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1. Introduction

Historically, animal pathogens have wielded significant global impact. To illustrate this, in the
14th Century, the Black Death, a disease transmitted from rodents to humans through infected fleas,
led to the deaths of approximately fifty million individuals worldwide, cementing its status as one
of the deadliest diseases in human history [1]. Subsequently, in the 20th century, diseases like
monkeypox, rabies, and avian flu emerged, straining healthcare systems in numerous countries across
the globe [2]. Zoonotic diseases, unlike those transmitted among humans, initially spread from animals
to humans, presenting a substantial challenge due to the diverse nature of the affected populations [3].
Consequently, comprehending the potential pathways of disease transmission between different sub-
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populations necessitates a comprehensive examination of interactions between animals and humans,
resulting in a higher level of complexity in the analysis of their dynamics [4, 5]. Among all animals,
mosquitoes stand out as the most formidable vectors in the rapid propagation of major zoonotic
diseases, including zika virus, west Nile virus, chikungunya virus, dengue fever, yellow fever, and
malaria. These diseases, known as mosquito-borne diseases, infect millions of people worldwide and
contribute to a significant number of fatalities annually [6, 7].

To understand the complexity of diseases transmitted by mosquitoes and identify the elements
that favor their spread within populations, mathematicians have proposed numerous models. These
models find their origins mainly in the fundamental contributions of Kermack and McKendrick [8, 9]
to the mathematical theory of diseses. The basic concept is to subdivide the study population into
distinct groups, based on potential clinical states induced by the infection. In its simplest form,
this model is represented by a system composed of interconnected nonlinear ordinary differential
equations that explain how human and mosquito populations change over time, taking into account all
possible interactions. In this framework, various models have been used, giving revolutionary results,
as evidenced by references such as [10–17]. Nevertheless, as Mao demonstrated in [18], stochastic
environmental fluctuations have the potential to alter the dynamics of epidemic and ecological patterns.
Therefore, an extension of deterministic results to the stochastic domain becomes imperative.

Mosquito-borne diseases, such as malaria or dengue fever, are influenced by various random factors
in the environment, including mosquito behavior, climate conditions, and human movement [19, 20].
Ignoring these fluctuations can result in overly simplistic models that do not accurately reflect the
complex dynamics of disease transmission. Incorporating stochastic elements into models allows for
a more realistic prediction of disease outbreaks. By accounting for random fluctuations, models can
provide a range of possible outcomes, including worst-case scenarios. This is particularly important
for public health planning and resource allocation. To highlight the main innovations of our research,
we begin by reviewing the existing body of literature regarding models of mosquito-borne epidemics.
For example, Witbooi et al. introduced a stochastic mosquito-transmitted model in [21], incorporating
Gaussian perturbations in disease transmission rates. This model characterizes the interaction between
susceptible, infected, and recovered human individuals, as well as susceptible and infected mosquitoes.
The authors not only demonstrated the existence of a unique and almost certainly positive solution
to their model, but also outlined the conditions under which the disease is effectively eradicated
within the population studied. In the context of modeling malaria dynamics, Wang et al. proposed
a stochastic model in [22]. Similar to the Witbooi model, it divides human and mosquito populations
accordingly. However, instead of Gaussian disturbances, this model uses multiplicative Gaussian
noise. Furthermore, the authors extended previous results by establishing conditions guaranteeing
the presence of a stationary distribution. For the spread of dengue, Liu et al. adopted the same model
in [23], but with a modified saturated incidence rate to prevent the bilinear contact rate from being
unlimited. Their work builds on the results of [22]. Expanding the scope to a broader stochastic model
for dengue, Wei et al. introduced a model that incorporates the human population exposed in [24]. In
the context of Chikungunya disease modeling, Gokila and Sambath, the authors of [25] established a
well-structured stochastic model. They derived the conditions for disease extinction and the presence
of a stationary distribution.

In both stochastic and deterministic scenarios, the mosquito-borne epidemic models mentioned
above display three significant constraints, as delineated below:
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• Restriction 1: Given that vaccines for most mosquito-borne diseases, such as Zika virus and
Chikungunya virus, are not yet proven to be effective and remain in the preclinical trial phase,
coupled with the absence of treatment options [26], governments are left with only one viable
control measure for safeguarding the human population: implementing quarantine measures for
the infected individuals. It is worth noting that previous models have typically overlooked the
inclusion of quarantine strategies. However, it is essential to highlight that various studies have
demonstrated the beneficial impact of quarantine as a control measure for different mosquito-
borne diseases. Notable examples include research presented in [27–29]. Therefore, neglecting to
incorporate quarantine measures in the model formulation could diminish the model’s relevance.
• Restriction 2: Gaussian noise is appropriate for modeling minor fluctuations, but it is not well-

suited for simulating significant and abrupt changes, such as those caused by natural events like
volcanoes and earthquakes, impacting populations [30, 31]. These types of natural disasters can
play a pivotal role in the transmission of mosquito-borne diseases by forcing people to relocate
and gather in unsanitary conditions with inadequate sanitation facilities, potentially leading to the
resurgence of mosquito-borne diseases [32]. Given the sudden and discontinuous nature of these
disaster events, the Gaussian noise employed in the cited literature is inadequate for capturing this
effect [33].
Mosquito-borne diseases like malaria, dengue, Zika, and Chikungunya pose persistent global
health challenges due to their complex transmission dynamics influenced by vector behavior,
environmental factors, and human interactions. Accurate modeling of these diseases is crucial
for understanding their epidemiology and developing effective control strategies. This study
introduces an advanced stochastic model that integrates quarantine measures and employs Lévy
noise [34–36]. Unlike traditional deterministic models, our approach captures the inherent
variability and unpredictability of disease transmission, crucial for predicting sporadic outbreaks
and assessing the impact of interventions. By incorporating stochastic elements, the model
enhances realism in depicting disease spread patterns, facilitates scenario analysis for outbreak
prediction under various conditions, and informs policy development to mitigate mosquito-borne
disease burden globally.
• Restriction 3: Taking into account epidemic models with jumps associated with the standard

measure shows certain restrictions in the modeling of some phenomena with heavy tails
(see [37,38]). So, incorporating a generalized tempered stable (GTS) distribution into an epidemic
model with jumps can offer a more realistic representation of the stochastic nature of disease
transmission. The GTS distribution is a flexible probability distribution that allows for modeling
various degrees of tail heaviness, which can be particularly valuable when modeling epidemic
dynamics with occasional extreme events or jumps [39]. Mosquito-borne models often face
rare but significant events that can lead to sudden and substantial changes in disease dynamics.
These events may include super-spreader gatherings, sudden policy interventions, or unexpected
changes in population behavior. The GTS distribution can be used to model the distribution of the
sizes of these jumps, allowing for more accurate simulations of their impact on the epidemic [40].
Furthermore, the GTS distribution can capture the heterogeneity in disease transmission rates
among individuals. Some individuals may play a more substantial role in spreading the disease
than others. The GTS distribution can be used to model the variability in transmission rates,
which may follow a power-law distribution [41].
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Considering the preceding discussion, the primary innovations in this paper involve the extension
of previously established findings to a novel, well-defined stochastic model that is both mathematically
rigorous and biologically plausible. This model addresses the constraints denoted as Restrictions 1–3
across a broad spectrum of mosquito-borne diseases. To the best of our knowledge, this marks the
inaugural attempt to present an epidemic model that tackles both of these limitations simultaneously.

In technical terms, our newly proposed stochastic system lacks both endemic and disease-free
states. Consequently, the traditional approach of examining the disease’s persistence or extinction
by studying its asymptotic behavior around these states is not applicable. Therefore, we must adopt
a novel approach rooted in stochastic analysis. It’s worth noting that in the deterministic case, most
information regarding disease eradication and continuation can be similarly obtained by setting the
stochastic intensities to zero.

The subsequent sections of this article are organized in accordance with the following structure:
In Section 2, we present our improved deterministic and stochastic models by illustrating their
components and parameters. In Section 3, we present findings related to the mathematical soundness,
biological viability, and the population’s long-term dynamics in the absence of disease transmission. In
Section 4, we establish the conditions that lead to the extinction of both infected human and mosquito
populations. Subsequently, we determine the criteria for the infection to persist within both human
and mosquito populations. In Section 5, we perform numerical simulations to study the sensitivity
analysis and conduct experiments to validate the theoretical results. Finally, in Section 6, we deliberate
on conclusions and offer additional insights.

2. Deterministic and stochastic models

Considering the deterministic mosquito-borne epidemic models mentioned earlier and with the goal
of addressing Restrictions 1–3, our initial approach involves dividing the entire human population into
four distinct categories. This includes the introduction of a new category to represent individuals under
quarantine. Specifically, at a given time t ≥ 0, we define the following:

• S h(t): Density of the susceptible human population.
• Ih(t): Density of the infected human population.
• Qh(t): Density of the quarantined human population.
• Rh(t): Density of the recovered human population.

For the mosquito population, we consider the following classes:

• Sm(t): Density of the susceptible mosquito population.
• Im(t): Density of the infected mosquito population.
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In the absence of stochastic noise, our proposed model is governed by the subsequent system of
interconnected ordinary differential equations:

∀t ∈ R+ :



Human population



dS h(t) =
(

a − bS h(t)Im(t) − cS h(t) + f1Qh(t)
)

dt,

dIh(t) =
(

bS h(t)Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)
)

dt,

dQh(t) =
(
ϕIh(t) − ( f1 + f2 + g1 + g2) Qh(t)

)
dt,

dRh(t) =
(

(q1 + q2) Ih(t) + f2Qh(t) − cRh(t)
)

dt,

Mosquito population

dSm(t) =
(

am − bmSm(t)Ih(t) − cmSm(t)
)

dt,

dIm(t) =
(

bmSm(t)Ih(t) − cmIm(t)
)

dt,

(2.1)

provided with the following initial value problems:

S h(t) = S 0
h > 0, Ih(t) = I0

h > 0, Qh(t) = Q0
h > 0, Rh(t) = P0

h > 0, Sm(t) = S 0
m > 0, Im(t) = I0

m > 0.

All parameters introduced in model (2.1) are supposed to be taking positive values, and their biological
significations are listed as follows:

• a: Standard rate of recruitment associated with susceptible persons.
• am: Constant influx of new susceptible mosquitoes.
• b: Dissemination rate of the infection from mosquitoes to humans.
• bm: Dissemination rate of the infection from humans to mosquitoes.
• c: Death rate of the human population.
• c0: Disease-caused death rate of the human population.
• cm: Natural death rate of the mosquito population.
• f1: Rate in which the human individuals leave quarantine.
• f2: Rate in which the infected human individuals put into quarantine recover from the disease.
• g1: Death rate of the infected human population in quarantine.
• g2: Disease-caused death rate of the infected human population.
• q1: Natural recovery rate.
• q2: Rate in which infected individuals receive medication (when available).
• ϕ: Rate in which the infected human population is put into quarantine.

In the realm of deterministic epidemic models, a critical parameter that holds sway over the
dynamics is known as the basic reproduction number (R◦) and is calculated using the next generation

method [42]. For system (2.1), it holds that R◦ =
babmam

cc2
m (c + c0 + ϕ + q1 + q2)

. In the deterministic

framework, it is possible to delineate the endurance and disappearance of the disease by defining
the circumstances under which the uninfected and endemic equilibrium points exhibit local and/or
global asymptotic stability. Nevertheless, as we will illustrate, the presence of stochastic noise renders
these findings no longer applicable. Indeed, the criterion ensuring the persistence or eradication of
the disease in a deterministic epidemic model may not be applicable to its stochastic counterparts,
influenced by either Gaussian or Lévy noise. Therefore, to establish a more resilient foundation for our
analysis, we adopt a stochastic modeling approach, which enables us to address Restrictions 2 and 3.
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To achieve this, we introduce a stochastic perturbation in the form of Lévy noise to each equation
of the deterministic model (2.1). In this context, we consider independent jump processes for each
sub-population. Practically speaking, this method better mirrors real-world situations, given that the
discrete factors affecting the dynamics may vary among different sub-populations. Hence, the model
at hand is described by the following interconnected system of stochastic differential equations:

dS h(t) =
(

a − bS h(t)Im(t) − cS h(t) + f1Qh(t)
)

dt+a1S h(t)dA1(t) +

∫
R6\{0}

z1(ξ)S h(t−)Z̃1(dt, dξ),

dIh(t) =
(

bS h(t)Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)
)

dt+a2Ih(t)dA2(t) +

∫
R6\{0}

z2(ξ)Ih(t−)Z̃2(dt, dξ),

dQh(t) =
(
ϕIh(t) − ( f1 + f2 + g1 + g2) Qh(t)

)
dt+a3Qh(t)dA3(t) +

∫
R6\{0}

z3(ξ)Qh(t−)Z̃3(dt, dξ),

dRh(t) =
(

(q1 + q2) Ih(t) + f2Qh(t) − cRh(t)
)

dt+a4Rh(t)dA4(t) +

∫
R6\{0}

z4(ξ)Rh(t−)Z̃4(dt, dξ),

dSm(t) =
(

am − bmSm(t)Ih(t) − cmSm(t)
)

dt+a5Sm(t)dA5(t) +

∫
R6\{0}

z5(ξ)Sm(t−)Z̃5(dt, dξ),

dIm(t) =
(

bmSm(t)Ih(t) − cmIm(t)
)

dt+a6Im(t)dA6(t) +

∫
R6\{0}

z6(ξ)Im(t−)Z̃6(dt, dξ).

(2.2)

Here, AL (L = 1, · · · , 6), denote six mutually independent Brownian motions (BMs) of
strengths aL > 0 (L = 1, · · · , 6), respectively. All these BMs are essentially defined on a
filtered probability triple (stochastic basis) (Ω,F , (Ft)t>0,P) equipped with a filtration satisfying
the usual criteria. S h(t−), Ih(t−),Qh(t−),Rh(t−), Sm(t−) and Im(t−) are denoting the left limits of
S h(t), Ih(t),Qh(t),Rh(t), Sm(t) and Im(t). ZL (L = 1, · · · , 6) are six independent Poisson counting
associated with six finite characteristic Lévy measures QL (L = 1, · · · , 6) defined on a measurable
set R6 \ {0} as follows:

QL(A) =

∫
R6\{0}

∫ ∞
0

1A(tx)αt−α−1e−tdtRL(dx), A ∈ B(R6 \ {0}), (2.3)

where 1 denotes the indicator function, α ∈ (0, 2), and RL is the Rosiński measure defined on R6 \ {0}
such that RL(0) = 0, ∫

R6\{0}

(
||x||2 ∧ ||x||α

)
RL(dx) < ∞, α ∈ (0, 2).

Z̃L (L = 1, · · · , 6) are six different compensated random measures such that

Z̃L(dt, dξ) = ZL(dt, dξ) − QL(dξ)dt.

Last, zL : R6 \ {0} → R are the jumps size functions which are postulated to be continuous on R6 \ {0}.
In this paper, we consider a generalized tempered stable (GTS) distribution by taking a new Lévy

measure Q0 defined as follows:

Q0(ds) = e−hsQL(ds).
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Let α− ∈ (0, 2), α+ ∈ (0, 2), β− > 0, β+ > 0, σ− > 0, and σ+ > 0. Then

QL(ds) =
β−
|s|1+α−

e−σ−s1(s<0)︸                 ︷︷                 ︸
for negative jumps

+
β+

|s|1+α+
e−σ+s1(s>0)︸                 ︷︷                 ︸

for positive jumps

. (2.4)

The tempered stable distribution associated with the measure defined in (2.4) is a general framework
of some well-known special cases presented in the literature:

• By picking out α+ = α− = 0 and β+ = β−, we get the variance gamma distribution exhibited
in [38].
• By selecting α+ = α−, we get the KoBoL distribution discussed in [39].
• By picking α+ = α− and σ+ = σ−, we get the infinitely divisible distribution linked to a truncated

Lévy flight introduced in [40].
• By choosing α+ = α− = 0, we get the bilateral gamma distribution explained in [41].
• By choosing α+ = α− and β+ = β−, we get the CGMY-distribution presented in [43].

3. Mathematical well-posedness, biological feasibility, and long-time behavior in the absence of
the disease transmission

The initial stage of examining model (2.2) involves confirming its well-posedness. This entails
demonstrating that, for any initial conditions and constant parameters, there exists a sole solution that
delineates the population’s evolution over all considered time spans. Furthermore, as we are dealing
with the modeling of a biological phenomenon, it is imperative to ensure that the resulting solution is
biologically plausible, meaning that it maintains non-negativity throughout its trajectory.

To streamline our mathematical calculations and ensure brevity, we will consistently employ the
following notations and definitions throughout the paper.

• χ1 := max
L∈(1,··· ,6)

(∫
R6\{0}

z2
L(ξ)QL(dξ)

)
.

• χ2 := max
L∈(1,··· ,6)

(∫
R6\{0}

(
zL(ξ) − ln (1 + zL(ξ))

)
QL(dξ)

)
.

• χ3 := max
L∈(1,··· ,6)

(∫
R6\{0}

((
1 + zL(ξ)

)2
− 1
)2

QL(dξ)
)

.

• χ4 := max
L∈(1,··· ,6)

(∫
R6\{0}

(
ln
(

1 + zL(ξ)
))2

QL(dξ)
)

.

• χ5 := max
L∈(1,··· ,6)

{
a2

L

}
.

• χ6(ξ) := max
L∈(1,··· ,6)

{
zL(ξ)

}
= zL∗(ξ), where L∗ denotes the index for which the maximum is attained.

• χ7(ξ) := min
L∈(1,··· ,6)

{
zL(ξ)

}
= zL(ξ), where L denotes the index for which the minimum is attained.

• χ8(ξ) := (1 + χ6(ξ))v
− v × χ6(ξ) − 1.

• χ9(ξ) := (1 + χ7(ξ))v
− v × χ7(ξ) − 1.

• χ10(ξ) := max {χ8(ξ), χ9(ξ)}.

• χ11 :=
∫
R6\{0}

χ10(ξ)1(χ8(ξ)≥χ9(ξ))QL∗(dξ) +

∫
R6\{0}

χ10(ξ)1(χ9(ξ)>χ8(ξ))QL(dξ).
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Moreover, to establish both the mathematical and biological coherence of the proposed model, we
introduce the following technical assumptions

• Presumption A: zL(ξ) > −1, ∀L ∈ (1, · · · , 6).
• Presumption B: max

L∈(1,··· ,6)

(
χL
)
< ∞.

• Presumption C: ∃v > 2 such that χ12 = min
(
c, cm

)
−

(v − 1)
2

χ5 −
1
v
χ11 > 0.

Remark 3.1. To underscore the significance of Presumption C, we direct the reader’s attention to [45,
Lemma 2.5]. In this lemma, the authors provided fundamental results that serve as the foundation for
establishing the main outcomes in our study.

Theorem 3.1. Assuming that Presumptions A and B are satisfied, the perturbed model (2.2) exhibits
strong mathematical and biological well-posedness, as it possesses a unique solution that is almost
sure global and positive.

Proof. The proof follows the Lyapunov approach inspired by Mao’s work [44], a technique that has
been applied in several studies involving diverse stochastic epidemic models. For example, authors can
refer to [45–49]. However, the distinctive aspect in our approach is the specific form of the selected
Lyapunov function, which, in our case, is defined as follows:

V(S h, Ih,Qh,Rh, Sm, Im) := S h −
cm

b
−

cm

b
ln
(

S hb
cm

)
+ Ih − 1 − ln

(
Ih
)

+ Qh − 1 − ln
(
Qh
)

+ Rh − 1 − ln
(
Rh
)

+ Sm −
c

bm
−

c
bm

ln
(

bmSm
c

)
+ Im − 1 − ln (Im) .

(3.1)

Since the coefficients of system (2.2) satisfy the local-Lipschitz property, there exists a unique solution
(S h, Ih,Qh,Rh, Sm, Im), defined on (0, τe), where τe denotes the explosion time.

Now, for N ∈ N∗ large enough such that S 0
h , I

0
h ,Q

0
h,R

0
h, S

0
m, I

0
m ∈

(
1
N
,N
)
,we consider the following

stopping time

τn := inf
(

t ∈ (0, τe), min
(
S h, Ih,Qh,Rh, Sm, Im

)
≤

1
n

or, max
(
S h, Ih,Qh,Rh, Sm, Im

)
≥ n
)
,

with the usual convention inf(∅) = +∞, and such that ∅ denotes the empty set.
Clearly, the sequence (τn)n≥0 is increasing and bounded, from whence there exists τ∞, such that

lim
n→+∞

τn = τ∞ ≤ τe, P−a.s.

To conclude the proof, is suffices to prove that τ∞ = +∞. To this end, we reason by contradiction and
assume the opposite holds. That is, there exist ε ∈ (0, 1) and T̂ > 0 such that P

(
τ∞ ≤ T̂

)
≥ ε. By

utilizing Itô’s formula, for t ∈ (0, T̂ ∧ τn), where a ∧ b := min(a, b),∀a, b ∈ R, we obtain
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dV
(

S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)
)

= LsV(S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)
)

dt

+
(

S h(t) −
cm

b

)
a1dA1(t) + (Ih(t) − 1)a2dA2(t) + (Qh(t) − 1)a3dA3(t)

+ (Rh(t) − 1)a4dA4(t) +

(
Sm(t) −

c
bm

)
a5dA5(t) + (Im(t) − 1)a6dA6(t)

+

∫
R6\{0}

(
z1(ξ)S h(t−) − ln (1 + z1(ξ))

)
Z̃1(dt, dξ) +

∫
R6\{0}

(
z2(ξ)Ih(t−) − ln (1 + z2(ξ))

)
Z̃2(dt, dξ)

+

∫
R6\{0}

(
z3(ξ)Qh(t−) − ln (1 + z3(ξ))

)
Z̃3(dt, dξ) +

∫
R6\{0}

(
z4(ξ)Rh(t−) − ln (1 + z4(ξ))

)
Z̃4(dt, dξ)

+

∫
R6\{0}

(
z5(ξ)Sm(t−) − ln (1 + z5(ξ))

)
Z̃5(dt, dξ) +

∫
R6\{0}

(
z6(ξ)Im(t−) − ln (1 + z6(ξ))

)
Z̃6(dt, dξ),

where

LsV

(
S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)

)
:=
(

1 −
cm

bS h(t)

)(
a − bS h(t)Im(t) − cS h(t) + f1Qh(t)

)
+

(
1 −

1
Ih(t)

)(
bS h(t)Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)

)
+

(
1 −

1
Qh(t)

)(
ϕIh(t) − ( f1 + f2 + g1 + g2) Qh(t)

)
+

(
1 −

1
Rh(t)

)(
(q1 + q2) Ih(t) + f2Qh(t) − cRh(t)

)
+

(
1 −

c
bmSm(t)

)(
am − bmSm(t)Ih(t) − cmSm(t)

)
+

(
1 −

1
Im(t)

)(
bmSm(t)Ih(t) − cmIm(t)

)
+

1
2

(
cm

b
a2

1 + a2
2 + a2

3 + a2
4 +

c
bm

a2
5 + a2

6

)
+

∫
R6\{0}

(z1(ξ) − ln (1 + z1(ξ))) Q1(dξ) +

∫
R6\{0}

(z2(ξ) − ln (1 + z2(ξ))) Q2(dξ)

+

∫
R6\{0}

(z3(ξ) − ln (1 + z3(ξ))) Q3(dξ) +

∫
R6\{0}

(z4(ξ) − ln (1 + z4(ξ))) Q4(dξ)

+

∫
R6\{0}

(z5(ξ) − ln (1 + z5(ξ))) Q5(dξ) +

∫
R6\{0}

(z6(ξ) − ln (1 + z6(ξ))) Q6(dξ).

By rearranging the terms and taking the positiveness of (S h, Ih,Qh,Rh, Sm, Im) in (0, T̂∧τn) into account,
it is straightforward that

LsV

(
S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)

)
≤ a + am +

(cm

b
b − cm

)
Im(t) +

cm

b
c + (c + c0 + ϕ + q1 + q2)

+ ( f1 + f2 + g1 + g2) + c +

(
c

bm
bm − c

)
Ih(t) +

(
c

bm
+ 1
)

cm
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+
1
2

(
cm

b
a2

1 + a2
2 + a2

3 + a2
4 +

c
bm

a2
5 + a2

6

)
+ 6χ2.

Therefore,

LsV

(
S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)

)
≤ a + am +

cm

b
c + (c + c0 + ϕ + q1 + q2)

+ ( f1 + f2 + g1 + g2) + c +

(
c

bm
+ 1
)

cm

+
1
2

(
cm

b
a2

1 + a2
2 + a2

3 + a2
4 +

c
bm

a2
5 + a2

6

)
+ 6χ2 =: C.

Consequently,

dV
(

S h(t), Ih(t),Qh(t),Rh(t), Sm(t), Im(t)
)
≤ Cdt +

(
S h(t) −

cm

b

)
a1dA1(t) + (Ih(t) − 1)a2dA2(t)

+ (Qh(t) − 1)a3dA3(t) + (Rh(t) − 1)a4dA4(t)

+

(
Sm(t) −

c
bm

)
a5dA5(t) + (Im(t) − 1)a6dA6(t)

+

∫
R6\{0}

(
z1(ξ)S h(t−) − ln (1 + z1(ξ))

)
Z̃1(dt, dξ)

+

∫
R6\{0}

(
z2(ξ)Ih(t−) − ln (1 + z2(ξ))

)
Z̃2(dt, dξ)

+

∫
R6\{0}

(
z3(ξ)Qh(t−) − ln (1 + z3(ξ))

)
Z̃3(dt, dξ)

+

∫
R6\{0}

(
z4(ξ)Rh(t−) − ln (1 + z4(ξ))

)
Z̃4(dt, dξ)

+

∫
R6\{0}

(
z5(ξ)Sm(t−) − ln (1 + z5(ξ))

)
Z̃5(dt, dξ)

+

∫
R6\{0}

(
z6(ξ)Im(t−) − ln (1 + z6(ξ))

)
Z̃6(dt, dξ). (3.2)

An integration of (3.2) from 0 to T̂ ∧ τn and an evaluation of the expectation on both of its sides yield

EV
(

S h(T̂ ∧ τn), Ih(T̂ ∧ τn),Qh(T̂ ∧ τn),Rh(T̂ ∧ τn), Sm(T̂ ∧ τn), Im(T̂ ∧ τn)
)
≤ CT̂ ∧ τn

+V
(

S 0
h , I

0
h ,Q

0
h,R

0
h, S

0
m, I

0
m

)
.

Define Un :=
(
τn ≤ T̂

)
. Then remark that for ω ∈ Ω one of the quantities: S h(τn, ω), Ih(τn, ω),

Qh(τn, ω), Rh(τn, ω), Sm(τn, ω), Im(τn, ω) is equal to either n or
1
n
. With this in mind, we acquire that

CT̂ ∧ τn +V
(

S 0
h , I

0
h ,Q

0
h,R

0
h, S

0
m, I

0
m

)
≥ E1UnV

(
S h(τn), Ih(τn),Qh(τn),Rh(τn), Sm(τn), Im(τn)

)
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≥ n −
cm

b
−

cm

b
ln
(

nb
cm

)
∧

1
n
−

cm

b
−

cm

b
ln
(

b
ncm

)
+ n − 1 − ln (n) ∧

1
n
− 1 − ln

(
1
n

)
+ n −

c
bm
−

c
bm

ln
(

bmn
c

)
∧

1
n
−

c
bm
−

c
bm

ln
(

bm

cn

)
.

Letting n→ +∞ leads to the contradiction +∞ > +∞. This concludes the proof. �

We will now present findings concerning the dynamic patterns of the human and mosquito
populations when there is no disease transmission occurring. From a biological perspective, this
information is pivotal as it sheds light on the potential impact of various hypothetical control
measures aimed at significantly reducing or completely halting disease transmission within the studied
population.

To present the aforementioned findings, we examine the behavior of our model when disease
transmission is absent. We will provide a concise overview of some asymptotic properties pertaining
to the boundary equations incorporated into model (2.2). To do so, we employ the following two-
dimensional auxiliary system with Lévy noise and GTS distribution:

dKh(t) =
(

a − cKh(t)
)

dt + a1S h(t)dA1(t) + a2Ih(t)dA2(t) + a3Qh(t)dA3(t) + a4Rh(t)dA4(t)

+

∫
R6\{0}

z1(ξ)S h(t−)Z̃1(dt, dξ) +

∫
R6\{0}

z2(ξ)Ih(t−)Z̃2(dt, dξ),

+

∫
R6\{0}

z3(ξ)Qh(t−)Z̃3(dt, dξ) +

∫
R6\{0}

z4(ξ)Rh(t−)Z̃4(dt, dξ),

dKm(t) =
(

am − cmKm(t)
)

dt + a5Km(t)dA5(t) +

∫
R6\{0}

z5(ξ)Km(t−)Z̃5(dt, dξ),

Initial data:

{
Kh(t) = Kh(0),
Km(t) = Sm(0).

(3.3)

Remark 3.2. Due to the structure of our model, it is insufficient to exclusively examine the first
equation (pertaining to S h(t)) and apply the comparison theorem, as it contains a positive term
( f1Qh(t)). Therefore, it is imperative to consider the entire human population to ensure that Kh(t) ≤
S h(t) + Ih(t) + Qh(t) + Rh(t) holds almost surely. In the case of the second equation, we can
straightforwardly establish Km(t) ≤ Sm(t) with certainty.

Lemma 3.1. Consider two Markov processes
(
Kh(t),Km(t)

)
that conform to the bi-dimensional

auxiliary system (3.3). Given the fulfillment of Presumptions A, B, and C, the following properties
are observed:

• lim
t→∞

t−1
∫ t

0
Kh(s) ds =

a
c

a.s and lim
t→∞

t−1
∫ t

0
Km(s) ds =

am
cm

a.s

• lim
t→∞

t−1
∫ t

0
K2
h (s) ds ≤

2a2

cχ13
a.s and lim

t→∞
t−1
∫ t

0
K2
m(s) ds ≤

2a2
m

cmχ14
a.s.
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where

χ13 := 2d − χ5 −

∫
R6\{0}

χ2
6(ξ)1(χ2

6(ξ)≥χ2
7(ξ))QL∗(dξ) −

∫
R6\{0}

χ2
7(ξ)1(χ2

7(ξ)>χ2
6(ξ))QL(dξ) > 0,

and
χ14 := 2dm − a2

5 −

∫
R6\{0}

z2
5(ξ)Q5(dξ) > 0.

The proof of this outcome closely resembles that of Lemma 2.11 presented in [45], and as such, it
is not reiterated here.

4. Analytical analysis of disease extinction and survival

In this section, our primary objective is to systematically establish the necessary conditions for
disease extinction and persistence, taking into account the biological parameters and the influence of
Lévy noise.

4.1. Exponential extinction

In an epidemic model, the concept of stochastic extinction refers to the random and unpredictable
disappearance of a mosquito-borne disease within a population. Stochasticity in epidemiological
models typically arises due to factors like chance events in disease transmission and the finite size
of populations. To streamline the mathematical calculations and maintain conciseness, we will employ
the following definitions:

• χ15(ξ) := −z2(ξ)1(z2(ξ)≤0) + ln (z2(ξ) + 1) 1(z2(ξ)>0).

• χ16(ξ) := −z6(ξ)1(z6(ξ)≤0) + ln (z6(ξ) + 1) 1(z6(ξ)>0).

• χ17 := max
(∫
R6\{0}

χ15(ξ)Q2(dξ),
∫
R6\{0}

χ16(ξ)Q6(dξ)
)
.

• χ18 := 1
2 (a2a6)2

(
a2

2 + a2
6

)−1
.

• χ19 := max
(
c + c0 + ϕ + q1 + q2, cm

)
×

(
− 1 + R

1
2
◦

)0,+
, where r0,+ := 0.5

(
|r| + r

)
, ∀r ∈ R.

• χ20 := min
(
c + c0 + ϕ + q1 + q2, cm

)
×

(
1 − R

1
2
◦

)0,+
.

• χ21 := χ19 − χ20.

• χ22 :=
bmam

c2
m (c + c0 + ϕ + q1 + q2)

.

• χ23 := R
1
2
◦ c−1
m .

• χ24 := 0.5dmR
1
2
◦

(
2d
χ13
− 1
) 1

2

+ 0.5 (c + c0 + ϕ + q1 + q2)R
1
2
◦

(
2dm
χ14
− 1
) 1

2

.

• χ25 := χ17 − χ18 + χ21 + χ24.

Theorem 4.1. The distinctive feature of the solution to the perturbed system (2.2) is as follows:

lim sup
t→∞

1
t

ln
(
χ22Ih(t) + χ23Im(t)

)
6 χ25 a.s.

As a result, the infection’s stochastic extinction will almost certainly transpire when χ25 < 0.
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Proof. Initially, we introduce the subsequent function:

F
(
Ih, Im

)
= ln

(
χ22Ih + χ23Im

)
.

Utilizing Itô’s rule for a two-dimensional stochastic process, we derive

dF
(

Ih(t), Im(t)
)

= LsF
(

Ih(t), Im(t)
)

dt +
χ22a2Ih(t)dA2(t)
χ22Ih(t) + χ23Im(t)

+
χ23a6Im(t)dA6(t)
χ22Ih(t) + χ23Im(t)

+

∫
R6\{0}

ln
(

1 +
χ22z2(ξ)Ih(t)

χ22Ih(t) + χ23Im(t)

)
Z̃2(dt, dξ)

+

∫
R6\{0}

ln
(

1 +
χ23z6(ξ)Im(t)

χ22Ih(t) + χ23Im(t)

)
Z̃6(dt, dξ),

where

LsF
(

Ih(t), Im(t)
)

=
χ22

(
bS h(t)Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)

)
χ22Ih(t) + χ23Im(t)

+
χ23

(
bmSm(t)Ih(t) − cmIm(t)

)
χ22Ih(t) + χ23Im(t)

−
0.5χ2

22a2
2I2
h (t) + 0.5χ2

23a2
6I2
m(t)(

χ22Ih(t) + χ23Im(t)
)2

+

∫
R6\{0}

(
ln
(

1 +
χ22z2(ξ)Ih(t)

χ22Ih(t) + χ23Im(t)

)
−

χ22z2(ξ)Im(t)
χ22Ih(t) + χ23Im(t)

)
Q2(dξ)

+

∫
R6\{0}

(
ln
(

1 +
χ23z6(ξ)Im(t)

χ22Ih(t) + χ23Im(t)

)
−

χ23z6(ξ)Im(t)
χ22Ih(t) + χ23Im(t)

)
Q6(dξ). (4.1)

Evidently, it is apparent that(
χ22Ih(t) + χ23Im(t)

)2
=

(
1
a2
χ22a2Ih(t) +

1
a6
χ23a6Im(t)

)2

6
(
a−2

2 + a−2
6

)(
χ2

22a2
2I2
h (t) + χ2

23a2
6I2
m(t)
)
.

Thus,

−
1(

χ22Ih(t) + χ23Im(t)
)2

(
χ2

22a2
2I2
h (t) + χ2

23a2
6I2
m(t)
)
6 −χ18. (4.2)

Moreover, we can demonstrate that∫
R6\{0}

(
ln
(

1 +
χ22z2(ξ)Ih(t)

χ22Ih(t) + χ23Im(t)

)
−

χ22z2(ξ)Im(t)
χ22Ih(t) + χ23Im(t)

)
Q2(dξ)

+

∫
R6\{0}

(
ln
(

1 +
χ23z6(ξ)Im(t)

χ22Ih(t) + χ23Im(t)

)
−

χ23z6(ξ)Im(t)
χ22Ih(t) + χ23Im(t)

)
Q6(dξ)

6 χ17.

(4.3)

We combine (4.2) and (4.3) with (4.1) to ultimately derive the following:

LsF
(

Ih(t), Im(t)
)
6
χ22

(
bKh(t)Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)

)
χ22Ih(t) + χ23Im(t)
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+
χ23

(
bmKm(t)Ih(t) − cmIm(t)

)
χ22Ih(t) + χ23Im(t)

− χ17 + χ18.

Alternatively, this can be reformulated as

LsF
(

Ih(t), Im(t)
)
6

χ22

(
b

a
c

Im(t) − (c + c0 + ϕ + q1 + q2) Ih(t)
)

+ χ23

(
bm

am
cm

Ih(t) − cmIm(t)
)

χ22Ih(t) + χ23Im(t)

− χ17 + χ18 +
χ22bIm(t)

χ22Ih(t) + χ23Im(t)

(
Kh(t) −

a
c

)
+

χ23bmIh(t)
χ22Ih(t) + χ23Im(t)

(
Km(t) −

am
cm

)
.

By reordering the terms, we reach

LsF
(

Ih(t), Im(t)
)
6

(
χ22b

a
c
− χ23cm

)
Im(t) +

(
χ23bm

am
cm
− χ22 (c + c0 + ϕ + q1 + q2)

)
Ih(t)

χ22Ih(t) + χ23Im(t)

− χ17 + χ18 +
χ22bIm(t)

χ22Ih(t) + χ23Im(t)

(
Kh(t) −

a
c

)0,+

+
χ23bmIh(t)

χ22Ih(t) + χ23Im(t)

(
Km(t) −

am
cm

)0,+

. (4.4)

Now, remark that R◦ = χ22b
a
c

, R
1
2
◦ = χ23cm and χ22 (c + c0 + ϕ + q1 + q2) = bm

am
c2
m

. Then we have

LsF
(

Ih(t), Im(t)
)
6

(
R◦ − R

1
2
◦

)
Im(t) +

(
R

1
2
◦χ22 (c + c0 + ϕ + q1 + q2) − χ22 (c + c0 + ϕ + q1 + q2)

)
Ih(t)

χ22Ih + χ23Im(t)

− χ17 − χ18 +
χ22b
χ23

(
Kh(t) −

a
c

)0,+
+
χ23bm
χ22

(
Km(t) −

am
cm

)0,+

6

(
R

1
2
◦ − 1

)(
χ22 (c + c0 + ϕ + q1 + q2) Ih(t) + χ23cmIm(t)

)
χ22Ih(t) + χ23Im(t)

− χ17 + χ18 +
χ22b
χ23

(
Kh(t) −

a
c

)0,+
+
χ23bm
χ22

(
Km(t) −

am
cm

)0,+

6 χ21 − χ17 + χ18 +
χ22b
χ23

(
Kh(t) −

a
c

)0,+
+
χ23bm
χ22

(
Km(t) −

am
cm

)0,+

.

As a result, we deduce that

dF
(

Ih(t), Im(t)
)
6

(
χ21 − χ17 + χ18 +

χ22b
χ23

(
Kh(t) −

a
c

)0,+
+
χ23bm
χ22

(
Km(t) −

am
cm

)0,+
)

dt
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+

(
χ22a2IhdA2(t) + χ23a6Im(t)dA6(t)

)
χ22Ih + χ23Im(t)

+

∫
R6\{0}

ln (1 + z2(ξ)) Z̃2(dt, dξ)

+

∫
R6\{0}

ln (1 + z6(ξ)) Z̃6(dt, dξ).

Performing a straightforward integration from 0 to t and subsequently dividing by t results in

F
(

Ih(t), Im(t)
)

t
−
F
(

Ih(0), Im(0)
)

t
6 χ21 − χ17 − χ18 +

χ22b
χ23t

∫ t

0

(
Kh(s) −

a
c

)0,+
ds

+
χ23bm
χ22t

∫ t

0

(
Km(s) −

am
cm

)0,+

ds +
O1(t)

t
+
O2(t)

t
, (4.5)

where

O1(t) =

∫ t

0

χ22a2Ih(s)
χ22Ih(s) + χ23Im(s)

dA2(s) +

∫ t

0

χ23a6Im(s)
χ22Ih(s) + χ23Im(s)

dA6(s),

O2(t) =

∫ t

0

∫
R6\{0}

ln (1 + z2(ξ)) Z̃2(dt, dξ) +

∫ t

0

∫
R6\{0}

ln (1 + z6(ξ)) Z̃6(dt, dξ).

Utilizing Hölder’s inequality, we obtain the following:

t−1

∫ t

0

(
Kh(s) −

a
c

)0,+
ds = 0.5t−1

∫ t

0

(
Kh(s) −

a
c

)
ds + 0.5t−1

∫ t

0

∣∣∣Kh(s) −
a
c

∣∣∣ ds

6 0.5t−1

∫ t

0

(
Kh(s) −

a
c

)
ds + 0.5t−

1
2

(∫ t

0

(
Kh(s) −

a
c

)2
ds

) 1
2

6 0.5
(

t−1
∫ t

0
Kh(s) ds −

a
c

)
+ 0.5

(
t−1

∫ t

0

(
K2
h (s) −

2a
c

Kh(s) +
a2

c2

)
ds

) 1
2

.

Thereby

lim
t→∞

t−1

∫ t

0

(
Kh(s) −

a
c

)0,+
ds 6 0.5

(
2a2

cχ13
− 2

a2

c2 +
a2

c2

) 1
2

=
a
2c

(
−1 +

2c
χ13

) 1
2

a.s. (4.6)

Following the same analytical approach, we obtain

lim
t→∞

t−1

∫ t

0

(
Km(s) −

am
cm

)0,+

ds 6 0.5
(

2a2
m

cmχ14
− 2

a2
m

c2
m

+
a2
m

c2
m

) 1
2

=
am
2cm

(
−1 +

2cm
χ14

) 1
2

a.s. (4.7)

Now, by using Lemma 2.5 in [45], we have

lim
t→∞

t−1O1(t) = 0 and lim
t→∞

t−1O2(t) = 0 a.s. (4.8)
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Ultimately, we get that

lim sup
t→∞

F
(

Ih(t), Im(t)
)

t
6 χ21 − χ17 − χ18 +

χ22b
χ23

a
2d

(
2d
χ13
− 1
) 1

2

+
χ23bm
χ22

am
2dm

(
2dm
χ14
− 1
) 1

2

= χ25.

Referring to the definition of stochastic extinction of infection presented in [44], we can infer that under
the criterion: χ25 < 0, the infection will disappear within the human and mosquito population. �

4.2. Asymptotic survival

A vital aspect of disease eradication is its enduring presence. The primary objective of this
section is to define a set of conditions that determine whether the infection can persist in both
human and mosquito populations. To maintain mathematical brevity, we will introduce the following
supplementary definitions:

• χ26 = c +
a2

1

2
+

∫
R6\{0}

(
z1(ξ) − ln

(
1 + z1(ξ)

))
Q1(dξ).

• χ27 = (c + c0 + ϕ + q1 + q2) +
a2

2

2
+

∫
R6\{0}

(
z2(ξ) − ln

(
1 + z2(ξ)

))
Q2(dξ).

• χ28 = cm +
a2

5

2
+

∫
R6\{0}

(
z5(ξ) − ln

(
1 + z5(ξ)

))
Q5(dξ).

• χ29 = cm +
a2

6

2
+

∫
R6\{0}

(
z6(ξ) − ln

(
1 + z6(ξ)

))
Q6(dξ).

• χ30 =
bbmaam

χ26χ27χ28χ29
.

Theorem 4.2. When the condition χ30 > 1 is met, the mosquito-borne infection persists over time in
both human and mosquito populations. To be more specific,

lim inf
t→∞

1
t

∫ t

0

(
Im(s) + Ih(s)

)
ds >

χ27

(
χ30 − 1

)
max

(
h1b, h3bm

) > 0 a.s.

Proof. We define the following function

Fs

(
S h, Ih, Sm, Im

)
= −h1 ln

(
S h
)
− h2 ln

(
Ih
)
− h3 ln

(
Sm
)
− h4 ln

(
Im
)
,

where h1, h3, h4 > 0 are to be set later and h2 = 1. Utilizing Itô’s rule, in the context of a four-
dimensional stochastic process, we obtain

dFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
= LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
dt

− h1a1dA1(t) − a2dA2(t) − h3a5dA5(t) − h4a6dA6(t)
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− h1

∫
R6\{0}

ln
(

1 + z1(ξ)
)
Z̃1(dt, dξ) −

∫
R6\{0}

ln
(

1 + z2(ξ)
)
Z̃2(dt, dξ)

− h3

∫
R6\{0}

ln
(

1 + z5(ξ)
)
Z̃5(dt, dξ) − h4

∫
R6\{0}

ln
(

1 + z6(ξ)
)
Z̃6(dt, dξ),

where LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
is expressed as follows:

LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
= −h1

a
S h(t)

+ h1bIm(t) + h1d −
f1Qh(t)
S h(t)

+ h1
a2

1

2
+ h1

∫
R6\{0}

(
z1(ξ) − ln

(
1 + z1(ξ)

))
Q1(dξ)

−
bS h(t)Im(t)

Ih
+ (c + c0 + ϕ + q1 + q2) +

a2
2

2
+

∫
R6\{0}

(
z2(ξ) − ln

(
1 + z2(ξ)

))
Q2(dξ)

− h3
am

Sm(t)
+ h3bmIh(t) + h3dm + h3

a2
5

2
+ h3

∫
R6\{0}

(
z5(ξ) − ln

(
1 + z5(ξ)

))
Q5(dξ)

−
h4bmSm(t)Ih(t)

Im(t)
+ h4dm + h4

a2
6

2
+ h4

∫
R6\{0}

(
z6(ξ) − ln

(
1 + z6(ξ)

))
Q6(dξ).

Then, we obtain

LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
6 −h1

a
S h(t)

−
bS h(t)Im(t)

Ih
− h3

am
Sm(t)

−
h4bmSm(t)Ih(t)

Im(t)
+ h1bIm(t)

+ h3bmIh(t) + h1

(
c +

a2
1

2
+

∫
R6\{0}

(
z1(ξ) − ln

(
1 + z1(ξ)

))
Q1(dξ)

)
+

(
(c + c0 + ϕ + q1 + q2) +

a2
2

2
+

∫
R6\{0}

(
z2(ξ) − ln

(
1 + z2(ξ)

))
Q2(dξ)

)
+ h3

(
cm +

a2
5

2
+

∫
R6\{0}

(
z5(ξ) − ln

(
1 + z5(ξ)

))
Q5(dξ)

)
+ h4

(
cm +

a2
6

2
+

∫
R6\{0}

(
z6(ξ) − ln

(
1 + z6(ξ)

))
Q6(dξ)

)
.

Thus, through the application of the arithmetic and geometric mean inequality, we can conclude that

LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
6 −4 4

√
h1h3h4bbmaam + h1bIm(t) + h3bmIh(t)

+ h1χ26 + χ27 + h3χ28 + h4χ29.

Now, we make the following selection: h1 =
bbmaam
χ2

26χ28χ29
, h3 =

bbmaam
χ26χ

2
28χ29

and h4 =
bbmaam
χ26χ28χ

2
29

. Then

LsFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
6 h1bIm(t) + h3bmIh(t) + χ27 −

bbmaam
χ26χ28χ29
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=
(

h1bIm(t) + h3bmIh(t)
)
− χ27

(
bbmaam

χ26χ27χ28χ29︸            ︷︷            ︸
χ30

−1
)
.

Hence,

dFs

(
S h(t), Ih(t), Sm(t), Im(t)

)
6

((
h1bIm(t) + h3bmIh(t)

)
−χ27

(
χ30−1

))
dt

−h1a1dA1(t)−a2dA2(t)−h3a5dA5(t)−h4a6dA6(t)

− h1

∫
R6\{0}

ln
(

1 + z1(ξ)
)
Z̃1(dt, dξ) −

∫
R6\{0}

ln
(

1 + z2(ξ)
)
Z̃2(dt, dξ)

− h3

∫
R6\{0}

ln
(

1 + z5(ξ)
)
Z̃5(dt, dξ) − h4

∫
R6\{0}

ln
(

1 + z6(ξ)
)
Z̃6(dt, dξ).

(4.9)

Integrating from 0 to t > 0 and dividing by t lead to

Fs

(
S h(t), Ih(t), Sm(t), Im(t)

)
t

−
Fs

(
S h(0), Ih(0), Sm(0), Im(0)

)
t

6
h1b

t

∫ t

0
Im(s) ds +

h3bm
t

∫ t

0
Ih(s) ds − χ27

(
χ30 − 1

)
−h1a1

A1(t)
t
−a2
A2(t)

t
−h3a5

A5(t)
t
−h4a6

A6(t)
t

−
h1

t

∫ t

0

∫
R6\{0}

ln
(

1 + z1(ξ)
)
Z̃1(dt, dξ), dξ) −

∫ t

0

∫
R6\{0}

ln
(

1 + z2(ξ)
)
Z̃2(dt, dξ)

−
h3

t

∫ t

0

∫
R6\{0}

ln
(

1 + z5(ξ)
)
Z̃5(dt, dξ) −

h4

t

∫ t

0

∫
R6\{0}

ln
(

1 + z6(ξ)
)
Z̃6(dt, dξ).

Hence,

Fs

(
S h(t), Ih(t), Sm(t), Im(t)

)
t

−
Fs

(
S h(0), Ih(0), Sm(0), Im(0)

)
t

6
max

(
h1b, h3bm

)
t

∫ t

0

(
Im(s) + Ih(s)

)
ds − χ27

(
χ30 − 1

)
− h1a1

A1(t)
t
−a2
A2(t)

t
−h3a5

A5(t)
t
−h4a6

A6(t)
t

−
h1

t

∫ t

0

∫
R6\{0}

ln
(

1 + z1(ξ)
)
Z̃1(dt, dξ) −

∫ t

0

∫
R6\{0}

ln
(

1 + z2(ξ)
)
Z̃2(dt, dξ)

−
h3

t

∫ t

0

∫
R6\{0}

ln
(

1 + z5(ξ)
)
Z̃5(dt, dξ) −

h4

t

∫ t

0

∫
R6\{0}

ln
(

1 + z6(ξ)
)
Z̃6(dt, dξ).

Consequently,

max
(

h1b, h3bm
)

t

∫ t

0

(
Im(s) + Ih(s)

)
ds
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> χ27

(
χ30 − 1

)
+h1a1

A1(t)
t

+a2
A2(t)

t
+ h3a5

A5(t)
t

+ h4a6
A6(t)

t

+
h1

t

∫ t

0

∫
R6\{0}

ln
(

1 + z1(ξ)
)
Z̃1(dt, dξ) +

∫ t

0

∫
R6\{0}

ln
(

1 + z2(ξ)
)
Z̃2(dt, dξ)

+
h3

t

∫ t

0

∫
R6\{0}

ln
(

1 + z5(ξ)
)
Z̃5(dt, dξ), dξ) +

h4

t

∫ t

0

∫
R6\{0}

ln
(

1 + z6(ξ)
)
Z̃6(dt, dξ)

−
Fs

(
S h(t), Ih(t), Sm(t), Im(t)

)
t

+
Fs

(
S h(0), Ih(0), Sm(0), Im(0)

)
t

. (4.10)

By evaluating the limit inferior, we acquire that

lim inf
t→∞

t−1
∫ t

0

(
Im(s) + Ih(s)

)
ds >

χ27

(
χ30 − 1

)
max

(
h1b, h3bm

) > 0 a.s.

This concludes the proof. �

Remark 4.1. Persistence in the mean of a mosquito-borne disease refers to the long-term or average
ability of the disease to persist within a population. It typically involves mathematical models and
analysis to determine whether the disease is likely to continue to exist over time, even in the presence
of stochastic or random factors that may cause fluctuations. This concept helps assess the overall
impact and endurance of the disease within a given population.

Remark 4.2. Theorems 4.1 and 4.2 provide thresholds for the stochastic outcomes of extinction and
persistence, on average, in the model described by Eq (2.2). In essence, these theorems furnish both
the necessary and nearly sufficient conditions for the disease to either die out or persist, on average.

5. Numerical simulation

5.1. Sensitivity analysis of the deterministic model

Sensitivity analysis assumes a crucial role in the study of dynamic systems, particularly in fields
such as ecology and epidemiology [50]. The normalized forward sensitivity index quantifies the
relative change in the basic reproduction number R0 concerning variations in parameter values. It
provides comprehensive insights into the model’s resilience to such alterations. Moreover, this
index serves as a tool for identifying parameters with a substantial impact on the basic reproduction
numbers, guiding the formulation of targeted epidemiological intervention strategies. To be more
specific, the normalized forward sensitivity index is expressed as the ratio of the relative change in
the basic reproduction numbers (R0) to the relative change in the parameter (ß). Assuming that R0 is
differentiable with respect to the parameter, the formula is given by:

S ß =
ß
R0

∂R0

∂ß
, (5.1)

where, R0 is considered a function of the parameter ß. Given that R0 is a rational function of model
parameters, the normalized forward sensitivity index is applicable to all model parameters present in
the explicit formula defining R0.
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Utilizing the formula (5.1) across all parameters of the model, the observed outcomes are as follows:

(i) a, am, b, and bm have positive index values with a = am = b = bm = 1. This indicates that any
alteration in the values of these parameters directly affects R0, leading to either an increase or decrease
in its value.

(ii) c, c0, cm, q1, q2, and ϕ have negative index values with:

S c = −
2c + c0 + ϕ + q1 + q2

c + c0 + ϕ + q1 + q2
, S c0 = −

c0

c + c0 + ϕ + q1 + q2
, S cm = −2,

S q1 = −
q1

c + c0 + ϕ + q1 + q2
, S q2 = −

q2

c + c0 + ϕ + q1 + q2
, S ϕ = −

ϕ

c + c0 + ϕ + q1 + q2
,

indicating that an increase in their values leads to a decrease in R0. Moreover, the values of R0 remain
unaffected by the parameters f1, f2, g1, and g2.

To compute the sensitivity indices, we utilize the data presented in the second column of Table 1.
Examination of Table 2 and Figure 1 reveal that a 10% increase (or decrease) in the values of
a, am, b, and bm results in a corresponding 10% increase (or decrease) in R0, for each parameter.
Conversely, a 10% increase in the values of c, c0, cm, q1, q2, and ϕ leads to a reduction in R0 by
10.7849%, 0.0471%, 20%, 0.6436%, 0.675%, and 7.8493%, respectively.

It is crucial to note that the correlation between the rate in which the infected human population is
put into quarantine ϕ and R0 is negative. This signifies that as the rate of progression increases, R0

tends to decrease. This underscores the significance of the importance of quarantining in reducing the
infection rate

Table 1. The numerical tests employed simulated values for the model parameters.

Parameter Test 1 Test 2 Test 3

a 7.6 5.6 7.8
am 6.9 6.9 6.9
b 0.0009 0.0009 0.00098
bm 0.00027 0.00027 0.00032
c 0.05 0.05 0.05
c0 0.003 0.003 0.003
cm 0.02 0.02 0.02
f1 0.31 0.31 0.31
f2 0.2 0.2 0.2
g1 0.004 0.004 0.004
g2 0.002 0.002 0.002
q1 0.041 0.041 0.041
q2 0.043 0.043 0.043
ϕ 0.5 0.5 0.5

R◦ 1.0266 0.7370 1.2503
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Table 2. Sensitivity index of R0.

Parameter Sensitivity index Parameter Sensitivity index

a 1 c0 −0.0047
am 1 cm −2
b 1 q1 −0.0644
bm 1 q2 −0.0675
c −1.0785 ϕ −0.7849

Figure 1. Forward sensitivity analysis to assess the influence of the system’s (2.1) parameters
on R0.

5.2. Simulation techniques and verification of the theoretical findings

Creating stochastic processes using computer methods requires two distinct discretization
techniques. Initially, we must address the discretization of the time parameter, followed by an
approximation of random variables using artificially generated finite time series datasets. In the case
of a Lévy process, which exhibits stationary and independent increments, the most straightforward
approach to tackling the challenge of simulating it solely for discrete time points is analogous to
generating random numbers from an infinitely divisible distribution.

In this section, we will explore a technique for simulating GTS distributions and tempered stable
processes. While there are various approaches available for simulating Lévy processes, many of them
are not well-suited for simulating tempered stable processes because of the intricate nature of their
Lévy measure.

Let {S 1, j} j>1 represent a sequence of independent and identically distributed (i.i.d.) random variables
in the real numbers, following the distribution (2.3). Additionally, consider {S 2, j} j>1 and {S 3, j} j>1 as
i.i.d. sequences of uniform random variables within the intervals (0, 1) and (0,T ), respectively. Also,
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let {S 4, j} j>1 and {S 5, j} j>1 be i.i.d. sequences of random variables following exponential distribution
with a rate coefficient of 1. we assume that all mentioned random variables are mutually independent.
Now, we let

{S 6, j} =

j∑
k=1

{S 5,k}.

Noticeably, {S 6, j} can be regarded as a Poisson point process on the interval R+ with random intensity
measure. In reference to the theory outlined in [37], if α ∈ (0, 2), then

Gt =

+∞∑
j=1

S 1, j1{S 3, j6t}

|S 1, j|

((
αS 6, j

T ||ρ||

)α−1

∧

(
S α−1

2, j S 4, j

|S 1, j|

))
,

converges almost surely and uniformly for t within the interval [0,T ] to a Lévy process, where

||ρ|| = QL(R6 \ {0}) =

∫
R6\{0}

|x|αRL(dx).

Ultimately, we can formulate a method for generating a GTS process with specified parameters at
discrete time instances ti, where {ti}i∈[0,I] represents a partition of the interval [0,T ] with uniformly
sized subintervals and mesh ∆t = T/I, I ∈ N. Then, we use the following algorithm:

(1) Select a specific time duration T and create a division of the time interval [0,T ] into I equally sized
segments.

(2) Select and fix a number N.

(3) Numerically replicate or emulate independent quantities {S i, j}, i ∈ {1, · · · , 6} of range N.

(4) Determine the value of Gt.

Using the aforementioned algorithm, we can generate the complete path of a GTS process associated
with system (2.2).

Remark 5.1. The parameter α, known as the stability index, provides valuable insights into the tail
behavior of an tempered α-stable distribution. When α is less than 1, it results in heavy tails, signifying
an increased likelihood of extreme events. Conversely, when α is greater than 1, the tails become
lighter, resembling a distribution that is closer to normal. The clarity of this can be demonstrated in
the visual representations presented in Figure 2.
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Figure 2. Trajectories characterized by interruptions in a stochastic process following a
tempered stable distribution with broad applicability.

In this following, our objective is to assess the accuracy of the results outlined in Theorems 4.1
and 4.2 with a specific focus on the impact of GTS distribution on the dynamics of mosquito-borne
infections. In the ensuing examples, we initialize our compartmental model (2.2) with the following
initial data: S h(0) = 500, Ih(0) = 15, Qh(0) = 2, Rh(0) = 2, Sm(0) = 150, and Im(0) = 10. We assume
that each time unit represents one day, and the population size is measured in millions of individuals.
For stability index, we take α = 1.5. To facilitate comparison, we illustrate three distinct types of
trajectories: deterministic (without any noises), solutions incorporating jumps with standard measure
(with standard distribution), and stochastic trajectories with jumps and GTS distribution (with GTS
distribution). This allows us to explore various potential scenarios. It is important to note that in the
following three experiments, our assumptions hold true.

5.2.1. Test 1: Special case of extinction of the infection

In this particular context, as our first procedural step, we assign numerical values to our system
parameters, aligning them with the data provided in the second column of Table 1. Additionally, we
set a1 = 0.1, a2 = 0.21, a3 = 0.17, a4 = 0.01, a5 = 0.13, and a6 = 0.16. For the jump intensities, we
adopt the following function: zL(ξ) =

−uLξ
0.5+ξ2 , L ∈ {1, · · · , 6} where ξ = 0.3, with the specific values u1 =

u3 = u4 = u5 = 0.02 and u2 = u6 = 0.03. In this context, we have achieved R◦ = 1.0266 > 1 and χ25 =

−0.1096 < 0. Consequently, we confirm that the essential conditions described in Theorem 4.1 are met.
To empirically confirm this result, we illustrate three separate system trajectories corresponding to (2.2)
in Figure 3. In this latter, we emphasize the significance of incorporating the GTS distribution. As
demonstrated, in a system influenced by the standard Lévy distribution (model (2.2) with standard Lévy
jumps), the disease exhibits continuous persistence within both the human and mosquito populations.
However, when the GTS distribution is employed, the disease is seen to extinguish. This underscores
the critical role played by our GTS distribution model, which addresses a key aspect that remains
unresolved within the standard Lévy jump framework.

Lévy processes, when utilizing GTS distribution, exhibit heavy-tailed characteristics, signifying a
heightened likelihood of extreme events compared to Gaussian (normal) distributions. In the context
of infection transmission, this implies a significant probability of experiencing a sudden surge in
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infections over a short timeframe, which can lead to rapid disease propagation and, potentially, its
extinction. The inherent stochastic nature of Lévy jumps with the GTS distribution introduces the
possibility of a remarkable surge in the number of infected individuals, potentially culminating in a
stochastic extinction event. Should this surge result in a substantial portion of the population becoming
infected, and if the circumstances are unfavorable for sustained transmission, the disease may self-
extinguish.

5.2.2. Test 2: Complete extinction of infection

Building upon the results of Test 1, we have made slight adjustments to specific parameters in order
to simulate a scenario of complete extinction. We assign numerical values to our system parameters
by aligning them with the data provided in the third column of Table 1. In addition, we fix the values
of aL = 0.3, L ∈ {1, · · · , 6}. Regarding the jump intensities, we employ the following function:
zL(ξ) =

−uLξ
0.5+ξ2 , where L takes values from 1 to 6. Here, we set ξ = 0.3 and assign specific values such

that u1 = u3 = u4 = u5 = 0.02, and u2 = u6 = 0.03. Here, R◦ = 0.7370 < 1 and χ25 = −0.4266 < 0.
As a result, we have verified that the prerequisites outlined in Theorem 4.1 have been met. To validate
this finding through numerical analysis, we have depicted three distinct types of trajectories associated
with system (2.2) in Figure 4. It is readily apparent that the model consistently converges to a state
devoid of infection for all three trajectory types. To be more specific, when we consider the initial
data mentioned earlier, we observe that S h(t) stabilizes at a constant value of 140 over time. Similarly,
S m(t) reaches an equilibrium point at 340. However, for Ih(t), Qh(t), Rh(t), and Im(t), irrespective of
the trajectory type, the solutions ultimately extinguish after a certain duration. This behavior precisely
illustrates the concept of stochastic extinction. In this context, we are referring to complete extinction,
as all trajectories (i.e., those without noise, with standard distribution, and with GTS distribution)
exhibit identical behavior.

5.2.3. Test 3: Persistence of infection

Let’s now explore the scenario of persistent infection. In this experiment, we consider the following
parameter values: a1 = 0.011, a2 = 0.021, a3 = 0.017, a4 = 0.0101, a5 = 0.031, and a6 = 0.0106.
In terms of the jump intensities, we utilize the function zL(ξ) =

−uLξ
0.5+ξ2 , with ξ = 0.3. Specifically, we

set u1 = u3 = u4 = u6 = 0.01, and u2 = u5 = 0.02. By employing the numerical values from the
last column of Table 1, we can readily confirm that our hypothèses remain valid, and χ30 exceeds one
(χ30 = 1.2530 > 1). Therefore, in accordance with Theorem 4.2, we can confidently assert that our
model persists on average, which is consistent with the patterns observed in Figure 5. Notably, the
endemic equilibrium of the deterministic version no longer serves as the steady state for the stochastic
model (2.2). Consequently, over an extended period, the intensity of noise influences the degree to
which the solution fluctuates around the deterministic equilibrium states. To provide more precision,
the temporal average closely aligns with the endemic equilibrium, especially for low noise intensities.
Above all, this observation underscores the importance of incorporating environmental fluctuations
into the biological dynamics. To draw a meaningful comparison between standard jumps fluctuations
and jumps with GTS distribution, we remark in 5 that in the case of jumps with GTS distribution, the
inherent volatility undergoes temporal variations and exhibits heavier-than-normal tails. Furthermore,
stochastic volatility occasionally experiences substantial upward jumps and clusters at high levels,
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contrasting with the behavior observed in the standard scenario.
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Figure 3. Numerical simulations encompassing three different trajectory categories
associated with system (2.2) are conducted. These categories include: The deterministic
solution, which represents the system without any added noise. The solution perturbed
exclusively by standard jumps, following a standard distribution. The solution subject to
Heavy-tails jumps, characterized by the GTS distribution. In this experimental setup, we
obtain R◦ = 1.0266 > 1 and χ25 = −0.1096 < 0. It’s noteworthy that the infection associated
with GTS distribution eventually go extinct, whereas others solutions persist in this scenario.
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Figure 4. Numerical simulations encompassing three different trajectory categories
associated with system (2.2) are conducted. These categories include: The deterministic
solution, which represents the system without any added noise. The solution perturbed
exclusively by standard jumps, following a standard distribution. The solution subject to
Heavy-tails jumps, characterized by the GTS distribution. In this experimental configuration,
we obtain R◦ = 0.7370 > 1 and χ25 = −0.4266 < 0. It’s noteworthy that the trajectories Ih(t),
Qh(t), Rh(t), and Im(t) eventually go extinct, whereas S h(t) and Sm(t) persist in this scenario.
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Figure 5. Numerical simulations involving three distinct trajectory types corresponding to
system (2.2). In this case, χ30 = 1.2530 > 1. Every trajectory maintains its mean, ensuring
the ongoing presence of the infection.
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6. Conclusions and further remarks

The significance of an epidemic model lies in its ability to comprehensively depict the
characteristics of the modeled disease, encompassing a wide array of its biological aspects. With
the goal of enhancing our understanding of mosquito-borne diseases, we have introduced a novel
epidemic model. This model takes into consideration two key factors: The impact of quarantine
measures on human populations and the influence of random and severe environmental fluctuations
deriven by GTS distribution. We have employed a compartmental modeling approach to construct
this model, representing it as a system of interconnected stochastic differential equations driven by
Lévy noise. For this resulting model, we have rigorously established its mathematical soundness,
biological plausibility, and its behavior over extended periods in the absence of the disease. Moreover,
by carefully selecting appropriate stochastic parameters, we have identified conditions under which
the infection can persist or be eradicated within both mosquito and human populations. Our model
encompasses a variety of transitions between compartments, making it relevant for understanding and
studying mosquito-borne diseases such as zika virus, west Nile virus, chikungunya virus, dengue fever,
and more.

Nevertheless, it is essential to acknowledge that our research has certain constraints, prompting
intriguing questions that merit deeper exploration. These limitations are summarized as follows:

• Existence of a stationary sistribution for model (2.2): As previously mentioned, it’s important to
note that the stochastic system described in (2.2) lacks an endemic state. Therefore, we need to
employ an alternative concept of stochastic stability. Specifically, it becomes imperative to verify
the presence of a stationary distribution for (2.2). From a biological standpoint, the existence
of such a distribution implies the persistence of the disease within both mosquito and human
populations. Consequently, it becomes intriguing to identify the conditions under which such a
distribution can be established. To the best of our knowledge, in the context of mosquito-borne
epidemic models driven by Lévy noise and GTS distribution, this remains an open question.
• Parameter identification for model (2.2): It is important to note that the results presented in this

paper pertain to the solution of the direct problem. In simpler terms, we have operated under the
assumption that all parameters are known a priori. However, when it comes to adapting the model
for a specific mosquito-borne disease, it becomes essential to address the identification problem
associated with model (2.2). Specifically, this involves determining the appropriate values for
the model’s parameters and the stochastic noise, given observations of the total population over a
defined time period, in order to achieve the best possible fit to the observed data. To the best of our
knowledge, within the context of epidemic models driven by Lévy noise and GTS distribution,
this remains an unresolved challenge.

Due to the complexity of these questions and their merits to be treated independently, we will leave
them for our next future works.
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