

1
R
.

Now, we let τ(R) = τ(R, u(R)), then τ(R) → ∞ in probability as R → ∞ and αR(t ∧ τ(R)) ≤ u(R).
Moreover, referring to [8,12], it is easy to prove that all three conditions (i)–(iii) still hold if we replace
τn(R) by τn(R) ∧ τ(R). So we can further assume that τn(R) ≤ τ(R), then we have αR(t ∧ τn(R)) ≤ u(R).
For a fixed R ∈ [0,∞), we define

λR
n (t) =

∫ t

0
|Pn(s)|KR(s)ds, t ∈ [0,T ∧ τn(R)], n ∈ N,

and τ(n,m)(R) = τn(R) ∧ τm(R) for m, n ∈ N. Then we can obtain

lim
n→∞
E
[
λR

n (T ∧ τn(R))
]

= 0. (3.2)

Under Assumption 2, we have

sup
t∈[0,T∧τ(n,m)(R)]

|Xn(t) − Xm(t)|
P
−→ 0, as n,m→ ∞. (3.3)

We omit the proof of (3.2) and (3.3) there as the reader can refer to [8, 12] for more details.
Step 2. In order for (3.1), we need to show that

lim
R→∞

lim
n→∞
P{τn(R) ≤ T } = 0,

for any given T ∈ [0,∞). For t ∈ [0,T ], let κ be a negative constant and define

ψ(t) = exp
(
κβ(t) − |X(0)|

)
,
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where β(t) =
∫ t

0
K(s)ds. For t ∈ [0,T ∧ τn(R)], applying the Itô formula, we have

(
1 + |Xn(t)|2

) p
2ψ(t) =

(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds +

p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

×
{(

1 + |Xn(s)|2
)(

2
(
Xn(t)

)T f (Xn(s) + Pn(s), s) + ‖g(Xn(s) + Pn(s), s)‖2
)

− (2 − p)
∣∣∣(Xn(s)

)T g(Xn(s) + Pn(s), s)
∣∣∣2} ds + JR

n (t),

where

JR
n (t) = p

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2
(
Xn(s)

)T g(Xn(s) + Pn(s), s)dB(s).

Then, we further write that

(
1 + |Xn(t)|2

) p
2ψ(t) =

(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds +

p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

×

{ (
1 + |Xn(s) + Pn(s)|2 − 2

(
Xn(s) + Pn(s)

)T Pn(s) + |Pn(s)|2
)

×
(
2
(
Xn(s) + Pn(s)

)T f (Xn(s) + Pn(s), s) + ‖g(Xn(s) + Pn(s), s)‖2

− 2(Pn(s))T f (Xn(s) + Pn(s), s)
)

− (2 − p)
[∣∣∣(Xn(s) + Pn(s)

)T g(Xn(s) + Pn(s), s)
∣∣∣2

− 2(Pn(s))T (Xn(s) + Pn(s)
)
‖g(Xn(s) + Pn(s), s)‖2

+
∣∣∣(Pn(s))T g(Xn(s) + Pn(s), s)

∣∣∣2]} ds + JR
n (t)

=
(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds +

5∑
i=1

Ji(t) + JR
n (t), (3.4)

where

J1(t) =
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

{(
1 + |Xn(s) + Pn(s)|2

)[
2
(
Xn(s) + Pn(s)

)T f (Xn(s) + Pn(s), s)

+ ‖g(Xn(s) + Pn(s), s)‖2
]
− (2 − p)

∣∣∣(Xn(s) + Pn(s)
)T g(Xn(s) + Pn(s), s)

∣∣∣2}ds,

J2(t) =
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2
(
− 2

(
Xn(s) + Pn(s)

)T Pn(s) + |Pn(s)|2
)

×
[
2
(
Xn(s) + Pn(s)

)T f (Xn(s) + Pn(s), s) + ‖g(Xn(s) + Pn(s), s)‖2
]
ds,

J3(t) =
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2
(
1 +|Xn(s) + Pn(s)|2

)(
− 2(Pn(s))T f (Xn(s)+ Pn(s), s)

)
ds,

J4(t) =
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)2) p−4

2
(
− 2

(
Xn(s) + Pn(s)

)T Pn(s) + |Pn(s)|2
)

×
(
− 2(Pn(s))T f (Xn(s) + Pn(s), s)

)
ds,

AIMS Mathematics Volume 9, Issue 8, 22578–22589.



22583

J5(t) =
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

{
− (2 − p)

(
− 2

(
Xn(s) + Pn(s)

)T Pn(s)‖g(Xn(s) + Pn(s), s)‖2

+
∣∣∣(Pn(s))T g(Xn(s) + Pn(s), s)

∣∣∣2)}ds.

By Assumption 3, we have

J1(t) ≤
p
2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 K(s)

(
1 + |Xn(s) + Pn(s)|2

)2ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 K(s)

((
1 + |Xn(s)|2

)2
+ |Pn(s)|4

)
ds

= C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p
2 ds + C

∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p−4
2 |Pn(s)|4ds.

For 0 < p ≤ 4, we have
(
1 + |Xn(t)|2

) p−4
2 ≤ 1. For t ∈ [0,T ∧ τn(R)], using the condition (i), we

have |Xn(t)| + |Pn(t)| ≤ R a.s.. Then we can derive that

J1(t) ≤ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p
2 ds + CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds, (3.5)

where CR denotes a generic positive constant related to R in this paper. Please note that the values of
CR may change between occurrences.

While p > 4, using Young’s inequality, we have

J1(t) ≤ C
( ∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p
2 ds +

∫ t

0
ψ(s)K(s)|Pn(s)|pds

)
≤ C

∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p
2 ds + CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds. (3.6)

For p > 0, combining (3.5) and (3.6), we have

J1(t) ≤ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(s)|2

) p
2 ds + CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds. (3.7)

Next, we compute J2(t), that is,

J2(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)| +

∣∣∣Pn(s)
∣∣∣2)

×
(
|Xn(s) + Pn(s)| + 1

)
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)| +

∣∣∣Pn(s)
∣∣∣)|Pn(s)|

×
(
|Xn(s)| + |Pn(s)| + 1

)
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s)| + |Pn(s)|

)2
|Pn(s)|ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s)|2 + |Pn(s)|2

)
|Pn(s)|ds. (3.8)
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Obviously, we also need to consider (3.8) in two cases, respectively: 0 < p ≤ 4 and p > 4. By the
condition (i), for p > 0, it is easy to show that

J2(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.9)

For J3(t), we can write that

J3(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s) + Pn(s)|2

)
|Pn(s)|ds.

In the same way as discussed above, we have

J3(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.10)

Repeating the similar procedures, we also have

J4(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)| + |Pn(s)|2

)
|Pn(s)|ds,

and

J5(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2
(
|Xn(s) + Pn(s)||Pn(s)||g(Xn(s) + Pn(s), s)|2

+ |(Pn(s))|2|g(Xn(s) + Pn(s), s)|2
)
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)| + |(Pn(s)|2

)
ds.

Therefore, for t ∈ [0,T ∧ τn(R)] and p > 0, by virtue of the condition (i), we derive that

J4(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds, (3.11)

and

J5(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.12)

Substituting (3.7) and (3.9)–(3.12) into (3.4), we have

(
1 + |Xn(t)|2

) p
2ψ(t) ≤

(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds

+ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds + CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds

+
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds + JR

n (t). (3.13)
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Choosing κ = −C and then replacing KR(s) by K(s) ∨ KR(s), we have

(
1 + |Xn(t)|2

) p
2ψ(t) ≤

(
1 + |X(0)|2

) p
2ψ(0) +

(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds + JR

n (t). (3.14)

Furthermore, since ψ(t) ≤ 1 and JR
n (t) is a continuous local Ft-martingale with JR

n (0) = 0, according
to [10], for any R, T ∈ [0,∞), taking expectations on both sides of (3.14), it is easy to see that

E
[(

1 + |Xn(ς)|2
) p

2
ψ(ς)

]
≤ ψ(0)E

[
(1 + |X(0)|2)

p
2
]
+

(
1 + CR

)
E
[
λR

n (T ∧ τn(R)
]
,

where ς represents any Ft-stopping time satisfying ς ≤ T∧τn(R). Then, based on [9, p. 584, Lemma 1],
for any l ∈ (0,∞), we have

lP
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}
≤

(
1 + CR

)(
1 + E

[
λR

n (T ∧ τn(R))
])
.

We then have

P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}
≤

(
1 + CR

)(
1 + E

[
λR

n (T ∧ τn(R))
])

l
.

Thanks to (3.2), it is easy to derive that

lim
l→∞

sup
R∈[0,∞)

lim
n→∞
P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}

= 0. (3.15)

Recalling that r(R)→ ∞ as R→ ∞ and choosing l = rp(R)ψ(t) in (3.15) , we have

lim
R→∞

lim
n→∞
P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)| ≥ r(R)
}

= 0,

which implies

lim
R→∞

lim
n→∞
P
{

sup
t∈[0,τn(R)]

|Xn(t)| ≥ r(R), τn(R) ≤ T
}

= 0.

Under condition (iii), we obtain

lim
R→∞

lim
n→∞
P
{
τn(R) ≤ T

}
= 0.

Hence for any ε > 0, thanks to (3.3), we have

P
{

sup
t∈[0,T ]

|Xn(t) − Xm(t)| > ε
}

= P
{

sup
t∈[0,T ]

|Xn(t) − Xm(t)| > ε, τ(n,m)(R) ≤ T
}

+ P
{

sup
t∈[0,T∧τ(n,m)(R)]

|Xn(t) − Xm(t)| > ε, τ(n,m)(R) > T
}

≤ P
{
τn(R) ≤ T

}
+ P

{
τm(R) ≤ T

}
+ P

{
sup

t∈[0,T∧τ(n,m)(R)]
|Xn(t) − Xm(t)| > ε

}
,

which leads to (3.1). �
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We now give the theorem about the existence and uniqueness of the exact solution to (2.1).

Theorem 3.1. Let Assumptions 1–3 hold with p > 0. Then, for any T ∈ [0,∞), there exists a unique
process {X(t)}t∈[0,T ] that satisfies Eq (2.1) with the property

sup
t∈[0,T ]

E[|X(t)|p] < C. (3.16)

Proof. Based on Euler’s method, we construct a sequence {Xn(·)}, n ∈ N. For n ∈ N, we define
{Xn(t)}t≥0 as follows: Xn(0) = X(0),

Xn(t) = Xn( k
n ) +

∫ t
k
n

f (Xn( k
n ), s)ds +

∫ t
k
n

g(Xn( k
n ), s)dB(s), t ∈ [ k

n ,
k+1

n ), k ∈ {0} ∪ N.

We further define ι(n, t) = bntc/n. Then, for t ≥ 0, we have

Xn(t) = Xn(ι(n, t)) +

∫ t

ι(n,t)
f (Xn(ι(n, s)), s)ds +

∫ t

ι(n,t)
g(Xn(ι(n, s)), s)dB(s),

which can be written as

Xn(t) = Xn(0) +

∫ t

0
f (Xn(ι(n, s)), s)ds +

∫ t

0
g(Xn(ι(n, s)), s)dB(s). (3.17)

This is equivalent to

Xn(t) = Xn(0) +

∫ t

0
f (Xn(s) + Pn(s), s)ds +

∫ t

0
g(Xn(s) + Pn(s), s)dB(s),

where Pn(t) = Xn(ι(n, t)) − Xn(t) = −
∫ t

ι(n,t)
f (Xn(ι(n, s)), s)ds −

∫ t

ι(n,t)
g(Xn(ι(n, s)), s)dB(s). In order

for the existence and uniqueness, we need to show that there exist an Ft-adapted continuous process
{X(t)}t∈[0,T ] and

X(t) = X(0) +

∫ t

0
f (X(s), s)ds +

∫ t

0
g(X(s), s)dB(s) P − a.s.

after taking limits on both sides of (3.17). Also, define τn(R) as the first exit time of Xn(t) from
the sphere (|x| < R

3 ), and let nonrandom function r(R) = R
4 . Then, |Pn(t)| ≤ 2R

3 , |Xn(t)| ≤ R
3 for

t ∈ [0, τn(R)] a.s. and in terms of Lemma 3.1, the proofs of these are same as [9, 12], so we omit it
there. Thus, there exists a unique solution of Eq (2.1).

It remains to prove the pth moment boundedness. In fact, for an application of the Itô formula to
Eq (2.1), we have(
1 + |X(t)|2

) p
2 =

(
1 + |X(0)|2

) p
2 +

p
2

∫ t

0

(
1 + |X(s)|2

) p−4
2

{(
1 + |X(s)|2

)(
2
(
X(s)

)> f (X(s), s) + ‖g(X(s), s)‖2
)

− (2 − p)
∣∣∣(X(s)

)>g(X(s), s)
∣∣∣2}ds + H(t),

where

H(t) = p
∫ t

0

(
1 + |X(s)|2

) p−4
2
(
X(s)

)>g(X(s), s)dB(s).

We recall that
(
1 + |X(t)|2

) p−4
2 ≤ 1 for 0 < p ≤ 4, and Young’s inequality can be used in the case of

p > 4. Therefore, by Assumption 3, (3.16) follows directly from [21, p. 851, Theorem 2.3]. �
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4. Example

In this section, we consider an example that is a scalar SDE as follows:

dX(t) =
(
X(t) sin t + |X(t)|2 − X(t)3 − |X(t)|

1
2
)

dt + X(t) sin tdB(t), t ∈ [0,T ], (4.1)

with the initial data X(0) = X0 ∈ R, where

f (x, t) = x sin t + |x|2 − x3 − |x|
1
2 , g(x, t) = x sin t,

and B(t) is a Brownian motion. Clearly, Assumption 1 holds for any R, T ∈ [0,∞) and x ∈ R, and
f (x, t) does not satisfy the local Lipschitz condition. Therefore, the techniques in [10, 21] can’t be
applied to the existence and uniqueness of the solution for (4.1). However, by the Young inequality,
we then have

(x1 − x2)
(
f (x1, t) − f (x2, t)

)
= (x1 − x2)

(
x1 sin t + |x1|

2 − x3
1 − |x1|

1
2 − x2 sin t − |x2|

2 + x3
2 + |x2|

1
2
)

≤ (| sin t| + |x1| + |x2|) |x1 − x2|
2 − (x1 − x2)(|x1|

1
2 − |x2|

1
2 )

≤ (| sin t| + 2R) |x1 − x2|
2,

for any x1, x2 ∈ R, and |x1| ∨ |x2| ≤ R. This means that f (x, t) satisfies Assumption 2 (i.e., locals one-
sided Lipschitz condition). Moreover, it should be noted that the monotone condition requiring p ≥ 2
in [9, 12] doesn’t hold there. Let 0 < p ≤ 1. By computation, it is easy to verify that Assumption 3
holds, that is, for any x ∈ R,(

1 + |x|2
)(

2x f (x, t) + ‖g(x, t)‖2
)
− (2 − p)

∣∣∣xg(x, t)
∣∣∣2 ≤ K(t)

(
1 + |x|2

)2
.

Then, by Theorem 3.1 we can conclude that the SDE (4.1) has a unique global solution X(t) on t ≥ 0
with the boundedness of the pth moment on [0,T ], that is,

sup
t∈[0,T ]

E
[
|X(t)|p

]
≤ C, ∀T ∈ [0,∞).

5. Conclusions

The current focus lies in the existence and uniqueness of solutions for stochastic differential
equations with locally one-sided Lipschitz condition, and we can obtain the pth moment boundedness.
In future research, we are going to study the stability of the solution, furthermore, we shall investigate
an implicit numerical scheme for these equations under a local one-sided Lipschitz condition.
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