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Abstract: Evaluating behavioral patterns through logic mining within a given dataset has become a 
primary focus in current research. Unfortunately, there are several weaknesses in the research 
regarding the logic mining models, including an uncertainty of the attribute selected in the model, 
random distribution of negative literals in a logical structure, non-optimal computation of the best logic, 
and the generation of overfitting solutions. Motivated by these limitations, a novel logic mining model 
incorporating the mechanism to control the negative literal in the systematic Satisfiability, namely 
Weighted Systematic 2 Satisfiability in Discrete Hopfield Neural Network, is proposed as a logical 
structure to represent the behavior of the dataset. For the proposed logic mining models, we used ratio 
of r to control the distribution of the negative literals in the logical structures to prevent overfitting 
solutions and optimize synaptic weight values. A new computational approach of the best logic by 
considering both true and false classification values of the learning system was applied in this work to 
preserve the significant behavior of the dataset. Additionally, unsupervised learning techniques such 
as Topological Data Analysis were proposed to ensure the reliability of the selected attributes in the 
model. The comparative experiments of the logic mining models by utilizing 20 repository real-life 
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datasets were conducted from repositories to assess their efficiency. Following the results, the proposed 
logic mining model dominated in all the metrics for the average rank. The average ranks for each 
metric were Accuracy (7.95), Sensitivity (7.55), Specificity (7.93), Negative Predictive Value (7.50), 
and Mathews Correlation Coefficient (7.85). Numerical results and in-depth analysis demonstrated 
that the proposed logic mining model consistently produced optimal induced logic that best represented 
the real-life dataset for all the performance metrics used in this study. 

Keywords: discrete Hopfield neural network; improved logic mining; binary clonal selection 
algorithm; weighted systematic 2 satisfiability; topological data analysis 
Mathematics Subject Classification: 68N17, 68R07, 68T27 
 

1. Introduction  

In this era, the strategy or approach for analyzing data is abundant. Logic mining is one of the 
strategies that is relatively new with the aim to extract patterns and determine the overall behavior of 
a data. This particular strategy composed from several components, which are logical rule, Artificial 
Neural Network (ANN), and reverse-analysis method. The basis of logic mining is quite 
straightforward. Logical rule will be the form of symbolic representation that exploits the structure of 
the data via reverse−analysis method. The choice of ANN is the medium of optimization to ensure the 
logical rule is being effectively learn and produces induced logic as the final output of the network to 
classify new records with a good level of accuracy. As a whole, these components are dependent on 
each other, and if any one of the components is missing, the performance of the logic mining will be 
negatively affected. In this context, it is crucial to not pick one over the other. Therefore, more 
investigation should be carried out to identify what improvements can be made to the existing logic 
mining to ensure optimal classification tasks can be executed. 

Over the years, Discrete Hopfield Neural Network (DHNN) has showed credible results as one 
of the components in logic mining. Introduced by Hopfield and Tank [1], the network is classified as 
one of the symmetric networks with feedback mechanism. Although the proposed DHNN exhibit good 
performance in optimizing the travelling salesman problem (TSP), the issue of black-box natured of 
the model is poorly addressed. Abdullah [2] attempted to address this issue by implementing Horn 
Satisfiability (HornSAT) to governs the neurons in DHNN. The integration of HornSAT into DHNN 
can be verified using the proposed Wan Abdullah (WA) method. The work showed notable findings, 
however, due to structural components of HornSAT which comprises of redundant variables, the output 
of the DHNN became insignificant. Therefore, Kasihmuddin [3] addresses the previous work by 
incorporating non-redundant logical rule of 2 Satisfiability (2SAT) as symbolic rule in DHNN. Due to 
the nondeterministic polynomial (NP) problem property of the DHNN−2SAT model, the work 
capitalizes Genetic Algorithm (GA) to aid the network in learning the logical rule. As the number of 
neurons increases, the GA is able to locate the satisfied interpretations of the logical rule, which 
resulted in correct synaptic weight values. As compared to Exhaustive Search (ES), the proposed GA 
attained acceptable results with almost 90% global minima energy solutions. This work has brought 
attention to other researchers to capitalizes other evolutionary and swarm-based algorithms as the 
learning algorithm to learn Satisfiability (SAT) logical rule in DHNN. As an example, the work by 
Mansor et al. [4] extended the previous work by implementing Artificial Immune System (AIS) in the 
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learning phase of DHNN. The proposed AIS in DHNN attained high accumulation of global minima 
solutions with very minimal learning errors. Subsequently, Sathasivam et al. [5] proposed the Election 
Algorithm (EA) in the learning phase of DHNN to learn Random 2 Satisfiability (RAN2SAT) logical 
rule. The proposed EA possessed multiple global and local search operators which is beneficial for the 
network in locating interpretation even when the number of neurons is high. The implementation of 
EA has brought new level in optimizing logical rule with high efficiency. However, all the mentioned 
works focused only on improving the learning operations in DHNN. Little attention was given towards 
improving the retrieval phase of DHNN. 

The pioneer work on integrating the concept of satisfiability in DHNN was proposed by 
Abdullah [2]. This innovative approach employs HornSAT to characterize the neurons within the 
DHNN. Additionally, this work also laid to the formulation of WA method whereby the minimization 
of the cost function can be derived based on the inconsistency of the logical rule. In this context, the 
synaptic weight can be obtained by comparing the cost function and the Lyapunov energy function.  
The successful incorporation of HornSAT into DHNN marked a significant advancement in the field, 
inspiring subsequent contributions by Kasihmuddin et al. [3] and Mansor et al. [4]. However, the 
restriction of the literals in each clause imposes limitations on the flexibility of logical rules, leading 
to potential overfitting issues. Addressing these constraints, Sathasivam et al. [6] proposed a novel 
approach by introducing the first non-systematic logic focusing on first and second-order clauses. The 
incorporation of different order logics introduces variation in synaptic weight values, resulting in more 
diverse solutions. The advantages offered by non-systematic logic have led to a substantial increase in the 
number of SAT formulations. Karim et al. [7] built upon the foundation laid by Sathasivam et al. [6] by 
introducing higher order Random k Satisfiability (RANkSAT) which capitalize first, second and third-
order clauses. Besides that, Guo et al. [8] delved into the capabilities of systematic and non-systematic 
logical rules, introducing a novel variant of SAT known as Y-Type Random 2 Satisfiability 
(YRAN2SAT). This variant concentrates on first and second-order clauses, embodying both systematic 
and non-systematic structures under the formulation of SAT. The integration of YRAN2SAT into 
DHNN has been reported to successfully retrieve final neuron states with a high degree of diversity 
compared to all existing models. In another work, Zamri et al. [9] proposed a new perspective on SAT 
by focusing on the distribution of negative literals within the clauses. In this study, another layer was 
introduced into the DHNN which is specifically to determine the distribution of negative literals.  
Amplifying the presence of negative literals is crucial for gaining a deeper understanding of the negative 
links within neuron connections and contributes to exploring the alternative optimal final neuron state with 
more diversified solutions. While all the SAT formulations mentioned contribute to more positive results, 
the application of SAT into the DHNN in the context of logic mining remains uncertain. 

Logic mining is a subset of data mining which was specialized in addressing classification 
problems. This logic mining approach aims to extract the knowledge and behavior of the datasets. The 
earliest work on logic mining was proposed by Sathasivam and Abdullah [10] by introducing Reverse 
Analysis (RA) method. The RA method aims to represent students’ performance in each subject and 
describe the datasets. However, a major drawback of this approach is that it can lead to an infinite 
number of induced logics, raising questions about its capability to effectively represent patterns in the 
dataset. To address this problem, Kho et al. [11] proposed the 2 Satisfiability Reverse Analysis method 
(2SATRA) based on the 2SAT logical rule. This approach is capable of extracting the best single 
induced logic for classifying dataset behavior in League of Legends (LoL) games. Moreover, Zamri et 
al. [12] introduced a higher-order logic mining model known as 3SATRA, which utilizes the 3SAT 
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logical rule and employs the Clonal Selection Algorithm (CSA) as a learning algorithm. The 3SATRA 
model extracts optimal induced logic from data related to Amazon employees’ resource access. Despite 
both models using random attribute selection, they were able to produce high-quality induced logic 
with a high level of accuracy. 

In another study of systematic logical rule, Jamaludin et al. [13] conducted a study on systematic 
logical rules and proposed the Energy-based k Satisfiability Reverse Analysis (EkSATRA) method as 
an alternative approach to extract the correct recruitment factors that contribute to positive recruitment 
in a Malaysian insurance company. This method is based on 2SAT and 3SAT logical rules. During the 
retrieval phase of DHNN, an energy operator was utilized to transform final neuron states with global 
minimum energy into induced logic. EkSATRA achieved optimal best induced logic retrieval with an 
accuracy of 63.3% from the e-recruitment dataset. However, a limitation in all these studies is the 
arrangement of attributes within the logical rule structure. The standard attribute arrangement leads to 
low accuracy values due to limited connectivity among the attributes and reduced interpretability from 
randomized attribute selection. Jamaludin et al. [14] propose P2SATRA, a permutation operator in 
2SATRA that expands solution space in finding the best induced logic. P2SATRA outperforms existing 
logic mining in various performance metrics. Despite utilizing permutation between attributes, 
P2SATRA does not employ any feature selection method before embedding data entries as neurons in 
DHNN, leading to learning with insignificant attributes and resulting in high redundancy and low 
relevancy classification. Kasihmuddin et al. [15] introduced the first Supervised Logic Mining model 
(S2SATRA), which included a statistical analysis using correlation to select the best attributes for 
representing the datasets. This approach removed unnecessary attributes before embedding into 
DHNN and outperformed existing logic mining models in terms of accuracy and precision. Another 
supervised learning approach for selecting optimal attributes was proposed by Jamaludin et al. [16] 
with a log linear analysis (A2SATRA) aimed at countering the superiority of S2SATRA in identifying 
significant attributes contributing to optimal quality and production of induced logic. 

In addition, Rusdi et al. [17] and Manoharam et al. [18] have also utilized correlation and log 
linear for attribute selection during the pre-processing phase. These studies proposed a multi-unit 
3SATRA in DHNN that introduces the best logic during the learning phase by considering the highest 
true positive and true negative outcomes. As a result, more induced logic will be produced during the 
retrieval phase, increasing the probability of retrieving optimal induced logic. Their findings 
statistically prove that the proposed model is more effective than existing logic mining models. Even 
though the induced logic produced during the retrieval phase has been improved, the learning phase is 
not yet optimal. As a result, current research in logic mining has extended to utilizing a metaheuristic 
algorithm to enhance the learning phase of DHNN. Additionally, Alway et al. [19] proposed a new 
logic mining model with a learning algorithm called Hybrid Exhaustive Search (2HESRA). The goal 
is to expand the search space and select the best logic based on the highest summation of true positives 
and true negatives. Furthermore, correlation analysis has been used to select significant attributes for 
dataset representation and the induced logic of 2HESRA is based on achieving the highest accuracy. 
The logic mining model proposed by Zamri et al. [20] combines the logic mining model with a multi-
objective learning algorithm called Modified Niche Genetic Algorithm (r2SATMRA). The existing 
RA method was also modified by changing the mechanism of finding best logic that known as super 
logic and similarity indexes were considered to investigate the relevancy of selected attributes. The 
statistical analysis showed significant performance for all metrics and demonstrated the superiority of 
r2SATMRA over the existing logic mining model. Previous research has shown that the performance 
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of the logic mining model is influenced by factors such as data preparation and selecting the best logic 
during optimal learning. More attention should be given in the learning phase of logic mining to ensure 
the expansion of search space that can improved the quality of the retrieve induced logic. 

In light of all the above challenges, we proposed a novel logic mining model based on an 
unsupervised feature selection method, a new perspective of finding best logic, and a multi-objective 
retrieval method. Thus, the contributions of this paper are listed as follows: 

(1) To propose Weighted systematic 2 Satisfiability logical rule as the logical structure of the 
logic mining model. A weighted feature is implemented in Weighted Systematic 2 
Satisfiability to control the distribution of negative literals with defining ratio. By capitalizing 
the formulated Weighted Systematic 2 Satisfiability, the network produced more 
diversification of solutions. 

(2) To propose an alternative attribute selection method using an unsupervised approach. Topological 
data analysis is an unsupervised approach used for the attribute selection method. The proposed 
method capitalizes on the similarity behavior among attributes using clustering analysis. 

(3) To propose a new computation of best logic using the implementation of new objective 
function during the pre-processing phase of the logic mining. In this context, the new best 
logic with pre-defined weighted values will consider both true and false classification of the 
learning data. 

(4) To propose a binary Clonal Selection Algorithm as a retrieval algorithm which have high fitness 
and diversity. The fitness of the final solution highlights the satisfiable property of Weighted 
Systematic 2 Satisfiability which is directly mapped to the global minima solution. The diversity 
is based on the satisfied final solution with the highest distribution of negative states. 

(5) To evaluate the performance of the proposed logic mining model in extracting various real-
life datasets. The performance of the proposed logic mining will be tested using various 
metrics and will be compared with other existing state-of-the-art logic mining. 

In this paper, the organization of the section is presented as follows: The contributions of this 
paper are supported by the motivation and related works involved which are explained in Section 2. 
In Section 3, we describe the logical representation used in the proposed logic mining model. Then, 
in Section 4, we discuss the implementation of the logical structure in the DHNN, and we illustrate 
the retrieval algorithm used in DHNN in Section 5. In Section 6, we explain the process of the proposed 
logic mining model, and we focus on the experimental framework of the proposed logic mining model 
in Section 7. Following this, discuss the findings attained by all the logic mining models in Section 8. 
Last, in Section 9, we conclude our findings. 

2. Motivation 

There are several limitations in the current logic mining model that allow us to improve the 
effectiveness of the current logic mining model. First, the logic applied in the current logic mining 
ignore the distribution of the negative literal. Second, the computation of finding the best logic in the 
learning phase is focused only on the frequency of True Positive. Despite of that, there is no effort in 
the current logic mining model to expand the solution space of the network. Therefore, this section 
will describe in detail the needs to cater the limitations in the current logic mining model. 
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2.1. Ineffective structure of the logical representation 

The study on SAT structure in DHNN model has increased exponentially. There are many works 
addressing the issue on which SAT actually has the ability to govern the neurons in DHNN. Notably, 
this has resulted in two major domains which are systematic SAT and non-systematic SAT in DHNN.  
Initially, Kasihmuddin et al. [3] proposed systematic SAT of 2SAT as the neuron representation in 
DHNN. Although the work showed credible results, the generalizability of the work is questionable. 
The variables of the 2SAT logical rule was generated at random whereby there is no distinction 
between the positive and negative literals. By capitalizing WA method, more positive variables 
definitely directed towards the positive magnitude of the synaptic weight values, whereas a high 
number of negative variables will direct towards the negative magnitude of the synaptic weight values. 
With no effort in investigating the impact of either more positive or negative variables to the neuron 
links, this leads to poor understanding of the proposed 2SAT as logical representation to the DHNN. 
Until recently, Zamri et al. [9] proposed non-systematic SAT of Weighted Random 2 Satisfiability 
(r2SAT) in DHNN to address the issue encountered by the previous work. The proposed r2SAT 
capitalized the non-systematic SAT structure by incorporating first-order and second-order clauses in 
the logical rule. This effort was to counter the rigidness issue of the previous 2SAT. Additionally, the 
work analyzes different distribution of negative variables in the logical rule within the range of 10% 
to 90% as compared to the positive variables. In order to effectively generate the logical rule, a logic 
phase was introduced. As opposed to other logical rules, the proposed r2SAT showed the best 
performance in terms of neuron variability which is a crucial indicator to identify whether DHNN 
produces overfitting solutions or not. Unfortunately, there are two major drawbacks. First, the 
existence of first-order clauses in the logical rule increases the possibility of suboptimal synaptic 
weight management. Particularly when the number of neurons is high, DHNN often unable to locate 
the satisfied interpretation of the logical rule and resulted in random valued synaptic weight which 
disrupts the overall quality of the retrieved final neuron states. Second, the proposed logic phase added 
another processing element in the existing DHNN which makes the network more complex. The logic 
phase has to be operated iteratively until the right structure of r2SAT is generated. This will contribute 
to high computational cost. In addition, little attention was given in the development of formulating 
systematic logic with additional features to control the distribution of positive and negative literals 
before being encoded as an symbolic rule. Hence, it is imperative to produce a logical rule without any 
regards to the first-order clauses with generalizability property of different distribution of negative and 
positive variables in the logical rule. Therefore, we introduced a new logical rule namely Weighted 
Systematic 2 Satisfiability logical rule with a weighted feature to control the distribution of the 
negative literals. 

2.2. Ineffective computation of the best logic 

One of the crucial aspects in logic mining involves the selection of the best logic. This is because 
the best logic will represent the datasets and will be learned by the network to obtained induced logic. 
Therefore, it is important to have an optimal best logic which can influence the quality of retrieved 
induced logic. Most previous studies on logic mining solely focused on determining the best logic 
based on the true positive outcome. The clauses with the highest frequency of learning data with 
positive outcomes are selected, and the combination of these clauses generates the best logic. However, 



22327 

AIMS Mathematics  Volume 9, Issue 8, 22321–22365. 

a significant challenge with this approach arises when dealing with imbalanced datasets, where there 
might be a majority of positive outcomes or a majority of negative outcomes. In this case, applying 
the conventional approach on finding the best logic may lead to bias solutions. To encounter this issue, 
Alway et al. [19] and Zamri et al. [20] proposed the new approach of finding the best logic by 
considering both positive and negative outcomes in the learning data. In this approach, the best logic 
is selected based on the highest summation of the positive and negative outcomes with respect to the 
generated logical rule. However, a primary concern is that relying on a single best logic may result in 
retrieving only a singular induced logic. To overcome this limitation, Manoharam et al. [18] and Rusdi 
et al. [17] proposed multi-unit DHNN. The main idea of this approach is to expand the search space in 
finding the best induced logic. While both studies utilize ten best logics, the approach involves solely 
focusing on the summation of outcomes. This approach may lead to an overfitting issue, potentially 
generating redundant induced logic. Motivated by these considerations, we assert that incorporating a 
broader set of objective functions in finding the best logic would provide multiple perspectives on the 
data. In this case, the sets of induced logic obtained may extract different knowledge from the dataset 
and result to a more comprehensive understanding of the dataset as well as more robust logic mining 
results. Therefore, we propose multiple best logic that considers both true and false classification of 
learning data. Each best logic focuses on the highest value of performance evaluation with respect to 
the learning data. The performance evaluation consider in the best logic will affect the performance of 
the retrieved induced logic. 

2.3. Ineffective learning and retrieval phase of DHNN 

Optimizing DHNN is crucial to ensure that the network only retrieved optimal final neuron states 
before converted into induced logic. Several logic mining models in the literature focus on enhancing 
the learning capabilities of DHNN in doing logic mining. For instance, Zamri et al. [12] proposed 
Clonal selection algorithm in the learning phase of 3SATRA. In another study by Alway et al. [19], the 
learning phase of 2HESRA was optimized by using Hybrid Exhaustive Search approach while Zamri 
et al. [20] focused on optimizing the learning phase with the Modified Niched Genetic Algorithm. 
These models primarily aim to obtain optimal synaptic weights, ensuring that the final neuron states 
achieve global minima energy. However, a notable issue in these models is their concentration on 
obtaining optimal synaptic weights, raising questions about the quality of the final neuron states, 
particularly in terms of diversification of the solution string which may lead to overfitting. Additionally, 
there has been limited effort to optimize the retrieval capabilities of DHNN, addressing this limitation. 
On the other hand, previous studies have focused on improving either the learning or retrieval phase 
individually, and little attention was given on optimizing both phases. Motivated by these 
considerations, this study proposes an optimal logic mining model with the capability to guarantee 
optimal synaptic weights during the learning phase, leading to optimal induced logic without 
jeopardizing the quality of the solutions. To achieve this, the Election Algorithm proposed by 
Sathasivam et al. [5] is incorporated during the learning phase, ensuring the acquisition of optimal 
synaptic weights. Additionally, a binary Clonal Selection Algorithm is introduced in the retrieval phase 
to ensure the diversification of the solution string in terms of negativity, ultimately aiming for the 
attainment of global solutions with a low similarity index. 
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2.4. Ineffective attribute selection 

One of the primary concerns in the pre-processing phase of the logic mining process is the 
effectiveness of attribute selection. The main idea behind applying an attribute selection approach is 
to identify the most influential attributes that significantly contribute to the output. Without optimal 
attribute selection, the quality of the induced logic obtained remains uncertain. For instance, E2SATRA 
proposed by Jamaludin et al. [13] capitalize random attribute selection that leads to the creation of 
2SAT logic. While the induced logic guarantees achieving global minima energy during the retrieval 
phase, there is a high risk of selecting non-significant attributes. Consequently, this situation leads to 
a question what will happen if the model selects the wrong attribute? In this context, the interpretability 
of the retrieved induced logic may be compromised, as the model could extract incorrect knowledge 
about the data. This occurs when the network learns from the wrong attributes, leading to suboptimal 
induced logic. To encounter this issue, several works in literature introduced supervised learning 
methods to select the most significant attributes for logic creation. For example, Jamaludin et al. [16] 
and Manoharam et al. [18] proposed log linear approach while Kasihmuddin et al. (2022), Rusdi et al. [17] 
and Alway et al. [19] employed an association analysis to extract attributes representing the behavior 
of the dataset. However, these supervised learning approaches may lead to random selections if they 
do not meet statistical conditions during the correlation test. Since the model is unable to select the 
best attributes from the dataset, the chances of being unable to interpret the logical rule are high. 
Consequently, this will reduce the quality of the induced logic, leading to a lower accuracy value. 
Motivated by these challenges, this paper introduces a relatively new unsupervised approach using 
Topological Data Analysis (TDA) to select attributes without relying on statistical analysis. Notably, 
the proposed logic mining approach consistently selects attributes that give important affect to the 
behavior of the dataset. 

3. Weighted systematic 2 satisfiability 

Weighted Systematic 2 Satisfiability (rS2SAT) is a new class of systematic SAT formula by 
considering of 2 literals per clause. The two important components of rS2SAT are the logic is a 
systematic SAT expressed in Conjunctive Normal Form (CNF) and there is an insertion of a weighted 
feature to control the distribution of negative literals in the form of ratio (r). The aim of considering 
this weighted feature is to ensure the generation of rS2SAT is according to the desired r. In comparison 
to the random distribution of negative literals, the weighted feature is able to generate a consistent 
number of negative literals with no issue of literal repetition throughout the logic. To further discuss the 
novelty of the rS2SAT, the general equation of the logical structure of r2SAT is presented in Eq (1). 

2SAT 1
y

rS iiP C  , (1) 

where y is the total number of clauses in the 2SATrSP  and iC  is formulated as in Eq (2). 

 1 ,n
i i i iC A B  , (2) 

whereby n is the total number of literals in the 2SATrSP  and 2n y . Note that, there is no redundant 

literals in rS2SAT to ensure optimal synaptic weight management by WA method. Each literal of 
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 ,i yA B   in 2SATrSP   holds discrete form of interpretations in bipolar values of (1, –1) where it 

represents of True and False interpretation, respectively. Additionally, the distribution of literals in 
each iC  can be either negative  A  or positive  A . 

As mentioned, the distribution of negative literals in 2SATrSP  is controlled by a weighted ratio 

or can be defined as r. In other words, r is the ratio of negative literals exists in 2SATrSP . The main 

factor of introducing r is to control and increase the diversification of negative literals in the logic. 
Worth mentioning that, r can generate dynamic number of negative literals for any determined n. As a 
logical rule in DHNN, the advantage of r is able to force the network in learning negative neuron 
connections. Hence, this will improve the variation issues in the synaptic weight management. Notably, 
this paper proposes r with the range of  0.1,0.9r  , and a step size of 0.1r  . The reason why 

0.1r   is chosen because when the step size is too large, this will increase the margin of negative 
literals for the same n [21]. Consequently, several amounts of negative literals will be disregarded. 
However, if the value of step size is too small, 2SATrSP  will generate redundant number of negative 

literals for certain r. Subsequently, the distribution of the negative literals in the generation of 2SATrSP  

follows random distribution with the desired r. The total number of desired negative literals in 

2SATrSP  can be computed based on Eq (3). 

rn     , (3) 

whereby the mathematical notation of     represents the rounding down with the floor function. This 

means that the value of   is the rounding down product of r and defined n. Note that, n is always 
greater and equal to  . The generation of 2SATrSP  with respect to   is optimized by using Eq (4). 

0   , (4) 

where   is the total weights in the logical structure of 2SATrSP  and is evaluated as in Eq (5). 

1

n

i
i




  . (5) 

i  is the weight of the literals in the rS2SAT and the weight for each literal is illustrated in Eq (6). 

0, if

1, if
i

i
i

A

A


   

. (6) 

The value of   must always aligned with the desired   to ensure that the generation of 2SATrSP  

is optimal. Table 1 shows the example of 2SATrSP  for 10n   in all r. 
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Table 1. The example of 2SATrSP  in all r for 10n  . 

r Example of 2SATrSP  

0.1          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B           

0.2          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B             

0.3          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B             

0.4          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B            

0.5          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B              

0.6          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B             

0.7          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B              

0.8          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B              

0.9          2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B               

The proposed 2SATrSP   will act as the symbolic language to govern the network whereby.

2SATrSP . possess satisfied interpretations that mapped to either true or false logical outcome. Therefore, 

2SATrSP  will be embedded to DHNN as a proposed logical rule. 

4. Weighted systematic 2 satisfiability in the discrete Hopfield neural network 

In this section, the implementation of the proposed rS2SAT as neurons in DHNN will be further 
discussed which can be denoted as U2SAT model. The proposed U2SAT model consists of two major 
phases: The learning phase and the retrieval phase. In this paper, the WA method [2] will be capitalized 
in the learning phase of the proposed model. The retrieval phase will generate the final neuron states 
of the network which also mapped to the final energy profile of the network. Notably, each literal of 
rS2SAT will represent each unit of neurons in DHNN. When the correct structure of 2SATrSP   is 

generated, the 2SATrSP   will then proceed to the learning phase of U2SAT. Equations (7) and (8) 

presented the cost function of U2SAT in consideration of WA method. 

2SAT

2

1 1

1

4rS

y

P ij
i j

E L
 

 
   

 
  , (7) 
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 
 
1 , if

1 , if

i

i

A i

ij

A i

S A
L

S A

   


, (8) 

where iA  is an example of one literal in 2SATrSP . Take the formulated 2SATrSP  for r = 0.3 in Table 1 

as an example to illustrate the U2SAT model. First, derive the consistency of the 2SATrSP  as in Eq (9). 

         2SAT 1 1 2 2 3 3 4 4 5 5rSP A B A B A B A B A B              . (9) 

Then, the formulation of 
2SATrSPE  based on Eq (9) is formulated in Eq (10). 

     

     

  

2SAT 1 1 2 2

3 3 4 4

5 5

1 1
1 1 1 1

4 4
1 1

1 1 1 1
4 4
1

1 1
4

rSP A B A B

A B A B

A B

E S S S S

S S S S

S S

     

     

  

, (10) 

1 1 2 2 3 3 4 4

2SAT 5 5 1 1 2 2

3 3 4 4 5 5

5 1

4 4rS

A B A B A B A B

P A B A B A B

A B A B A B

S S S S S S S S

E S S S S S S

S S S S S S

   
 

       
        

, (11) 

whereby Eq (11) is the expanded version of Eq (10). According to the WA method, the synaptic weights 
can be calculated by comparing the coefficients of the 

2SATrSPE  with the Lyapunov energy function, 

which is formulated in Eq (12). 

   
2

2 11

2rS SATP i j iij i
i j i

H W S S W S    . (12)  

Equation (13) formulates the Lyapunov energy function based on the example of 2SATrSP . 

     

   

         

         

1 1 2 2 3 31 1 2 2 3 3

2SAT

4 4 5 54 4 5 5

1 1 2 2 31 1 2 2 3

3 4 4 5 53 4 4 5 5

2 2 2

2 2

1 1 1 1 1

1 1 1 1 1

2 2 21

2 2 2
rS

A B A B A BA B A B A B
P

A B A BA B A B

A B A B AA B A B A

B A B A BB A B A B

W S S W S S W S S
H

W S S W S S

W S W S W S W S W S

W S W S W S W S W S

      
   

       
      

. (13)  

According to Abdullah [2], to ensure correct synaptic weight values of U2SAT is obtained, the neurons 

 ,
i iA BS S  must possess bipolar values that satisfy the 2SATrSP . By taking Eq (14) as an example of 

interpretations for 2SATrSP  to be satisfied  2SAT 1rSP   or leads to 
2SAT

0
rSPE  . 
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 1 1 2 2 3

3 4 4 5 5

, , , , ,
1,1, 1, 1,1,1,1, 1, 1,1

, , , ,

A B A B A

B A B A B

S S S S S

S S S S S

 
       

 
. (14) 

Hence, the evaluation of  
1 1

2
A BW  can be calculated in Eq (15). 

    
       

 

1 1 1 11 1

1 1

1 1

2

2

2

1 1
2

2 4
1

1 1 1 1
4

1

4

A B A BA B

A B

A B

W S S S S

W

W

 

   

 

. (15) 

The overall values of  2
ijW  and  1

iW  can be obtained when considering the neurons in Eq (14) and 

then will be stored in a unit of Content Addressable Memory (CAM). The feature of CAM is to remind 
the network of the optimal neuron connections. In this context, DHNN will converge to a final state 
for any given initial states in the local field computation. This results in the production of final neuron 
states with global energy solutions. In this paper, the objective function of the learning phase of U2SAT 

are mapped to the quality of the satisfied interpretations in terms of fitness  2SAT
0

rSPE  . Therefore, 

EA is utilized in U2SAT to maximize the satisfied interpretation for 2SATrSP  that minimizing the cost 

function during the learning phase of DHNN. 
The retrieval phase of U2SAT is responsible to execute the local field computation that leads to 

the production of final neuron state, f
iS . The production of f

iS  can be evaluated using Eq (16) and 

the neuron is updated using Eq (17). 

     2 1

1,

n

i jij i
i i j

h t W S W
 

  , (16) 

   1, tanh 0

1 otherwise
if

i
h

S t
  


, (17) 

where  1,1jS    is the initial neuron states. The correctness of the retrieved f
iS  in the retrieval 

phase is verified by using the energy profile. The energy profile of the retrieved f
iS  is formulated in 

Eqs (18) and (19). 

   
2SAT

2 2

1, 1, 1

1

2rS

n n n
f f

P jij i i i
i i j j i j i

H W S S W S
    

     , (18) 

2SAT
min 1

2rSPH y  . (19) 

Successful retrieval phase relies upon the ability of the program to obtain global minimum energy. 
Equation (20) formulated the condition for the energy produced in the retrieval phase. 
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2SAT 2SAT
min

rS rSP PH H tol  , (20) 

where tol is a tolerance value. If the energy produced by the program aligned with Eq (20), then f
iS  

of U2SAT obtained global minimum energy. When a program obtained global minimum energy, the 

collection of f
iS   retrieved by U2SAT can be a generalized as an intelligent model that practice 

rS2SAT as a logical rule. 
In this paper, the objective function in the retrieval phase not only focuses on achieving the global 

minimum solution, but also considers diversity fitness, and the ratio of similarity index for the f
iS

produced before and after the implementation of bCSA. Therefore, we address the multi-objective 
function in the retrieval phase of DHNN as formulated in Eqs (21)–(24). 

 , ,f r sObj G D R , (21) 

such that 

2SAT 2SAT
min, where    

rS rS
f f

f P Pi iG S S H H tol , (22) 

rD  , (23) 

sR  . (24) 

There are three major requirements that need to be satisfied in the multi-objective function. First, the 
f

iS   produced must be able to achieve global minimum solution. Each f
iS   that able to achieve 

condition in Eq (20) is denoted as fG . fG  is obtained using the process in Eqs (18)–(20). Second, 

f
iS  must have the ability to maintain the diversity fitness of the neuron state within the diversity ratio, 

rD . The rD  is important to ensure that the f
iS  produced have variation of diversity based on the 

existences of negative neuron states. The existence of negative neuron states in f
iS  is guaranteed to 

be at least  . The process of evaluating the diversity fitness is in Eqs (25) and (26). 

1

u

d i
i

F d


 , (25) 

   0, if , 1,1

1,

f f
i i

i
A B

d
otherwise

  


, (26) 

where dF  measures the diversity fitness based on the frequency of id  for each f
iS . According to 

Eq (26), the scoring mechanism will be zero if all the neuron states in the f
iS   are 1 (positive). 

Therefore, the formulation of rD  is shown in Eq (27). 
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 d
r

F
D

y
 , (27) 

where y is the total number of clauses in 2SATrSP . 

Third, U2SAT need to ensure that the similarity of the f
iS   produced before and after the 

implementation of bCSA is within the similarity ratio, sR  . The f
iS   before and after the 

implementation of bCSA is denoted as fb
iS  and fa

iS , respectively. It is important to preserve the 

dissimilarity among all the f
iS  produced [22]. Therefore, the process of identifying the similarity of 

the f
iS  is using Rogers-Tanimoto  sR  similarity index. Eqs (28)–(32) expressed the formulation 

of sR  used in the U2SAT. 

 2s
a d

R
a b c d




  
, (28) 

   1, if , 1,1

0,

fb fa
i iA A

a
otherwise

  


, (29) 

   1, if , 1, 1

0,

fb fa
i iA A

b
otherwise

   


, (30) 

   1, if , 1,1

0,

fb fa
i iA A

c
otherwise

   


, (31) 

   1, if , 1, 1

0,

fb fa
i iA A

d
otherwise

    


. (32) 

Hence, the goal for f
iS  to be selected as the new final solution  nf

iS  of U2SAT must meet the 

condition specified in Eq (33). 

 , ,f
f r siS Obj G D R . (33) 

In order to fulfil the multi-objective function, this paper proposes binary Clonal Selection Algorithm 
(bCSA) as a retrieval algorithm. The process of bCSA is discussed in detail in Section 5. Figure 1 
displays the schematic diagram of U2SAT that describes the structure of 2SATrSP   in DHNN. 

Moreover, Algorithm 1 depicts the overall process of U2SAT. 
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Algorithm 1. The Pseudocode of U2SAT 

1 
Input: Set the initial parameters such as number of trials (NT) and maximum combination 
(combmax). 

2 Begin 

3 Initialize the neuron to each variable that consists of  1 2 3, , ,...,i nA A A A A ; 

4  while  i NT  

5 Form the initial states using Equation (2); 
6 Training Phase 

7 Define 
2SATrSPE  using Equation (7) – Equation (8); 

8  for  1 2 3, , ,...,i nC A A A A  do 

9 Check clauses satisfaction; 

10  if  
2SAT

0
rSPE   

11 iC  is satisfied; 

12 else 
13 iC  is not satisfied; 

14 end if 
15 Compute synaptic weights using WA method; 
16 Store the synaptic weight in CAM;  
17 end for 
18 Retrieval Phase 
19 Compute ih  using Equation (16); 

20 Compute 
2SATrSPH  using Equation (18); 

21 Compute 
2SAT

min
rSPH  using Equation (19); 

22  for 1 2 3, , ,...,f f f f f
niS S S S S     do 

23 Check the quality of the final neuron state using Equation (33); 

24  if  , ,f
f r siS Obj G D R  

25 Assign as nf
iS ; 

26 else 
27 Do binary Clonal Selection Algorithm; 
28 end if 
29 end for 
30 end while 
31 Output: Final neuron states achieved Multi-Objective Function 
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Figure 1. The schematic diagram of U2SAT. 

5. Binary clonal selection algorithm 

The inclusion of metaheuristics-based algorithms as one of the operating units in DHNN are one of 
the popular approaches to improve the quality of solutions retrieved by the network. In this paper, a 
binary clonal selection algorithm (bCSA) is implemented in the retrieval phase of DHNN to aid the 
network in locating neuron states retrieved by rS2SAT with optimum diversity and global minimum 
energy. The key role of the proposed bCSA is to optimize the objective function defined in Eq (21). The 
proposed bCSA was inspired by the CSA introduced by Zamri et al. [12] that capitalizes the algorithm 
to learn the logical rule in the learning phase of DHNN. Even with CSA in the learning phase, there is 
no guarantee that the final output of the DHNN in the retrieval phase will converges towards global 
energy. In this section, the implementation of bCSA will be described in detail. These descriptions 
include the following aspects: initialization, affinity evaluation, affinity maturation level via ranking 
strategy, selection, cloning, and high−frequency mutation via somatic hypermutation. Notably, each 

antibody or B-cell    in bCSA represents the f
iS . Each string of B-cell is composed of binary gene 

vectors (in bipolar form of 1 and −1) of length n. The value of n is dependent on the initialized number 
of variables in the proposed rS2SAT. Simply put, optimal genes of the B-cell always correspond to the 
optimum interpretations of the logical rule. As opposed to the previous CSA, the proposed bCSA is 
constructed to execute multi−objective optimization in finding optimum interpretations with respect to 
fitness and diversity. The process of bCSA is explained in Stages 1–6 as follows: 
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Stage 1: Initialization of   

In this stage, number of B-cells  N   will be generated. Note that, this stage is the consecutive 

process after the evaluation of Eq (20). Hence, the value of N   is depending on the defined number 

of solutions produced by DHNN in the retrieval phase which is usually denoted by number of trials 
(NT). In this context, each solution retrieved by the network is represented by one    whereby 

1,2,3,...,i NT    N NT   and each neuron states in the   will be represented by a gene  g  

whereby 1,2,3,..., 2ig y . 

Stage 2: Affinity Evaluation of   

Based on the fundamental CSA introduced by Castro and Zuben [23], affinity evaluation is the 
measurement to identify the “maturing” level of the or known as the fitness evaluation process. In this 
stage, the fitness of each   will be evaluated based on Eqs (34)–(38) as follows: 

,affinity f d      , (34) 

whereby, 

1

y

f i
i

F


 , (35) 

1, satisfied

0, otherwiseiF


 


, (36) 

1

y

d i
i

D


 , (37) 

   0, if , 1,1

1,

i iA B
i i

i
g g

D
otherwise

  


, (38) 

where affinity  is the affinity value of each   with respect to both f  and d . Note that iF

measures the satisfiable property of each   based on the initialized rS2SAT. Hence, the optimal value 

of f  is always equal to the number of initialized clauses or known as  y . Second, d  measures 

the diversity fitness of each   based on the existences of negative neuron states or 1ig   . In this 

context, the frequency of iD  will be counted only when there exists a negative state for each clause 

in the  . As shown in Eq (38), the scoring mechanism will be zero if all g  in the   are positive 

(neuron states is 1). 
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Stage 3: Affinity maturation level via a scoring strategy 

Due to the multi-objective function, there are possible instances of Pareto fronts   whereby the   

only possessed optimal fitness for only one of the fitness functions (either f  or d ) but not both. 

However, Pareto fronts   is not considered as an optimal solution as it is trading off one of the fitness. 

According to Zamri et al. [20], only single best solution with respect to fitness and diversity is plausible 
because the trade-offs between these two allows DHNN to produce solutions that is trapped in local 
optima and tends to overfit. Hence, to ensure optimal optimization of the proposed bCSA, this paper 
only considers single best solution of   with respect to f  and d . Therefore, this stage is crucial 

for identifying, selecting, sorting, and prioritizing which    that has the fittest g   based on the 

evaluated f  and d . A scoring strategy is introduced to identify the “fittest”   before proceeded 

to the next stages of the proposed bCSA. Once the affinity   of each    is evaluated, the scoring 

mechanism of each    with respect to f   and d   will be evaluated using Eqs (39) and (40), 

respectively, as follows: 

1, if 0

0, otherwise
f

fy
R

   


, (39) 

1, if 0

0, otherwise
d

dy
R

   


. (40) 

As an example, let’s take 6y  . If a 1  possessed 6f   and 4d  , the scores for 
f

R  and 

d
R   are one and zero respectively. Subsequently, if 2   possessed 6f    and 6d   , the 

scores for both 
f

R  and 
d

R  are one. The maturation level of the   is decided based on the 

summation of 
f

R  and 
d

R  as presented in Eq (41) as follows: 

f d
R R R    , (41) 

where  0,1,2R  . When 2R  , this shows that the   possessed the fittest g with respect to 

both fitness and diversity. These   will be stored as the f
iS  of the proposed U2SAT. The remaining 

  with 0,1R   will proceed to the next stage in bCSA. If none of the   attained maximum R , 

all the   will automatically proceed to the next stage of the algorithm. Notably, this algorithm will 

terminate once the proposed bCSA found NT number of   with maximum R . 

Stage 4: Selection of   

For this stage, number of   with suboptimal R   2N   will be selected to the next stage of bCSA. 

The value of 2N   can be evaluated using Eq (42) as follows: 
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 2 S 1N N  , (42) 

whereby S  is the selection rate of (0,1) and 1N   is the number of   from Stage 3. 

Stage 5: Cloning 

In this stage, the selected   will be cloned in proportion to the affinity  calculated. In other words, 

  with the highest R  undergo the cloning process by duplicating all g which resulting to the new 

cloned   into the current population. The population clone size  3N   of   is evaluated using 

Eq (43) below. Note that this approach was taken into into account to promote the exploration of other 
potential   with strong global optimization ability [24]. 

 3 C 2N N  , (43) 

where C  is the cloning rate of (0,1). 

Stage 6: High-frequency mutation via somatic hypermutation 

Similar to the somatic hypermutation mechanism proposed by Zamri et al. [12], all the   in this 

stage are subjected to high-frequency mutation. This type of mutation gives the proposed bCSA the 
ability of local search. Furthermore, it also maintains the diversity of the   in the population. Based 
on the conventional mutation in the study of GA, the possibility of which   to be mutated is set by 

roulette wheel selection or at random. Hence, there is a possibility whereby the mutation process never 
takes place. Unfortunately, this will steer the algorithm in the direction of trapping in local optimal 

solutions. Therefore, the number of    from 3N   ,  4N    that will undergo somatic 

hypermutation is evaluated as in Eq (44). 

 4 3MN N  , (44) 

where M  is the mutation rate of (0,1). The proposed somatic hypermutation will ensure that   

will undergo the mutation with at least one g is being mutated with respect to the objective function. 

Finally, all stored and improved   are being proceeded as the f
iS  of the U2SAT with respect to 

high fitness and diversity. Regeneration of   in Stage 1 are subjected to the generation of the local 

field computation. Therefore, Stages 1–6 are repeated until the termination conditions are met. 

6. Proposed logic mining model 

In an effort to enhance the effectiveness of the existing logic mining model by Kho et al. [11], 
Kasihmuddin et al. [15], and Jamaludin et al. [14], we have introduced a novel logic mining method, 
namely Weighted Systematic 2 Satisfiability based Reverse Analysis Method (U2SATRA). The 
primary purpose of our proposed logic mining is to extract knowledge from a dataset and represent it 
in the form of logical rules after considering significant attributes. In general, the effectiveness of logic 
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mining is dependent upon the efficiency of U2SAT and the Reverse Analysis method in processing the 
dataset and transforming it into induced logic. Specifically, U2SAT comprises three major phases: Pre-
processing phase, learning phase, and retrieval phase. The steps and explanations for each phase will 
be discussed in the following subsections respectively. 

6.1. Pre-processing phase 

Pre-processing phase should be initiated to learn the dataset in order to improve the quality of the 
data before implementing it into logic mining. This phase focuses on three major steps: The attribute 
selection through Topological Data Analysis (TDA) approach, data preparation, and data splitting. 
Hence, the steps involved in this phase will be explained accordingly. First, among all the variables in 
the raw dataset, only R optimal attributes is selected for the process of U2SAT. The attribute selection 
is utilized to filter all the important attributes with respect to the dataset. The implementation of TDA 
technique, specifically the mapper algorithm is utilized as an attribute selection method to filter 
attributes that significantly affect the structure of the dataset [25]. Notably, TDA is a dimensionality 
reduction technique that maps data from its original high-dimensional space to a low-dimensional 
space that it is easier to understand and visualize [26]. The Mapper technique is employed to analyze 
the dataset where the dataset is transforms to a simpler form. Generally, the Mapper technique starts 
with transforming original data into one-dimensional using filter function. Then, the number of 
hypercubes denoted as (hc) is created based on the transformed data and clustering method is applied 
for each hypercube. Specifically with a dataset Y, the steps in applying the Mapper technique are 
explained as follows with a point cloud consists of a collection of points (referring to the variables in 
the raw dataset, iA ). First, choose a filter function as in Eq (45) to map the dataset into Euclidean 

space, d¡ . 

: df Y  ¡ . (45) 

Then, the range of values for the image of the function,  f Y  is partitioned into collection of open 

sets,  i i I  whereby I is a finite indexing set. The partitioned number is set by parameter hc and are 

overlap with each other with respect overlapping percentage, denoted as hp. Next, for each interval 

i , the points in the preimage  1
if    is clustered by utilizing clustering algorithm and it will form 

a set of m clusters, mK  [27]. Following to that, each cluster, mK  is corresponds to a node and each 

node consists of attribute iA  with similar behavior. This study only chooses one attribute from each 

node as it is similar with other attributes in same node. By applying this rule, in the end, a collection 
of significant attributes is obtained and are implemented as the selected attributes in application of 
U2SAT. Hence, only one iA  is chosen in each node. Worth mentioning that, TDA helps in filtering 

all the iA  that have the similar behavior so that all the selected iA  insert in U2SAT give significant 

effect to the dataset. The selection of N optimal attributes that will be used in the U2SAT is important 
to maintain the quality of induced logic by excluding non-optimal attributes [16]. 

After R attributes has been selected, the entries from the raw data, i
ijX  in the selected attributes 

will be changed into bipolar representation by using k-means clustering technique [14]. Before i
ijX  

can be changed to bipolar, the mean value for each attribute is calculated. Each mean obtained in each 

attribute is used as an indicator to change the i
ijX  in each attribute into bipolar representation. This 
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method is important to ensure the convergence of the final neuron state in U2SAT [1]. Therefore, the 
formulation of k-mean clustering technique is formulated in Eq (46). 

1,

1,

i
ij i

i
if X A

S
otherwise

  


. (46) 

After all the i
ijX  has been changed to bipolar, the dataset will be split into learning and retrieval data 

with the ratio of a : b. The learning and retrieval data is denoted as learnP  and testP , respectively. This 

ratio has a good agreement with majority of the existing logic mining models. Additionally, k-fold 
cross validation is considered in the proposed logic mining model. Note that, the average of all folds 
will be taken as the final result for all metrics considered. 

6.2. Learning phase 

In the context of learning phase, the proposed U2SATRA introduce an alternative computation of 
best logic that maximizes true and false classification of the learning data. This will proffer the 
proposed logic mining in learning important structure of rS2SAT that is able to capture the 
classification patterns in the learning data. The steps involve in the learning phase will be discussed in 

detail. The first step in learning phase is 2
b

rS SATP  will be generated for all values of  0.1,0.9r  . 

The maximum number of unique 2rS SATP  , 
2rS SATPN   can be evaluated by considering the 

combination of n and the defined   as in Eq (47). 

2rS SAT
n

PN C . (47) 

Note that, only unique structures of 2rS SATP  is generated to avoid learning redundant logical rule. 

Next, the outcome of 2
b

rS SATP   will be compared with the outcome from learnP   to obtain the 

classification of confusion matrix as in Figure 2. Then, 2
b

rS SATP   will be evaluated based on five 

performance metrics which is Accuracy (ACC), Sensitivity (SNS), Specificity (SPC), Negative 
Predictive Value (NPV), and Mathews Correlation Coefficient (MCC). For each performance metric, 

q number of 2
b

rS SATP  with the highest value of the metric are selected as the best logic. Note that, 

each performance metric is treated independently. Therefore, each DHNN is corresponds to the best 
logic produced based on each performance metric and it is defined as multi-unit DHNN. Next, the 

selected 2
b

rS SATP   will be learned using EA in consideration of achieving objective function in 

learning phase of U2SAT. 

6.3. Retrieval phase 

Retrieval phase is the last stage in the U2SATRA. Notably, the proposed best logic produced 
multi-unit DHNN whereby each DHNN corresponds to each performance metric. Therefore, the 
retrieval phase will be executed for five number of times whereby each retrieval phase corresponds to 
each performance metric. The step in retrieval phase is start with capitalizing the values of the synaptic 

weight for each 2
b

rS SATP   in Eq (16) and the final neuron states will be retrieved after the 

implementation of bCSA. Note that, the consideration of multi-objective in Eq (21) is initiated in the 
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proposed logic mining model. Then, all possible induced logic, 2
i

rS SATP   will be produced after 

U2SAT retrieved nf
iS  . Based on the RA method proposed by Sathasivam and Abdullah [10], the 

retrieved final neuron states will be transformed into SAT logical rule as the induced logic. Therefore, 

the possible 2
i

rS SATP  is produced based on Eq (48). 

, 1

, 1

nf
i iinduced

i nf
i i

A S
S

A S

  
  

. (48) 

After that, the outcome from 2
i

rS SATP  will be compared with the outcome from testP  in order 

to assess the classification of TP, TN, FP, and FN based on Figure 2. The best 2
i

rS SATP   will be 

selected based on the highest performance metric attained from the entries of testP .Worth noting that, 

the best 2
i

rS SATP  will represent each performance metric used in finding the best logic. The overall 

implementation of U2SATRA from the pre-processing phase to the retrieval phase is presented in 
Figure 3. Worth mentioning that, the green, orange, and blue boxes in Figure 3 represents pre-
processing, learning, and retrieval phase, respectively. In addition, Algorithm 2 shows the Pseudocode 
of the proposed U2SATRA. 
 

 

Outcome from the 2
b

rS SATP / 2
i

rS SATP  

Positive (1) Negative (-1) 

Outcome from 

the learnP / testP  

Positive (1) 
True Positive 

(TP) 
False Negative 

(FN) 

Negative (-1) 
False Positive 

(FP) 
True Negative 

(TN) 

Figure 2. The classification of confusion matrix used in U2SATRA. 
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Algorithm 2. The Pseudocode of U2SATRA 
1 Input: Set all attributes of 1 2 3, , ,..., nA A A A  with respect to learnP , P, and NT. 

2 Begin 
3 Initialize algorithm parameters; 
4  Pre-processing Phase 
5 Do TDA; 
6 for ..   in Y R ..do 

7  if     1i m mA K K      

8 Assign iA  as iY ; 

9 else 
10 Not selected as iY ; 

11 end if 
12 end for 
13 while   i P  do 

14  Training Phase 
15 Generate 2

b
rS SATP ; 

16  for  i combmax do 

17 Compare the outcome from the learnP  and 2
b

rS SATP ; 

18 Select best 2
b

rS SATP  that achieve highest value of correspond metric; 

19 end for 
20 Check the clause satisfaction for best 2

b
rS SATP ; 

21 Compute the synaptic weight associated with best 2
b

rS SATP  using WA method; 

22 Store the synaptic weight and best 2
b

rS SATP  in CAM; 

23  Retrieval Phase 
24 Initialize the final neuron state; 
25  for  t NT do 

26 Compute ih  using Equation (16); 

27 Convert nf
iS  to bipolar state using Equation (17); 

28 Transform nf
iS  into logical form using Equation (48) with respect to the 

attributes; 
29 Combine nf

iS  to generate induced logic 2
i

rS SATP ; 

30 Compare the outcome of the 2
i

rS SATP  with testP ; 

31 1t t  ; 
32 end for 
33 1i i  ; 
34 end while 
35 Output: The best 2

i
rS SATP  that obtain highest value of correspond metric. 
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Figure 3. The overall process of U2SATRA. 

7. Experimental framework 

The simulation was conducted to evaluate the performance of U2SATRA in generalizing the best 
induced logic that represents the behavior of the dataset. To ensure the robustness of the experiment, 
the following setup must be employed as follows: 

7.1. Datasets description 

This research employs 20 data sets accessible through the UCI repository at 
https://archive.ics.uci.edu/ml/index.php and the Kaggle machine learning repository at 
https://www.kaggle.com/datasets. Detailed information about each data set is provided in Table 2. 
These datasets cover a range of fields of study, including but not limited to health finance, and social 
sciences domains. 

Table 2. List of data sets employed in the experiment. 

Code 

Name 
Data Set Attributes Instances 

Missing 

Value 
Type of Data Field/ Area 

D1 Autistic Disorder 20 292 Yes Mixed Health 

D2 Primary Tumor 17 339 Yes Mixed Health 

D3 
Bone Marrow 

Transplant 
36 187 Yes Mixed Health 

D4 
Breast Cancer 

Wisconsin 
31 569 No Mixed Health 

D5 Real Estate Dataset 13 511 Yes Mixed Economics 

D6 
Hungarian 

Chickenpox 
20 522 No Quantitative Health 

D7 Red Wine 13 178 No Quantitative 
Physic and 

Chemistry 

Continued on next page 
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Code 

Name 
Data Set Attributes Instances 

Missing 

Value 
Type of Data Field/ Area 

D8 Adult 14 32561 Yes Mixed 
Social 

Sciences 

D9 
Airline Passenger 

Satisfaction 
20 1004 Yes Mixed 

Social 

Sciences 

D10 
Australian Credit 

Approval 
14 690 No Quantitative Finance 

D11 Bank Marketing 20 4119 No Mixed Finance 

D12 Cylinder Bands 36 541 Yes Mixed 
Physic and 

Chemistry 

D13 

Behavior of the 

Urban Traffic of 

Sao Paulo, Brazil 

17 135 No Mixed Traffic 

D14 
Diabetes 

Classification 
14 390 No Mixed Health 

D15 Dermatology 34 366 Yes Mixed Health 

D16 
IBM HR Analytics 

Employee Attrition 
34 1470 No Mixed Business 

D17 Water Quality 21 2001 No Quantitative Biology 

D18 
Forest Type 

Mapping 
26 523 No Mixed Biology 

D19 Statlog (Heart) 12 270 No Mixed Health 

D20 Body Fat Prediction 14 252 No Quantitative Health 

There are several criteria that need to be considered when selecting a dataset. First, the dataset should 
encompass more than 100 instances. This is crucial, as a lower number of instances poses a higher risk of 
the network being learned on a limited set of instances during the learning phase. This limitation may result 
in the retrieval of non-optimal induced logic [16]. This concern aligns with the findings by [28] who 
observed that the number of instances in the dataset significantly influences the accuracy of the 
classification task. Insufficient instances may indeed lead to a decrease in accuracy. Second, each 
dataset must comprise more than 10 attributes. This criterion is based on several reasons, including the 
fact that the proposed logic consists of a minimum of 10 literals. Additionally, this choice is made to 
assess the effectiveness of the proposed model in incorporating the concept of optimal attribute 
selection [15]. Besides that, before all the data sets can be used to be learned by the network, all the 
data sets must be in bipolar state of 1 and –1. This is due to the WA method in finding the synaptic 
weight during the learning phase which can only be significant to bipolar value. Consequently, the 
normalization of data will be executed by employing a k-means clustering approach to convert the data 
into bipolar form [12]. In addition, it is crucial to acknowledge that when dealing with benchmark or 
real-life datasets, two common issues that cannot be avoided are imbalanced data sets and data sets 
with missing values. Table 3 shows the characterization of all the datasets with regards to the imbalance 
ratio and missing value rate. The formulation of imbalance ratio is given in Eq (49) [29]. 
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  Frequency of minority class
Imbalanced Ratio % 100%

nn
  . (49) 

Note that nn is the total number of entries in the dataset whereby it is equal to the total frequency of 
minority and majority class. Therefore, in addressing imbalanced datasets, this study adopts the k-fold 
cross validation technique. Regarding missing values, a strategy involves replacing them with a 
random bipolar state of 1 and –1, as proposed by [17]. Lastly, to maintain comparability among the 
logic mining models, all datasets adhere to the train-split method, where 60% is designated for learning 
data and 40% for retrieval data, following the approach outlined by [30]. 

Table 3. The characterization of all the datasets employed in the experiment. 

Code 

Name 

Missing Value 

Rate (%) 

Frequency of 

Minority Class 

Frequency of 

Majority Class 

Imbalanced 

Ratio (%) 

Majority 

Class 

D1 1.696 142 150 48.630 1 

D2 3.687 169 170 49.853 1 

D3 1.098 85 102 45.455 1 

D4 0.000 212 357 37.258 1 

D5 0.070 208 303 40.705 –1 

D6 0.000 192 330 36.782 –1 

D7 0.000 59 119 33.146 1 

D8 0.873 7841 24720 24.081 –1 

D9 0.005 459 545 45.717 –1 

D10 0.000 307 383 44.493 –1 

D11 0.000 451 3668 10.949 –1 

D12 5.231 229 312 42.329 –1 

D13 0.000 56 79 41.481 –1 

D14 0.000 60 330 15.385 –1 

D15 0.062 161 205 43.989 –1 

D16 0.000 237 1233 16.122 –1 

D17 0.000 700 1301 34.983 –1 

D18 0.000 242 281 46.272 1 

D19 0.000 120 150 44.444 –1 

D20 0.000 124 128 49.206 1 

7.2. Evaluation criteria 

As per Sen and Deokar [31], a confusion matrix for discrete classification is a 2x2 table that 
assesses the occurrences of the four potential outcomes of a discrete classifier. In a binary classification 
scenario, there seems to be a focus mention of a 2x2 table. The confusion matrix typically consists of 
four cells which is True Positive (TP) indicates the number of instances that were correctly predicted 
as positive by the model, False Positive (FP) is the number of instances that were incorrectly predicted 
as positive by the model, True Negative (TN) that the number of instances that were correctly predicted 
as negative by the model and the False Negative (FN) refers to the number of instances that were 
incorrectly predicted as negative by the model. These outcomes are evaluated during both the learning 
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and retrieval phases in the U2SATRA model. Hasija et al. [32] suggests examining the learning 
accuracy (ACC) provides insights into the model performance. If the model demonstrates an increase 
in ACC, resulting in higher retrieval phase ACC, it is deemed effective for the proposed models. The 
ACC value can be measured using Eq (50) as shown as follows: 

TP TN
ACC

TP TN FP FN




  
. (50) 

The Sensitivity (SNS) evaluates the accuracy of correctly predicting positive instances in a specific 
scenario, as noted by [33]. The formulation of SNS is as follows: 

TP
SNS

TP FN



. (51) 

Specificity (SPC) is defined as the ratio of the number of samples correctly classified as negative to 
the total number of actual negative samples [34]. The SPC can be identified as per Eq (52) shown 
below by Luque et al. [33]: 

TN
SPC

TN FP



. (52) 

Negative Predictive Value (NPV) is the ratio of true negatives and overall negatives. The NPV provides 
correctly identifies instances that do not belong to a particular class. It also helps in assessing the 
proposed model performance in accurately predicting negative outcomes. The NPV formula is 
represented as per shown in Eq (53) [35]. 

TN
NPV

TN FN



. (53) 

The Matthews correlation coefficient (MCC) has attracted increasing attention logic mining because 
of its strong and dependable performance evaluation capabilities as a classifier, particularly in binary 
settings [36]. However, its definition can naturally be expanded to accommodate multi-class scenarios. 
The efficiency of the logic mining process will be assessed using the MCC, which takes into account 
all elements of a confusion matrix. According to Chicco and Jurman [37], MCC is a valid indicator to 
evaluate the quality of global model and may applied in various sizes of classes. The MCC is calculated 
as per Eq (54). 

     
TP TN FP FN

MCC
TP FP TP FN TN FP TN FN

  


   
. (54) 

7.3. Existing baseline models 

Given that the primary focus of this study is to assess the performance of the induced logic 
generated by U2SATRA, our comparison is restricted to methods that specifically produce induced 
logic. The details for each model are outlined as follows: 

(a) RA [10]: This is the pioneer work of logic mining which HornSAT to extract knowledge of 
the data. Several improvements have been made to ensure this model is comparable with our 
proposed method. First, to avoid any dimensionality issue, this study only employed 
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HornSAT with two literals per clause. Second, instead of assigning neuron for each instance, 
each neuron will be assigned to the attributes. 

(b) 2SATRA [11]: This model is the first approach on the logic mining that uses logic containing 2 
literal per clause or 2SATP . During learning phase, the best logic is formulated by considering 

the most frequency of  2
iC  that obtained 1learnP  . However, the formulation of 2SATP  

is based on randomized attribute selection. Subsequently, 2
i
SATP  is generated in the retrieval 

phase to generalize the information of the dataset. 
(c) P2SATRA [14]: This model is the improved conventional 2SATRA with permutation 

operator that considers possible attribute arrangement in  2
iC . P2SATRA uses 2SATP  as a 

logical rule to represent the relationship of the dataset. In this context, P2SATRA capitalizes 

on expanding the search space in finding 2
i
SATP  by rearranging the selected attributes to 

increase the possibility of obtaining the best induced logic. 

(d) E2SATRA [13]: This model is the energy-based logic mining that consider 2
i
SATP   with 

global minima energy. E2SATRA capitalizes on 
2

min
SATPH  to ensure the generated 2

i
SATP  is 

a global solution. In the retrieval phase of the E2SATRA, the energy for all the final neuron 

state will be checked before being selected as 2
i
SATP . This process can ensure that the 2

i
SATP  

retrieved by E2SATRA is always achieve global minimum energy. 
(e) 3SATRA [12]: This model is the higher order logic mining approach that capitalize logic 

contains 3 literals per clause or 3SATP . During learning phase, the best logic is formulated 

by considering the most frequency of  3
iC   that obtained 1learnP   . However, the 

formulation of 3SATP  is based on randomized attribute selection. Regardless of no attribute 

selection was considered, 3SATRA able to generate 3
i
SATP  that represent the dataset. 

(f) S2SATRA [15]: This model utilized supervised attribute selection using correlation analysis 

and implement permutation operator to expand the search space of finding optimal 2
i
SATP . 

Interestingly, S2SATRA emphasizes on the attribute selection method and flexible attribute 

arrangement in the  2
iC  that leads to the higher accuracy value. On the other hand, the final 

neuron state of S2SATRA is scaled based on Eq (20). 

7.4. Experimental design 

The compiler is designed to input datasets randomly. In the DHNN models, neurons are 
represented by bipolar values (–1, 1), which are considered suitable components for the neural network. 
All experimentation, including the use of real-life datasets, was carried out using the open-source 
software Dev C++ (Version 5.11). The simulations were performed on a single personal computer to 
ensure unbiased interpretation of results. To maintain consistency, experiments should use same 
compiler settings and be conducted on devices with similar processing capabilities. Tables 4–6 show 
the list of parameters involved in the U2SAT, bCSA, and TDA, respectively. Moreover, Tables 7–13 
show the important parameters for all the logic mining models. 
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Table 4. List of parameters for U2SAT. 

Parameter Parameter Value 
Synaptic weight method Wan Abdullah method [2] 
Number of learning (NH) 100 
Learning Algorithm EA [38] 
Number of Trials (NT) 100 
Tolerance value (tol) 0.01 [39] 
Retrieval Algorithm bCSA  
Threshold for rD     0.6 

Threshold for sR     0.3 

Table 5. List of parameters for bCSA. 

Parameter Parameter Value 
Selection rate  S  1 

Clone rate  C  0.5 [12] 

Mutation rate  M  1 

Number of generations 100 

Table 6. List of parameters for TDA. 

Parameter Parameter Value 
Number of Hypercube (hc) 1 
Overlapping Percentage (hp) 0.3 [25] 
Number of clusters (m)  10 
Number of selected attributes 
(R) 

10 

Table 7. List of parameters for U2SATRA. 

Parameter Parameter Value 
Number of neuron (n) 10 
Number of clauses (y) 5 
Maximum combination [10, 252] 
Attribute Selection TDA 
Number of best logic (q) 5 
Learning Algorithm EA 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) 10 
Retrieval Algorithm bCSA 
Energy analysis - 
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Table 8. List of parameters for S2SATRA. 

Parameter Parameter Value 
Number of neuron (n) 6 
Number of clauses (y) 3 
Maximum Combination - 
Attribute Selection Correlation 
Number of best logic (q) 1 
Learning Algorithm ES  
Number of Trials (NT) 100 [7] 
Logical Permutation (P) 100 [14] 
Retrieval Algorithm - 
Energy analysis HTAF [40] 

Table 9. List of parameters for P2SATRA. 

Parameter Parameter Value 
Number of neuron (n) 6 
Number of clauses (y) 3 
Maximum combination - 
Attribute Selection Random 
Number of best logic (q) 1 
Learning Algorithm ES 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) 100 
Retrieval Algorithm - 
Energy analysis - 

Table 10. List of parameters for E2SATRA. 

Parameter Parameter Value 
Number of neuron (n) 6 
Number of clauses (y) 3 
Maximum combination - 
Attribute Selection Random 
Number of best logic (q) 1 
Learning Algorithm ES 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) - 
Retrieval Algorithm - 
Energy analysis HTAF [40] 
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Table 11. List of parameters for 2SATRA. 

Parameter Parameter Value 
Number of neuron (n) 6 
Number of clauses (y) 3 
Maximum combination - 
Attribute Selection Random 
Number of best logic (q) 1 
Learning Algorithm ES 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) - 
Retrieval Algorithm - 
Energy analysis - 

Table 12. List of parameters for 3SATRA. 

Parameter Parameter Value 
Number of neuron (n) 9 
Number of clauses (y) 3 
Maximum combination - 
Attribute Selection Random 
Number of best logic (q) 1 
Learning Algorithm ES 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) - 
Retrieval Algorithm - 
Energy analysis - 

Table 13. List of parameters for RA. 

Parameter Parameter Value 
Number of neuron (n) 6 
Number of clauses (y) 3 
Maximum combination - 
Attribute Selection Random 
Number of best logic (q) 1 
Learning Algorithm ES 
Number of Trials (NT) 100 [7] 
Logical Permutation (P) - 
Retrieval Algorithm - 
Energy analysis - 

8. Findings and analysis 

Our main purpose of this experiment is to analyze the performance of the logic mining when pre-
processing structure is applied on selecting the attributes. This section presents all the result for each 
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performance metrics and the performance of the logic mining is indicated by    and   . Notably, 

   shows the higher value of the metric indicates the better performance of the logic mining model. 

Moreover,    shows the lower value of the metric indicates the better performance of the logic 

mining model. 

8.1. Accuracy (ACC) 

 

Figure 4. ACC values for all the logic mining models   . 

Figure 4 illustrates the ACC values attained by all logic mining models for all 20 datasets. ACC 
highlights the ability of the logic mining models in retrieving optimal best induced logic that most 
suitable for the dataset analyzed. The ACC implies how well the retrieved best induced logic is able to 
represent the dataset with TP and TN outcomes. According to Iwendi et al. [41], high ACC shows the 
level of correctness of a model to retrieve truth outcomes. Based on the result of the logic mining 
models, U2SATRA obtained the highest average rank of 7.95. This finding indicates the superior 
performance of U2SATRA as one of the prominent logic mining models to date. The average ACC of 
the proposed model is 0.8221 which implies that, on average the distance between the predicted class 
to the actual class of all the datasets is only approximate to 17.79%. Thus, justification will be provided 
to emphasize several winning points of the U2SATRA. One of the possible reason why U2SATRA 
works well due to the mutual interaction of dynamic r in U2SATRA in DHNN. Dynamic values of r 
in rS2SAT provides better logical flexibility which resulting to better mapping of the SAT formula 
with the analyzed dataset that will minimize the FP and FN. This also highlights the ability of 
U2SATRA to generalize the datasets better than baseline logic mining models. Additionally, 
U2SATRA offers multiple search space dimensions by having multi-unit DHNNs in the learning phase. 
Hence, this creates a pathway to expand the search space in locating the best induced logic that will 
eventually maximize the values of TP and TN. Aligned to this finding, the multiple DHNNs in 
U2SATRA is proven to be effective. The performance of all the existing benchmark model far below 

0.0

0.2

0.4

0.6

0.8

1.0

D5

D4

D3

D2
D1

 U2SATRA  S2SATRA  P2SATRA  E2SATRA  2SATRA  3SATRA  RA

D6

D7

D8

D9

D10
D11

D12

D13

D14

D15

D16

D17

D18

D19

D20



22353 

AIMS Mathematics  Volume 9, Issue 8, 22321–22365. 

the U2SATRA model. This is because the systematic SAT formulas have random distribution of 
negative literals in respective logical rules. Zamri et al. [21]  stated that random distribution of 
negative literals deteriorates the flexibility of the SAT formula to represent the dataset due to its 
structural rigidness. Thus, resulting to the failure to be generalized when dealing with real-life 
applications. Consequently, all the existing benchmark model attained suboptimal ACC values, 
especially in E2SATRA, 2SATRA, 3SATRA, and RA. This observation has a good agreement with the 
statement given by Zamri et. al [21]. Ultimately, this shed new light on how successful the proposed 
logic mining model in extracting optimal best induced logic with high ACC value.  

Overall, all models except for E2SATRA performed 100% superior to RA due to the consideration 
of the attributes selection method. Random attributes selection method contributes to the lack of 
interpretability of the learned logical rule in DHNN. Thus, RA tends to misclassify the outcomes which 
leads to high FP and FN. This observation can also be seen in the results of 2SATRA. In comparison 
to S2SATRA, the attributes selected as based on the associations between variables in the dataset. 
Hence, DHNN is able to learn significant attributes which leads to higher ACC of the logic mining 
models. At one instance, U2SATRA is able to acquire almost 100% ACC for D18 with ACC = 0.9522 
equivalent to 95.22%. This finding implies that the proposed model is able to correctly predict the 
testing data entries for majority TP and TN. Based on an observation in Figure 4, there is one dataset 
where U2SATRA model is not able to win over the ACC value. The dataset is D11 which consists of 
the higher percentage of missing values (5%) as referred to Table 3. Therefore, the TDA was not fully 
utilized because the behavior of the variables cannot be analyzed correctly due to inaccurate 
information. The exact mapping of attributes for D11 decreases the possibility of removing irrelevant 
features of the dataset. Thus, resulting in lower ACC values as compared to S2SATRA. Despite 
competitive performance, U2SATRA model remains superior with 19 wins and no dataset with ACC 
value less than 70%. Friedman test is conducted with the null hypothesis, oH  is no performance 

differences between all logic mining models in terms of ACC. By observing the p-value, the oH  is 

rejected. This implies that the values of ACC in Figure 4 are significant whereby all logic mining 
models do not have equal performance in attaining the values of TP and TN. The superiority of 
U2SATRA in terms of ACC is statistically proven. 

8.2. Sensitivity (SNS) 

SNS results are used to identify how sensitive all logic mining models are by minimizing FN values. 
The proposed U2SATRA showed superiority in Figure 5 with 17 wins and the highest average for all 
datasets. Overall, this observation exhibited the ability of the proposed model in maximizing SNS which 
indicates that the model is highly sensitive when detecting positive outcomes. Worth mentioning that, 
U2SATRA achieved high SNS for health (D1, D2, D3, D4, D9, D14, and D19) and financial (D5, D10, 
and D11) datasets. The classification of health and financial datasets should be able to minimize FN 
because they are contributing to type II error which is less tolerable or more costly [42]. There are several 
justifications to support these findings. In comparison to existing logic mining models, U2SATRA 
generates optimal best logic which resulting to an effective testing phase of U2SATRA. The best logic 
captured the overall trend of the learning data with consideration of TP and TN values, which positively 
impacted the quality of the best induced logic produced. By this approach, the positive outcomes of 
the learning data are carefully represented and preserved. 
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Figure 5. SNS values for all the logic mining models   . 

Figure 6 represents the ratio of r frequency based on the U2SATRA retrieved best induced logic 
for the 20 datasets. In other words, these figures showed the frequency of which r the best induced 
logic are selected from. As presented in the figure, the structure of rS2SAT with r = 0.1 has the highest 
r frequency ratio. This implies two observations: First, the majority of the mentioned datasets have 
high compatibility with the structure of rS2SAT when r = 0.1 in both learning and retrieval phase of 
the proposed U2SATRA. Second, the systematic 2SAT clauses in rS2SAT lead to higher satisfiable 
property. Conclusively, these observations lead to the increase of getting positive outcomes. This is 
beneficial in maximizing the values of TP thus reduces FN, especially when dealing with datasets that 
have more positive outcomes like D4. This also explains why the existing logic mining models such 
as 3SATRA is able to obtain slightly higher SNS values than U2SATRA for one dataset. This is because 
3SATRA capitalized the systematic SAT logical rule of 3SAT which increases the probability of 
satisfied interpretations. The Friedman test is conducted with the null hypothesis, and oH   is 

performance differences between all logic mining models in terms of SNS. Since the p-value attained 
is less than 0.05, then oH  is rejected which showed that the performance of all logic mining models 

in terms of SNS is significant and not equal. Therefore, this shows the superiority of U2SATRA in 
terms of SNS being acknowledged. 
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Figure 6. Ratio of r frequency based on the U2SATRA retrieved best induced logic for the 
20 datasets. 

8.3. Specificity (SPC) 

The result of SPC for all logic mining models in analyzing 20 datasets is visualized in Figure 7. 
According to an existing work by Noureddin et al. [43], the values of SPC indicates the correctly 
identified TN by the model. Note that, 13 of the datasets utilized in this paper consists of majority class 
with –1 entries than 1 as shown in Table 3. Thus, high values of TN are preferable. Although not all 
datasets are imbalanced towards –1, the values of SPC are significant to exhibit the ability of the logic 
mining model in retrieving TN, rather than misclassified a lot of negative outcomes as positive. The 
proposed U2SATRA obtained 19 wins, whereby 50% of the datasets attained perfect values of 

1SPC   . Generally, the structural component of a SAT formula in DHNN is crucial because the 
relationship between each literal represents the neuron connections in the network. Hence, the synaptic 
weights of the DHNN highly impacted the quality of the induced logic produced from the local field 
computation. In terms of maximizing SPC, the CAM feature of DHNN should have the consistent 
magnitude with the variation of negativity. These qualities of CAM are demanded to ensure the 
production of optimal best induced logic to effectively captures the negative entries of the dataset 
resulting to the negative outcomes. Subsequently, the model will ascertain high value of TN which 
correspond to maximization of SPC. One of the reasons why U2SATRA remains superior in terms of 
SPC as compared to other logic mining models is due to the structural components of rS2SAT. The 
structure of rS2SAT offered consistent magnitude and negative variations in CAM by having 
systematic 2SAT clauses with dynamic r. The systematic 2SAT clauses in SAT is able to offer same 
satisfiable property and resulting to the consistent synaptic weight values. This will prevent disruption 
during the retrieval phase of the DHNN, thereby increasing the probability of identifying the best 
induced logic. This observation can be seen through the results of SPC for the following datasets of 
D2, D3, D4, D5, D7, D13, D15, D16, D18, and D20. These datasets achieved the maximum SPC 
values for U2SATRA model. The combination of systematic 2SAT clauses and dynamic r provided 
better logical representation in capturing the entries with negative outcome. 
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Figure 7. SPC values for all the logic mining models   . 

However, the component of a logical structure is insignificant without an optimizer in the retrieval 
phase of DHNN. The proposed bCSA in U2SATRA exhibited good performance in offering 
diversification of the final neuron state which directly impacted to the production of best induced logic. 
This can be seen through the superiority of U2SATRA in terms of SPC values more than 90%. 
According to Ong and Zainuddin [44], the main issue with the conventional DHNN is that the network 
may result in biased local field because the nature of DHNN is directly memorized in the final neuron 
states without generating a new state. Even when the synaptic weight varies, the tendency of repetitive 
induced logic cannot be avoided. To make things worse, if the logical structure only consist of positive 
clauses, the local field computation will be biased towards only the positive entries of the dataset. Thus, 
this creates an unfavourable situation to produce best induced logic that maps to the negative outcomes 
of the dataset. In the retrieval phase of U2SATRA, bCSA generated diversified final neuron state to 
counter this problem. In light of this, bCSA is able to produce optimal best induced logic with high 
SPC. Overall, the values of SPC are highly influenced by the structural components of the SAT logical rule 
and the diversification of the final neuron state. The Friedman test is conducted with the null hypothesis, 
and oH  has no performance differences between all logic mining models in terms of SPC. The obtained 

p-value is less than 0.05, so the oH  is rejected. This implies that values of SPC in Figure 7 are significant, 

as the logic mining models do not have equal performance in maximizing the values of TN, which 
leads to high SPC. Hence, the superiority of the proposed logic mining model is acknowledged as 
compared to other existing logic mining models. 
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8.4. Negative Predictive Value (NPV) 

Based on Figure 8, the proposed U2SATRA model attained most wins as compared to other 
baseline models with 65% wins out of all datasets. An observation by [35], NPV values guide 
researchers in visualizing the reliability of a model in classifying the model as negative. In this case, 
high NPV implies the proposed model ability to locate correct negative outcome of each dataset. With 
the most wins, U2SATRA outweighs other models by obtaining an average of 0.8591 or 85.91% and 
one dataset (D13) that is able to obtain 1NPV   . When NPV reached its maximum values, this 
indicates that U2SATRA is able to minimize the values of FN with no positive entries that is incorrectly 
classified. One of the possible reasons is due to the flexibility of the negative state in the systematic 
structure of rS2SAT. The flexibility of the negative state is advantageous as compared to other SATs 
in other logic mining models because rS2SAT is able to capture or make sense of the dataset due to 
the flexibility of the negative state. The dynamic ratio of r provides distinct outcome that will affect 
the values of TP and TN. When 1NPV  , the retrieved best induced logic by U2SATRA increases its 
expressivity and interpretability power via the ratio of r in rS2SAT. This approach is beneficial towards 
datasets with more negative outcomes. This observation can be seen through D13, which achieved 
maximum NPV whereby the majority class consists of -1 entries. This approach provides wider search 
space for the proposed logic mining model in searching for the most optimal best induced logic with 
maximum values of TP and TN. On the contrary, all existing logic mining models considered 
randomized distribution of positive and negative literals in respective logic mining models. This 
observation can be seen from the comparison of NPV and ACC values. When NPV is high, high values 
of TP is ascertained.  Notably, U2SATRA showed the best performance in terms of both NPV and 
ACC for datasets D3, D4, D6, D7, D9, D10, D13, D14, D16, D17, D18, D19, and D20. This implies 
the proposed model ability to generate best induced logic with prediction close to the actual outcome 
without having to trade-off positive or negative outcomes.  

 

Figure 8. NPV values for all the logic mining models   . 
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The proposed U2SATRA attained the highest average of NPV of 0.8591 which magnifies the 
capability of U2SATRA not only to be successful in minimizing FN but also attain high values of TN. 
Despite the nature of r in rS2SAT neglects the values of 1r   (all negative literals), the proposed 
TDA in the pre-processing phase of U2SATRA works efficiently in preserving negative entries that 
contributed to the negative outcome. The mutual interaction between TDA and rS2SAT in U2SATRA 
exhibited a harmony combination in reducing FP and FN. Significantly, RA achieved the lowest 
average (0.4336) of NPV which highlighted the fact that the model not able to attain high values of TN. 
This describes the low competency of the random attribute selection and distribution of negative 
literals less contributed to the negative outcome of the dataset. Overall, the U2SATRA model 
outperforms all baseline models in terms of NPV with no result of 0TN  . The Friedman test has 
been conducted with the null hypothesis, and oH  has no performance differences between all logic 

mining models in terms of NPV. The achieved p-value of NPV is less than 0.05. As a result, the oH  

is rejected, which concludes that all logic mining models do not have equal performances in terms of 
NPV. The values of NPV achieved for all datasets are statistically significant. In light with this finding, 
the superiority of U2SATRA is acknowledged in minimizing FN as compared to the existing logic 
mining models. 

8.5. Mathews Correlation Coefficient (MCC) 

Figure 9 illustrates the results of MCC values attained by all logic mining models for all 20 
datasets. Notably, U2SATRA achieved the highest number of wins with 18 and 2 losses. The average 
MCC values gained by U2SATRA for all datasets utilized is the highest among other benchmark 
models. This resulting to U2SATRA in achieving the highest rank with 7.85, which exhibited obvious 
superiority in comparison to all existing logic mining models. The closest performance in terms of 
MCC after U2SATRA is S2SATRA with the second-best average of 0.4142. Moreover, the worst model 
is RA with the lowest average of 0.1353. The motive of MCC analysis is to identify whether the 
performance of the logic mining model is similar, worse, or better than the random classifier model. 
According to Chicco and Jurman [37], the MCC values for any model with equal or lower than 0.14 is 
considered having the same or worse performance than a random classifier. From Figure 9, the number 
of datasets that achieved MCC values with equal or lower than 0.14 for U2SATRA is zero, S2SATRA 
is 2, followed by 3SATRA is five, P2SATRA is seven, and E2SATRA is nine. Based on this, 2SATRA 
and RA are categorized as poor-performed logic mining models with majority of the datasets 
performed equal or less than a random classifier model with 13 and 15 datasets, respectively. One of 
the visible reasons is the dynamic ratio of the negative literals in the SAT formula considered in the 
U2SATRA. As mentioned, MCC quantifies the right balance between the values of TP and TN. Thus, 
the retrieved best induced logic must be able to represent both positive and negative outcomes of the 
dataset. In other words, the best induced logic must effectively capture the retrieval data entries that 
leads to both outcomes. The logical structure utilized in U2SATRA have different distribution of 
negative literals with regards to the r. Hence, during the retrieval phase, the best induced logic with 

0.1r    has a higher tendency to produce more positive outcomes, leading to high values of TP. 
Correspondingly, with a higher value of r, the logic exhibits a greater tendency to generate more 
negative outcomes, which correlates with high values of TN. This magnified the ability of the proposed 
U2SATRA to maximize both values of TP and TN which then later resulting to high MCC. However, 
all existing logic mining models utilize a random distribution of negative literals, which allows only 
for the same pattern of CAM. This uniform pattern of CAM promotes inflexibility in capturing the 
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entries of the dataset, which results in producing repetitive induced logic. 

 

Figure 9. MCC values for all the logic mining models   . 

The superiority of U2SATRA in terms of MCC can also be explained through the existence of the 
best logic in the learning phase of the model. First, all possible structures of rS2SAT will be generated 
with respect to r and the 2SAT clauses with a range of [10, 252]. Each logical structure of rS2SAT has 
the potential to become the best logic by evaluating the values of TP, TN, FP, and FN when embedding 
the entries of the learning data into each logical rule. Second, the extraction of the best logic is based 
on the highest MCC values attained for each logical structure. The 5 best logics with the highest MCC 
for each r will be generated for each dataset. The reason why the value of MCC is being considered is 
to ensure that the best logic is able to represent entries in the retrieval data that leads to the high MCC 
values. These features in U2SATRA create various pathways to expand the search space in locating 
the best induced logic that will eventually maximize the values of MCC. Conjointly, this leads to higher 
MCC and attains better performance than a random classifier. On the contrary, all existing logic mining 
models capitalize only one logic in the learning phase through the generation of single best logic to 
represent the learning data. There is a higher tendency to produce repetitive induced logic by offering 
only one logic. Thus, the quality of the best induced logic produced will be affected because there are 
no variations of logic in the learning phase. Additionally, the extraction of best logic disregards the 
negative outcomes because it is solely based on the highest frequency of satisfied clauses from the 
learning data entries that only leads to positive outcomes. Hence, this explained why most of the 
existing logic mining models obtained low MCC values due to the retrieved best induced logic has 
poor interpretability property. The Friedman test is conducted with the null hypothesis, oH  has no 

performance differences between all logic mining models in terms of MCC, and the p-value attained 
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is less than 0.05. Thus, the oH  is rejected, which exhibited that the performance of all logic mining 

models in terms of MCC is significant and not equal. Overall, the performance of the U2SATRA in 
retrieving induced logic with the right balance of TP and TN is recognized as compared to other 
existing logic mining models. 

8.6. Qualitative analysis 

The performance evaluation of the U2SATRA model across 20 datasets provides valuable insights 
into its effectiveness in handling various datasets. Table 14 presents a comprehensive overview of the 
U2SATRA performance across five performance metrics. Upon analysis of the results, it is evident that 
U2SATRA exhibits strong performance across several key metrics, including ACC, SNS, SPC, NPV, 
and MCC. Of the 20 datasets evaluated, U2SATRA emerges as the top performer in most of the datasets 
across these metrics. This finding highlights the robustness of U2SATRA in effectively learning and 
adapting to diverse datasets. By consistently outperforming other models across multiple metrics, 
U2SATRA demonstrates its capability to generalize and handle various classification tasks with high 
accuracy and reliability. The effectiveness of the U2SATRA process can be attributed to several factors. 
First, U2SATRA employs an adaptive learning mechanism that enables it to effectively learn from the 
dataset. The introduction of the new computation method for determining the best logic during the 
learning phase of U2SATRA has had a significant impact on the induced logic retrieved during the 
retrieval phase. This is because the best logic is learned based on the specific performance metrics. For 

example, when considering the ACC metric, the selected 2
b

rS SATP  must achieve a high ACC during 

the learning phase to be designated as the best logic. Subsequently, the selected 2
b

rS SATP  is influenced 

by the ACC factor, increasing the likelihood of U2SATRA retrieving induced logic with a high ACC 

because it has learned 2
b

rS SATP  with a high ACC. This applies to each of the metrics, which is the 

reason why U2SATRA proposed multi-unit DHNNs. This principle applies to each metric, which is 
why U2SATRA proposes multi-unit DHNNs. In this context, U2SATRA is able to produce multiple 
sets of induced logic that correspond to the metrics. Second, U2SATRA utilizes an effective attribute 
selection method known as TDA in the pre-processing phase, which is crucial in capturing the 
underlying patterns and relationships within the data. TDA helps in mapping the structure of dataset 
by clustering the attributes that exhibit similar behavior. This prevents U2SATRA from selecting 
redundant attributes that have a similar impact on the dataset. By extracting informative attributes from 
the input data, U2SATRA enhances its ability to make accurate predictions for the dataset. Additionally, 
the multi-objective function in the retrieval phase enhances the diversification of the final solutions 
produced. This is achieved by promoting diversity among the negative states in each solution. 
Consequently, this ensures that the final solutions produced exhibit high dissimilarity. On the other 
hand, U2SATRA is able to achieve good performance due to its logical structure, rS2SAT. rS2SAT has 
a dynamic ratio, denoted as r, where the distribution of negative literals is pre-determined. Therefore, 
this increases the search space of U2SATRA by allowing it to find the best logical structure that 
corresponds to the dataset. Overall, the qualitative analysis contributes to the capability of U2SATRA 
to generalize and handle various classification tasks with high accuracy and reliability, highlighting its 
potential for real-world applications in diverse domains. 
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Table 14. Overall performance of the datasets in U2SATRA for all the performance metrics. 

Data Set ACC SNS SPC NPV MCC 

D1 / / / X / 

D2 / / / X / 

D3 / / / / / 

D4 / / / / / 

D5 / / / X / 

D6 / X / / / 

D7 / X / / / 

D8 / / / X / 

D9 / / / / X 

D10 / / / / / 

D11 X / / X / 

D12 / / / X / 

D13 / / / / / 

D14 / / / / X 

D15 / X / X / 

D16 / / / / / 

D17 / / X / / 

D18 / / / / / 

D19 / / / / / 

D20 / / / / / 

9. Conclusions 

We have extended the work of existing logic mining by making significant improvements in the 
pre-processing, learning, and retrieval phases by considering various important factors. A major 
contribution of the proposed model with other logic mining method is for the logical structure and the 
computation of best logic. U2SATRA was the first logic mining model that embedded a weighted 
feature in the systematic SAT, which is rS2SAT in representing the neurons in DHNN. Interestingly, 
U2SATRA also modified the mechanism of best logic in the existing reverse analysis method. The 
modified best logic is the strong logic that have both true and false classifications as compared with 
the learnP . The U2SATRA model was experimented with 20 repository real life datasets and compared 

with six states of the art logic mining models. The result shows the superiority of U2SATRA as 
compared to the other baseline methods. Subsequently, the proposed U2SATRA obtained optimal 
average values of ACC, SNS, SPC, NPV, and MCC. We also performed the Friedman test to ensure 
that there is significant difference for U2SATRA with all the logic mining models. Based on the 
findings, U2SATRA outperformed all the baseline methods by winning all the 5 metrics in the average 
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rank. The metrics is able to achieve highest average rank with ACC (7.95), SNS (7.55), SPC (7.93), 
NPV (7.50), and MCC (7.85). Based on the obtained results, it proves that U2SATRA exhibits 
significant performance across all tested performance metrics. Our research provides opportunities for  
researchers to extend the application of the proposed logic mining model in the fields of discrete neural 
networks such as the fuzzy neural network [45,46] and multidimensional neural network [47]. This 
can provide new insights in solving real life classification problems. 
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