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Abstract: The use of absolute value equations (AVEs) is widespread across a wide range of fields,
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1. Introduction

This article concentrates on the AVE, involving a square matrix A in Rn×n, vectors y as well as b in
Rn, and | ∗ | signifying the absolute value. The equation is as follows:

Ay − |y| = b. (1.1)

The formulation of the AVE provided by Eq (1.1) is a standard expression of a more general framework
that can be summarized as follows:

Ay + B|y| = b, (1.2)

with A and B are matrices of dimensions n × n. Therefore, the general form (1.2) can be simplified
to (1.1) when B = −I, where I is the identity matrix. The general concept of AVE was first introduced
in [1] and has since been extensively explored and examined in the literature discussed in [2–4]
and in the references mentioned therein. AVEs are crucial nonlinear and nondifferentiable systems
that are commonly found in optimization landscapes. This type of system manifests in a variety
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of domains, such as contact problems, bimatrix games, quadratic programming, network pricing,
and linear programming; refer to [1, 5–9] and associate literature for more knowledge. Hence, the
investigation of robust numerical procedures and theoretical frameworks for AVEs has great scientific
significance, as well as the potential for wide-ranging applications and significant economic benefits.

The applications of numerical techniques to AVEs cover a wide range of structural considerations,
mathematical frameworks, algebraic configurations, and innovative enactments of high-quality
preconditioners alongside high-efficiency numerical strategies. In recent times, there has been a
considerable surge in the exploration of numerical methods for AVEs, with numerous scholarly works
suggesting diverse methodologies. For example, Yilmaz and Sahiner [10] produced a non-Lipschitz
generalization of AVE and determined it utilizing two smoothing strategies. Ali [11] successively
presented two fixed-point iterative strategies for AVE (1.1) and examined various kinds of convergence
theorems. Zhou et al. [12] offered a Newton-based matrix splitting strategy that is capable of acquiring
a linear convergence when A is an H-matrix or a positive definite matrix. Prokopyev [4] has shed
light on the unique solvability of AVE, as well as its intricate ties with mixed integer programming
and linear complementarity problems (LCP). Meanwhile, Hu and Huang [6] incorporated the AVE
framework into the standard LCP format, providing insights into solving AVE (1.1). Salkuyeh [13]
introduced the Picard-HSS iterative technique for the solution of AVEs and examined its convergence
conditions. Khan et al. [14] have proposed an innovative method for solving AVEs based on Simpson’s
rule and generalized Newton’s method. Noor et al. [15] have showcased minimization processes
for Eq (1.1) and examined the convergence of these procedures under some appropriate states. Ke
and Ma [16] provided an SOR (successive overrelaxation)-like method for Eq (1.1) and studied its
application conditions, while Dong et al. [17] conducted an in-depth investigation of an SOR-like
method to solve AVEs, exploring its convergence conditions, which differ from those presented by [16].
Tang [18] offered an innovative, inexact Newton-type method designed to deal with large-scale AVEs
and outlined a detailed analysis of its convergence characteristics. Rohn et al. [19] presented another
method for addressing AVE (1.1) that effectively reduces to the well-known Picard iteration method.
The method is outlined below:

yi+1 = A−1(|yi| + b), i = 0, 1, 2, ...,

where y0 = A−1b is the initial vector. Tang and Zhou [20] have demonstrated in their study a
quadratically convergent descent method to solve the AVE (1.2) problem and have discussed different
properties of convergence. Mangasarian and Meyer [7] provided an important and widely used
theoretical result concerning the solvability of the AVE (1.1). Their findings stated that if ‖A−1‖ < 1
(or equivalently, σmin(A) > 1, where σmin(A) represents the smallest singular value of A), then a
unique solution y∗ exists to the AVE (1.1) for any b ∈ Rn. Furthermore, Mangasarian [3] offered an
approximated generalized Newton approach tailored for addressing the AVE as prescribed in Eq (1.2).
The findings display that this approach achieves linear convergence from any initial guess, provided

it reaches the unique solution of AVE (1.2) under the circumstances ‖A−1‖ <
1
4

. Caccetta et al. [21]
explored a smoothing Newton procedure designed for addressing the AVE as defined in Eq (1.2). The
authors have demonstrated that this method is not only global but also has quadratic convergence,
provided that the weak condition ‖A−1‖ < 1 is satisfied. In a related study, Zhang and Wei [22]
developed a generalized Newton method to address the same AVE (1.2). The authors demonstrate
that their method is capable of achieving both global convergence as well as finite convergence when
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[A − I, A + I] is regular, a scenario that includes the case where ‖A−1‖ < 1. Wang et al. [23], Lian
et al. [24], Cao et al. [25], Zhou et al. [26], Lv and Miao [27, 28], Zhang and Miao [29], and Wu and
Li [30] also investigated various approaches for AVEs and presented some fascinating convergence
results.

The aims of this paper is to provide new iterative techniques for the computation of AVEs, supported
by an extensive theoretical analysis. Our contributions are as follows: Firstly, we enhance the
generalized Gauss-Seidel method [31] by splitting coefficient matrix A into three parts shown by
Eq (2.2) and adding an extra parameter ψ to speed up convergence speed. Subsequently, we conduct
thorough examination of their properties under specific conditions to ensure they work effectively.

The structure of this paper unfolds as follows: In Section 2, we unveil the offered methods and
their convergence for addressing AVE (1.1). Moving forward, Section 3 encapsulates our numerical
findings, while Section 4 contains our concluding remarks.

We will use the following notation throughout this article. Let A = (ai j) ∈ Rn×n represent a matrix.
We use |A| = (|ai j|) to denote its absolute value and ||A||∞ for its infinity norm. A matrix A ∈ Rn×n is
termed a Z-matrix if ai j ≤ 0 for i , j, and it is called an M-matrix if it’s a non-singular Z-matrix and
satisfies A−1 ≥ 0.

Lemma 1.1. [32] Suppose we have two vectors y and u, both belonging to Rn×n. Then ‖|y| − |u|‖∞ ≤
‖y − u‖∞.

2. Suggested methods

Here, we explore the proposed methods. Both strategies are extensions of the generalized Gauss-
Seidel method (GGSM). We will refer to these new methods as Extended GGSM I (EGGSM I) and
Extended GGSM II (EGGSM II). There are two sections in this part. Section 2.1 examines EGGSM I
and its convergence, while Section 2.2 examines EGGSM II and its convergence.

2.1. EGGSM I for AVE

By redefining the AVE (1.1), we obtain

Ay − |y| = b.

If we multiply both sides by ψ, we obtain,

ψAy − ψ|y| = ψb. (2.1)

Let
A = AD − AL − AU , (2.2)

where AD, AL, and AU represent the diagonal, strictly lower triangular, and upper triangular parts of
matrix A, respectively. By employing Eqs (2.1) and (2.2), we propose the EGGSM I as follows:

(AD − ψAL)y − ψ|y| = ((1 − ψ)AD + ψAU)y + ψb. (2.3)

Through the iterative process, the previously stated equations can be reformulated as

(AD − ψAL)yi+1 − ψ|yi+1| = ((1 − ψ)AD + ψAU)yi + ψb, (2.4)
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where i = 0, 1, 2, ..., and ψ ∈ (0, 1.5]. In addition, the EGGSM I algorithm is presented below:
(1) Choose a parameter ψ, pick an initial vector y0 ∈ Rn, and then assign i = 0.
(2) Calculate ri = yi+1 ≈ A−1(|yi| + b),
(3) Calculate

yi+1 = ψ(AD − ψAL)−1|ri| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)yi + ψb].

(4) If yi+1 = yi, then stop. If not, set i = i + 1 and return to Step 2.
Now, the subsequent theorem demonstrates the convergence of EGGSM I.

Theorem 2.1. Assume that the problem denoted as AVE (1.1) is solvable. Suppose the diagonal
elements of matrix A exceed one and meet the subsequent condition:

‖(AD − ψAL)−1((1 − ψ)AD + ψAU)‖∞ < 1 − ψ‖(AD − ψAL)−1‖∞, (2.5)

then the sequence {yi} of EGGSM I converges to the unique solution y? of AVE.

Proof. Initially, we demonstrate that ‖(AD − ψAL)−1‖∞ < 1. Obviously, if AL = 0, then ‖(AD −

ψAL)−1‖∞ = ‖A−1
D ‖∞ < 1. Now, if we suppose that AL , 0,then we proceed as follows:

0 ≤ |ψAL|w < (AD − I)w.

If we consider
|ψAL|w < (AD − I)w.

When we consider both perspectives using the inverse of matrix AD, we obtain

A−1
D |ψAL|w < A−1

D (AD − I)w,

|ψA−1
D AL|w < (I − A−1

D )w,

|ψA−1
D AL|w < w − A−1

D w,

A−1
D w < w − |ψA−1

D AL|w,

A−1
D w < (I − |<|)w, (2.6)

where< = ψA−1
D AL and w = (1, 1, ..., 1)T . Also, we have

0 ≤ |(I −<)−1| = |I +< +<2 +<3 + ... +<n−1|,

≤ (I + |<| + |<|2 + |<|3 + ... + |<|n−1) = (I − |<|)−1.
(2.7)

So, by utilizing Eqs (2.6) and (2.7), we derive the following:

|(AD − ψAL)−1|w = |(I −<)−1A−1
D |w ≤ |(I −<)−1||A−1

D |w, < (I − |<|)−1(I − |<|)w = w.

This implies
‖(AD − ψAL)−1‖∞ < 1.
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To verify the uniqueness of the solution, consider two different solutions denoted as y? and ϑ? for
the AVE Eq (1.1). Employing Eq (2.4), we derive

y? = ψ(AD − ψAL)−1|y?| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)y? + ψb], (2.8)

ϑ? = ψ(AD − ψAL)−1|ϑ?| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)ϑ? + ψb]. (2.9)

From (2.8) and (2.9), we get

y? − ϑ? = ψ(AD − ψAL)−1(|y?| − |ϑ?|) + (AD − ψAL)−1((1 − ψ)AD + ψAU)(y? − ϑ?).

Applying Lemma 2.1 in conjunction with Eq (2.5), the above expression can be reformulated as

‖y? − ϑ?‖∞ ≤ ψ‖(AD − ψAL)−1‖∞‖|y?| − |ϑ?|‖∞ + ‖(AD − ψAL)−1((1 − ψ)AD + ψAU)‖∞‖y? − ϑ?‖∞
< ψ‖(AD − ψAL)−1‖∞‖y? − ϑ?‖∞ + (1 − ψ‖(AD − ψAL)−1‖∞)‖y? − ϑ?‖∞,

‖y? − ϑ?‖∞ − ψ‖(AD − ψAL)−1‖∞‖y? − ϑ?‖∞ < (1 − ψ‖(AD − ψAL)−1‖∞)‖y? − ϑ?‖∞,

(1 − ψ‖(AD − ψAL)−1‖∞)‖y? − ϑ?‖∞ < (1 − ψ‖(AD − ψAL)−1‖∞)‖y? − ϑ?‖∞,

‖y? − ϑ?‖∞ < ‖y? − ϑ?‖∞.

This implies a contradiction, so we conclude that y? = ϑ?.
To ensure convergence, suppose that y? represents the unique solution of AVE (1.1). As a result, by

considering Eq (2.8) and

yi+1 = ψ(AD − ψAL)−1|yi+1| + (D − ψAL)−1[((1 − ψ)AD + ψAU)yi + ψb],

we deduce

yi+1 − y? = ψ(AD − ψAL)−1(|yi+1| − |y?|) + (AD − ψAL)−1[((1 − ψ)AD + ψAU)(yi − y?)].

By utilizing the infinity norm alongwith Lemma 2.1, we obtain

‖yi+1 − y?‖∞ − ψ‖(AD − ψAL)−1‖∞‖yi+1 − y?‖∞ ≤ ‖(AD − ψAL)−1((1 − ψ)AD + ψAU)‖∞‖yi − y?‖∞,

and since ‖(AD − ψAL)−1‖∞ < 1, it follows that

‖yi+1 − y?‖∞ ≤
‖(AD − ψAL)−1((1 − ψ)AD + ψAU)‖∞

1 − ψ‖(AD − ψAL)−1‖∞
‖yi − y?‖∞.

This inequality suggests that the EGGSM I converges when condition (2.5) is fulfilled. �
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2.2. EGGSM II for AVE

In this section, we introduce the EGGSM II. Utilizing Eqs (2.1) and (2.2), we establish the
framework of EGGSM II to address AVE (1.1) in the following manner:

(AD − ψAL)yi+1 − ψ|yi+1| = ((1 − ψ)AD + ψAU)yi+1 + ψb.

Alternatively, we can write as follows:

yi+1 = ψ(AD − ψAL)−1|yi+1| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)yi+1 + ψb], i = 0, 1, 2, ... (2.10)

Below are the procedural steps of the EGGSM II algorithm:
(1) Choose a parameter ψ, pick an initial vector y0 ∈ Rn, and then assign i = 0.
(2) Calculate ri = yi+1 ≈ A−1(|yi| + b).
(3) Calculate

yi+1 = ψ(AD − ψAL)−1|ri| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)ri + ψb].

(4) If yi+1 = yi, then stop. If not, set i = i + 1 and go to Step 2.
Now, to ensure the convergence of the EGGSM II, let us examine the following theorem.

Theorem 2.2. Suppose the diagonal elements of matrix A exceed one and meet the subsequent
condition:

‖(AD − ψAL)−1((1 − ψ)AD + ψAU)A−1‖∞ < 1 − ψ‖(AD − ψAL)−1‖∞, (2.11)

then the sequence {yi} of EGGSM II converges to the unique solution y? of AVE.

Proof. The uniqueness of EGGSM II is derived directly from Theorem 2.1. To ensure convergence,
suppose that y? represents the unique solution of AVE (1.1). We consider Eq (2.10)

yi+1 = ψ(AD − ψAL)−1|yi+1| + (AD − ψAL)−1[((1 − ψ)AD + ψAU)yi+1 + ψb],

expressed as

yi+1 = ψ(AD − ψAL)−1|yi+1| + (AD − ψAL)−1
[
((1 − ψ)AD + ψAU)[A−1(|yi| + b)] + ψb

]
, (2.12)

where yi+1 ≈ A−1(|yi| + b). Suppose y? is the unique solution of AVE (1.1). Then, we obtain

y? = ψ(AD − ψAL)−1|y?| + (AD − ψAL)−1
[
((1 − ψ)AD + ψAU)[A−1(|y?| + b)] + ψb

]
. (2.13)

Subtracting Eq (2.13) from Eq (2.12) yields we deduce

yi+1 − y? = ψ(AD − ψAL)−1(|yi+1| − |y?|) + (AD − ψAL)−1
[
((1 − ψ)AD + ψAU)A−1(yi − y?)

]
.

By utilizing the infinity norm alongwith Lemma 2.1, we obtain

‖yi+1 − y?‖∞ − ψ‖(AD − ψAL)−1‖∞‖yi+1 − y?‖∞ ≤ ‖(AD − ψAL)−1((1 − ψ)AD + ψAU)A−1‖∞‖yi − y?‖∞,

and since ‖(AD − ψAL)−1‖∞ < 1, so we have

‖yi+1 − y?‖∞ ≤
‖(AD − ψAL)−1((1 − ψ)AD + ψAU)A−1‖∞

1 − ψ‖(AD − ψAL)−1‖∞
‖yi − y?‖∞.

The inequality mentioned above indicates that the EGGSM II reaches convergence when
condition (2.11) is satisfied. �
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3. Numerical experiments

The objective of this section is to showcase several numerical tests. These tests aim to exemplify
the significance of new strategies from three stances:

• Iteration steps (ITs).
• Processing time in seconds (CPU).
• Norm of absolute residual vectors (RES).

Where RES is defined as

RES :=
‖Ayi − |yi| − b‖2

‖b‖2
≤ 10−6.

The computations were performed with an Intel (C) Core (TM) i5-3337U processor, 4 GB of RAM,
and MATLAB (2018a). In addition, we consider the value of ψ = 1.2 for all examples.

Example 3.1. [33] Let v denote a predetermined positive integer, and n = v2. Let’s delve into the
AVE (1.1). Here, we assume A belongs to Rn×n and can be represented as A = M + I, where

M =



S −0.5I
−1.5I S −0.5I

. . . S . . .
. . .

. . . −0.5I
−1.5I S


∈ Rn×n

is a block-tridiagonal matrix, and

S =



4 −0.5
−1.5 4 −0.5

. . . 4 . . .
. . .

. . . −0.5
−1.5 4


∈ Rv×v,

and

b = Ay∗ − |y∗| with y∗ = (1, 2, 1, 2, ..., 1, 2, ...)T ∈ Rn.

In Examples 3.1 and 3.2, we consider the initial estimate y∗ = (1, 0, 1, 0, ..., 1, 0, ...)T ∈ Rn and
contrast EGGSM I and EGGSM II with various iterative techniques: the AOR iteration method [34],
the mixed-type splitting (MS) method [33], the fixed-point method (FM) [35], and the GGS method
(GGSM) [31]. The tabulated numerical outcomes are presented in Table 1.
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Table 1. Numerical findings of Example 3.1.

Procedures n 100 400 900 1600 4900
ITs 97 190 336 706 384

AOR CPU 0.4721 2.8203 3.2174 6.3887 9.2344
RES 9.81e–07 9.62e–07 9.74e–07 9.85e–07 9.37e–07
ITs 88 157 250 386 342

MS CPU 0.4043 1.7955 3.0217 5.7626 8.8967
RES 8.93e–07 9.65e–07 9.20e–07 9.57e–07 9.88e–07
ITs 42 62 79 94 103

FM CPU 0.1821 0.3227 0.9642 1.3403 1.9528
RES 9.67e–07 9.78e–07 8.65e–07 8.84e–07 8.82e–07
ITs 34 52 67 81 93

GGSM CPU 0.1622 0.2910 0.9442 1.0403 1.7526
RES 9.54e–07 8.41e–07 8.43e–07 8.35e–07 8.27e–07
ITs 22 32 41 49 53

EGGSM I CPU 0.1193 0.1547 0.6241 0.9971 1.4911
RES 5.43e–07 8.92e–07 8.79e–07 9.85e–07 9.07e–07
ITs 18 27 35 42 47

EGGSM II CPU 0.0937 0.1024 0.2241 0.7971 1.0285
RES 6.35e–07 7.98e–07 7.90e–07 9.95e–07 9.97e–07

Example 3.2. [33] Given a positive integer v, let n = v2. Suppose the expression AVE (1.1), where A
is a real n × n matrix represented by A = M + 4I, where

M =



S −I
−I S −I

. . . S . . .
. . .

. . . −I
−I S


∈ Rn×n

is a block-tridiagonal matrix, and

S =



4 −1
−1 4 −1

. . . 4 . . .
. . .

. . . −1
−1 4


∈ Rv×v,

and b = Ay∗ − |y∗| with y∗ = ((−1)h, h = 1, 2, ..., n)T ∈ Rn. Table 2 lists the actual results.
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Table 2. Numerical findings of Example 3.2.

Procedures n 64 256 1024 4096
ITs 14 14 15 35

AOR CPU 0.3482 1.9789 2.3872 5.8097
RES 5.22e–07 6.28e–07 6.53e–07 8.75e–07
ITs 14 14 15 25

MS CPU 0.3168 1.0954 1.9649 2.2196
RES 4.33e–07 5.46e–07 5.08e–07 9.38e–07
ITs 13 13 14 16

FM CPU 0.3008 0.5327 1.6769 2.1363
RES 9.43e–07 4.88e–07 6.33e–07 8.95e–07
ITs 11 12 12 12

GGSM CPU 0.2989 0.4201 1.4819 1.9929
RES 6.39e–07 5.34e–07 7.06e–07 7.01e–07
ITs 8 8 9 9

EGGSM I CPU 0.1036 0.3573 1.2211 1.3492
RES 5.34e–07 7.09e–07 8.47e–07 8.86e–07
ITs 5 5 5 5

EGGSM II CPU 0.0977 0.2321 0.7963 1.0837
RES 6.15e–08 5.91e–08 5.77e–08 5.68e–08

Tables 1 and 2 of our study provide a thorough comparison of the numerical findings acquired
by applying multiple approaches: AOR, MS, FM, GGSM, and novel techniques we have developed.
These comparisons are conducted across a variety of values for n. Upon analysis of the numerical data,
it is evident that our newly proposed EGGSM I and EGGSM II show superior performance to all other
methods. Specifically, they surpass the others in terms of both iterations (ITs) required for convergence
and the computational time (CPU) needed to achieve these results.

Example 3.3. [15] Let A be an n×n matrix with elements defined as follows: aii = 4n, ai,i+1 = ai+1,i = n,
and ai j = 0.5 for i = 1, 2, . . . , n. Consider b = (A− I)e, where I is the identity matrix of order n and e is
an n×1 vector with all elements equal to unity, such that y = (1, 1, . . . , 1)T represents the exact solution.
Specifically, we initialize the vector as y(0) = (y1, y2, . . . , yi, . . .)T , where yi = 0.001 · i. In this scenario,
we evaluate our proposed methods against the minimization technique introduced in [15] (referred to
as MT), the modified search direction iteration method [36] (denoted as MDM), the fixed-point method
(FM) [35], and GGSM [31]. The results are summarized in Table 3.

In Table 3 of our study, we present an analysis of the numerical results obtained using various
methodologies: MT, MDM, FM, and GGSM, as well as innovative approaches that have been
developed. Various values of n are considered in these assessments. Upon scrutinizing the numerical
data, it becomes apparent that our newly introduced EGGSM I and EGGSM II exhibit superior efficacy
compared to alternative methods. Moreover, they outperform others in terms of both ITs and CPU
required to attain results. As a result, we deduce that the offered approaches are admirably effective
and practical for implementation.
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Table 3. Numerical findings of Example 3.3.

Procedures n 3000 4000 5000 6000 7000
ITs 26 27 27 27 27

MT CPU 1.9211 4.5138 18.3728 32.4391 74.2529
RES 5.74e–07 4.53e–07 7.42e–07 5.69e–07 6.92e–07
ITs 15 15 15 15 15

MDM CPU 1.0328 3.5788 8.5019 37.6694 68.4120
RES 1.98e–07 3.63e–07 7.57e–07 3.69e–07 9.87e–07
ITs 11 11 11 11 11

FM CPU 0.8488 2.2201 9.3834 27.5728 31.8227
RES 4.72e–07 8.86e–07 5.37e–07 7.24e–07 3.28e–07
ITs 10 10 10 10 10

GGSM CPU 0.7219 1.9810 8.3028 25.2081 27.1159
RES 4.31e–07 6.97e–07 7.22e–07 7.98e–07 8.19e–07
ITs 6 6 6 6 6

EGGSM I CPU 0.5064 1.4947 7.9371 15.7591 17.1890
RES 4.74e–07 8.87e–7 4.47e–07 6.27e–07 4.91e–07
ITs 2 2 2 2 2

EGGSM II CPU 0.3927 1.1083 5.4811 7.9627 11.2083
RES 4.43e–10 3.86e–10 3.37e–10 3.02e–10 2.98e–10

4. Conclusions

In this study, we have explored two extended versions of the Gauss-Seidel method, known as
EGGSM I and EGGSM II to solve AVEs. We meticulously investigated the requisite conditions for
the convergence of these novel iterative techniques. In addition, we presented several numerical
results demonstrating our approaches’ effectiveness. The computational results demonstrate the
relevance of the proposed methodologies, particularly when handling large, sparse AVEs, and their
considerable superiority over existing approaches. In both theoretical and empirical analyses, our
proposed algorithms have been shown to solve AVEs with high efficiency.
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