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Abstract: Life categories and probability distributions are part of a new field in reliability that has 
emerged as a result of the daily generation of data that has become more complex across practical 
fields. This study demonstrated how well the U-statistics technique can be applied to real-world 
testing problems, producing more efficient processes that are on par with or even more successful 
than conventional approaches. Furthermore, there was room for improvement in the performance of 
these methods. An approach tending toward normalcy was supported by comparing a unique 
U-statistic test with the used better than age in moment generating ordering (UBAmgf) test statistic, 
In this manuscript, a novel nonparametric technique has been developed to test the belonging of a 
dataset to a distribution of a new statistical class survival function, the moment generating function 
for used better than aged (UBAmgf). This type of test was crucial in practical life, such as 
implementing a specific strategy of proposed therapy for a particular disease, deeming it futile if the 
survival data was exponential (accepting H ) (the suggested therapeutic approach does not exhibit 
positive or negative effects on the patients). Once the survival data was UBAmgf, the treatment or 
device or system employed yields an expected overall current value better or higher than the older 
device governed by the asymptotic survival function (discussed in the Applications section). The 
appropriateness of the proposed statistical test’s application range was properly determined by 
calculating its test efficiency and critical values and comparing them with other tests, whether in 
complete or censored data. Finally, we applied this proposed test technique in the manuscript to a 
different set of real data in both cases. 
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Notations and abbreviations 

IFR Increasing failure rate 
IFRA Increasing failure rate average 
NBU New better than used 
NBUE New better than used in expectation 
NBRUL New better than renewal used in laplace transform ordering 
NBUCL New better (worse) than used in a convex laplace ordering 
DMRL Decreasing mean residual life 
UBA Used better than age 
UBAC Used better than age in convex order 
UBAC (2) Used better than age in concave order 
UBAL Used better than age in Laplace transform 
UBAmgf Used better than age in moment generating function 

1. Introduction  

In the field of probability, statistics, and related fields like reliability theory, survival analysis, 
and economics, the comparison of random probability distributions is considered a fundamental and 
highly effective principle. Among statisticians and reliability analysts, a primary focus lies in 
devising new models for various life distributions based on specific aging-related behaviors observed 
in survival data. Utilizing the U-statistic technique, a method developed by statisticians and 
reliability analysts, the nonparametric statistical test employed in this study assesses alternative 
treatment methodologies by examining failure patterns in collected survival data. In recent years, this 
approach has been increasingly utilized to evaluate exponentiality, particularly in monitoring patient 
survival times following the implementation of recommended strategies. 

For the simulation of various aspects of aging, different categories of life distributions were 
considered. Increasing failure rate (IFR), new better than used (NBU), used better than age in 
expectation (UBAE), and Used better than age in moment generating function (UBAmgf) are the 
most common among these categories. See, for example, Esary et al. [1], Bryson and Siddiqui [2], 
Barlow and Proschan [3], Navarro J. [4], and Navarro and Pellerey [5]. Other aging categories, such 
as Fernandez-Ponce et al.’s NBU [6], have been considered by many researchers. Ahmad [7] 
introduced UBA and UBAE as well. The order of moment generating function for UBA was 
discussed by Abu Youssef et al. [8], Bakr et al. [9], Bakr and Al-Babtain [10], Ghosh and Mitra [11], 
EL-Sagheer et al. [12], Etman et al. [13], Bakr et al. [14], EL-Sagheer et al. [15], Mahmoud 
El-Morshedy et al. [16], Gadallah et al. [17], Abu-Youssef and El-Toony [18], Abu-Youssef and 
Gerges [19], Bakr [20], Mahmoud et al. [21], Gadallah [22], Bakr et al. [23], and Bakr [24]. 

Consequently, the following implications can be shown: 

IFR [1] ⇒ UBA [7] ⇒ UBAmgf [8] 
  ⇓   
  UBAE [7]   

A variety of events, including failure, death, relapse, reaction, the start of particular illnesses, 
divorce, or parole, are covered by examples of survival time data. Like any other stochastic variable, 
these intervals have a distribution and random changes. The probability density function, hazard 
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function, and survivorship function are frequently used to clarify or characterize the distribution of 
survival times. The other two functions can theoretically be inferred if any one of these functions is 
given. These three functions practically offer different features of the data. One of the main 
difficulties in analyzing survival data is estimating one or more of these functions from sampled data 
and making inferences about the survival pattern of the population.  

For any random variable  𝑋 , let 𝑋 = [𝑋 − 𝑡|𝑋 > 𝑡], 𝑡 ∈ {𝑥: 𝐹(𝑥) < 1); denote a random 
variable whose distribution is the same as the conditional distribution of 𝑋 −  𝑡, given that 𝑋 >  𝑡 
and it has a survival function which determines an individual's probability of surviving past a given 
time 𝑡, defined as follows, 

𝐹 (𝑥) =

𝐹(𝑥 + 𝑡)

𝐹(𝑡)
      𝐹(𝑡) > 0

     0                𝐹(𝑡) = 0

, 

where 𝑋 is the lifetime of a device which has a finite mean 𝜇 = 𝐸(𝑋) = ∫ 𝐹(𝑢)𝑑𝑢 , u ≥ 0, and the 

mean of 𝑋  is called the mean residual life (MRL) and is given by  

𝜇(𝑡) = 𝐸(𝑋 ) =
∫ 𝐹(𝑢)𝑑𝑢

𝐹(𝑡)
. 

Ahmad [7] introduced UBA aging which we can say that, F is UBA Ɐ𝑡, x ≥ 0, if 

 e ( ) F(t) ≤  F(x + t),       x, t ≥ 0,  

along with UBAE which F is UBA if  

𝜇(∞) ≤ 𝜇(𝑡), 

where, 

𝜇(∞) = 𝑙𝑖𝑚
→

𝜇(𝑡) =
1

ℎ(∞)
, ℎ(𝑡) = −

𝑑

𝑑𝑡
𝑙𝑛 𝐹(𝑡) =

𝑓(𝑡)

𝐹(𝑡)
, 𝑡 ≥ 0, 𝐹(𝑡) > 0. 

Definition. The function F has the UBAmgf property if 0 < μ(∞) < ∞ and Ɐ(t, x ≥ 0); (Abu 
Youssef et al. [8]) 

∫ 𝑒 F(𝑥 + 𝑡) d𝑥 ≥
( )

( )
𝐹(𝑡), s ≥ 0,      (1.1) 

The purpose of this work is to assess the belonging of a dataset for the class of the UBAmgf life 
distribution by developing a new nonparametric statistical test based on the u-statistic technique, 
applicable to both complete and censored data. For both kinds of data, the power of the test and 
relative approximate efficiency of Pitman (PARE) will be used to evaluate the statistical test's 
performance. Often used substitutes for the asymptotic model are the Makeham, Weibull, and linear 
failure rate LFR distributions. Finally, to verify the efficacy and importance of the examination, this 
suggested methodology will be used on a collection of real-world data. 

The structure of the article is as follows. Section 2 will cover the test statistic for complete data 
and PARE for our test statistic. Section 3 will offer the test statistic for censored data. We discuss 
several applications of real medical data of the suggested statistical test in Section 4. Finally, in 
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Section 5, we provide a conclusion. 

2. Complete data testing 

We create a metric to assess deviation from exponentiality within the UBAmgf category. 

2.1. Testing technique 

Assume that 𝑋 , 𝑋 , … , 𝑋  is a random sample was extracted to apply this nonparametric testing. 
Various researchers have suggested nonparametric hypothesis testing for different life distributions, 
including Abu-Youssef et al. [25] and Mahmoud et al. [26]. 

The expression for the departure measure can be derived from Eq (1.1), by performing the 
integration on both sides for Eq (1.1) as follows: 

 δ(s) =  e  F(u + t) du −
1

1 − s
F(t) dt  

=  ∫ ∫ e  F(u + t) du dt − ∫ F(t) dt, s ≥ 0,    (2.1) 

which under H : δ(s) = 0; see Theorem 2. 
The theorem presented below is essential for the development of our test. 

Theorem 1. Suppose X is a random variable from UBAmgf; according to Eq (2.1), we obtain 

δ(s) = ( φ(s) − 1) −
( )

,       (2.2) 

which φ(s) = ∫ e dF(x), μ = ∫ F(t) dt,  and s ≠ 1. 

Proof. Starting from (2.1), we have the following: 

δ(s) = 𝑒 F(𝑢 + 𝑡)𝑑𝑢𝑑𝑡 −
1

1 − 𝑠
μ, 

= 𝐼 − μ,            (2.3) 

where, 

I = e F(u + t) dudt 

    =
1

s
e (1 − e )F(t) dt  

           =
1

s
e F(t) dt −

1

s
F(t) dt 

=
1

s
(φ(s) − 𝑠μ − 1).         

Consequently, the result follows. 
The empirical estimate of δ(s) can be derived as follows: 

δ(s) =
1

ns
(e − 1) −

sX

(1 − s)
.  
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To make the test statistics scale invariant, we can get: 

∆(𝑠) = ∑ e −
( )

− 1 =   ∅(X),     (2.4) 

where, ∅(X) = e −
( )

− 1 . 

The following theorem illustrates the asymptotic normality of ∆(s).  
Theorem 2. Using U-statistics theory (Lee [27]), the statistic δ(s) has the following properties: 
As n → ∞, √𝑛(∆(s) − δ(s)) is asymptotically normal with zero mean and σ (s), where 

μ = E
1

s
( φ(s) − 1) −

μ

s(1 − s)
. 

σ (s) = 𝑣𝑎𝑟
1

s
( φ(s) − 1) −

μ

s(1 − s)
, 

and under 𝐻 , 

μ =
1

s
( e − 1) −

μ

s(1 − s)
e 𝑑𝑥 

σ (s) =
2

(1 + 2𝑠 − 3𝑠)(s − 1)
. 

Proof. By direct calculation, we have the following 

E[∅(X)] = E
1

s
(e − 1) −

x

s(1 − s)
, 

                                         =
1

s
( e − 1) −

μ

s(1 − s)
e 𝑑𝑥 = 0, 

and 

σ (s) =
1

s
(e − 1) −

x

s(1 − s)
e 𝑑𝑥 =

2

(1 + 2𝑠 − 3𝑠)(s − 1)
. 

2.2. Pitman Efficiency 

In evaluating the effectiveness of this technique, the Pitman asymptotic efficiency (PAE) values are 
computed for additional option distributions and compared with various other tests. Specifically, we 
select δ∗(0.01) investigated by Abu-Youssef et al. [8] for the UBAmgf and ξ(0.01,5) studied by 
El-Arishy et al. [28] for the renewal new better than used in the moment generating function 
(RNBUmgf). This method allows us to achieve the following assessments: 

(i) LFR 

F (x) = e , θ, x ≥ 0.       (2.5) 

(ii) Weibull distribution (WD)  
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F (x) = e ,     θ ≥ 1, , x ≥ 0.      (2.6) 

(iii) Makeham distribution (MD) 

F (x) = e ( ) ,     θ, x ≥ 0.     (2.7) 

The PAE of δ(s) is equal to 

PAE δ(s) =

∂
∂θ

δ(s)
→

σ (s)
=

1

σ (s)

1

s
e dF (x) −

1

𝑠(1 − 𝑠)
𝑥dF (x) , 

where F (x) = F (u)
→

. This leads to: 

(i) PAE in case of LFR: 

PAE δ(0.1) =
.

∫ e . d − e −
.

∫ x d(− e ) = 1.4. 

PAE δ(0.3) =
1

σ

1

0.09
e . d −

x

2
e −

1

0.21
x d(−

x

2
e ) = 1.3. 

(ii) PAE in case of WD: 

PAE δ(0.1) =
1

σ

−1

0.01
e . d(−xln(x)e ) −

1

0.09
𝑥d(−xln(x)e ) = 0.98. 

PAE δ(0.3) =
.

∫ e . d(−xln(x)e ) −
.

∫ xd(−xln(x)e ) = 0.86. 

(iii) PAE in case of MD: 

PAE δ(0.1) =
1

σ

−1

0.01
e . d(−e (e + x − 1)) −

1

0.09
𝑥d(−e (e + x − 1)) = 0.51. 

PAE δ(0.3) =
1

σ

−1

0.09
e . d(−e (e + x − 1)) −

1

0.21
xd(−e (e + x − 1)) = 0.42. 

Simplified PAE calculations for δ∗(0.01), ξ(0.01,5) and our statistic test at 𝑠 = 0.1 and 𝑠 =

0.3 are summarized in Tables 1 and 2, that is, demonstrating that our tests for F , F , and F  are 
effective. 
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Table 1. PAE of ξ(0.01,5), δ∗(0.01) and δ( 0.1) & δ(0.3). 

Distribution ξ(0.1,5) δ∗(0.01) δ(0.1) δ(0.3) 
LFR 0.943 1.4 1.4 1.3 
WD 0.695 0.597 0.98 0.86 
MD 0.192 0.102 0.51 0.42 

Table 2. PARE of δ(0.1) and δ( 0.3) with respect to ξ(0.01,5) and δ∗(0.01). 

Distribution e(δ(0.1), ξ) e(δ(0.3), ξ) e(δ(0.1), δ∗) e(δ(0.3), δ∗) 
LFR 1.48 1.38 1 0.93 
Weibull 1.41 1.24 1.64 1.44 
Makeham 2.57 2.19 5 4.12 

Our statistics clearly perform well, as seen in Tables 1 and 2. 

Critical values 

The upper percentile of ∆ (s) is calculated in this section using Mathematica programming 
based on a randomly chosen sample size of 10,000. 

Upon examining Tables 3 and 4, as well as Figure 1, it’s noticeable that the behavior of critical 
values tends to approach a normal distribution as the sample size increases. 

Table 3. Upper percentile points of ∆(s). 

∆ (0.1) ∆ (0.3) 

n 90% 95% 99% 90% 95% 99% 

10 0.589599 1.0548 2.38187 0.90344 1.70724 4.36234 

20 0.478266 0.789781 1.55303 0.769239 1.28583 3.28312 

30 0.405417 0.610084 1.19421 0.617771 1.0489 2.5286 

40 0.347127 0.53271 1.02942 0.603084 0.996328 2.05001 

50 0.314902 0.483235 0.921412 0.53828 0.870271 1.91975 

60 0.300995 0.449961 0.831487 0.518077 0.825426 1.72713 

70 0.282376 0.418966 0.710617 0.470304 0.771146 1.5557 

80 0.263594 0.372777 0.64752 0.444529 0.710233 1.50348 

90 0.245934 0.349949 0.582578 0.41206 0.659672 1.38659 

100 0.234955 0.344106 0.603165 0.410608 0.639758 1.31727 

110 0.220522 0.315423 0.548694 0.386204 0.616867 1.26791 

120 0.219413 0.319273 0.533454 0.382229 0.590118 1.25532 

130 0.206842 0.292671 0.490819 0.380101 0.588795 1.13755 

140 0.205538 0.288783 0.486047 0.36453 0.563253 1.10836 

150 0.197803 0.277123 0.471442 0.34982 0.536596 1.02944 

Continued on next page
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∆ (0.1) ∆ (0.3) 

n 90% 95% 99% 90% 95% 99% 

160 0.186517 0.268745 0.441818 0.34347 0.503481 0.99703 

170 0.182598 0.260694 0.434232 0.340778 0.500624 0.974983 

180 0.174062 0.249311 0.398776 0.321098 0.489979 0.969483 

190 0.173023 0.243926 0.383918 0.304935 0.465992 0.883525 

200 0.172233 0.242028 0.380304 0.302076 0.464217 0.879726 

Table 4. Lower percentile points of ∆(s). 

∆ (0.1) ∆ (0.3) 

n 90% 95% 99% 90% 95% 99% 

10 -0.471067 -0.426453 -0.395363 -0.592297 -0.635645 -0.7004 

20 -0.419978 -0.372406 -0.340227 -0.526397 -0.564187 -0.625656 

30 -0.38235 -0.339507 -0.302180 -0.479946 -0.525115 -0.587352 

40 -0.364249 -0.312609 -0.278526 -0.450476 -0.496252 -0.560209 

50 -0.348252 -0.294385 -0.258681 -0.418322 -0.468409 -0.537834 

60 -0.333397 -0.2797 -0.246042 -0.392849 -0.443084 -0.511545 

70 -0.31856 -0.266462 -0.228035 -0.380477 -0.430749 -0.497798 

80 -0.303186 -0.249586 -0.215193 -0.360892 -0.410798 -0.481773 

90 -0.298034 -0.244458 -0.208772 -0.348319 -0.398453 -0.473025 

100 -0.286063 -0.232463 -0.198667 -0.341951 -0.387858 -0.458414 

110 -0.280916 -0.226196 -0.191198 -0.328458 -0.372738 -0.452141 

120 -0.269198 -0.218881 -0.185565 -0.316119 -0.364621 -0.432687 

130 -0.263995 -0.211496 -0.179830 -0.307513 -0.353976 -0.424693 

140 -0.252446 -0.203445 -0.171397 -0.295639 -0.343957 -0.415618 

150 -0.249648 -0.199637 -0.167331 -0.292632 -0.341521 -0.411077 

160 -0.241313 -0.191188 -0.160843 -0.287568 -0.331935 -0.40222 

170 -0.247363 -0.191327 -0.160827 -0.27644 -0.323556 -0.397487 

180 -0.235357 -0.185306 -0.155513 -0.27222 -0.318282 -0.390303 

190 -0.233028 -0.182623 -0.150336 -0.268424 -0.31458 -0.379604 

200 -0.228591 -0.178437 -0.151272 -0.26155 -0.307621 -0.372109 
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δ (0.1) δ (0.3) 

Figure 1. The Relation of critical values with sample size. 

3. Censored data  

People are frequently susceptible to right censoring in survival analysis or analysis of 
time-to-event data. The Kaplan-Meier estimator provides a consistent estimator of the common 
marginal distribution function F within the widely recognized framework of random (or independent) 
censoring (one minus). So, in order to extend U-statistics to right-censored data (under independent 
or random censoring), one method is to integrate (average) the kernel regard to the product of 
Kaplan-Meier estimators of the failure time distribution. Such statistics are generally referred to as 
the Kaplan-Meier U-statistics (Datta et al. [29]). Thus far, asymptotic normality of a Kaplan-Meier 
U-statistic of order two has been established in the literature (Bose and Sen, [30]), which is given by 

U =
∑ h(T , T )W W

∑ W W
, 

where W  is the mass assigned to the ith right-censored failure time T  by a Kaplan-Meier estimator. 
As can be seen from Bose and Sen [30], one faces extensive asymptotic calculations with this form 
of censored U-statistic. 

3.1. Testing exponentiality 

A proposed test statistic is suggested in this section to test the H  and H  hypotheses, where 
randomly right-censored data are used. We can express the measure of departure as follows: 

δ (𝑠) = ∑ ∏ (∑ τ − 1) −
( )

(𝜉) ,      (3.1) 

where 𝜏 = ∑ 𝑒 ( )[∏ 𝐶 − ∏ 𝐶 ], and 𝜉 = ∑ ∏ 𝐶 − ∏ 𝐶 . 
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3.2. Critical values  

Once again, Mathematica programming is used in this section to get the upper percentile of 
δ (𝑠) using a randomly selected sample size of 10,000. 

After examining Table 5, as well as Figure 2, it's noticeable that the behavior of critical values 
tends to approach a normal distribution in all cases as the sample size increases. 

Table 5. Upper percentile points of δ (s).  

δ (0.01) δ (0.03) 
n 90% 95% 99% 90% 95% 99% 
5 1571.41 1958.13 1978.57 169.641 211.715 215.147 
10 566.416 653.487 845.747 58.8706 69.2857 91.4355 
15 307.293 360.621 457.593 31.3036 37.5648 47.879 
20 194.979 226.324 282.967 20.7336 24.9836 32.5422 
25 140.75 165.07 211.233 14.7634 17.5481 22.6889 
30 110.104 128.472 170.311 10.9404 13.1516 16.7708 
35 84.0231 98.327 134.255 8.38991 9.86629 13.3953 
40 66.9122 77.9284 103.379 7.09847 8.496 10.475 
45 58.2185 67.1532 86.8666 5.74715 6.9643 9.68581 
50 50.0569 58.0822 79.4455 4.65359 5.80076 7.84431 
55 42.7518 49.6379 66.847 4.24271 5.49049 7.38808 
60 38.2681 45.7686 58.2368 3.4532 4.30971 5.82472 
65 32.8402 39.0926 49.166 3.24946 3.84523 5.05027 
70 29.1869 34.5325 43.7522 2.68896 3.25801 4.43777 
75 26.5801 31.3683 41.9513 2.44625 3.21558 4.34292 
80 22.7444 27.8858 35.9219 2.32005 2.85058 3.87856 
85 21.812 25.7467 34.335 2.07935 2.61302 3.70679 
90 19.9409 23.8876 31.1644 1.76254 2.26448 3.05033 
95 16.9682 21.0559 26.9644 1.6898 2.06181 2.8819 
100 17.983 21.1462 26.4482 1.47302 1.79136 2.54551 

 

 

δ (0.01) δ (0.01) 

Figure 2. The correlation between sample size and critical values. 
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4. Applications in practical scenarios 

To display the importance of the results in this research, we applied these results to some sets of 
real data. 

4.1. Case of uncensored data 

Dataset# 1: Reviewing the data in Almetwally et al. [31] (see Figure 3), which show the ages of 36 
patients (in years) with COVID-19, have the following ordered observations: 

3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 
3.2823, 3.8594, 4.0480, 4.1685, 3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 
4.2202, 1.5157, 2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141, 1.9048 

 

Figure 3. Representation of (COVID-19) dataset. 

In the two situations of ∆(0.1) and ∆(0.3) as 𝑛 = 36, we calculate the statistic in (2.4) 
∆(0.1) = 2.6 and ∆(0.3) = 2.7, compared with the Table 3's critical value. The exponentiality null 
hypothesis is rejected by our test for any value of s, we conclude. 
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Dataset# 2: Survival times (in years) after diagnosis of 43 patients with a specific type of leukemia 
are represented in this dataset from Johnson and Kotz [32], (see Figure 4). 

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 
0.869 1.175 1.206 1.219 1.219 1.282 1.356 1.362 
1.458 1.564 1.586 1.592 1.781 1.923 1.959 2.134 
2.413 2.466 2.548 2.652 2.951 3.038 3.600 3.655 
3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633 
6.192 6.655 6.874      

 

Figure 4. Representation of (leukemia) dataset. 

We calculate the statistic in (2.4) ∆(0.1) = 3.2 and ∆(0.3) = 4.3, compared with the Table 3’s 
critical value. The exponentiality null hypothesis is rejected by our test for any value of s, we 
conclude. 

4.2. Case of censored data 

Dataset# 3: We derive δ (s) which is smaller than the crucial value of Table 4 in all cases by 
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applying the statistic in (3.1) to the data in Hassan [33] which reflects the ages of 51 patients (in days) 
with liver tumors and taken from Egypt and only 39 patients are observed (see Figure 5). The data 
was as follows:  

10 14 14 14 14 14 15 17 18 20 
20 20 20 20 23 23 24 26 30 30 

+30 +30 +30 +30 +30 31 40 49 51 52 
60 +60 61 67 71 74 75 87 96 105 
107 107 107 116 150 +150 +150 +150 +150 +150 

+185          

The exponentiality null hypothesis fails to be rejected by our test for any value of s, we conclude. 

 

Figure 5. Representation of (liver tumors) dataset. 

Dataset# 4: Comparison of two treatments and two diets: 

Thirty melanoma patients were evaluated to compare the ability of the immunotherapies BCG 
(Bacillus Calmette-Guerin) and Corynebacterium parvum to extend survival time. Table 6 shows the 
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age, gender, treatment received, and time spent alive (Lee and Wolfe [34]). All individuals were 
resected before starting treatment, thus there was no evidence of melanoma when they started. 
Calculating the length of survival and comparing the survival time distributions in each group is the 
most common purpose with this type of data. 

Table 6. Age, gender, treatment received, and time spent alive in months. 

N. Patient Age Gender Treatment Received Survival 
1 59 F BCG 33.7+ 
2 50 F BCG 3.9 
3 76 M BCG 10.5 
4 66 F BCG 5.4 
5 33 M BCG 19.5 
6 23 F BCG 23.8+ 
7 40 F BCG 7.9 
8 34 M BCG 16.9+ 
9 34 M BCG 16.6+ 
10 38 F BCG 33.7+ 
11 54 F BCG 17.1+ 
12 49 M C. parvum 8 
13 35 M C. parvum 26.9+ 
14 22 M C. parvum 21.4+ 
15 30 M C. parvum 18.1+ 
16 26 F C. parvum 16+ 
17 27 M C. parvum 6.9 
18 45 F C. parvum 11+ 
19 76 F C. parvum 24.8+ 
20 48 M C. parvum 23+ 
21 91 M C. parvum 8.3 
22 82 F C. parvum 10.8+ 
23 50 F C. parvum 12.2+ 
24 40 M C. parvum 12.5+ 
25 34 M C. parvum 24.4 
26 38 M C. parvum 7.7 
27 50 M C. parvum 14.8+ 
28 53 F C. parvum 8.2+ 
29 48 F C. parvum 8.2+ 
30 40 F C. parvum 7.8+ 

The question is whether or not the two therapy groups have a statistically significant difference 
in survival. Is the difference shown by the data significant or just a result of the sample's randomness? 
A statistical significance test is required. A statistical test that ignores patient characteristics, on the 
other hand, makes sense only if the prognostic indications of the two groups of patients are similar. 
So far, it's been considered that the patients in the two groups are similar and that the only difference 
is treatment. As a result, it is necessary to assess the homogeneity of the two groups prior to 
executing a statistical test. 
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Although there are no well-established prognostic indicators for melanoma patients, it has been 
observed that women and the young have a greater survival rate than men and the old (UBA class of 
life distribution). Furthermore, the stage of the disease has a big influence on survival. 

Now we have a dataset that claims to compare the two survival distributions in two ways: First, 
the data is exponential (which could reflect one of the immunotherapies), and second, the data is 
UBAmgf. There are various parametric and nonparametric tests to support one of the two hypotheses; 
however, we will proceed to compare the two survival distributions using nonparametric techniques 
because we do not know the survival distribution that the data follows. Sections 2 and 3 explain two 
tests that are appropriate. 

We derive δ (0.01) = 6.9 × 10  and δ (0.03) = 2.3 × 10  which is greater than the 
crucial value of Table 5 in all cases by applying the statistic in (3.1). The exponentiality null 
hypothesis is rejected by our test for any value of s, we conclude, (see Figure 6). 

 

Figure 6. Representation of (tumors) dataset. 

Dataset# 5: We derive δ (0.01) = 1528 and δ (0.03) = 6.7 × 10  which is greater than the 
crucial value of Table 5 in all cases by applying the statistic in (3.1) to the data in Kamran Abbas et 
al. [35] and in Lee and Wolfe [36], which reflects the ages of 61 patients (in weeks) (see Figure 7) 
with inoperable lung cancer, and only 33 patients are observed. The data was as follows: 
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+0.14 +0.14 +0.29 +0.43 0.43 +0.57 +0.57 +1.86 2.86 +3.00 
+3.00 3.14 3.14 +3.29 +3.29 3.43 3.43 3.71 3.86 +6.00 
+6.00 +6.14 6.14 6.86 +8.71 9.00 9.43 +10.57 10.71 10.86 
11.14 +11.86 13.00 14.43 +15.57 15.71 +16.57 +16.57 +17.29 18.43 
18.57 +18.71 20.71 +21.29 23.86 +26.00 +27.57 29.14 29.71 +32.14 

+33.14 40.57 48.57 49.43 53.86 61.86 66.57 68.71 68.96 72.86 
72.86          

The exponentiality null hypothesis is rejected by our test for any value of s, we conclude. 

 

Figure 7. Representation of (lung cancer) dataset. 

5. Conclusions 

Recent advancements in life testing methodologies significantly depart from traditional 
approaches due to the increasing complexity of data in various practical domains. This shift has 
expanded the realm of reliability assessment, with a focus on life categories and specific probability 
distributions. Our research emphasizes the efficacy of incorporating the U-statistics technique into 
life testing scenarios, resulting in more streamlined processes compared to conventional methods, 
particularly advantageous when dealing with smaller sample sizes. The exponential distribution 
holds a crucial position in statistics as a continuous distribution, widely employed for its memoryless 
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property, especially in reliability theory, life testing, and stochastic systems. It is vital to ascertain 
whether a random sample conforms to this distribution. This study introduced nonparametric tests 
based on the U-statistics approach to assess both conformity to exponential distribution and the 
presence of exponential distribution in datasets, considering diverse data compositions. Our 
investigation validated the asymptotic normality of the proposed test and determined critical 
percentile values through Monte Carlo simulations. Additionally, we computed power estimates for 
alternative distributions, offering insights for both censored and uncensored data, and discussed 
strategies for appropriately handling truncated data. Our findings underscored the practical utility of 
these tests in analyzing reliability across bioscience sustainability data, encompassing both censored 
and uncensored datasets. 
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