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1. Introduction

Convex bilevel optimization problems play an important role in many real-word applications such
as image-signal processing, data science, data prediction, data classification, and artificial intelligence.
For some interesting applications, we refer to the recent papers [1, 2]. More precisely, we recall the
concept of the convex bilevel optimization problem as the following. Let ψ and ϕ be two proper convex
and lower semi-continuous functions from a real Hilbert space H into R ∪ {+∞}, and ϕ is a smooth
function. In this work, we consider the following convex bilevel optimization problem:

min
z∈S ⋆

h(z), (1.1)

where h is a strongly convex differentiable function of the form H into R with parameter s, and S ⋆ is
the solution set of the problem:

min
z∈H
{ϕ(z) + ψ(z)} . (1.2)

Problems (1.1) and (1.2) are known as outer-level and inner-level problems, respectively. It is well-
known that if z⋆ satisfies the variational inequality:

⟨∇h(z⋆), z − z⋆⟩ ≥ 0, ∀z ∈ S ⋆,

then z⋆ is a solution of the outer-level problem (1.1); for more details, see [3]. Generally, the solution
of problem (1.2) usually exists under the assumption that ∇ϕ is Lipschitz continuous with parameter
Lϕ, that is, there exists Lϕ > 0 such that ∥∇ϕ(w) − ∇ϕ(v)∥ ≤ Lϕ∥w − v∥ for all w, v ∈ H.

The proximity operator, proxµψ(z⋆) = J∂ψµ (z⋆) = (I +µ∂ψ)−1(z⋆), where I is an identity mapping and
∂ψ is a subdifferential of ψ, is crucial in solving problem (1.2). It is known that a point z⋆ in S ⋆ is a
fixed point of proximity operator proxµψ(I − µ∇ϕ). The following classical forward-backward splitting
algorithm:

xk+1 = proxµkψ
(xk − µk∇ϕ(xk)) (1.3)

was proposed for solving problem (1.2). After that, Sabach and Shtern [4] introduced the bilevel
gradient sequential averaging method (BiG-SAM), as seen in Algorithm 2. They also proved that
sequence {xk} generated by BiG-SAM converges strongly to the optimal point z⋆ in the convex bilevel
optimization problem (1.1) and (1.2). Later, to speed up the rate of convergence of BiG-SAM, Shehu et
al. [5] employed an inertial technique proposed by Polyak [6], as defined by Algorithm 3 (iBiGSAM).
Moreover, they proved a strong convergence theorem of Algorithm 3 under some weaker assumptions
on {λk} given in [7], that is, lim

k→∞
λk = 0 and

∑∞
k=1 λk = +∞. Moreover, the convergence rate of the iBiG-

SAM was consecutively improved by adapting the inertial technique, which is called the alternated
inertial bilevel gradient sequential averaging method [8] (aiBiG-SAM), as seen in Algorithm 4. It
was shown by some examples in [8] that the convergence behavior of aiBiG-SAM is better than BiG-
SAM and iBiG-SAM. Recently, Jolaoso et al. [9] proposed a double inertial technique to accelerate
the convergence rate of the strongly convergent 2-step inertial PPA algorithm solving for a zero of the
sum of two maximal monotone operators. Yao et al. [10] also introduced a method for solving such
a problem, called the weakly convergent FRB algorithm with momentum. This problem is just the
inner-level problem in this work.
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It is worth noting that all methods mentioned above desire a Lipschitz continuity assumption of ∇ϕ.
However, finding a Lipschitz constant of∇ϕ is sometimes too difficult. To solve the inner-level problem
without computing the Lipschitz constant of gradient ∇ϕ, Cruz and Nghia [11] presented a linesearch
technique (Linesearch 1) for finding some suitable step size for a forward-backward splitting algorithm.
This notion provides weaker assumptions on the gradient of ϕ, as seen in the following criteria:

A1. ϕ, ψ : H → (−∞,+∞] are proper lower semicontinuous convex functions with domψ ⊆ dom ϕ;
A2. ϕ is differentiable on an open set containing domψ, and ∇ϕ is uniformly continuous on any

bounded subset of domψ and maps any bounded subset of domψ to a bounded set in H.

It is observed that assumption A2 is weaker than the Lipschitz continuity assumption on ∇ϕ. Under
assumptions A1 and A2, they proved that the sequence {xk} generated by (1.3), where µk is derived
from Linesearch 1 (see more detail in the appendix), converges weakly to the optimal solution of the
inner level problem (1.2). Inspired by [11], several algorithms with the linesearch technique were
proposed in order to solve problem (1.2); see [12–17], for examples. Recently, Hanjing et al. [17]
introduced a new linesearch technique (Linesearch 2) and a new algorithm (Algorithm 6), called the
forward-backward iterative method with the inertial technical term and linesearch technique, to solve
the inner-level problem (1.2). For more details on Linesearch 2 and Algorithm 6, see the appendix.
They proved that the sequence {xk} generated by Algorithm 7 converges weakly to a solution of problem
(1.2) under some control conditions.

Note that Algorithm 7 was employed to find a solution of the inner-level problem (1.2) and it
provided only weak convergence, but the strong convergence is more desired. Inspired by all of
the mentioned works, we aim to develop Algorithm 7 for solving the convex bilevel problems (1.1)
and (1.2) by employing Linesearch 2 together with the viscosity approximation methods. The strong
convergence theorem of our developed algorithm is established under some suitable conditions and
assumptions. Furthermore, we apply our proposed algorithm to solve image restoration and data
classification problems including comparison of its performance with other algorithms.

2. Notations and instruments for convergent analysis

In this section, we provide some important definitions, propositions, and lemmas which will be used
in the next section. Let H be a real Hilbert space and X be a nonempty closed convex subset of H.
Then, for each w ∈ H, there exists a unique element PXw in X satisfying

∥w − PXw∥ ≤ ∥w − z∥, ∀z ∈ X.

The mapping PX is known as the metric projection of H onto X. Moreover,

⟨w − PXw, z − PXw⟩ ≤ 0 (2.1)

holds for all w ∈ H and z ∈ X. A mapping f : X → H is called Lipschitz continuous if there exists
L f > 0 such that

∥ f (v) − f (w)∥ ≤ L f ∥v − w∥, ∀v,w ∈ X.

If L f ∈ [0, 1), then f is called a contraction. Moreover, f is nonexpansive if L f = 1. The domain of
function f : H → [−∞,+∞] is denoted by dom f , when dom f := {v ∈ H : f (v) < ∞}. Let {xk} be a
sequence in H, and we adopt the following notations:
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1) xk ⇀ w denotes that sequence {xk} converges weakly to w ∈ H;
2) xk → w denotes that {xk} converges strongly to w ∈ H.

For each v,w ∈ H, the following conditions hold:

1) ∥v ± w∥2 = ∥v∥2 ± 2⟨v,w⟩ + ∥w∥2;
2) ∥v + w∥2 ≤ ∥v∥2 + 2⟨w, v + w⟩;
3) ∥tv + (1 − t)w∥2 = t∥v∥2 + (1 − t)∥w∥2 − t(1 − t)∥v − w∥2, ∀t ∈ R.

Let ψ : H → (−∞,+∞] be a proper function. The subdifferential ∂ψ of ψ is defined by

∂ψ(u) := {v ∈ H : ⟨v,w − u⟩ + ψ(u) ≤ ψ(w), ∀w ∈ H}, ∀u ∈ H.

If ∂ψ(u) , ∅, then ψ is subdifferentiable at u, and the elements of ∂ψ(u) are the subgradients of ψ at u.
The proximal operator, proxψ : H → domψ with proxψ(x) := (I + ∂ψ)−1, is single-valued with a full
domain. Moreover, we have from [18] that for each x ∈ H and µ > 0,

x − proxµψ(x)

µ
∈ ∂ψ(proxµψ(x)). (2.2)

Let us next revisit some important properties for this work.

Lemma 1 ( [19]). Let ∂ψ be a subdifferential of ψ. Then, the following hold:

1) ∂ψ is maximal monotone,
2) Gph(∂ψ) := {(v,w) ∈ H ×H : w ∈ ∂ψ(v)} is demiclosed, i.e., if {(vk,wk)} is a sequence in Gph(∂ψ)

such that vk ⇀ v and wk → w, then (v,w) ∈ Gph(∂ψ).

Using the same idea of [4, Proposition 3], the following result can be proven.

Proposition 2. Suppose h : H → R is strongly convex with parameter s > 0 and continuously
differentiable such that ∇h is Lipschitz continuous with constant Lh. Then, the mapping I − t∇h is

c-contraction for all 0 < t ≤ 2
Lh+s , where c =

√
1 − 2stLh

s+Lh
and I is the identity operator.

Proof: For any x, y ∈ H, we obtain∥∥∥(x − t∇h(x)
)
−

(
y − t∇h(y)

)∥∥∥2
= ∥x − y∥2 − 2t ⟨∇h(x) − ∇h(y), x − y⟩

+ t2∥∇h(x) − ∇h(y)∥2. (2.3)

Using the same proof as in the case of H = Rn on [20, Theorem 2.1.12], we get

⟨∇h(x) − ∇h(y), x − y⟩ ≥
sLh

s + Lh
∥x − y∥2 +

1
s + Lh

∥∇h(x) − ∇h(y)∥2. (2.4)

From (2.3) and (2.4), we get∥∥∥(x − t∇h(x)
)
−

(
y − t∇h(y)

)∥∥∥2
≤

(
1 −

2stLh

s + Lh

)
∥x − y∥2 + t

(
t −

2
s + Lh

)
∥∇h(x) − ∇h(y)∥2

≤

√
1 −

2stLh

s + Lh
∥x − y∥.
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Lemma 3 ( [21]). Let {ak} be a sequence of nonnegative real numbers satisfying

ak+1 ≤ (1 − bk)ak + bksk, ∀k ∈ N,

where {bk} is a sequence in (0, 1) such that
∑∞

k=1 bk = +∞ and {sk} is a sequence satisfying
lim supk→∞ sk ≤ 0. Then, lim

k→∞
ak = 0.

Lemma 4 ( [22]). Let {uk} be a sequence of real numbers such that there exists a subsequence {um j} of
{uk} such that um j < um j+1 for all j ∈ N. Then there exists a nondecreasing sequence {kℓ} of N such that
limℓ→∞ kℓ = ∞ and for all sufficiently large ℓ ∈ N, the following holds:

ukℓ ≤ ukℓ+1 and uℓ ≤ ukℓ+1.

3. Main convergence theorems

We begin this section by introducing a new accelerated algorithm (Algorithm 1) by using a
linesearch technique together with some modifications of Algorithm 6 for solving bilevel convex
minimization problems (1.1) and (1.2). Throughout this section, we let Ω be the set of all solutions
of convex bilevel problems (1.1) and (1.2), and we assume that h : H → R is a strongly convex
differentiable function with parameter s such that ∇h is Lh-Lipschitz continuous and t ∈

(
0, 2

Lh+s

]
.

Suppose f : domψ→ domψ is a c-contraction for some c ∈ (0, 1). Let {γk} be a real positive sequence,
{ξk} a positive sequence, and {λk} be a sequence in (0, 1). We propose the following Algorithm 1:

Algorithm 1 Accelerated viscosity forward-backward algorithm with Linesearch 1.

1: We are given x1 = y0 ∈ domψ, σ > 0, θ ∈ (0, 1), ρ ∈ (0, 1
2 ], and δ ∈

(
0, ρ4

)
.

2: For each k ≥ 1, define µk := Linesearch 2 (uk, σ, θ, δ) and evaluate

uk = λk f (xk) + (1 − λk)xk,

vk = proxµkψ
(uk − µk∇ϕ(uk)),

yk = proxµkψ
(vk − µk∇ϕ(vk)).

3: Select ηk ∈ (0, η̄k] such that

η̄k =

min
{
γk,

ξk
∥yk−yk−1∥

}
if yk , yk−1,

γk, otherwise.
(3.1)

Compute

xk+1 = Pdomψ

(
yk + ηk(yk − yk−1)

)
.

Remark 1. Our proposed algorithm uses a linesearch technique for finding the step size of the proximal
gradient methods in order to relax the continuity assumption on the gradeint of f. Note that this
linesearch technique employes two proximal evaluations which is appropriated from the algorithms
consisting of two proximal evaluations at each iteration, see [12–17]. It is observed that those
algorithms have a better convergence behavior than the others.
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To prove the convergence results of Algorithm 1, we need to find the following results.

Lemma 5. Let {xk} be a sequence generated by Algorithm 1, and v ∈ domψ. Then, the following
inequality holds:

∥uk − v∥2 − ∥yk − v∥2 ≥ 2µk

(
(ϕ + ψ)(yk) + (ϕ + ψ)(vk) − 2(ϕ + ψ)(v)

)
+

(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)
.

Proof: Let v ∈ domψ. It follows from (2.2) that

uk − vk

µk
− ∇ϕ(uk) =

uk − proxµkψ
(uk − µk∇ϕ(uk))

µk
− ∇ϕ(uk) ∈ ∂ψ(vk),

and

vk − yk

µk
− ∇ϕ(vk) =

vk − proxµkψ
(vk − µk∇ϕ(vk))

µk
− ∇ϕ(vk) ∈ ∂ψ(yk).

Then, by the definition of ∂ψ, we get

ψ(v) − ψ(vk) ≥
〈

uk − vk

µk
− ∇ϕ(uk), v − vk

〉
=

1
µk
⟨uk − vk, v − vk⟩ + ⟨∇ϕ(uk), vk − v⟩, (3.2)

and

ψ(v) − ψ(yk) ≥
〈

vk − yk

µk
− ∇ϕ(vk), v − yk

〉
=

1
µk
⟨vk − yk, v − yk⟩ + ⟨∇ϕ(vk), yk − v⟩. (3.3)

By the convexity of ϕ, we have for every x ∈ dom ϕ and y ∈ domψ,

ϕ(x) − ϕ(y) ≥ ⟨∇ϕ(y), x − y⟩, (3.4)

which implies
ϕ(v) − ϕ(uk) ≥ ⟨∇ϕ(uk), v − uk⟩, (3.5)

and
ϕ(v) − ϕ(vk) ≥ ⟨∇ϕ(vk), v − vk⟩. (3.6)

From (3.2), (3.3), (3.5), and (3.6), we have

2(ϕ + ψ)(v) − (ϕ + ψ)(vk) − ϕ(uk) − ψ(yk)

≥
1
µk
⟨uk − vk, v − vk⟩ + ⟨∇ϕ(uk), vk − v⟩ + ⟨∇ϕ(uk), v − uk⟩

+ ⟨∇ϕ(vk), v − vk⟩ +
1
µk
⟨vk − yk, v − yk⟩ + ⟨∇ϕ(vk), yk − v⟩

=
1
µk

(
⟨uk − vk, v − vk⟩ + ⟨vk − yk, v − yk⟩

)
+ ⟨∇ϕ(uk), vk − uk⟩ + ⟨∇ϕ(vk), yk − vk⟩
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=
1
µk

(
⟨uk − vk, v − vk⟩ + ⟨vk − yk, v − yk⟩

)
+ ⟨∇ϕ(uk) − ∇ϕ(vk), vk − uk⟩ + ⟨∇ϕ(vk), vk − uk⟩

+ ⟨∇ϕ(vk) − ∇ϕ(yk), yk − vk⟩ + ⟨∇ϕ(yk), yk − vk⟩

≥
1
µk

(
⟨uk − vk, v − vk⟩ + ⟨vk − yk, v − yk⟩

)
− ∥∇ϕ(uk) − ∇ϕ(vk)∥∥vk − uk∥ + ⟨∇ϕ(vk), vk − uk⟩

− ∥∇ϕ(vk) − ∇ϕ(yk)∥∥yk − vk∥ + ⟨∇ϕ(yk), yk − vk⟩.

This together with (3.4) gives

2(ϕ + ψ)(v) − (ϕ + ψ)(vk) − ϕ(uk) − ψ(yk)

≥
1
µk

(
⟨uk−vk, v−vk⟩+⟨vk−yk, v−yk⟩

)
−∥∇ϕ(uk)−∇ϕ(vk)∥∥vk−uk∥

− ∥∇ϕ(vk) − ∇ϕ(yk)∥∥yk − vk∥ + ϕ(vk) − ϕ(uk) + ϕ(yk) − ϕ(vk)

=
1
µk

(
⟨uk−vk, v−vk⟩+⟨vk−yk, v−yk⟩

)
−∥∇ϕ(uk)−∇ϕ(vk)∥∥vk−uk∥

− ∥∇ϕ(vk) − ∇ϕ(yk)∥∥yk − vk∥ − ϕ(uk) + ϕ(yk)

≥
1
µk

(
⟨uk − vk, v − vk⟩ + ⟨vk − yk, v − yk⟩

)
− ϕ(uk) + ϕ(yk)

− ∥∇ϕ(uk) − ∇ϕ(vk)∥
(
∥yk − vk∥ + ∥vk − uk∥

)
− ∥∇ϕ(vk) − ∇ϕ(yk)∥

(
∥yk − vk∥ + ∥vk − uk∥

)
=

1
µk

(
⟨uk − vk, v − vk⟩ + ⟨vk − yk, v − yk⟩

)
− ϕ(uk) + ϕ(yk)

−
(
∥yk−vk∥+∥vk−uk∥

)(
∥∇ϕ(uk)−∇ϕ(vk)∥+∥∇ϕ(vk) − ∇ϕ(yk)∥

)
. (3.7)

By the definition of Linesearch 1, we get

µk

(
(1−ρ)∥∇ϕ(yk)−∇ϕ(vk)∥ + ρ∥∇ϕ(vk)−∇ϕ(uk)∥

)
≤δ

(
∥yk−vk∥+∥vk−uk∥

)
. (3.8)

From (3.7) and (3.8), we have

1
µk

(
⟨uk − vk, vk − v⟩ + ⟨vk − yk, yk − v⟩

)
≥ (ϕ + ψ)(vk) + ϕ(uk) + ψ(yk) − 2(ϕ + ψ)(v) − ϕ(uk) + ϕ(yk)

−
(
∥yk−vk∥+∥vk−uk∥

)(
∥∇ϕ(uk)−∇ϕ(vk)∥+∥∇ϕ(vk) − ∇ϕ(yk)∥

)
≥ (ϕ + ψ)(vk) + (ϕ + ψ)(yk) − 2(ϕ + ψ)(v)

−
(
∥yk−vk∥+∥vk−uk∥

) ((1
ρ
−1

)
∥∇ϕ(uk)−∇ϕ(vk)∥

)
−

(
∥yk−vk∥+∥vk−uk∥

)
∥∇ϕ(vk)−∇ϕ(yk)∥

= (ϕ + ψ)(vk) + (ϕ + ψ)(yk) − 2(ϕ + ψ)(v)

−
1
ρ

(
∥yk − vk∥ + ∥vk − uk∥

)(
(1 − ρ)∥∇ϕ(uk) − ∇ϕ(vk)∥

)
AIMS Mathematics Volume 9, Issue 8, 22366–22392.
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−
1
ρ

(
∥yk − vk∥ + ∥vk − uk∥

)(
ρ∥∇ϕ(vk) − ∇ϕ(yk)∥

)
≥ (ϕ + ψ)(vk) + (ϕ + ψ)(yk) − 2(ϕ + ψ)(v)

−
1
ρ

(
∥yk − vk∥ + ∥vk − uk∥

) ( δ
µk

(
∥yk − vk∥ + ∥vk − uk∥

))
= (ϕ + ψ)(vk) + (ϕ + ψ)(yk) − 2(ϕ + ψ)(v) −

δ

ρµk
(∥yk − vk∥ + ∥vk − uk∥)2

≥ (ϕ + ψ)(vk) + (ϕ + ψ)(yk) − 2(ϕ + ψ)(v) −
2δ
ρµk

(
∥yk − vk∥

2 + ∥vk − uk∥
2
)
. (3.9)

Moreover, we know that

⟨uk − vk, vk − v⟩ =
1
2
(
∥uk − v∥2 − ∥uk − vk∥

2 − ∥vk − v∥2
)
, (3.10)

and
⟨vk − yk, yk − v⟩ =

1
2
(
∥vk − v∥2 − ∥vk − yk∥

2 − ∥yk − v∥2
)
. (3.11)

By replacing (3.10) and (3.11) in (3.9), we obtain

∥uk − v∥2 − ∥yk − v∥2 ≥ 2µk

(
(ϕ + ψ)(yk) + (ϕ + ψ)(vk) − 2(ϕ + ψ)(v)

)
−

4δ
ρ

(
∥yk − vk∥

2 + ∥vk − uk∥
2
)
+ ∥uk − vk∥

2 + ∥vk − yk∥
2

= 2µk

(
(ϕ + ψ)(yk) + (ϕ + ψ)(vk) − 2(ϕ + ψ)(v)

)
+

(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)
. (3.12)

Lemma 6. Let {xk} be a sequence generated by Algorithm 1 and S ⋆ , ∅. Suppose that lim
k→∞

ξk

λk
= 0.

Then {xk} is bounded. Furthermore, { f (xk)}, {uk}, {yk}, and {vk} are also bounded.

Proof: Let v⋆ ∈ S ⋆. By Lemma 5, we have

∥uk − v⋆∥2 − ∥yk − v⋆∥2 ≥ 2µk

(
(ϕ + ψ)(yk) + (ϕ + ψ)(vk) − 2(ϕ + ψ)(v⋆)

)
+

(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)

≥

(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)
≥ 0, (3.13)

which implies
∥uk − v⋆∥ ≥ ∥yk − v⋆∥. (3.14)

By the definition of uk and since f is a contraction with constant c, we get

∥uk − v⋆∥ =
∥∥∥λk f (xk) + (1 − λk)xk − v⋆

∥∥∥ (3.15)
≤ λk∥ f (xk) − f (v⋆)∥ + λk∥ f (v⋆) − v⋆∥ + (1 − λk)∥xk − v⋆∥
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≤ cλk∥xk − v⋆∥ + λk∥ f (v⋆) − v⋆∥ + (1 − λk)∥xk − v⋆∥

=
(
1 − λk(1 − c)

)
∥xk − v⋆∥ + λk∥ f (v⋆) − v⋆∥. (3.16)

This together with (3.14) gives

∥xk+1 − v⋆∥ = ∥Pdomψ

(
(yk + ηk(yk − yk−1)

)
− Pdomψ(v⋆)∥

≤ ∥(yk − v⋆) + ηk(yk − yk−1)∥ (3.17)
≤ ∥yk − v⋆∥ + ηk∥yk − yk−1∥ (3.18)
≤ ∥uk − v⋆∥ + ηk∥yk − yk−1∥ (3.19)
≤

(
1 − λk(1 − c)

)
∥xk − v⋆∥ + λk∥ f (v⋆) − v⋆∥ + ηk∥yk − yk−1∥ (3.20)

=
(
1 − λk(1 − c)

)
∥xk − v⋆∥ + λk(1 − c)

(
∥ f (v⋆) − v⋆∥

1 − c
+

ηk

λk(1 − c)
∥yk − yk−1∥

)
≤ max

{
∥xk − v⋆∥,

∥ f (v⋆) − v⋆∥
1 − c

+
ηk

λk(1 − c)
∥yk − yk−1∥

}
.

From (3.1), we have
ηk

λk
∥yk − yk−1∥ ≤

ξk

∥yk − yk−1∥
·
∥yk − yk−1∥

λk
=
ξk

λk
.

Using lim
k→∞

ξk

λk
= 0, we obtain lim

k→∞

ηk

λk
∥yk − yk−1∥ = 0. Therefore, there exists N > 0 such that ηk

λk
∥yk −

yk−1∥ ≤ N for all k ∈ N. The above inequality implies

∥xk+1 − v⋆∥ ≤ max
{
∥xk − v⋆∥,

∥ f (v⋆) − v⋆∥
1 − c

+
N

1 − c

}
.

By induction, we have ∥xk+1− v⋆∥ ≤ max
{
∥x1 − v⋆∥, ∥ f (v⋆)−v⋆∥

1−c + N
1−c

}
, and so {xk} is bounded. It follows

that { f (xk)} is bounded. Combining this with the definition of uk, we obtain that {uk} is bounded. It
follows by (3.14) that {yk} and {vk} are also bounded.

Theorem 7. Let {xk} be a sequence generated by Algorithm 1 and S ⋆ , ∅. Suppose ϕ and ψ satisfy A1
and A2 and the following conditions hold:

1) {λk} is a positive sequence in (0, 1);
2) µk ≥ µ for some µ ∈ R+;
3) limk→∞ λk = 0 and

∑∞
k=1 λk = +∞;

4) limk→∞
ξk
λk
= 0.

Then, xk → v⋆ ∈ S ⋆ such that v⋆ = PS ⋆ f (v⋆). Moreover, if f := I − t∇h, then xk → v⋆ ∈ Ω.
Proof: Let v⋆ ∈ S ⋆ be such that v⋆ = PS ⋆ f (v⋆). By (3.17), Algorithm 1, and the fact that f is a
contraction with constant c, we have

∥xk+1 − v⋆∥2 ≤ ∥(yk − v⋆) + ηk(yk − yk−1)∥2

≤ ∥yk − v⋆∥2 + 2ηk∥yk − v⋆∥∥yk − yk−1∥ + η
2
k∥yk − yk−1∥

2

≤ ∥uk − v⋆∥2 + 2ηk∥yk − v⋆∥∥yk − yk−1∥ + η
2
k∥yk − yk−1∥

2
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=
∥∥∥λk f (xk) + (1 − λk)xk − v⋆

∥∥∥2
+ 2ηk∥yk − v⋆∥∥yk − yk−1∥ + η

2
k∥yk − yk−1∥

2

=
∥∥∥λk

(
f (xk) − f (v⋆)

)
+ (1 − λk)(xk − v⋆) + λk

(
f (v⋆) − v⋆

)∥∥∥2

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
≤

∥∥∥λk
(
f (xk)− f (v⋆)

)
+(1−λk)(xk−v⋆)

∥∥∥2
+2λk⟨ f (v⋆)−v⋆, uk−v⋆⟩

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
= λk∥ f (xk)− f (v⋆)∥2+(1−λk)∥xk−v⋆∥2+ 2λk⟨ f (v⋆) − v⋆, uk − v⋆⟩

−λk(1−λk)∥
(
f (xk)− f (v⋆)

)
−
(
xk − v⋆

)
∥2 + ηk∥yk − yk−1∥

(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
≤ λk∥ f (xk)− f (v⋆)∥2+(1−λk)∥xk−v⋆∥2+2λk⟨ f (v⋆)−v⋆, uk−v⋆⟩

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
≤ c2λk∥xk − v⋆∥2 + (1 − λk)∥xk − v⋆∥2 + 2λk⟨ f (v⋆) − v⋆, uk − v⋆⟩

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
=

(
1 − λk(1 − c2)

)
∥xk − v⋆∥2 + 2λk⟨ f (v⋆) − v⋆, uk − v⋆⟩

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
≤

(
1 − λk(1 − c)

)
∥xk − v⋆∥2 + 2λk⟨ f (v⋆) − v⋆, uk − v⋆⟩

+ ηk∥yk − yk−1∥
(
2∥yk − v⋆∥ + ηk∥yk − yk−1∥

)
. (3.21)

Since lim
k→∞

ηk∥yk − yk−1∥ = lim
k→∞

(λk)
ξk

λk
= 0, there exists N1 > 0 such that ηk∥yk − yk−1∥ ≤ N1 for all

k ∈ N. From Lemma 6, we have ∥yk − v⋆∥ ≤ N2 for some N2 > 0. Choose N̄ = supk∈N{N1,N2}. By
(3.21), we get

∥xk+1 − v⋆∥2 ≤
(
1−λk(1−c)

)
∥xk−v⋆∥2+2λk⟨ f (v⋆)−v⋆, uk−v⋆⟩+3N̄ηk∥yk−yk−1∥

=
(
1 − λk(1 − c)

)
∥xk − v⋆∥2

+ λk(1−c)
(

2
1 − c

⟨ f (v⋆)−v⋆, uk−v⋆⟩+
3N̄ηk

λk(1 − c)
∥yk−yk−1∥

)
. (3.22)

In order to verify the convergence of {xk}, we analyze the proof into the following two cases.
Case 1. Suppose there exists M ∈ N such that ∥xk+1 − v⋆∥ ≤ ∥xk − v⋆∥ for all k ≥ M. This implies
lim
k→∞
∥xk − v⋆∥ exists. From (3.22), we set ak = ∥xk − v⋆∥2, bk = λk(1 − c), and sk =

2
1−c⟨ f (v⋆) − v⋆, uk −

v⋆⟩ + 3N̄ηk
λk(1−c)∥yk − yk−1∥. It follows from

∞∑
k=1

λk = +∞ that
∞∑

k=1

bk = (1 − c)
∞∑

k=1

λk = +∞. In addition,

3N̄ηk

λk(1 − c)
∥yk − yk−1∥ ≤

3N̄
1 − c

ξk

∥yk − yk−1∥
·
∥yk − yk−1∥

λk
=

3N̄
1 − c

(
ξk

λk

)
.

Then, by lim
k→∞

ξk

λk
= 0, we get lim

k→∞

3N̄ηk

λk(1 − c)
∥yk − yk−1∥ = 0.
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To employ Lemma 3, we need to guarantee that lim sup
k→∞

sk ≤ 0. Since {uk} is bounded, there exists a

subsequence {uk j} of {uk} such that uk j ⇀ w, for some w ∈ H, and

lim sup
k→∞

⟨ f (v⋆) − v⋆, uk − v⋆⟩ = lim
j→∞
⟨ f (v⋆) − v⋆, uk j − v⋆⟩ = ⟨ f (v⋆) − v⋆,w − v⋆⟩.

Next, we show that w ∈ S ⋆. We have from (3.19) and (3.20) that

lim
k→∞
∥xk − v⋆∥ = lim

k→∞
∥uk − v⋆∥. (3.23)

Combining this with (3.18) and (3.20), we obtain

lim
k→∞
∥xk − v⋆∥ = lim

k→∞
∥yk − v⋆∥. (3.24)

From (3.13), we have

∥uk − v⋆∥2 − ∥yk − v⋆∥2 ≥
(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)
≥

(
1 −

4δ
ρ

)
∥yk − vk∥

2 ≥ 0,

and

∥uk − v⋆∥2 − ∥yk − v⋆∥2 ≥
(
1 −

4δ
ρ

) (
∥yk − vk∥

2 + ∥vk − uk∥
2
)
≥

(
1 −

4δ
ρ

)
∥vk − uk∥

2 ≥ 0.

From (3.23) and (3.24), we obtain
lim
k→∞
∥yk − vk∥ = 0, (3.25)

and
lim
k→∞
∥vk − uk∥ = 0. (3.26)

Moreover, we know that

uk j − vk j

µk j

− ∇ϕ(uk j) + ∇ϕ(vk j) ∈ ∂ψ(vk j) + ∇ϕ(vk j) = ∂(ϕ + ψ)(vk j).

The uniform convexity of ∇ϕ and (3.26) yield

lim
k→∞
∥∇ϕ(vk) − ∇ϕ(uk)∥ = 0. (3.27)

It implies, by assumption (2), that∥∥∥∥∥∥uk j − vk j

µk j

− ∇ϕ(uk j) + ∇ϕ(vk j)

∥∥∥∥∥∥ ≤ 1
µk j

∥uk j − vk j∥ + ∥∇ϕ(vk j) − ∇ϕ(uk j)∥

≤
1
µ
∥uk j − vk j∥ + ∥∇ϕ(vk j) − ∇ϕ(uk j)∥.

This together with (3.26) and (3.27) yields∥∥∥∥∥∥uk j − vk j

µk j

− ∇ϕ(uk j) + ∇ϕ(vk j)

∥∥∥∥∥∥→ 0 as k → ∞.
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By the demiclosed nature of Gph(∂(ϕ + ψ)), 0 ∈ ∂(ϕ + ψ)(w), and so w ∈ S ⋆. It derives from (2.1) that

lim sup
k→∞

⟨ f (v⋆) − v⋆, uk − v⋆⟩ = ⟨ f (v⋆) − v⋆,w − v⋆⟩ = ⟨ f (v⋆) − PS ⋆ f (v⋆),w − PS ⋆ f (v⋆)⟩ ≤ 0,

which implies that lim supk→∞ sk ≤ 0. By Lemma 3, we obtain

lim
k→∞
∥xk − v⋆∥2 = 0.

Case 2. Suppose that there exists a subsequence {xm j} of {xk} such that

∥xm j − v⋆∥ < ∥xm j+1 − v⋆∥,

for all j ∈ N. By Lemma 4, there is a nondecreasing sequence {kℓ} of N such that limℓ→∞ kℓ = ∞, and
for all sufficiently large ℓ ∈ N, the following formula holds:∥∥∥xkℓ − v⋆

∥∥∥ ≤ ∥∥∥xkℓ+1 − v⋆
∥∥∥ and

∥∥∥xℓ − v⋆
∥∥∥ ≤ ∥∥∥xkℓ+1 − v⋆

∥∥∥ . (3.28)

We have from (3.25) and (3.26) that

lim
ℓ→∞

∥∥∥ykℓ − vkℓ

∥∥∥ = 0 and lim
ℓ→∞

∥∥∥vkℓ − ukℓ

∥∥∥ = 0. (3.29)

Since {ukℓ} is bounded, there exists a weakly convergent subsequence {ukℓi
} of {ukℓ} such that ukℓi

⇀ w⋆

for some w⋆ ∈ H, and

lim sup
ℓ→∞

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ = lim
i→∞
⟨ f (v⋆) − v⋆, ukℓi

− v⋆⟩ = ⟨ f (v⋆) − v⋆,w⋆ − v⋆⟩.

The uniform convexity of ∇ϕ and (3.29) imply

lim
i→∞
∥∇ϕ(vkℓi

) − ∇ϕ(ukℓi
)∥ = 0. (3.30)

Moreover, we know that

ukℓi
− vkℓi

µkℓi

− ∇ϕ(ukℓi
) + ∇ϕ(vkℓi

) ∈ ∂ψ(vkℓi
) + ∇ϕ(vkℓi

) = ∂(ϕ + ψ)(vkℓi
).

It implies, by assumption (2), that∥∥∥∥∥∥ukℓi
−vkℓi

µkℓi

−∇ϕ(ukℓi
)+∇ϕ(vkℓi

)

∥∥∥∥∥∥ ≤ 1
µkℓi

∥∥∥ukℓi
−vkℓi

∥∥∥+∥∥∥∇ϕ(vkℓi
)−∇ϕ(ukℓi

)
∥∥∥

≤
1
µ

∥∥∥ukℓi
− vkℓi

∥∥∥ + ∥∥∥∇ϕ(vkℓi
) − ∇ϕ(ukℓi

)
∥∥∥ .

Using (3.29) and (3.30), we get∥∥∥∥∥∥ukℓi
− vkℓi

µkℓi

− ∇ϕ(ukℓi
) + ∇ϕ(vkℓi

)

∥∥∥∥∥∥→ 0 as i→ ∞.
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By demiclosedness of Gph(∂(ϕ + ψ)), we obtain 0 ∈ ∂(ϕ + ψ)(w⋆) and thus w ∈ S ⋆. This implies that

lim sup
ℓ→∞

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ = ⟨ f (v⋆) − v⋆,w⋆ − v⋆⟩ ≤ 0.

We derive from (3.22) and
∥∥∥xkℓ − v⋆

∥∥∥ ≤ ∥∥∥xkℓ+1 − v⋆
∥∥∥ that

∥xkℓ+1 − v⋆∥2 ≤
(
1 − λkℓ(1 − c)

) ∥∥∥xkℓ − v⋆
∥∥∥2

+ λkℓ(1 − c)
(

2
1 − c

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ +
3N̄ηkℓ

λkℓ(1 − c)

∥∥∥ykℓ − ykℓ−1

∥∥∥)
≤

(
1 − λkℓ(1 − c)

) ∥∥∥xkℓ+1 − v⋆
∥∥∥2

+ λkℓ(1 − c)
(

2
1 − c

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ +
3N̄ηkℓ

λkℓ(1 − c)

∥∥∥ykℓ − ykℓ−1

∥∥∥) ,
which implies

λkℓ(1 − c)∥xkℓ+1 − v⋆∥2 ≤ λkℓ(1 − c)
(

2
1 − c

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ +
3N̄ηkℓ

λkℓ(1 − c)

∥∥∥ykℓ − ykℓ−1

∥∥∥) .
Consequently, ∥∥∥xkℓ+1 − v⋆

∥∥∥2
≤

2
1 − c

⟨ f (v⋆) − v⋆, ukℓ − v⋆⟩ +
3N̄ηkℓ

λkℓ(1 − c)

∥∥∥ykℓ − ykℓ−1

∥∥∥ .
From the above inequality and

∥∥∥xℓ − v⋆
∥∥∥ ≤ ∥∥∥xkℓ+1 − v⋆

∥∥∥, we obtain

0 ≤ lim sup
ℓ→∞

∥∥∥xℓ − v⋆
∥∥∥2
≤ lim sup

ℓ→∞

∥∥∥xkℓ+1 − v⋆
∥∥∥2
≤ 0.

Therefore, we can conclude that xk → v⋆. Finally, we show that v⋆ is the solution of problem (1.1).
Since f := I − t∇h, it follows that f (v⋆) := v⋆ − t∇h(v⋆), which implies

0 ≤
〈
PS ⋆ f (v⋆) − f (v⋆), x − PS ⋆ f (v⋆)

〉
=

〈
v⋆ − f (v⋆), x − v⋆

〉
=

〈
v⋆ − (v⋆ − t∇h(v⋆)), x − v⋆

〉
= t

〈
∇h(v⋆), x − v⋆

〉
,

for all x ∈ S ⋆. This together with 0 < t give us that 0 ≤
〈
∇h(v⋆), x − v⋆

〉
for all x ∈ S ⋆. Hence v⋆ is

the solution of the outer-level problem (1.1).

4. Applications

In this section, we present an experiment on image restoration and data classification problems
by using our algorithm, and compare the performance of the proposed algorithm with BiG-SAM,
iBiG-SAM, and aiBiG-SAM. We apply MATLAB 9.6 (R2019a) to perform all numerical experiments
throughout this work. It runs on a MacBook Air 13.3-inch, 2020, with an Apple M1 chip processor
and 8-core GPU, configured with 8 GB of RAM.
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4.1. Image restoration problems

In this section, we apply the proposed algorithm to solve the true RGB image restoration problems,
and compare its performance with BiG-SAM, iBiG-SAM, and aiBiG-SAM. Let A be a blurring
operator, and x be an original image. If b represents an observed image, then a linear image restoration
problem is defined by

Av = b + w, (4.1)

where x ∈ Rn×1 and w denotes an additive noise. In the traditional way, we apply the least absolute
shrinkage and selection operator (LASSO) [23] method to approximate the original image x. It is given
by

min
x

{
∥Ax − b∥22 + α∥x∥1

}
, (4.2)

where α denotes a positive regularization parameter, ∥x∥1 =
∑n

k=1 |xk|, and ∥x∥2=
√∑n

k=1 |xk|
2. We see

that (4.2) is the inner-level problem (1.2) when ϕ(x) = ∥Ax − b∥22 and ψ(x) = β∥x∥1. When the true
RGB image is transformed as the matrix on the LASSO model, we see that the size of matrix A and
x as well as their members have an effect on the computation for the multiplication of Ax and ∥x∥.
To prevent this effect, we adopt the 2-D fast Fourier transform to convert the true RGB images into
matrices instead. IfW represents the 2-D fast Fourier transform, and B denotes the blurring matrix
such that the blurring operatorA = BW, then problem (4.2) is transformed to the following problem:

min
x
{∥Ax − b∥22 + α∥Wx∥1}, (4.3)

where b ∈ Rm×n is the observed image of size m×n, and α > 0 is a regularization parameter. Therefore,
our proposed algorithm can be applied to solve an image restoration problem (4.1) by setting the inner-
level problem as follows: ϕ(x) = ∥Ax − b∥22, ψ(x) = α∥Wx∥1, and we choose the outer-level problem
as h(x) = 1

2∥x∥
2. Next, we select all of the parameters satisfying the convergence theorem of each

algorithm as seen in Table 1.

Table 1. Chosen parameters of each algorithm.

Algorithm
Parameters

t µ α λk γk ξk δ θ σ ρ

BiG-SAM 0.01 k
(k+1)Lϕ

- 1
k+2 - - - - - -

iBiG-SAM 0.01 k
(k+1)Lϕ

3 1
50k - 1050

k2 - - - -
aiBiG-SAM 0.01 k

(k+1)Lϕ
3 1

k+2 - λk
k0.01 - - - -

Algorithm 1 0.01 - - 1
50k

tk−1
tk+1

1050

k2 0.124 0.1 0.9 0.5

Also, the Lipschitz constant Lϕ of ∇ϕ for BiG-SAM, iBiG-SAM, and aiBiG-SAM is calculated by
the maximum eigenvalue of the matrix AT A. The efficiency of a restorative image is measured by the
peak signal-to-noise ratio (PSNR) in decibel (dB), which is given by

PSNR(xk) = 10 log
(
2552

mse

)
,
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where mse = 1
K ∥xk−v⋆∥22, K denotes the number of image samples, and v⋆ indicates the original image.

We select the regularization parameter α = 0.00001 and consider the original image (Wat Lok Moli)
of size 256 × 256 pixels from [24]. We employ a Gaussian blur to construct blurred and noisy images
of size 9 × 9 with the standard deviation σ = 4. The original and blurred images are shown in Figure
2. The results of deblurring the image of Wat Lok Moli at 500 iterations is demonstrated in Table 2.

Table 2. The values of PSNR at x10, x50, x100, and x500.

The peak signal-to-noise ratio (PSNR)
Iteration No. BiG-SAM iBiG-SAM aiBiG-SAM Algorithm 1
1 20.4661 20.5577 20.4661 20.6308
10 21.2325 21.7491 21.2327 22.9166
50 22.5011 25.0760 22.5015 26.4285
100 23.3503 26.5096 23.3508 27.7760
500 25.3727 30.8838 25.6802 31.4100

As seen in Table 2, our proposed algorithm (Algorithm 1) gives a higher value of PSNR than the
others, which means that our algorithm has the best performance of the image restoration compared
with others. The graph of PSNR for deblurring images at the 500th iteration are shown in Figure 1.

Figure 1. The graph of PSNR for Wat Lok Moli.

All restoration images of Wat Lok Moli of each algorithm at the 500th iteration are shown in Figure
2.
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(a) Original image (b) Gaussian Blurred (c) aiBiGSAM

(d) BiGSAM (e) iBiGSAM (f) Algorithm 1

Figure 2. Results for image restoration at 500th iterations.

4.2. Data classification

Machine learning is crucial because it allows computers to learn from data and make decisions or
predictions. There are three types of machine learning such as supervised learning, unsupervised
learning, and reinforcement learning. Our work uses supervised learning which uses the extreme
learning machine (ELM) [25] and a single-layer feedback neural network (SLFNs) model while
the reinforcement learning is typically used for decision-making problems where an agent learns to
perform actions in an environment to maximize cumulative rewards (see more information in [26,27]).
However, it is not commonly used directly for data classification, which is more traditionally tackled
using supervised learning techniques.

In this work, we aim to use the studied algorithm to solve a binary data classification problem. We
focus on classifying the patient datasets of heart disease [28] and breast cancer [29] into classes. The
details of the studied datasets are given in Table 3.
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Table 3. Details of datasets.

Datasets Samples Attributes Classes
Heart disease 303 13 2
Breast cancer 699 11 2

Here, we accessed the above datasets on June 12, 2022 from https://archive.ics.uci.edu.
We first start with a necessary notion for data classification problems. Now, we recall a concept of
ELM. Suppose pk ∈ R

n is an input data, and qk ∈ R
m is the target. The training set of N samples is

given by S := {(pk, qk) : pk ∈ R
n, qk ∈ R

m, k = 1, 2, . . .,N}. The output of the i-th hidden node for any
single hidden layer of ELM is

hi(p) = G(⟨wi, p⟩ + ri), (4.4)

where G is an activate function, ri is a bias, and wi is the weight vector connecting the i-th hidden
node and the input node. If M denotes the amount of the hidden nodes, then ELM for SLFNs gives the
output function as:

o j =

M∑
i=1

mihi(p j), j = 1, 2, . . . ,N,

where mi is the weight vector connecting the i-th hidden node and the output node. Thus, an output
matrix of hidden layer A is given by

A =


h1(p1) h2(p1) · · · hM(p1)
...

...
. . .

...

h1(pN) h2(pN) · · · hM(pN)

 .
A main purpose of ELM is to find a weight m = [mT

1 , . . .,m
T
M]T such that

Am = Q, (4.5)

where Q = [qT
1 , . . ., q

T
N]T is the training data. We observe from (4.5) that m = A†Q whenever the

Moore–Penrose generalized inverse A† of A exists. In some situations, if A† does not exist, it may
be difficult to find wight m, which satisfies (4.5). In order to overcome this situation, we utilize the
following convex minimization problem (4.6) to solve m:

min
m
∥Am −Q∥22 + β∥m∥1, (4.6)

where β is the regularized parameter and ∥(m1,m2, . . . ,mp)∥1 =
∑p

i=1 |mi|. It derives from (4.6) that
ϕ(m) := ∥Am−Q∥22 and ψ := β∥m∥1 are inner-level functions of problem (1.2). To employ the proposed
algorithm, BiG-SAM, iBiG-SAM, and aiBiG-SAM for solving data classification, we choose the outer-
level function h(m) = 1

2∥m∥
2 for problem (1.1). With datasets from Table 3, we select an activation

function G as sigmoid, and set the hidden node M = 30. Choose t0 = 1 and tk+1 =
1+
√

1+4t2k
2 , for all

k ≥ 0. All parameters of each algorithm are chosen as in Table 4.
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Table 4. Chosen parameters of each algorithm.

Algorithm
Parameters

t µ α λk γk ξk δ θ σ ρ

BiG-SAM 0.01 1
Lϕ

- 1
k+2 - - - - - -

iBiG-SAM 0.01 1
Lϕ

3 1
50k - 1050

k2 - - - -
aiBiG-SAM 0.01 1

Lϕ
3 1

k+2 - λk
k0.01 - - - -

Algorithm 1 0.01 - - 1
50k

tk−1
tk+1

1050

k2 0.124 0.1 0.9 0.5

Also, the Lipschitz gradient Lϕ of ∇ϕ for BiG-SAM, iBiG-SAM, and aiBiG-SAM can be calculated
by 2∥A∥2. In order to measure the performance of the accuracy for prediction, we use the following
formula:

Accuracy (Acc) =
T P + T N

T P + T N + FP + FN
× 100,

where T P is the number of cases correctly identified as patient, T N represent the number of cases
correctly identified as healthy, FN means the number of cases incorrectly identified as healthy, and FP
denotes the number of cases incorrectly identified as patient. In what follows, Acc Train refers to the
accuracy of training on the dataset, while Acc Test indicates the accuracy of testing on the dataset. We
present the iteration numbers and training time on the learning model for each algorithm in Table 5.

Table 5. The iteration number and training time of each algorithm with the highest accuracy
on each dataset.

Dataset Algorithm Iteration no. Training time Acc train Acc test

Heart Disease

BiG-SAM 1421 0.0207 85.24 79.57
iBiG-SAM 410 0.0069 87.14 82.80
aiBiG-SAM 1421 0.0321 85.24 79.57
Algorithm 1 243 0.0871 87.14 82.80

Breast Cancer

BiG-SAM 587 0.0185 95.71 99.04
iBiG-SAM 114 0.0041 96.12 99.04
aiBiG-SAM 587 0.0191 95.71 99.04
Algorithm 1 48 0.0428 96.12 99.04

As seen in Table 5, we observe that the training time of Algorithm 1 is not significantly different
compared with the other algorithms. However, it needs to compute parameter µk occurring from the
lineserch technique, while the other algorithms do not have this process. Note that under the linesearch
technique, our algorithm has better convergence behavior than the others in terms of the number of
iterations. This means that the proposed algorithm provides the best optimal weight compared with the
others. To evaluate the performance of each algorithm, we construct a 10-fold cross validation. The
10-fold cross validation splits data into training sets and testing sets, as seen in Table 6.
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Table 6. The number of samples in each fold for all datasets.

Heart disease Breast cancer
Train Test Train Test

Fold 1 273 30 630 69
Fold 2 272 31 629 70
Fold 3 272 31 629 70
Fold 4 272 31 629 70
Fold 5 273 30 629 70
Fold 6 273 30 629 70
Fold 7 273 30 629 70
Fold 8 273 30 629 70
Fold 9 273 30 629 70
Fold 10 273 30 629 70

In addition, we use the following formula in order to measure the success probability of making a
correct positive class classification, which is defined by

Precision (Pre) =
T P

T P + FP
.

Also, the sensitivity of the model toward identifying the positive class is estimated by

Recall (Rec) =
T P

T P + FN
.

The appraising tool is the average accuracy which is given by

Average Acc =
N∑

i=1

ui

vi
× 100%/N,

where N is the number of sets considered during the cross validation (N = 10), ui is the number of
correctly predicted data at fold i, and vi is the number of all data at fold i.

Let ErrM be the sum of errors in all 10 training sets, ErrK be the sum of errors in all 10 testing sets,
M be the sum of all data in 10 training sets, and K be the sum of all data in 10 testing sets. Then,

Error% =
errorM% + errorK%

2
,

where errorM% =
ErrM

M × 100% and errorK% =
ErrK

K × 100%.
We show the performance of each algorithm for patient prediction of heart disease and breast cancer

with the 300th iteration in Tables 7 and 8.
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Table 7. Experiment results in each fold for heart disease at the 300th iteration.

BiG-SAM iBiG-SAM aiBiG-SAM Algorithm 1
Heart disease Train Test Train Test Train Test Train Test

Fold 1
Pre 0.79 0.88 0.82 0.94 0.79 0.88 0.83 0.87
Rec 0.86 0.88 0.91 0.94 0.86 0.88 0.93 0.76
Acc 79.85 86.67 84.25 93.33 79.85 86.67 85.71 80.00

Fold 2
Pre 0.79 0.78 0.82 0.82 0.79 0.78 0.84 0.83
Rec 0.86 0.88 0.93 0.88 0.86 0.88 0.91 0.94
Acc 80.15 80.65 84.56 83.87 80.15 80.65 86.03 87.10

Fold 3
Pre 0.79 0.78 0.82 0.78 0.79 0.78 0.84 0.81
Rec 0.88 0.88 0.93 0.88 0.88 0.88 0.92 0.81
Acc 80.88 80.65 85.29 80.65 80.88 80.65 86.03 80.65

Fold 4
Pre 0.81 0.74 0.82 0.79 0.81 0.74 0.84 0.74
Rec 0.87 0.88 0.91 0.94 0.87 0.88 0.92 0.88
Acc 81.62 77.42 84.56 83.87 81.62 77.42 86.40 77.42

Fold 5
Pre 0.79 0.77 0.82 0.81 0.79 0.77 0.84 0.81
Rec 0.85 1.00 0.91 1.00 0.85 1.00 0.91 1.00
Acc 79.85 83.33 84.62 86.67 79.85 83.33 85.35 86.67

Fold 6
Pre 0.79 0.82 0.82 0.80 0.79 0.82 0.86 0.74
Rec 0.87 0.82 0.92 0.94 0.87 0.82 0.92 0.82
Acc 80.59 80.00 84.98 83.33 80.59 80.00 87.18 73.33

Fold 7
Pre 0.78 0.84 0.82 0.76 0.78 0.84 0.83 0.94
Rec 0.86 0.94 0.91 0.94 0.86 0.94 0.91 0.94
Acc 79.49 86.67 84.62 80.00 79.49 86.67 84.62 93.33

Fold 8
Pre 0.81 0.71 0.83 0.76 0.81 0.71 0.83 0.79
Rec 0.87 0.71 0.93 0.76 0.87 0.71 0.91 0.88
Acc 82.05 66.67 85.71 73.33 82.05 66.67 85.35 80.00

Fold 9
Pre 0.81 0.70 0.83 0.75 0.81 0.70 0.83 0.83
Rec 0.86 0.82 0.91 0.88 0.86 0.82 0.91 0.88
Acc 81.32 70.00 84.98 76.67 81.32 70.00 85.35 83.33

Fold 10
Pre 0.80 0.83 0.82 0.83 0.80 0.83 0.82 0.84
Rec 0.86 0.88 0.92 0.88 0.86 0.88 0.92 0.94
Acc 80.59 83.33 84.98 83.33 80.59 83.33 84.98 86.67

Average Pre 0.80 0.79 0.82 0.81 0.80 0.79 0.84 0.82
Average Rec 0.87 0.87 0.92 0.90 0.87 0.87 0.91 0.89
Average Acc 80.64 79.54 84.86 82.51 80.64 79.54 85.70 82.85
Error% 19.91 16.32 19.91 15.73
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Table 8. Experiment results in each fold for breast cancer at the 300th iteration.

BiG-SAM iBiG-SAM aiBiG-SAM Algorithm 1
Breast cancer Train Test Train Test Train Test Train Test

Fold 1
Pre 0.97 0.97 0.99 0.97 0.97 0.97 0.99 1.00
Rec 0.98 0.89 0.98 0.89 0.98 0.89 0.98 0.89
Acc 96.35 91.30 97.62 91.30 96.35 91.30 97.62 92.75

Fold 2
Pre 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Rec 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98
Acc 96.50 98.57 96.50 98.57 96.50 98.57 96.66 98.57

Fold 3
Pre 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Rec 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98
Acc 96.34 98.57 96.18 98.57 96.34 98.57 96.34 98.57

Fold 4
Pre 0.97 0.94 0.96 0.96 0.97 0.94 0.97 0.96
Rec 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Acc 96.03 95.71 95.87 97.14 96.03 95.71 96.50 97.14

Fold 5
Pre 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98
Rec 0.98 1.00 0.97 1.00 0.98 1.00 0.97 1.00
Acc 96.82 98.57 96.66 98.57 96.82 98.57 97.14 98.57

Fold 6
Pre 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98
Rec 0.97 0.98 0.98 0.98 0.97 0.98 0.97 0.98
Acc 96.03 97.14 96.82 97.14 96.03 97.14 96.66 97.14

Fold 7
Pre 0.96 0.98 0.98 1.00 0.96 0.98 0.98 1.00
Rec 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98
Acc 96.03 97.14 96.66 98.57 96.03 97.14 96.82 98.57

Fold 8
Pre 0.98 0.98 0.99 1.00 0.98 0.98 0.99 1.00
Rec 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96
Acc 96.82 95.71 97.30 97.14 96.82 95.71 97.62 97.14

Fold 9
Pre 0.98 0.94 0.98 0.98 0.98 0.94 0.98 0.98
Rec 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Acc 96.50 95.71 96.50 98.57 96.50 95.71 96.98 98.57

Fold 10
Pre 0.96 0.98 0.97 0.98 0.96 0.98 0.98 0.98
Rec 0.97 1.00 0.98 0.98 0.97 1.00 0.97 0.98
Acc 95.87 98.55 96.34 97.10 95.87 98.55 96.82 95.71

Average Pre 0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.99
Average Rec 0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.97
Average Acc 96.33 96.70 96.65 97.27 96.33 96.70 96.92 97.41
Error% 3.55 3.11 3.55 2.90

According to Tables 7 and 8, Algorithm 1 gives the best average accuracy of training and testing
datasets compared with BiG-SAM, iBiG-SAM, and aiBiG-SAM. We also see that our algorithm
provides higher the recall and precision for diagnosis of heart disease and breast cancer. Furthermore,
the proposed algorithm has the lowest percent error on prediction.
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5. Conclusions

Recently, there are various algorithms for solving convex bilevel optimization problems (1.1) and
(1.2). These methods require the Lipschitz continuity assumption of the gradient of the objective
function on problem (1.2). To relax this criteria, the linesearch technique is applied. In this work, we
proposed a novel accelerated algorithm employing both linesearch and inertial techniques for solving
convex bilevel optimization problems (1.1) and (1.2). The convergence theorem of the proposed
algorithm was analyzed under some suitable conditions. Furthermore, we applied our algorithm to
solve image restoration and data classification problems. According to our experiment, we obtained
that the proposed algorithm has more efficiency on image restoration and data classification than the
others.

It is worth mentioning that in real-world application, if we appropriately choose the objective
function of the outer-level problem (1.1), our algorithm can provide more benefit and accuracy for the
specific objective of data classifications. Note that we use 1

2∥x∥
2 as the outer-level objective function,

so our solution is a minimum norm problem. In order to improve the accuracy for prediction, in future
work, we need a new mathematical model and deep learning algorithm. Very recently, a deep extreme
learning machine is an appropriate model for improving accuracy for prediction, see [30,31]. However,
deep extreme learning algorithms are also challenging to study and discuss. Moreover, we would like
to employ our method for prediction of noncommunicable diseases of patient data from the Sriphat
Medical Center, Faculty of Medicine, Chiang Mai University.
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Appendix A

In this section, we discuss the specific details of algorithms related to our work. These algorithms
were proposed for solving convex bilevel optimization problems as follows:

Algorithm 2 BiG-SAM: Bilevel gradient sequential averaging method [4].
1: Initialization Step: Select the sequence {λk} ⊂ (0, 1] corresponding to criteria assumed in [7], and

take arbitrary x1 ∈ R
n. Consider the step sizes µ ∈

(
0, 1

Lϕ

]
and the parameter t ∈

(
0, 2

Lh+s

]
.

2: Iterative Step: For all k ≥ 1, set yk = proxµψ (I − µ∇ϕ) (xk) and define

uk = (I − t∇h)(xk)
xk+1 = λkuk + (1 − λk)yk.

Algorithm 3 iBiG-SAM: Inertial with bilevel gradient sequential averaging method.
1: Initialization Step: Select the sequence {λk} ⊂ (0, 1), and take arbitrary x1, x0 ∈ R

n. Consider the
step sizes µ ∈

(
0, 2

Lϕ

)
, the parameter t ∈

(
0, 2

Lh+s

]
, and α ≥ 3.

2: Iterative Step: For all k ≥ 1, set zk := xk + ηk(xk − xk−1) while ηk ∈ [0, η̄k] corresponding to

η̄k =

min
{

k
k+α−1 ,

ξk
∥xk−xk−1∥

}
if xk , xk−1,

k
k+α−1 otherwise,

(.1)

and define

yk = proxµψ (I − µ∇ϕ) (zk),

uk = (I − t∇h)(zk)
xk+1 = λkuk + (1 − λk)yk.
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Algorithm 4 aiBiG-SAM: The alternated inertial bilevel gradient sequential averaging method.
1: Initialization Step: Select the sequence {λk} ⊂ (0, 1) corresponding to criteria assumed in [5], and

take arbitrary x1, x0 ∈ H. Consider the step sizes µ ∈
(
0, 2

Lϕ

)
, the parameter t ∈

(
0, 2

Lh+s

]
, and α ≥ 3.

2: Initialization Step: For k ≥ 1, if k is odd, evaluate

zk := xk + ηk(xk − xk−1),

where 0 ≤ |ηk| ≤ η̄k while η̄k corresponds to

η̄k :=

min
{

k
k+α−1 ,

ξk
∥xk−xk−1∥

}
if xk , xk−1,

k
k+α−1 if xk = xk−1.

When k is even, set zk := xk. After that, define

yk = proxµψ (I − µ∇ϕ) (zk),

uk = (I − t∇h)(zk)
xk+1 = λkuk + (1 − λk)yk.

Next, the details of the linesearch technique related to this work are provided as follows:

Algorithm 5 Linesearch 1 (x, σ, θ, δ).
1: Initialization Step: Take arbitrary point x ∈ dom ψ, and set L(x, µ) = proxµψ(x − µ∇ϕ(x)).
2: Choose θ ∈ (0, 1) and δ ∈

(
0, 1

2

)
.

3: Computation Step: Select σ > 0 and define the first value µ = σ.
4: while

µ∥∇ϕ(L(x, µ)) − ∇ϕ(x)∥ > δ∥L(x, µ) − x∥

do
5: µ = θµ,

6: L(x, µ) = L(x, θµ), S (x, µ) = S (x, θµ).
7: end while
8: Output µ.
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Algorithm 6 Linesearch 2 (x, σ, θ, δ).
1: Initialization Step: Take arbitrary point x ∈ domψ, and set L(x, µ) = proxµψ(x − µ∇ϕ(x)) and

S (x, µ) = proxµψ(L(x, µ) − µ∇ϕ(L(x, µ))).
2: Choose θ ∈ (0, 1), ρ ∈

(
0, 1

2

]
, and δ ∈

(
0, ρ8

)
.

3: Computation Step: Select σ > 0 and define the first value µ = σ.
4: while

µ
(
(1 − ρ)∥∇ϕ(S (x, µ)) − ∇ϕ(L(x, µ))∥ + ρ∥∇ϕ(L(x, µ)) − ∇ϕ(x)∥

)
> δ

(
∥S (x, µ) − L(x, µ)∥ + ∥L(x, µ) − x∥

)
do

5: µ = θµ,

6: L(x, µ) = L(x, θµ), S (x, µ) = S (x, θµ).
7: end while
8: Output µ.

Algorithm 7 FBIL: The forward-backward iterative method with the inertial technical term and
linesearch technique.

1: Initialization Step: Take arbitrary points x1 = y0 ∈ domψ.
2: For k ≥ 1, calculate µk := Linesearch 1 (xk, σ, θ, δ), and define

zk = proxµkψ
(xk − µk∇ϕ(xk)),

yk = proxµkψ
(zk − µk∇ϕ(zk)),

xk+1 = Pdomψ
(yk + ηk(yk − yk−1)) ,

where Pdomψ
is a metric projection mapping and ηk ≥ 0.
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