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Abstract: In the quantum era, the advent of quantum computers poses significant threats to the
security of current cryptosystems. Therefore, designing quantum-resistant cryptoschemes becomes
important to guarantee information security. This work concentrates on the development of the post-
quantum public key encryption (PKE) scheme. Non-commutative cryptography (NCC) has entered
the field of post-quantum cryptography. We utilize the TSPEM problem with asymmetric structures
(which serve as a potential candiate for resisting quantum attacks) to construct two PKE schemes
which are demonstrated to be CPA security under the DTSPEM assumption. By representing the
plaintext as a matrix, these schemes can effectively encrypt a significant amount of information in
a single operation. Assuming an equal amount of messages for encryption, the proposed schemes
acheive superior efficiency compared to existing PKE schemes. Structurally, our systems exhibit a
level of synchronization and coexistence due to the distinct public keys (P) and ciphertexts (C1).
The efficiency analysis is conducted by comparing known schemes from the aspect of specific
cryptographic indicators. Generally, the proposed ones offer several advantages including provable
security, high efficiency, potential quantum-resistant, and relative ease of implementation; along with
synchronization and coexistence. Our investigation has established the feasibility of constructing
PKE schemes based on the TSPEM problem, specifically for asymmetric communication scenarios.
The preliminary results pave the way for further exploration of the TSPEM problem′s potential in
developing other cryptosystems suitable for quantum computing environments.
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1. Introduction

In recent years, the development of new information sciences, such as quantum information science
and the emergence of quantum computers have brought computing power capable of breaking classical
cryptographic schemes. Since the pioneering works [1, 2], a new goal has been set: to build a general
theory of security against quantum computers which pose a significant threat to current traditional
cryptosystems. To address this challenge, cryptosystems should be based on mathematical problems
that are intractable for quantum computers, making them resilient against quantum attacks. As a result,
a large number of cryptoschemes have been developed and various cryptographic primitives have been
designed to withstand quantum attacks.

Recent advances in quantum computing have shown the possibility of new types of attacks. To
counter this, candidates for cryptographic schemes resistant to quantum computers have actually
emerged, such as lattice-based schemes [3] and multivariate polynomial-based schemes [4]. Non-
commutative cryptography (NCC), an abbreviation for cryptography based on non-commutative
algebraic structures, has also entered the field of post-quantum cryptography. The mathematical
platform of cryptography research, where “commutativity” has been extended to “noncommutativity”,
is a product of interdisciplinary development, including quantum computing, combinatorial group
theory, computational complexity theory and so on. NCC schemes utilize more complex algebraic
structures, making them more challenging to analyze and attack. The security of NCC schemes and
their underlying methods, primitives, and structures are based on algebraic structures, such as groups,
rings, semiring and matrix groups/rings. Among these, matrix groups/rings have been particularly
promising.

The prevailing view [5–7] is that NCC can resist attacks from quantum computers. This is because
no known quantum polynomial-time algorithms exist to solve NP-hard problems involved in non-
commutative algebraic structures with well-established results [8–10]. The non-commutative algebraic
structures enable the design of more intricate cryptoschemes with enhanced security features. Quantum
computers struggle to efficiently solve non-commutative algebraic problems, making NCC a promising
approach with a higher level of security and flexibility compared to traditional methods. The most
significant advantage of NCC is its demonstrated resistance to quantum computer attacks. Several
NCC schemes have already emerged (e.g., [5–7, 11–17]), showing the potential of NCC.

NCC systems have emerged as a promising defense against attackers wielding quantum computing
power. This growing field has seen the development of numerous NCC schemes [11, 12, 14, 15]
suitable for applications like asymmetric key exchange protocols in asymmetric ambience. However,
constructing encryption schemes with asymmetric structures remains an open challenge. Similarly,
building Elgamal-like PKE schemes within asymmetric cryptosystems presents significant difficulties.

NCC offers a potential approach to designing cryptoschemes by leveraging non-commutative
algebraic structures, such as non-commutative groups and rings. These structures, defined by specific
non-commutative operations, are inherently resistant to quantum attacks. Implementing NCC in an
asymmetric setting, crucial for scenarios like cloud computing and the Internet of Things (IoT),
presents a distinct challenge for asymmetric communication to transmit messages and necessitates
new problem formulations. Despite the challenges, achievements have been made. In 2009, Wu
[12] proposed an asymmetric group key agreement protocol. In 2018, Yu [13] utilized the matrix
decomposition problem to analyze an asymmetric encryption scheme. Most recently, Wang [14]
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introduced an asymmetric computing key exchange protocol. In 2014, Mao [15] leveraged the ergodic
matrix problem and the tensor decomposition problem to propose an NP-hard (non-deterministic
polynomial time, NP) problem which was only suitable for a symmetric key exchange protocol as
a candidate for quantum-resistant.

Specifically, in accordance with some sets with certain non-commutative operations like the
matrix multiplication and tensor product, the knapsack problem, the tensor decomposition problem,
the ergoric problem, and the inherent difficulty of NP-complete (NPC) problems [18–21], Mao
[11] proposed the tensor and subset-product of the ergodic matrix (TSPEM) problem including
the computational TSPEM (CTSPEM) problem and the decisional TSPEM (DTSPEM) problem,
constructing an asymmetric TSPEM-based key exchange protocol as a candidate for resisting quantum
attacks. The appeal of the TSPEM-based protocol [11] lies in its use in asymmetric settings and its
potential to resist quantum computing due to its underlying algebraic structures and computational
complexity. The TSPEM problem [11] has the potential to open new fields in NCC as quantum-
resistant candidates in non-commutative environments.

The TSPEM problem can be effectively employed in asymmetric communication scenarios [11],
such as cloud computing and IoT, where devices like communication between servers and mobile
terminals. This approach presents a benefit: compared to traditional key establishment methods, at an
equivalent security level, one participant (typically the mobile device) involved requires substantially
less computational power and key storage space. The suitability of the TSPEM problem for
establishing asymmetric-computing keys [11] is particularly evident in cloud computing and IoT
applications, where communication often occurs between mobile devices with limited resources (like
computational capability) and powerful servers. The asymmetric nature of the TSPEM problem
leverages this disparity, allowing the mobile device to participate with minimal resource consumption
for non-commutative circumstances.

Inspired by work [11], we explore the application of the TSPEM problem to construct encryption
schemes, and achieve the goal by incorporating Elgamal-like techniques and methods from the TSPEM
problem. Rigorous analysis shows that the proposed PKE schemes are provably secure, highly efficient
and potentially resistant to quantum attacks, and simultaneously provide positive responses to the
challenges in post-quantum cryptography.

The basic security model for the PKE scheme was chosen-plaintext attack (CPA) security model
[22] in which an adversary has access to an encryption oracle to try to “break” the scheme. The
CPA security [22] is a very useful concept for the PKE scheme and sufficient for many encryption
applications in the presence of some attackers, enabling it to be widely accepted as the standard security
notion for encryption schemes. Notably, there exist many PKE schemes, such as those in [3, 4], that
achieve CPA security. We will strive to design new CPA-secure PKE schemes based on [11].

Building upon [11], we utilize the TSPEM problem to construct two PKE schemes and analyze
their CPA security based on the DTSPEM assumption and performance. Intuitively, the plaintexts are
represented by matrices, allowing for the efficient encryption of a significant amount of information
in a single operation. The efficiency is indeed achieved owing to the asymmetric algebraic structure
of the TSPEM problem [11]. The two PKE schemes have interrelated structures and dissimilar public
keys and ciphtertexts. On the one hand, the public key P of PKE I is different from that of PKE II, and
their ciphertexts C1 also differ. On the other hand, P of PKE I is regarded as C1 of PKE II; and C1 of
PKE I is equivalent to P of PKE II. In essence, PKE I and PKE II are synchronized, coexistent, and
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complementary to each other, making them well-suited for asymmetric environments. Furthermore,
from the standpoint of their algebraic structures and computational complexity, PKE I and PKE II
exhibit promising potential for resisting quantum attacks.

The proposed PKE schemes are necessary for both theoretical and practical applications in modern
non-commutative communication such as cloud computing and IoT. Their design has attracted much
interest to construct NCC primitives as having potential candidates for post-quantum cryptography in
non-commutative settings, which is supported by their inherent algebraic structures and computational
complexity. Our current work focuses on the CPA security, leaving the investigation of more
advanced attacks, such as chosen ciphertext attack (CCA) security, in future work. There might
be other conceived cryptographic primitives based on the TSPEM problem, like signatures and key
encapsulation mechanisms, not explore them here. Hitherto, developing new cryptosystems based on
the TSPEM problem to resist quantum computing remains an active area of research. We will prioritize
addressing these challenges in future work.

The remainder of the article is structured as follows. Section 2 provides some definitions
and properties related to the TSPEM problem [11]. Section 3 introduces our PKE schemes and
demonstrates their CPA security [22]. Section 4 analyzes the performance of our schemes. Conclusion
is presented in Section 5.

2. Preliminaries

Let Fq denote a finite field. We represent n × n matrices over a finite field as Fn×n
q . The symbol ⊗

denotes tensor-product operation in Fq. All computations are performed modulo q in Fq.
Review the TSPEM problem and its related NPC hard problems [11], the bounded knapsack

problem, the tensor decomposition problem, and the ergodic matrix problem (EMP), along with their
relative NPC problems as presented in [19, 20, 23].

Tensor of Matrix [20]. Given two matrices A = [ai, j]m×n and B = [bi j]k×l, tensor (A⊗ B)mk×nl includes
mk rows and nl columns, if it can be expressed as a block matrix, a block (i, j) in (A ⊗ B)mk×nl is a
k × l matrix ai jB. Some properties of the tensor product of matrices are given in Fq:

1. (A⊗q B)⊗q C = A⊗q (B⊗q C) (the properties of the tensor product can be expanded to more than
three matrices);

2. (A⊗q B)(C⊗q D) = AC⊗qCD), where the dimensions of A, B, C and D are m1×n1, m2×n2, n1×n3,
and n2 × n4, respectively.

Ergodic Matrix [23]. Given a matrix Q ∈ Fn×n
q , for ∀v ∈ Fn

q\{O}, if {Qv,Q2v, · · ·,Qqn
v} just traverses

Fn
q\{O}, then Q is an ergodic matrix.

The problem of subset-product of ergodic matrix (SPEM) and its variants, and the problem of tensor
of ergodic matrix (TEM) and its difficulty refer to Lemma 1.1–Lemma 1.4 [11].

Lemma 1.1. Choose randomly M ∈ Fn×m
q \{O}, for the uniformly chosen random m matrix pairs

(X1,Y1), · · ·, (Xm,Ym), where Xi,Yi ∈ Fn×m
q \{O}, i = 1, · · ·,m, (X1⊗q M⊗Y1, · · ·, Xm⊗q M⊗Ym) is known,

solving M is difficult, and the difficulty is unaffected by a value of m.

Lemma 1.2. For an ergodic matrix Q ∈ Fn×n
q , choose uniformly at random M ∈ Fn×n

q \{O}, x1, · ·
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·, xm ∈ Fqn and y1, · · ·, ym ∈ Fqn . (a) Qx1 ⊗q M ⊗q Qy1 is known to solve for x1, y1, and M; and (b)
(Qx1 ⊗q M ⊗q Qy1 , · · ·,Qxm ⊗q M ⊗q Qym) is known to solve for x1, y1, and M. Here, both (a) and (b)
have the same difficulty.

Lemma 1.3. For an ergodic matrix Q ∈ Fn×n
q , choose uniformly at random M ∈ Fn×n

q \{O}, x1, · · ·, xm ∈

Fqn , y1, · · ·, ym ∈ Fqn and k, l ∈ Fqn . (a) Qkx1 ⊗q M ⊗q Qly1 is known to solve for k, l, and M; and (b)
(Qkx1 ⊗q M ⊗q Qly1 , · · ·,Qkxm ⊗q M ⊗q Qlym) is known to solve for k, l, and M. The two problems have
the same difficulty.

Lemma 1.4. For m > 2n, given an ergodic matrix Q ∈ Fn×n
q , choose uniformly at random x1, · · ·, xm ∈

Fqn and x̃1, · · ·, x̃m ∈ Fqn . Compute Q1 = Qx1 , · · ·,Qm = Qx̃m and Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m in Fn×n
q .

Choose uniformly at random r = (r1, · · ·, rm) ∈ {0, 1}m, ∥r∥ ≤ poly(n) or the hamming weight is less

than a given bound, when (
m∏

i=1
Qri

i ,
m∏

i=1
Q̃ri

i ) is known, solving r ∈ {0, 1}m is difficult.

Present the DTSPEM problem and assumption [11].

DTSPEM problem. For m > 2n log q, given an ergodic matrix Q ∈ Fn×n
q , choose uniformly at random

x1, · · ·, xm ∈ Fqn and x̃1, · · ·, x̃m ∈ Fqn , compute Q1 = Qx1 , · · ·,Qm = Qxm and Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m

in Fn×n
q . Choose uniformly at random r = (r1, · · ·, rm) ∈ {0, 1}m (wt(r) = s) and M ∈ Fn×n

q \ {O}. If

(Qk
1 ⊗q M ⊗ Q̃l

1, · · ·,Q
k
m ⊗q M ⊗ Q̃l

m,

m∏
i=1

Qri
i ,

m∏
i=1

Q̃ri
i , A ⊗q B ⊗q C)

are known, decide A ⊗q B ⊗q C =
m∏

i=1
Qkri

i ⊗q Ms ⊗q

m∏
i=1

Q̃lri
i or not, where A, B, and C are chosen

uniformly at random.

DTSPEM assumption. For sufficiently large security parameter n and a probability polynomial time
(PPT) adversaryA,

|Pr[(A(P, F, f (n, l,M), g(r), A ⊗q B ⊗q C) = 1]−

Pr[(A(P, F, f (n, l,M), g(r),
m∏

i=1

Qnri
i ⊗q Ms ⊗q

m∏
i=1

Q̃lri
i ) = 1]|

≤ negl(n)

holds, where

f (n, l,M) = (Qn
1 ⊗q M ⊗ Q̃l

1, · · ·,Q
n
m ⊗q M ⊗ Q̃l

m),

g(r) = (
m∏

i=1

Qri
i ,

m∏
i=1

Q̃ri
i ),

and negl(n) is a negligible function.
Definition 1.5 CPA security.

Given a PKE scheme
∐
= (Gen, Enc,Dec) and a PPT adversary A, define the CPA game

(PubKcpa,
∐(A)) betweenA and a challenger C as follows [22].
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Setup. C runs the key generation algorithm KeyGen to generate keys (pk, sk). C gives the public
key pk toA and keeps sk as the private key.

Oracle access phase. A adaptively selects plaintexts of his choice and queries the encryption oracle
access repeatedly with these chosen plaintexts. The oracle responds with the corresponding ciphertexts.

Challenge phase. A submits two different messages M0, M1 with |M0| = |M1| to C who chooses
randomly b ∈ {0, 1} and then sends the challenge ciphertext C∗ = Encpk(Mb) to A who can access the
encryption many times.

Guess phase. A tries to guess b′ ∈ {0, 1} of b. If b′ = b, A wins the CPA game and outputs 1;
otherwise,A fails and outputs 0.

If for any PPTA, the advantage Advcpa,
∐(A) ofA satisfies

Advcpa,
∐(A) = |Pr[b = b′] −

1
2
| ≤ negl(n),

the scheme
∐

achieves CPA security (or is CPA-secure), where negl(n) is negligible, and n is a
security parameter.

Parameter selection. The parameters are chosen the same as that in [11], e.g., m > 2n log q, where
the dimension of the ergodic matrix is n; the dimension of the basic field Fq is m. Employ reasonable
parameters, e.g., (q, n,m) = (28, 3, 80), and n is the security parameter.

3. The construction

We will construct two PKE schemes, PKE I and PKE II, and analyze their CPA security.
In PKE I and PKE II, take as input 1n and output Fq with order q, Fqn with order qn, and Fqn\{0}

with order qn − 1. All computations are modulo q, e.g., mod q.

3.1. PKE I

Setup. Given an ergodic matrix Q ∈ Fn×n
q , choose x1, · · ·, xm ∈ Fqn and x̃1, · · ·, x̃m ∈ Fqn at random

uniformly. Then, compute Q1 = Qx1 , · · ·,Qm = Qxm (for each two in Q1 = Qx1 , · · ·,Qm = Qxm should
be irreversible) and Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m (for each two in Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m should be
irreversible) in Fn×n

q , and take them as public parameters.
KeyGen. Let P = (Qk

1 ⊗q M ⊗q Q̃l
1, · · ·,Q

k
m ⊗q M ⊗q Q̃l

m) be the public key associated with the private
keys k, l ∈ Fqn , and M ∈ Fn×n

q . The pubic key is constructed as pk = (q, Fq, Fqn , Fn×n
q , F

n3×n3

q ,Q, P).
Encrypt. To encrypt a message M̃ ∈ Fn3×n3

q using pk, first choose r = (r1, · · ·, rm) ∈ {0, 1}m at random
uniformly, and then compute

C1 = (
m∏

i=1

Qri
i ,

m∏
i=1

Q̃ri
i ),

C2 = M̃ +
m∏

i=1

(Qk
i ⊗q M ⊗q Q̃l

i)
ri .

Output the ciphertext C = (C1,C2).
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Decrypt. To decrypt C = (C1,C2) with the private keys k, l ∈ Fqn , and M ∈ Fn×n
q , compute

M̃ = C2 −

m∏
i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l

using known C1 = (
m∏

i=1
Qri

i ,
m∏

i=1
Q̃ri

i ).

Correctness. If PKE I is run honestly, the plaintext M̃ can be recovered successfully.

Based on the form of C1 = (
m∏

i=1
Qri

i ,
m∏

i=1
Q̃ri

i ), compute

C′1 = (
m∏

i=1

Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q (

m∏
i=1

Q̃i
ri)l

=

m∏
i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l

using the private keys k, l ∈ Fqn , and M ∈ Fn×n
q . This allows us to further obtain

C2 −C′1 = (M̃ +
m∏

i=1

(Qk
i ⊗q M ⊗q Q̃l

i)
ri)

−

m∏
i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l

= (M̃ +
m∏

i=1

(Qk
i )

ri ⊗q M
m∑

i=1
ri
⊗q

m∏
i=1

(Q̃l
i)

ri)

−

m∏
i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l

= M̃

with wt(r) = ⌊m
2 ⌋.

3.2. Security analysis of PKE I

Theorem 3.1 proves the CPA security of PKE I.

Theorem 3.1 If the DTSPEM problem is hard for a PPT adversaryA, PKE I is CPA-secure.

Proof. Let
∐

denote PKE I. We prove that
∐

achieves indistinguishable encryptions for an adversary
A, which implies that PKE I is CPA-secure. In the CPA game (PubKcpa(A)) between A and the
challenger C,A can make an arbitrary number of encryption queries and is given a challenge ciphertext
for the distinguishability test.

IfA can successfully break the CPA security of the PKE I, this implies thatA has a non-negligible
advantage in distinguishing ciphertexts. By exploiting this advantage during the CPA game, C can then
interact withA to solve the DTSPEM problem with a non-negligible probability of success.
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Setup. C runs KeyGen(1n) to generate the public key P = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m) to
A and keeps k, l ∈ Fqn , and M ∈ Fn×n

q as the private keys.
Oracle access. A is allowed to access the encryption oracles for any plaintext M̃′ ∈ Fn3×n3

q of
choice. Upon submitting a message,A receives either the corresponding ciphertext C′ or ⊥ (indicating
an invalid query) as his accessed result. In other words, A submits the selected plaintexts to access
encrypted oracles many times and obtains the corresponding results.

During the challenge stage, A can receive a 2-tuple C = (C1,C2) where C2 either equals the
challenge ciphertext C∗2 below or a random value R uniformly chosen from Fn3×n3

q . C performs the
following challenge.

Challenge. C runs KeyGen(1n) to get the system parameters (Fq, Fqn , Fn×n
q , F

n3×n3

q , q,Q), selects
randomly k, l, k′, l′ ∈ Fqn ,M, M′ ∈ Fn×n

q and sets

C1 = (
m∏

i=1

Qri
i

m∏
i=1

Q̃ri
i ),

P = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m),

C3 =

m∏
i=1

(Qk
i )

ri ⊗q M
m∑

i=1
ri
⊗q

m∏
i=1

(Q̃l
i)

ri ,

(C3 =

m∏
i=1

(Qk′
i ⊗q M′ ⊗q Q̃l′

i )ri

=

m∏
i=1

(Qk′
i )ri ⊗q (M′)

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃l′
i )ri).

Let pk = (q, Fq, Fqn , Fn×n
q , F

n3×n3

q ,Q, P), A executes A(pk) to output two equal-length plaintexts
M̃0, M̃1 ∈ Fn3×n3

q \{O}, and submits M̃0, M̃1 to C who chooses randomly b ∈ {0, 1} and encrypts M̃b to
get the challenge ciphertext C∗ = Encpk(M̃b) = (C∗1,C

∗
2) which is then sent back toA, where

C∗1 = (
m∏

i=1

Qri
i ,

m∏
i=1

Q̃ri
i ),

C∗2 = C3 + M̃b,

C3 =

m∏
i=1

(Qk
i )

ri ⊗q M
m∑

i=1
ri
⊗q

m∏
i=1

(Q̃l
i)

ri ,

(C3 =

m∏
i=1

(Qk′
i ⊗q M′ ⊗q Q̃l′

i )ri).

C gives C∗ toA and obtainsA′s output b′ of b. If b = b′, C outputs 1; otherwise, C outputs 0.

If C∗2 = M̃b +
m∏

i=1
(Qk

i )
ri ⊗q M

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃l
i)

ri , then C∗ is the valid encryption of M̃b with the correct

distribution (as C3 =
m∏

i=1
(Qk

i )
ri ⊗q M

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃l
i)

ri is a TSPEM problem tuple). In the case, A wins

with a probability of P[PubKcpa,
∐(A) = 1].
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When C3 (like C3 =
m∏

i=1
(Qk′

i ⊗q M′ ⊗q Q̃l′
i )ri) is random uniformly in Fn3×n3

q , the challenge ciphertext

C∗ is independent of b fromA′s view. If C∗ is randomly chosen from Fn3×n3

q × Fn3×n3

q , there exists three
cases.

Suppose that A receives a ciphertext (C′1,C
′
2) , (C∗1,C

∗
2), where (C′1,C

′
2) ∈ Fn3×n3

q × Fn3×n3

q is
uniformly distributed.

Case 1. Suppose that (C′1,C
′
2) = (C∗1,C

′
2) which means that C′2 , C∗2. After receiving (C∗1,C

′
2), A

attempts to compute

M̃′b = C′2 −
m∏

i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l.

BecauseA knows nothing about the private key k, l,M (according to lemma 1.2 and 1.3), he cannot
obtain M̃b from C∗1 (since C∗1 has no relation to M̃b). Therefore, C′2 is a random element which leads to
(C∗1,C

′
2) also being random.

Case 2. Suppose that (C′1,C
′
2) = (C′1,C

∗
2) which implies that C∗1 , C′1. Although A knows C∗2, he

cannot know M̃b from C∗2 under the DTSPEM assumption. In addition, C′1 is inherently random forA.
Consequently, (C′1,C

∗
2) is a random element.

Case 3. We introduce a modified version of
∐

, denoted by
∐̃

, where KenGen is exact as that in
∐

.
In
∐̃

, to encrypt a message M̃b ∈ Fn3×n3

q \{O} using the public key pk = (Fq, Fqn , Fn×n
q , F

n3×n3

q , q,Q, P),
first select k′, l′ ∈ Fqn , and M′ ∈ Fn×n

q at random uniformly, and output the ciphertext

(C′1,C
′
2) = ((

m∏
i=1

Qri
i ,

m∏
i=1

Q̃ri
i ), M̃b +

m∏
i=1

(Qk′
i ⊗q M′ ⊗q Q̃l′

i )ri),

where C3 =
m∏

i=1
(Qk′

i ⊗q M′ ⊗q Q̃l′
i )ri .

In
∐̃

, M̃b +
m∐

i=1
(Qk′

i ⊗q M′ ⊗q Q̃l′
i )ri is a random element which is independent of M̃b. (If k′ and l′ are

chosen uniformly at random in Fqn and M′ ∈ Fn×n
q is at random uniformly, then

m∏
i=1

(Qk′
i ⊗q M′ ⊗q Q̃l′

i )ri

is random uniformly in Fn3×n3

q ). Additionally, the first element, (
m∏

i=1
Qri

i ,
m∏

i=1
Q̃ri

i ), is not associative with

M̃b. As a result, the ciphertext (C′1,C
′
2) is independent of M̃b in

∐̃
and has no connection with M̃b.

As discussed above, A knows nothing about M̃b from (C′1,C
′
2) since C′1 contains no information

about M̃b and C′2 is a random element in Fn3×n3

q with k′, l′ ∈ Fqn , M′ ∈ Fn×n
q chosen at random.

Namely, if

C3 =

m∏
i=1

(Qk′
i ⊗q M′ ⊗q Q̃l′

i )ri

=

m∏
i=1

(Qk′
i )ri ⊗q (M′)

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃l′
i )ri ,

then C′2 = C3 + M̃b becomes completely random from A′s view. In short, (C′1,C
′
2) is independent of

M̃b and reveals nothing about M̃b. Therefore, in all three cases (case 1, case 2, and case 3), (C′1,C
′
2)

appears random toA. At this point, ifA wins with a probability of P[Pubcpa,
∐

1,2,3(A) = 1], we have
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P[Pubcpa,
∐

1,2,3(A) = 1] =
1
2
.

Guess. A attempts to guess M̃b, b ∈ {0, 1} corresponding to C∗. To achieve this, A outputs a guess
b′ ∈ {0, 1} of b. Two scenarios exist.

1. Run KeyGen to get (q, Fq, Fqn , Fn×n
q , F

n3×n3

q ,Q), select x1, · · ·, xm, x̃1, · · ·, x̃m, k, l ∈ Fqn ,M ∈ Fn×n
q

and set

P = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m),

C1 = (
m∏

i=1

Qri
i ,

m∏
i=1

Q̃ri
i ),

C3 =

m∏
i=1

(Qk
i )

ri ⊗q M
m∑

i=1
ri
⊗q

m∏
i=1

(Q̃l
i)

ri ,

C2 = C3 + M̃b.

The public key is constructed as pk = (q, Fq, Fqn , Fn×n
q , F

n3×n3

q ,Q, P), and the ciphertext is (C1,C2).
In this scenario, A′s view is identical to that in the real game PubKcpa,

∐(n). If b′ = b, C outputs

1. This implies that C3 =
m∏

i=1
(Qk

i )
ri ⊗q M

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃l
i)

ri . We have that

Pr[A(Fq,Q, P,C1,C3) = 1] = P[PubKcpa,
∐(A) = 1].

2. Run KeyGen to get (q, Fq, Fqn , Fn×n
q , F

n3×n3

q ,Q), select x1, · · ·, xm, x̃1, · · ·, x̃m, k, l ∈ Fqn ,M ∈ Fn×n
q

and set

P = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m),

C1 = (
m∏

i=1

Qri
i ,

m∏
i=1

Q̃ri
i ),

C2 = C3 + M̃b,

where C2 ∈ Fn3×n3

q is at random in all three cases (case 1, 2 and case 3). The public key is constructed
as pk = (q, Fq, Fqn , Fn×n

q , F
n3×n3

q ,Q, P), and the ciphertext is (C1,C2).
In this scenario, the view ofA is exactly the same asA′s view in all three cases, we have that

P[A(Fq,Q, P,C1, A ⊗ B ⊗ Z) = 1] = P[Pubcpa,
∐

1,2,3(A) = 1] =
1
2
,

where A, B, and Z ∈ Fn3×n3

q are random elements.
Under the DTSPEM assumption, there exists a negl(n) such that

|P[A(Fq,Q, P,C1, A ⊗ B ⊗ Z) = 1] − Pr[A(Fq,Q, P,C1,C3) = 1]| ≤ negl(n).

Putting the above altogether, it follows that

Advcpa,
∐ = |P[b = b′] −

1
2
| ≤ negl(n).
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According to the definition of CPA security, PKE I is CPA-secure for any PPT A under the
DTSPEM assumption.

This completes the proof of Theorem 3.1. □

3.3. PKE II

Setup. Given an ergodic matrix Q ∈ Fn×n
q , select x1, · · ·, xm ∈ Fqn and x̃1, · · ·, x̃m ∈ Fqn uniformly

at random. Then, compute Q1 = Qx1 , · · ·,Qm = Qxm (for each two in Q1 = Qx1 , · · ·,Qm = Qxm should
be irreversible) and Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m (for each two in Q̃1 = Qx̃1 , · · ·, Q̃m = Qx̃m should be
irreversible) in Fn×n

q , and take them as public parameters.

KeyGen. Let P = (
m∏

i=1
Qri

i ,
m∏

i=1
Q̃ri

i ) be the public key associated with the private key r = (r1, · · ·, rm) ∈

{0, 1}m (wt(r) = ⌊m
2 ⌋).

Encrypt. To encrypt M̃ ∈ Fn3×n3

q , choose at random uniformly k, l ∈ Fqn , and M ∈ Fn×n
q , and

compute

C1 = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m),

C2 = M̃ +
m∏

i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l.

Output the ciphertext C = (C1,C2).

Decrypt. To decrypt C = (C1,C2) with the private key r = (r1, · · ·, rm) ∈ {0, 1}m (wt(r) = ⌊m
2 ⌋),

compute

M̃ = C2 −

m∏
i=1

(Qk
i ⊗q M ⊗q Q̃l

i)
ri

using known C1 = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m).

Correctness. If PKE II is run honestly, the plaintext M̃ can be recovered successfully.

Based on the form of C1:

C1 = (Qk
1 ⊗q M ⊗q Q̃l

1, · · ·,Q
k
m ⊗q M ⊗q Q̃l

m),

compute

C′1 =
m∏

i=1

(Qk
i ⊗q M ⊗q Q̃l

i)
ri

using the private key r = (r1, · · ·, rm) ∈ {0, 1}m (wt(r) = ⌊m
2 ⌋). This allows us to further obtain
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C2 −C′1 = (M̃ +
m∏

i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l)

−

m∏
i=1

(Qk
i ⊗q M ⊗q Q̃l

i)
ri

= (M̃ +
m∏

i=1

(Qri
i )k ⊗q M⌞

m
2 ⌟ ⊗q

m∏
i=1

(Q̃i
ri)l)

− (
m∏

i=1

(Qkri
i ) ⊗q M

m∑
i=1

ri
⊗q

m∏
i=1

(Q̃lri
i ))

= M̃

with wt(r) = ⌊m
2 ⌋.

3.4. Security analysis of PKE II

Theorem 3.2 presents the CPA security of PKE II.

Theorem 3.2 If the DTSPEM problem is hard for a PPTA, then PKE II is CPA-secure.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1, we omit it here. □

4. Performance analysis

This section mainly provides a comparative analysis of security, computation, and storage cost
between our schemes and several representative PKE schemes. Tables 1 and 2 compare ours with
the PKE scheme [3] based on the learning with errors problem and the ergodic matrix-based PKE
scheme [21].

It is common knowledge that any intricate problem with small parameters can be addressed through
certain attacks. The size of m (not too small) [11] determines efficiency and security. From the practical
perspective, we can select appropriate parameters for the implementation of the proposed schemes, e.g.,
employing (q, n,m) = (28, 3, 80). The operations of our schemes mainly refer to matrix multiplication.
and tensor-product. Both of them need O(m) matrix multiplications and 2m + 2 tensor products or so,
thereby they possess high efficiency and ease of implementation in hardware and software, making it
suitable for utilization in smart systems.

Computational complexity is measured by the number of multiplication operations over Fq.
Specifically, Pub.cost refers to the computational overhead of generating a public key P, and other
items can be treated similarly; log2 q denotes the computational overhead of multiplication of two
integers in Fq. Storage overhead stands for the size of system elements, where priv.size represents the
size of the private key, and similarly for other items. Com.alg. is an abbreviation for a computational
algorithm.

We compare PKE I with PKE II in Table 1 and Table 2. The Pub.size with O(n7 log q) of PKE I is
much bigger than o(n2 log q) of PKE II. The Priv.size, O(n2 log q) of PKE I is bigger than O(n log q)
of PKE II. Cipher.size of PKE II is much bigger than that in PKE I. The plain.size of PKE I is the
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same as PKE II′s. The Pub.cost and Dec.cost of PKE II can be expressed by O(n4 log q), smaller than
O(n5 log2 q) in PKE I. The Enc.cost, O(n5 log2 q) in PKE II is bigger than O(n4 log q) of PKE I. These
results indicate that their structures are interconnected.

As shown from Tables 1 and 2, compared to schemes [3, 21], our proposed ones offer certain
advantages in terms of computational and storage efficiency. Specifically, the storage overhead (e.g.,
Pub.size, Priv.size, and Cipher.size) and computational complexity (e.g., Pub.cost, Enc.cost, and
Dec.cost) in [3] seem to be lower than those of PKE I and PKE II. However, it is not so. While [3]
can encrypt only one bit of plaintext at a time, both PKE I and PKE II can encrypt n6 log q bits in a
single operation. Consequently, encrypting n6 log q bits utilizing [3] would require n6 log q executions
whereas PKE I and PKE II would only necessitate a single execution. Namely, the proposed schemes
can encrypt more information at once, increasing the encryption quality compared to [3]. It is clear
that both computing complexity and storage overhead in [3] are higher than those of PKE I and PKE
II when encrypting the same amount of messages, making PKE I and PKE II much more efficient
than [3]. The Pub.size (4n2 log 2) and Priv.size (2(n − 1) log 2) in [21] are similar to those of PKE
II, but smaller than those of PKE I. Other parameters including Cipher.size, Plain.size, Pub.cost,
Enc.cost, and Dec.cost in [21] are much smaller than those of PKE I and PKE II owing to their
different domains. The analysis indicates that our schemes overcome the serious defect of the classic
scheme with encryption of less plaintexts one time by enabling the encryption of larger plaintexts in a
single operation, resulting in greatly improved efficiency.

Based on different assumptions, while our schemes and [3] achieve CPA security, [21] likely
provides only weak security such as opposing brute force attack and simultaneous equations attack,
and not sure whether it is CPA-secure. The security [21] is limited to theoretical analysis and has not
been realized in practice, especially considering resistance against quantum attacks. While [3] offers
resistance against quantum attacks, PKE I and PKE II can only be considered candidates for quantum-
resistant cryptography. In general, our schemes outperform [3, 21] and achieve superior efficiency in
terms of computation and storage while maintaining comparable or stronger security guarantees. This
analysis highlights theoretical efficiency measures when evaluating cryptographic schemes. Practically,
while PKE I and PKE II can be implemented in an asymmetric setting, it is unknown whether [3, 21]
can be applied in such a setting. Leave the research for future work.

Table 1. Comparison of performance between PKE schemes.

System Pub.size Priv.size Cipher.size Plain.size Pub.cost
[3] 2(n + 1)n log2 q n log q n log2 q + log q 1 2n2 log3 q
[21] 4n2 log 2 2(n − 1) log 2 n2 log 2 n2 log 2 2n log2 2

PKE I (2n log q + 1)n6 log q (2n + n2) log q (2 + n4)n2 log q n6 log q O(n5 log2 q)
PKE II 2n2 log q 2n log q + 1 (2n log q + 2)n6 log q n6 log q O(n4 log q)
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Table 2. Comparison of performance between PKE schemes.

S ystem Enc.cost Dec.cost Resist.Quantum Assumption CPA − secure
[3] 2n2 log2 q n log2 q Yes Lattice Yes
[21] 2(n + 1)n2 log2 2 2(n + 1)n2 log2 2 No T EMP No

PKE I O(n4 log q) O(n5 log2 q) Open DTS PEM Yes
PKE II O(n5 log2 q) O(n4 log q) Open DTS PEM Yes

5. Conclusions

The rise of quantum computers has significantly heightened the need for cryptosystems resistant
to quantum attacks. To ensure the security of future information applications, further development in
post-quantum cryptography is crucial. We present two PKE schemes based on the TSPEM problem
which can be regarded as a promising candidate for resisting quantum attacks due to its inherent
algebraic structures and computational complexity. We formally prove their CPA security under the
DTSPEM assumption [11]. Finally, the efficiency of their execution is analyzed.

The inherent efficiency of matrix operations in both software and hardware contributes significantly
to the high performance of the proposed schemes. The efficient encryption of large plaintexts in a
single operation is allowed by the TSPEM problem′s structure. As highlighted earlier, our schemes
yield several good features: security can be reduced to the hard DTSPEM problem, scalable security
parameters, high efficiency, ease of implementation, and potential resistance to quantum attacks, as
well as the unique synchronization and coexistence. These characteristics make the proposed ones
well-suited for various applications, such as the IoT, asymmetric cryptography, cloud computing, and
potentially even quantum computing environments.

All in all, the TSPEM problem will become one promising foundamental tool for constructing post-
quantum cryptoschemes in the future. Our schemes acts as a foundation for designing other TSPEM-
based cryptosystems like key encapsulation mechanisms, authentication key exchange protocols, and
signatures, which are promising candidates for cryptosystems resistant to quantum attacks. Despite
the proposed ones can achieve CPA security for certain applications, they do not satisfy stronger
CCA security [22]. However, our results can likely be modified to CCA-secure PKE schemes
by incorporating appropriate cryptographic transformation technologies or primitives. The TSPEM
problem will lead to more efficient PKE schemes, CCA-secure KEMs, and leakage-resistant CCA-
secure PKE schemes suitable for quantum computing circumstances. Future research will fruitfully
explore these issues further by constructing TSPEM-based cryptosystems with higher-lever security
features.
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